
Caching query-biased snippets for efficient retrieval

Diego Ceccarelli
Dipartimento di Informatica

Università di Pisa
diego.ceccarelli@isti.cnr.it

Claudio Lucchese
ISTI-CNR

Pisa
claudio.lucchese@isti.cnr.it

Salvatore Orlando
Università Ca’ Foscari

Venezia
orlando@unive.it

Raffaele Perego
ISTI-CNR

Pisa
raffaele.perego@isti.cnr.it

Fabrizio Silvestri
ISTI-CNR

Pisa
fabrizio.silvestri@isti.cnr.it

ABSTRACT
Web Search Engines’ result pages contain references to the
top-k documents relevant for the query submitted by a user.
Each document is represented by a title, a snippet and a
URL. Snippets, i.e. short sentences showing the portions
of the document being relevant to the query, help users to
select the most interesting results.

The snippet generation process is very expensive, since it
may require to access a number of documents for each issued
query. We assert that caching, a popular technique used to
enhance performance at various levels of any computing sys-
tems, can be very effective in this context. We design and
experiment several cache organizations, and we introduce
the concept of supersnippet, that is the set of sentences in a
document that are more likely to answer future queries. We
show that supersnippets can be built by exploiting query
logs, and that in our experiments a supersnippet cache an-
swers up to 62% of the requests, remarkably outperforming
other caching approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining.; H.3.3 [Information Search and Retrieval]:
Search process, Query formulation.

General Terms
Algorithms, Experimentation.

Keywords
Web Search Engines, Snippet Generation, Caching, Effi-
ciency, Throughput.

1. INTRODUCTION
Nowadays a Web Search Engine (WSE) is a very complex

software system [1]. It is well known that the goal of a WSE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

is to answer users’ queries both effectively, with relevant re-
sults, and efficiently, in a very short time frame. After a
user issues a query, the WSE actually runs a chain of com-
plex processing phases producing the Search Engine Results
Page (SERP). A SERP contains a list of few (usually 10)
results. Each result corresponds to a Web page, and it con-
tains the title of the page, its URL, and a text snippet, i.e.
a brief text summarizing the content of the page.

The true goal is to scale-up with the growth of Web doc-
uments and users. The services offered by a WSE exploit a
significant amount of storage and computing resources. Re-
source demand must be however kept as small as possible in
order to achieve scalability. During query processing, docu-
ment indexes are accessed to retrieve the list of identifiers of
the most relevant documents to the query. Second, a view
of each document in the list is rendered. Given a document
identifier, the WSE accesses the document repository that
stores permanently on disk the content of the correspond-
ing Web page, from which a summary, i.e. the snippet, is
extracted. In fact, the snippet is usually query-dependent,
and shows a few fragments of the Web page that are most
relevant to the issued query. The snippets, page URLs, and
page titles are finally returned to the user.

Snippets are fundamental for the users to estimate the rel-
evance of the returned results: high quality snippets greatly
help users in selecting and accessing the most interesting
Web pages. It is also known that the snippet quality de-
pends on the ability of producing a query-biased summary of
each document [16] that tries to capture the most important
passages related with the user query. Since most user queries
cannot be forecasted in advance, these snippets cannot be
produced off-line, and their on-line construction is a heavy
load for modern WSEs, which have to process hundreds of
millions queries per day. In particular, the cost of accessing
several different files (containing the Web pages) for each
query, retrieved among terabytes of data, under heavy and
unpredictable load conditions, may be beyond the capabil-
ity of traditional filesystems and may require special purpose
filesystems [18].

In this paper we are interested in studying the perfor-
mance aspects of the snippet extraction phase and we devise
techniques that can increase the query processing through-
put and reduce the average query response time by speeding-
up snippet extraction phase. In particular, we leverage on a
popular technique used to enhance performance of comput-
ing systems, namely caching [13]. Caching techniques are
already largely exploited by WSEs at various system levels

93

to improve query processing, mainly for storing past queries
and associated sets of results along with the query-biased
snippets [5].

The basic technique adopted for Web search caching is to
store the whole result page for each cached query. When a
cache hit occurs, the result page is immediately sent back
to the user. This approach perfectly fits queries being in
the “head” of the power-law characterizing the query topic
distribution. On the other hand, SERP caching is likely to
fail in presence of personalization, that is when the engine
produces two different SERPs for the same query submitted
by two different users. Furthermore, it fails when a query
has not been previously seen or it is a singleton query, i.e.
it will not be submitted again in the future. Baeza-Yates
et al. [2] report that approximatively 50% of the queries
received by a commercial WSE are singleton queries.

Unlike query-results caching, snippets caching that is the
focus of this paper, has received relatively low attention.
The two research efforts closest to ours are those by Turpin
et al. and Tsegay et al. [18, 17]. The authors investigate
the effect of lossless and lossy compression techniques to
generate documents surrogates that are statically cached in
memory. They argue that complex compression algorithms
can effectively shrink large collection of texts and accom-
modate more surrogates within the cache. As a trade-off,
complex decompression increases the time needed by the
cache to serve a hit, and are thus unlikely to decrease the
average snippets generation time [18]. Lossy compression
techniques produce surrogates by reordering and pruning
sentences from the original documents. They reduce the size
of the cached documents, still retaining the ability of pro-
ducing high quality snippets. Tsegay et al. measured that in
the 80% of the cases snippets generated from surrogates that
are the 50% of the original collection size, are identical to the
ones generated from the non-compressed documents [17].

To the best of our knowledge, this is the first research
studying techniques for dynamically generating document
surrogates to be managed by a snippet caching system. Fur-
thermore, the surrogates generation method is completely
new, since the sentence selection is based on the past queries
submitted to the WSE. Our thesis is that the knowledge
stored in query logs can help in building concise surrogates,
that we call supersnippets, which we prove to be very effec-
tive for the efficient retrieval of high quality snippets.

The rest of the paper is organized as follows. In Section 2,
by analyzing a query log, we show that the the snippet gen-
eration process have a significant locality, which supports
the use of caching techniques. Section 3 formalizes the ar-
chitectural framework adopted and introduces two baseline
snippet cache organization. In Section 4 we introduce the
concept of supersnippet, and we propose a caching algorithm
for building and maintaing supersnippets. Then, in Sec-
tion 5 we report on the effectiveness of our proposed algo-
rithm, while in Section 6 we show the performance results.
Section 7 illustrates relevant related work, and finally, in
Section 8 we draw some conclusions.

2. MOTIVATIONS
This paper proposes a new approach for generating query-

biased snippets from concise surrogates of documents cached
in main memory. Our thesis is that the knowledge stored in
query logs can help in building concise surrogates that allow

Query Log Queries Distinct
Queries

Distinct
Urls
(top 10)

D1

training 1,000,000 601,369 4,317,603

test 500,000 310,495 2,324,295

D2

training 9,000,000 4,447,444 25,897,247

test 4,500,000 2,373,227 12,134,453

Table 1: Main characteristics of the samples of the
MSN query log used for the experiments.

high-quality query-biased snippets to be efficiently gener-
ated. We thus start our study by analyzing a real-world
query log, with the aim of understanding the characteristics
and the popularity distribution of URLs, documents and
snippets returned by a WSE.

In our experiments we used the MSN Search query log ex-
cerpt (RFP 2006 dataset provided by Microsoft). Such query
log contains approximately 15 million queries sampled over
one month (May 2006), and coming from a US Microsoft
search site (therefore, most queries are in English). In par-
ticular, we consider two distinct datasets extracted from the
query log:

• D1 contains 1,500,000 queries and it was used for anal-
ysis purposes and to motivate our approach;

• D2 contains 14,000,000 queries and it was used to ex-
perimentally assess the performance of our technique.

Both datasets were further split in a training and a testing
segment. Table 1 reports the main characteristics of the
samples of the two datasets used for the experiments.

For each query in the two datasets we retrieved the cor-
responding SERP via the Yahoo! Search BOSS API. Thus,
for each query we stored the top-10 most relevant URLs
and query-biased snippets as provided by Yahoo!. More-
over, we downloaded also the documents corresponding to
all the URLs returned for the distinct queries occurring in
the smallest dataset D1.

2.1 Analysis of the query logs
The first analysis conducted by using the D1 dataset tries

to answer a very simple question: is there temporal locality
in the accesses to documents that are processed for extract-
ing snippets to be inserted in the SERPs? If the answer
to this question is positive, we can think to minimize the
cost of such accesses by means of some caching technique.
The question is somehow trivial to answer if we consider the
high sharing of query topics studied in several papers (e.g.,
[5]). If the same query topics are shared by several users,
the same should happen for the top results returned by the
WSE for these queries.

We measured directly on our dataset the popularity dis-
tribution of documents occurring within the top-10 URLs
retrieved for user queries in D1: as expected, the plot in Fig-
ure 1 shows that document popularity follows a power-law

94

distribution. By looking with attention at the plot, we can
already claim a presence of locality in the accesses to doc-
uments that goes beyond the locality in the user queries.
We can in fact note that the top-10 most frequently ac-
cessed documents do not have the same popularity. This
means that some of the top-10 documents returned for the
most frequent query present in the log are returned among
the results of some other query. An high sharing of URLs
retrieved is thus present due to the well-known power-law
distribution of query topics popularity, but also due to the
sharing of the same URLs in the results’ sets of different
queries. From Table 1 we can see that D1 contains about
912k distinct queries out of 1.5 millions, but only 6,640k
distinct URLs occur among the 15 millions documents re-
turned as top-10 results for these queries. Note that if all
the results returned for the distinct queries would be com-
pletely disjoint, the distinct URLs should be 9,120k, about
27% more.

This high sharing in the URLs returned to WSE users
surely justifies the adoption of caching techniques. More-
over, the sharing of URLs also among the results of different
queries motivates the adoption of caching at the document
level for speeding-up the generation of snippets, in addition
to the query results cache commonly exploited in WSEs. Un-
fortunately, caching documents is very demanding in term
of amount of fast memory needed to store even the most
frequently accessed document.

However, other researchers already investigated the ex-
ploitation of lossless or lossy compression techniques for re-
ducing memory demand, and proved that effective snippets
can be generated also from document surrogates that retain
less than half of the original document content [18, 17]. In
this paper we proceed further in the same direction, and
propose an effective, usage-based technique for generating
and managing in a cache much more concise document sur-
rogates.

Having this goal in mind, next question we must answer
is the following: how many different snippets have to be
generated for a single document? The more the number of
different snippets generated by a single document, richer the
content and larger the document surrogate from which these
snippets can be generated.

Let us denote by δu the number of different snippets as-
sociated with URL u. Figure 2 shows that also δu follows
a power-law distribution: a few URLs have several different
snippets being generated and returned to the user. Indeed,
about 99.96% of URLs have less than 10 snippets associated
with them, and about 92.5% of URLs have just a single snip-
pet associated with them. This means that the large ma-
jority of documents satisfies a single information need, and
therefore just one snippet is usefully retrieved for them. On
the other side of the coin, we have that about 8% of doc-
uments retrieved originate more than one snippet. These
documents are potentially retrieved by different queries ad-
dressing different portions of the same document. To gen-
erate efficiently high-quality snippets for these documents
may thus require to cache a richer surrogate.

Our thesis is that in most cases, even when the same URL
is retrieved by different queries, the snippets generated are
very similar. This happens, for example, in the case of query
specializations and reformulations, synonyms, spell correc-
tions, query-independent snippets such as those returned for
navigational queries. To further investigate this point, in

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

C
ou

nt
s

Documents

Document frequencies

Figure 1: Popularity distribution of documents re-
trieved among the top-10 results (log-log scale).

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

C
ou

nt
s

Documents

Distinct snippets

Figure 2: Number of distinct snippets per document
distribution (log-log scale)

Figure 3 we show, for the 1,000 most frequently retrieved
URLs, the number of distinct queries that retrieved them,
and the corresponding number of distinct snippets gener-
ated. It is apparent that while many distinct queries retrieve
the same document, only a small number of snippets, typi-
cally less than 10, is generated. This proves that when the
same URL answers distinct queries, most of these different
queries share exactly the same snippet.

Our proposal tries to exploit this interesting fact by in-
troducing a novel snippeting strategy that allows to devise
concise and effective document surrogates based on the past
queries submitted to the WSE, and to exploit similarities
among queries retrieving the same URL.

3. ARCHITECTURAL FRAMEWORK
The WSE subsystem responsible for query answering, as

sketched in Figure 4, is usually made up of three cooperating
components [3]:

• The WSE Front-End (FE) is in charge of managing the
interactions with users: it receives a stream of queries,
and returns the result pages built by exploiting the two
other components.

95

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

C
ou

nt
s

Documents

Distinct snippets
Distinct queries

Figure 3: For the top-1,000 popular documents:
number of distinct queries retrieving each document
and number of distinct snippets associated with that
document.

!"#$%&'($#)*$

+,-./$
0.12-331.$

+,-./$
0.12-331.$

+,-./$
0.12-331.$

!"#$456)7$#)*$

4#$'829-$

*6':;#)7$5#06"<765=$

*5$'829-$

>$

?$

@$

A$

B$

C$

Figure 4: Sketch of the architecture of our testbed.

• The WSE Back-End (BE), for each query received
from FE, extracts the top-k most relevant documents
in its possibly distributed indexes, and returns to FE
the corresponding document identifiers (docIDs).

• The WSE Document Repository (DR) is assigned the
task of producing the result page by enriching and
making user-understandable the ranked lists of docIDs
returned by FE. More specifically, for each docID in
the result set, DR retrieve the corresponding URL,
and generates the snippet that summarizes, as shortly
and clearly as possible, the query-biased content of the
associated document.

In Figure 4, we illustrate the data flow. The user query q
submitted to the WSE is received by FE (step 1). This for-
wards the query to BE (step 2) which is in charge of finding,
via the distributed index, the most relevant documents to
the query, and returns to FE the corresponding document
identifiers (step 3). FE sends the query and the docID list to
DR (step 4) which returns the corresponding query-biased

snippets (step 5). Finally, the SERP is built by FE and
returned to the user (step 6).

In order to improve throughput and save redundant com-
putations, all the three components may exploit caching.
FE caches SERPs of frequent queries, BE may cache por-
tions of the postings lists of terms frequently occurring in
user queries, and DR may cache frequently requested doc-
uments. In this paper we focus on issues deriving from the
use of caching on DR. For its evaluation we also consider
the presence of a query result cache on FE, but the caching
of postings lists, exploited by the various Query Processor
in BE, is out of the scope of this work.

FE Cache.
FE usually hosts a large cache storing results of recently

submitted queries. This cache was proved to be very effec-
tive and capable of answering more than one third of all the
queries submitted to commercial WSEs without involving
the BE [11, 8, 5, 2, 6]. The cache is accessed by supplying
the current query as the key. Whenever a hit occurs, the FE
may avoid to forward the query to BE, since the most rele-
vant document are already present in the cache. The steps
2 and 3 are skipped, thus reducing the load at the BE. De-
pending on the organization of the FE cache, the DR may or
may not invoked for generating the snippets. We distinguish
between two possible caches types hosted on FE:

• RCacheDocID stores in each entry the docIDs of the most
relevant documents to a given query;

• RCacheSERP uses larger entries to store all the informa-
tion contained in a SERP, that is both the URLs and
query-biased snippets.

In case of a miss in a RCacheDocID cache, the most relevant
documents are requested from BE (steps 2,3), and inserted
into the cache with key q for future reference. Since snippets
and URLs are not stored, both in case of a hit and in case
of a miss, these must be requested from DR (steps 4,5).

If FE adopts the RCacheSERP, when a hit occurs, FE can
retrieve the SERP for the query, and promptly return it to
the user (step 6). The DR is not invoked, since the cache
entries also stores URLs and snippets. In case of a miss,
both the BE and DR must be invoked for producing the
result page, which is also cached into RCacheSERP.

The type of result cache hosted on FE clearly affects the
stream of requests processed by DR.
If FE hosts an RCacheDocID cache, DR must process all the
incoming WSE queries. It is worth noting that, from the
point of view of the DR workload, this case is exactly the
same as an architecture where no result caches are present.
On the other hand, the presence of an RCacheSERP cache
on FE strongly reduces the volume of requests issued to
DR, since only the queries resulting in misses on RCacheSERP
generate requests for URLs and snippet extractions.

DR Cache.
Given a query q and a document identifier docID, DR

retrieves the URL of the corresponding document and gen-
erates a query-based snippet.

The DR cache, which aims at reducing the number of disk
accesses to the documents, is accessed by docID, while query
q is used to select the best sentences from the document
associated with docID. In literature, there are two main
cache organizations:

96

• DRCachedoc: each cache entry contains an integral copy
of a document;

• DRCachesurr: each entry stores a surrogate of a docu-
ment, which includes its most relevant sentences pre-
computed offline;

The DRCachedoc works as a sort of OS buffer cache, speed-
ing up the access to the most popular documents present on
disk. Once the full document is retrieved a snippetting algo-
rithm may easily generate a proper summary for the given
query. However, the document size is significantly larger
than the required snippet. Indeed, as shown in the previous
section, for most documents only a single snippet is gen-
erated, and for the most popular documents, less than 10
snippets are sufficient to answer any query. Therefore, most
of the cache memory is actually wasted.

DRCachesurr tries to increase the number of entries cached
in a given amount of memory by exploiting document surro-
gates which are shorter of the original document still retain-
ing most of the informative content. Document surrogates
are generated offline for each document, and are accessed
and stored in DRCachesurr in place of the original documents.
The size of the surrogates induces a trade-off between cache
hit-ratio and snippet quality. On the one hand, having small
surrogates allow to cache more of them, thus allowing to in-
crease the hit ratio. On the other, surrogates have to be
sufficiently large in order to produce high quality snippets
for all the possible queries retrieving a document.

This paper proposes a novel DR cache, namely DRCacheSsnip,
whose entries are particular document surrogates, called su-
pernippet, whose construction and management are based on
the past usage of the WSE by the user community. The idea
behind DRCacheSsnip is to exploit the past queries submit-
ted to the WSE in order to produce very concise document
summaries, containing only those document sentences being
actually useful in generating snippets. Also, the size of each
summary may be very small when only a few sentences were
needed to generate the snippets for the past queries, or it
may be larger when there are many useful sentences, and
thus several topics of interest for users, in each document.
We prove that this cache organization allows for high hit
ratio and high-quality query-biased snippets.

4. DR CACHE MANAGEMENT
As discussed in Section 3 and illustrated in Figure 5, the

DR can host different types of caches, either DRCachedoc,
DRCachesurr, or DRCacheSsnip. To discuss the various cache
organizations, it is worth introducing some notation, sum-
marized in Table 2.

Let D be the set of all the crawled documents stored in
the repository. Each d ∈ D is composed of a set of sentences,
i.e. d = {s1, s2, · · · , sn}.

We denote by Sd, Sd,q, and SSd,Q, the surrogate, snippet,
and supersnippet of a document d ∈ D. The generation
of these summaries from d actually consists in selecting a
suitable subset of its passages/sentences according to some
relevance criterium. Note that the notation used recalls that
a surrogate Sd is a query-independent excerpt of d, while a
snippet Sd,q depends on the query q. Finally, the content
of a supersnippet SSd,Q, SSd,Q ⊆ d, depends on the set
Q of past queries submitted to the WSE which retrieved
document d.

Symbol Meaning

D The collection of the crawled documents

d A generic document (d ∈ D) associated with
a distinct DocID and a distinct URL, com-
posed of a set of sentences si, i.e., d =
{s1, s2, · · · , sn}

s A sentence composed of several terms

t A term included in a sentence s

Sd A surrogate that summarizes document d, and
includes its most important sentences

Sd,q The query-biased snippet of document d,
which includes the sentences of d that are the
most relevant to q

SSd,Q The supersnippet of document d, computed
over the set Q of past queries

I(s) The informative content of a sentence s

R(s, q) The relevance of sentence s to query q

Table 2: Table of Notation

The lookup keys of all the three caches DRCachedoc, DR-
Cachesurr, and DRCacheSsnip are the unique identifiers of the
various documents (docIDs). Given a key docID associated
to document d, then the possible contents of the entries of
caches DRCachedoc, DRCachesurr, and DRCacheSsnip are, re-
spectively, d, Sd, and SSd,Q.

About the memory hierarchy of DR, below the cache level,
which is located in main memory, we have the disk -stored
document repository, which keeps the collection of all the
indexed documents D and the associated URLs. Both the
integral documents 1 and the URLS are directly accessible
by supplying the corresponding docIDs.

Figure 5 shows these disk-based levels of memory hierar-
chy in DR.

4.1 Surrogates, snippets, and supersnippets
In this section we discuss how the best sentences to include

into Sd, Sd,q, and SSd,Q can be devised. For the sake of sim-
plicity hereinafter we will assume surrogates, snippets, and
supersnippets composed by sets of sentences. The defini-
tions and metrics discussed can be however trivially adapted
to passages or any other piece of text of fixed or variable size.

Surrogates.
Several proposals appeared in the literature regarding the

generation of concise surrogates retaining most of the infor-
mative content of a document. In Section 7 we survey some
of these methods. They are generally based on a function
to evaluate the informative content I(s) of each sentence
s ∈ d, and on a constraint on the size of the surrogate, e.g.
the surrogate has to contain a fraction x, 0 < x < 1, of all
the sentences of the original document. Given I(s) and x,
the best surrogate Sd for d is the one that maximizes:

1In case DR hosts a DRCachesurr cache, below the cache level
we have surrogates Sd of all the documents, which are stat-
ically generated from each d ∈ D.

97

Disk-­‐stored	
 Docs	
 Disk-­‐stored	
 Docs	
 Disk-­‐stored	
 Surrogates	

DOCUMENT	
 REPOSITORY	
 DOCUMENT	
 REPOSITORY	
 DOCUMENT	
 REPOSITORY	

A	
 B	
 C	

A	

miss	
 miss	
 miss	

docID q

docID docID docID document,
URL

surrogate,
URL

document,
URL

snippet,
URL

document
URL

docID q snippet,
URL

snippet,
URL

snippet,
URL docID q

surrogate
URL

supersnippet,
URL

A	

B	

C	

:	
 	
 	
 extrac>on	
 of	
 the	
 query-­‐biased	
 snippet	
 from	
 the	
 whole	
 document	
 	

:	
 	
 	
 extrac>on	
 of	
 the	
 query-­‐biased	
 snippet	
 from	
 the	
 document	
 surrogate	
 	

:	
 	
 	
 extrac>on	
 of	
 the	
 query-­‐biased	
 snippet	
 from	
 the	
 document	
 supersnippet	

Figure 5: Three possible DR organizations, hosting
either DRCachedoc, DRCachesurr, or DRCacheSsnip. Note
the activities labelled A, B, and C, whose size mod-
els the associated computational load, which in turn
depends on the size of the input: either documents
d, surrogates Sd, or supersnippets SSd,Q.

Sd = arg max
σ⊆d

∑
s∈σ

I(s), where |σ| ≤ bx · |d|c

Query-biased Snippets.
There exists a vast literature on the methods to generate

query biased snippets, for which we invite interested readers
to refer to Section 7.

Query biased snippets Sd,q are generated for all the top-
k documents retrieved by a WSE for query q, by means of
a function R(s, q), which measure the relevance to q of the
various sentences s ∈ d. Hence, given function R(s, q) and
the maximum size sz of a snippet, expressed in terms of the
number of sentences, the best snippet Sd,q for a query q and
a document d is the one that maximizes:

Sd,q = arg max
σ⊆d

∑
s∈σ

R(s, q), where |σ| ≤ sz (1)

In our experiments, a query-based snippet, extracted from
either a document d or a surrogates/supersnippet of d, is
simply obtained by applying Equation (1) with a relevance
score computed as follows:

R(s, q) =
|s ∩ q|2

|q|

where s and q are the bags of terms occurring in s and q.
This corresponds to ranking all the sentences and select-
ing the top-k ranked sentences. In our experiments, we set
k = 3.

Supersnippets.
Given a setQ of queries submitted in the past to the WSE,

e.g., the set of queries recorded in a query log, let us consider

the set Qd, Qd ⊆ Q of past queries having document d in the
result set returned to the user. Set Qd contains all the past
queries for which document d was considered relevant by the
WSE ranking function. By using a snippeting technique as
the one sketched above, the set Ud =

⋃
q∈Qd

Sd,q can be eas-
ily built. While a document d can contain several different
sentences, the above set only contains those sentences of d
that are likely to be of some interest to past WSE users. Ud
can be thus considered a surrogate of d, whose construction,
and thus the relative criterium for sentence selection, is us-
age based. By analyzing a query log spanning a long time
period, we have shown that the number of different snippets
for a given document is in most cases very small. Thus, we
can expect also the size Ud to be small. Moreover, some re-
dundancies can be found in Ud because some sentences are
very similar to others.

Given a similarity score sim(s, s′) between sentences s and
s′ of a document, we define the supersnippet SSd,Q as the
set of medoids [7] obtained by a k-medoids clustering, run
on the set of sentences contained in Ud that minimizes inter-
cluster similarities and maximizes intra-cluster similarities.
The number of clusters, i.e. k, itself is the optimal one and
it is not a-priori fixed.

A careful reader may note some resemblance of the term
“supersnippet” to “superstring”. In the “superstring prob-
lem”, given a input set of symbol strings, the goal is to find
the shortest string that includes as sub-strings all the oth-
ers. Our supersnippet is made up of several strings, but, in
a similar way as superstring, we aim to reduce its size by
eliminating redundant sentences.

The above definition of a supersnippet cannot be used
in practice. The main reason is that we need an efficient
algorithm for constructing them. Therefore, we adopt the
following greedy strategy. We read queries in the same order
as they arrive. For each query we retrieve the correspond-
ing SERP. For each snippet in the result set, we consider
each sentence contained within. In the corresponding su-
persnippet, we add a sentence only if its similarity with all
the previously added ones is below a certain threshold. In
our experiments, we used the Jaccard index measured on
sentence terms as similarity metric, and set the threshold to
0.8, i.e. less than 80% of the terms in the candidate sentence
appear in the sentences already added to the supersnippet.

Furthermore, in our experiments we bound the maximum
number of sentences forming a supersnippet. Several ap-
proaches can be adopted to limit to sz sentences the maxi-
mum size of a supersnippet. A first static approach consists
in sorting all the sentences of SSd,Q by frequency of occur-
rence within snippets Sd,q, ∀q ∈ Qd. The first sz sentences
can in this case be considered as the most relevant for doc-
ument d on the basis of their past usage.
Another possibility is to consider a supernippet as a fixed
size bin. This bin is filled with new sentences occurring in
snippets retrieved for the queries in Qd. When the bin is
completely filled, and another sentence has to be inserted, a
replacement policy can be used to evict from the supersnip-
pet a sentence to make place for the new one.

In this paper we followed this second possibility and adopted
a simple LRU policy to always evict the least recently used
sentence first. We preferred to adopt a dynamic super-
snippet management policy to avoid the aging of statically-
generated supersnippets as time progresses and interests of
users change. We leave as a future work the analysis of the

98

effect of aging on static supersnippets, as well as the study of
the performance of alternative sentence replacement policies.
The pseudocode reported in Algorithm 1 sketches the simple
management of DRCacheSsnip. Function Lookup(q,DocID)
is called to lookup for a supersnippet of d in the cache, and
implements the LRU management of DRCacheSsnip entries.
Lookup(q,DocID) calls function UpdateSS(SSd,Q, DocID)
to update as above described the sentences stored within
SSd,Q.

Unlike other approaches, where the document surrogates
are statically determined, our supersnippets are thus dy-
namically modified on the basis of their usage. Their con-
tents change over time, but depend on the query-biased snip-
pets extracted in the past from the original documents to
answer to user queries. As a consequence of this approach,
in our supersnippet cache hosted in the DR, a miss can occur
also when the docID key is matched, but the query-biased
snippet returned for it results to be of low quality. Even in
this case a miss penalty must be paid, and a query-biased
snippet must be extracted from the integral document stored
on disk. This new snippet is then used to update the cached
supersnippet on a LRU basis.

Query-biased Snippets: Documents vs. Surrogates.
In Figure 5 we show that when DR hosts either DR-

Cachesurr or DRCacheSsnip, a query-biased snippet is extracted
from a cache entry that contains a surrogate of d. More
specifically, according to Equation (1), we extract the query-
biased snipped Sd′,q from d′, where d′ = Sd or d′ = SSd,Q.
While Sd is a proper surrogate of d, the supersnippet SSd,Q
is a special surrogate whose construction is query-log based.

4.2 Cache management policies
In this section we discuss the three possible organizations

of DR illustrated in Figure 5, and the relative cache man-
agement issues. The first two caches DRCachedoc and DR-
Cachesurr are pretty standard. The docID is used as look-up
key. If no cache entry corresponding to the key exists, a
miss occurs. Then the lower memory level (disk-based) is
accessed to retrieve the associated URL, along with either
the document or the surrogate. These caches can be static,
i.e. the cache content does not change during the cache uti-
lization (although it can be updated by preparing off-line a
new image of the cache), or dynamic. In the last case, many
replacement policies can be used in order to maximize the
hit ratio, trying to take the largest advantage possible from
information about recency and frequency of references.

Note that for both caches, once retrieved the matching
cache entry, the query-biased snippet must be extracted
from the content of this entry. The two activities, labeled
as A and B, correspond to snippet extractions. The cost of
extracting the snippet from the document surrogate (B) is
smaller than from the whole document (A). In general, both
the hit cost and the miss penalty of DRCachesurr are smaller
than the ones of DRCachedoc.

DRCacheSsnip is more complex to manage. As for the other
two caches, docIDs are used as look-up keys. If no cache
entry corresponding to the key exists, a miss occurs. In
this case the miss penalty is more expensive, since the query
biased snippet must be first extracted from the document
(see activity labeled as A), and the copied to a cache entry.

DRCacheSsnip needs to exploit a special cache policy, i.e. a
special rule, to determine whether a request can be satisfied

using the cached supersnippet. More specifically, even when
the look-up of a docID succeeds, the query-biased extrac-
tion (see activity labeled as C) can fail, because the snippet
results of low quality with respect to the query. In this case
we have a miss of quality. This leads to accessing to the
disk-stored repository to retrieve the whole document. The
query biased snippet is thus extracted from the document
(see activity labeled as A). This query-biased snippet is fi-
nally used to update the corresponding cache entry, which
contains the document supersnippet.

4.3 Contributions
Our work contains several original contributions. To the

best of our knowledge, this is the first proposal of a method
to produce supersnippets, i.e., short document surrogates
that are generated by exploiting the knowledge collected
from the query-biased snippets returned in the past by a
WSE. Moreover, we define an abstract WSE architecture
model, in which we host different types of DR cache along
with a classical query results cache in the FE. This model
allows us to study and experiment different cache organiza-
tions, and to propose a novel method that guarantees the
best snippet generation performance compared with several
baselines. The hit rates measured for our supersnippet cache
result in fact to be remarkably higher than those obtainable
with other DR cache organizations. In the experimental
evaluation, we considered also the presence of a query results
cache that filters out most frequent queries, without asking
neither the WSE BE nor the DR. Even in this case the hit
rates measured for our supersnippet cache results to be very
high. Another important contribution is the methodology
to validate our proposal by evaluating also the quality of
the snippets extracted by our supersnippets. In fact we em-
ployed a real-life query log and the pages of results returned
for the logged queries by an actual commercial WSE. The
analyses conducted on such query log also motivates the DR
caching techniques proposed in this paper.

5. CACHE EFFECTIVENESS
The component C, described in the previous section and

illustrate in Figure 5, plays an important role for DRCacheSsnip.
For each incoming query, it must be possible to decide whether
or not a cached supersnippet contains the sentences needed
to produce an high quality snippet. If this is not the case, a
miss of quality occurs, and the disk-based document repos-
itory is accessed.

To this end, a quality function must be defined, which,
given the query q and the supersnippet SSd,q is able to
measure the goodness of SSd,q. In the following we pro-
pose and analyze a simple quality metrics, and we compare
the snippets produced by DRCacheSsnip with those returned
by a commercial WSE. Indeed, we compare the quality of
the snippets generated by our caching algorithm, with the
quality of the results returned by the Yahoo! WSE. Note
that the Yahoo! WSE is also used to simulate the underly-
ing BE and DR, thanks to the property of DRCacheSsnip of
being independent from the snippet generation engine.

The proposed metrics takes into account the number of
terms in common between the query q and the generated
snippet Sd,q, and it is illustrated in the following section.
This metrics can be used directly by DRCacheSsnip to detect
quality misses.

99

Algorithm 1 DRCacheSsnip caching algorithm.

1: function Lookup(q, DocID)
2: if DocID ∈ C then . cache hit
3: SSd,Q ← C(DocID) . retrieve the supersnippet
4: Sd,q ← Snippet(q, SSd,Q) . generate a snippet
5: if ¬HighQuality(Sd,q , q) then . quality miss
6: Sd,q ←UpdateSS(SSd,Q, DocID, q)
7: end if
8: C.MoveToFront(SSd,Q) . LRU update
9: else . cache miss

10: SSd,Q ← ∅
11: Sd,q ←UpdateSS(SSd,Q, DocID, q)
12: C.PopBack()
13: C.PushFront(SSd,Q) . add a new supersnippet
14: end if
15: return Sd,q . Return the snippet
16: end function

. Update the supersnippet with a new snippet for q
17: function UpdateSS(SSd,Q, DocID,q)
18: d← GetDoc(DocID) . access repository
19: Sd,q ← Snippet(q, d)
20: for s ∈ Sd,q do . update the supersnippet
21: s′ ← arg maxt∈SSd,Q

sim(s, t)

22: if sim(s, s′) ≥ τ then
23: SSd,Q.MoveToFront(s′) . LRU update
24: else
25: SSd,Q.PopBack()
26: SSd,Q.PushFront(s′) . add a new sentence
27: end if
28: end for
29: return Sd,q
30: end function

5.1 Snippet quality measure
An objective metrics measuring the quality of the snippet

Sd,q for the query q can take into account the number of
terms q occurring in Sd,q: the more query terms included in
the sentences of a snippet, the greater the snippet goodness.
More specifically, we adopted the scoring function proposed
in [16]:

score(Sd,q, q) =
|Sd,q ∩ q|2

|q| (2)

where Sd,q and q correspond to the sets of terms appearing,
respectively, in the sentences of Sd,q and in the query q.

We claim that a snippet Sd,q is of high quality if q ⊆ Sd,q
for queries with one or two terms, or if Sd,q contains at least
two query terms for longer queries. It can easily shown that
our good quality criteria is met whenever score(Sd,q, q) ≥ 1.

Proposition 1. Let q and Sd,q be the sets of terms of
q and Sd,q, respectively. If score(Sd,q, q) ≥ 1 then either
|q| ≤ 2 and q ⊆ Sd,q, or |q| > 2 and |Sd,q ∩ q| ≥ 2.

Proof. If |q| = 1 then score(Sd,q, q) ≥ 1 trivially implies
that q ⊆ Sd,q.

If |q| > 1 then score(Sd,q, q) ≥ 1 means |Sd,q∩q|2/|q| ≥ 1.
By a simple arithmetical argument we have that |Sd,q∩q|2 ≥
|q| ≥ 2 ⇒ |Sd,q ∩ q| ≥

√
2 ≈ 1.4. Since |Sd,q ∩ q| must be

an integer value, then we can conclude that |Sd,q ∩ q| ≥ 2.
This also is equivalent to q ⊆ Sd,q for the case |q| = 2.

This rough but fast-to-compute score measure is exploited
in the implementation of DRCacheSsnip to evaluate on-the-fly
the goodness of the snippets extracted from the document

supersnippets stored in the cache. If the score is lower than
1, the cache policy generates a quality miss.

We applied this quality score to the snippets generated by
the Yahoo! WSE for the top 10 document returned to the
D1 query log. It is worth noting that the fraction of these
snippets resulting of good quality – i.e., with score greater
or equal to 1 – is high, but remarkably lower than 100%:
the high quality Yahoo! snippets resulting generated from
the D1 query log are about 81% only. In fact, the snippets
returned by Yahoo! do not always contain the terms of the
query. This is not always due to badly answered queries.
For example, this may happen when a query matches some
metadata (e.g., the URL name) and not the snippet’s sen-
tence, or when only a few terms of a long query are actually
included in the document retrieved. Even misspells or vari-
ations in navigational queries aiming at finding well-known
portal websites are typical example of this phenomenon. A
deeper study of this issue is however out of the scope of this
work.

To compare with DRCacheSsnip, we set up the following ex-
periment. First we created the set of supersnippets for the
documents being returned by the system. Each query in the
D1/training query log was submitted to the Yahoo! WSE,
and we collected the returned documents and their snip-
pets. For each document, the corresponding supersnippet
was generated by picking the most representative sentences
on the basis of the returned snippets as describe in the pre-
vious section. We run different experiments by allowing a
maximum number of 5 and 10 sentences in each supersnip-
pets. Note that the resulting supersnippets have varying
size, which depends on the number of distinct queries re-
lated with a document, and with the number of its sentences
included in the snippets related with those queries. There-
fore, many supersnippets have a number of sentences smaller
than the allowed maximum.

Second, the D1/test was used to assess the quality of the
generated supersnippets. Similarly as above, for each query
in D1/test we collected the corresponding results, by ignor-
ing those documents for which a supersnippet was not gener-
ated. Note that in case of previously unseen documents, the
DRCacheSsnip caching algorithm would retrieve the correct
snippet from the document repository, therefore it makes
sense to discard those documents for the evaluation of the
supersnippets goodness. For each collected document we
computed the score of the snippets generated from the cor-
responding supersnippet, and, in particular, we measured
the fraction of them being of high quality.

In Figure 6 we report the fraction of high quality snippets
generated by the Yahoo! WSE and by the exploiting super-
snippets of maximum size 5 and 10 sentences. Values are
averaged over buckets of 100,000 consecutive (according to
the query log order) snippets.

The percentage of good snippets generated by Yahoo! is
only slightly higher2. Of course, the quality measured for
the supersnippeting technique increases with the number of
sentences included. The score of score(Sd,q, q) averaged over
all the snippets in D1/test is 1.42, 1.39, and 1.38 respectively
for the Yahoo! ground truth, and our technique exploiting

2The peak measured for the snippets in the fifth bucket plot-
ted in Figure 6 is due to the presence in the dataset of some
bursty queries caused by specific events regarding public per-
sons.

100

 80

 81

 82

 83

 84

 85

 86

 87

 0 5 10 15 20 25

Pe
rc

en
ta

ge
 o

f q
ue

ry
-b

ia
se

d
sn

ip
pe

ts
 o

f g
oo

d
qu

al
ity

 (%
)

No. of generated snippets (x 100,000)

Yahoo
SS (10 sentences)

SS (5 sentences)

Figure 6: Average fraction of high quality snip-
pets returned by Yahoo! and DRCacheSsnip mea-
sured for consecutive groups of queries in D1/test.

supersnippets limited to 10 and 5 sentences. In conclusion,
the proposed supersnippeting technique produces snippets
of high quality, very close to those generated by the Yahoo!
search engine. Indeed, with only 5 sentences at most for
each supersnippet, a fraction of 81.5% of the snippets from
the whole D1/test are of high quality, with a very small loss
(0.8%) compared with Yahoo!, where this fraction rises up
to 82.3%.

6. HIT RATIO ANALYSIS
In the previous section we have analyzed the quality of

snippets generated using our novelapproach. In this section
we evaluate the effectiveness of the various DRCache strate-
gies (i.e. DRCachedoc, DRCachesurr, and DRCacheSsnip) when
used in combination with a FECache. Four different DR-
Cache sizes have been experimented: 256, 512, 1024, and
2048MByte. Our experiments are run on the D2 dataset.
We warm up the various caches by executing the stream of
queries from D2/training and we evaluate the various hit
ratios using D2/test. It is worth recalling that, as discussed
in the previous section, a hit in DRCache is when the snippet
returned by the cache has score(Sd,q, q) ≥ 1. On the other
hand, if the score is less than one, we say DRCache incurs in
a quality miss.

The first set of experiments consists in evaluating the hit
ratio of DRCache when used in combination of a RCacheDocID.
Since RCacheDocID only stores the document identifiers of
each results list, all the queries generate requests to DR, and
the size (better to say, the hit ratio) of the FECache does not
affect the performance of DRCache. Table 3 shows hit ratio
results for five different DRCache organizations. DRCachedoc,
DRCachesurr (doc, and surr in the table), and DRCacheSsnip.
The latter is tested by using three different maximum su-
persnippet sizes (i.e. the maximum number of sentences
forming the supersnippet), namely 5, 10, and 15 (i.e. ss5,
ss10, and ss15) sentences. The tests regarding DRCachedoc
were done by considering all the documents as having a size
equal to the average size of the documents retrieved by Ya-
hoo! for all the queries in dataset D1. The size of the surro-
gates used for testing DRCachesurr were instead fixed to be
half of the corresponding document [17]. Both DRCachedoc

and DRCachesurr are managed using a LRU policy.
The first observation is that in all the cases, hit ratios in-

crease linearly when cache size increases. Also in this case,
the linear trend in the hit ratio growth is confirmed. In-
deed, the growth cannot be indefinite as the maximum hit
ratio attainable is bounded from above by the number of
distinct snippets (considering their quality, too) that can be
generated by SERPs for queries in the stream.

In terms of hit ratio, DRCacheSsnip outperforms DRCachedoc,
and DRCachesurr independently of the size of the cache. On
the other hand, we can note that the maximal size of super-
snippets does not affect sensitively DRCacheSsnip hit ratio.

DRCache Size (in MB) Hit Ratio DRCache

doc

256M 0.38
512M 0.41
1024M 0.44
2048M 0.49

surr

256M 0.41
512M 0.453
1024M 0.49
2048M 0.53

ss5

256M 0.42
512M 0.463
1024M 0.51
2048M 0.554

ss10

256M 0.416
512M 0.462
1024M 0.51
2048M 0.55

ss15

256M 0.413
512M 0.461
1024M 0.51
2048M 0.55

Table 3: Hit ratios of DRCache (with DRCachedoc, DR-
Cachesurr, and DRCacheSsnip strategies) and RCacheDocID.

An important observation, is that we have a miss in DR-
CacheSsnip when either the requested document is not present
in cache or when the quality score is too small (i.e. less than
one). Not necessarily this happens when a “good” snippet
cannot be retrieved from DRCacheSsnip. In real cases, for
instance, this might be due to misspelled queries that if au-
tomatically corrected before being submitted to the under-
lying back end, would result in an acceptable score. As an
example, consider the query “gmes”, clearly this query can
be easily corrected into “games”. In fact, the snippet gen-
erated for the first result returned by Yahoo! for the query
“gmes” is:

“ Games.com has a new free online game everyday.
Play puzzle games, hidden object games, arcade
games and more! Games.com has exclusive poker,
casino and card games.”

Since the original query term “gmes” is not included into
the snippet, its quality score is 0, and even if we generate
exactly the same snippet as the one generated by Yahoo!,
we would count it as a quality miss. To overcome this issue,
when we have quality score less than one, we consider the
snippet returned by Yahoo! for the same query-document
pair. If even the score of the Yahoo! snippet is low as our,
a hit could be counted. Table 4 shows the hit ratio results
for the same tests of the previous table when quality misses
are counted as just described. In all the considered cases
hit ratio values raise by about 8%− 9%. Furthermore, this

101

can be probably considered as a better estimation of real hit
ratios that can be attained by our DRCacheSsnip in a real-
world system.

Therefore, we can conclude that in the case of a FE run-
ning a RCacheDocID, the presence of a DRCache decreases
considerably the load on the document server, and that DR-
CacheSsnip is the best cache organization among the ones
tested.

DRCache Size (in MB) Hit Ratio DRCache

ss5

256M 0.5
512M 0.55
1024M 0.59
2048M 0.63

ss10

256M 0.497
512M 0.548
1024M 0.59
2048M 0.625

ss15

256M 0.493
512M 0.546
1024M 0.59
2048M 0.62

Table 4: Hit ratios of DRCacheSsnip (RCacheDocID case)
when quality-misses are counted by comparing qual-
ity of snippets with Yahoo! ones.

The next experiment consists in evaluating the effect of a
RCacheSERP as a filter for requests arriving to DRCache. A
RCacheSERP cache, in fact, stores the whole SERP including
the generated snippets. In case of a RCacheSERP cache hit,
then, we do not have to request those snippets to the DR-
Cache, thus reducing considerably the load on the DRCache.
On the other hand, since frequently requested (i.e. popular)
snippets are already built and stored into the RCacheSERP
cache, we expect DRCache’s hit ratio to be lower than the
one obtained when used in combination with RCacheDocID.

Tables 5 and 6 show hit ratios for various configurations
of DRCache. As in the above experiment, Table 6 reports
hit ratios when quality-misses are counted by using the com-
parison between snippets generated from the supersnippets
and Yahoo! ones.

As expected, in all the cases hit ratios are lower than in the
previous cases. The differences in the hit ratios obtained by
DRCacheSsnip with respect to DRCachedoc, and DRCachesurr
instead increase remarkably. This prove that our supersnip-
pets are very flexible and can provide effective snippets also
for less popular queries. Moreover, if we sum up the hit
ratios occurring on both FECache and DRCacheSsnip, we ob-
tain a impressive cumulative hit ratio of about 62%. Note
that this is an upper bound to the real cumulative hit ratio.
Indeed, FECache stores duplicate snippets (due to possible
shared snippets among SERPs), therefore the actual cumu-
lative hit ratio may be slightly lower. We can observe that
also in this set of experiments, the maximum number of sen-
tences stored in the supersnippet does not influence heavily
the DRCacheSsnip hit ratio.

7. RELATED WORK
Our proposal for an efficient and effective caching sys-

tem for document snippets is related to two different re-
search topics. The first is concerned with text summariza-
tion, i.e. the production of possibly concise document sur-
rogates, which contain sets of sentences/words that preserve
to some extent the meaning of the original documents from

FECache
#Entries
(Hit Ratio)

DRCache Size (in MB) Hit Ratio DRCache

128K (0.36)

doc

256M 0.087
512M 0.11

1024M 0.14
2048M 0.19

surr

256M 0.11
512M 0.148

1024M 0.19
2048M 0.25

ss5

256M 0.15
512M 0.217

1024M 0.29
2048M 0.36

ss10

256M 0.141
512M 0.21

1024M 0.287
2048M 0.35

ss15

256M 0.14
512M 0.207

1024M 0.287
2048M 0.35

256K (0.38)

doc

256M 0.083
512M 0.1

1024M 0.134
2048M 0.17

surr

256M 0.104
512M 0.135

1024M 0.177
2048M 0.23

ss5

256M 0.139
512M 0.194

1024M 0.266
2048M 0.34

ss10

256M 0.13
512M 0.189

1024M 0.266
2048M 0.334

ss15

256M 0.12
512M 0.18

1024M 0.266
2048M 0.33

Table 5: Hit ratios of DRCache (with DRCachedoc, DR-
Cachesurr, and DRCacheSsnip strategies) and RCacheSERP.

which they are generated. This document summaries can
be independent of the submitted queries, or can be query-
biase. Another related topic deals with the opportunities for
exploiting caching at various levels to improve throughput,
also exploiting WSE log analysis.

Text summarization techniques. The techniques to gen-
erate good surrogates Sd of a document d (see Table 2) are
those for summarizing text, and are based on the function
I(s) that estimates the document’s information contained in
each sentence s ∈ d.

There are several ways to compute I(s):

• Luhn Method: One of the first approach for text
summarization was proposed by Luhn [10]. The method
exploits the term frequencies tf in order to assign a
weight to each term t ∈ s. A term t is considered as
significant if tf overcome a threshold T , whose value
depends on the number of sentences of d.

According to Lu and Callan [9], a sentence s is as-
signed a score I(s) that depends on the so-called clus-
ters, which are particular sequences of terms included

102

FECache
#Entries
(Hit Ratio)

DRCache Size (in MB) Hit Ratio DRCache

128K (0.36)

ss5

256M 0.21
512M 0.29

1024M 0.36
2048M 0.42

ss10

256M 0.2
512M 0.28

1024M 0.356
2048M 0.419

ss15

256M 0.19
512M 0.27

1024M 0.355
2048M 0.419

256K (0.38)

ss5

256M 0.19
512M 0.258

1024M 0.336
2048M 0.4

ss10

256M 0.18
512M 0.251

1024M 0.334
2048M 0.398

ss15

256M 0.18
512M 0.249

1024M 0.332
2048M 0.395

Table 6: Hit ratios of DRCacheSsnip (RCacheSERP case)
when quality-misses are counted by comparing qual-
ity of snippets with Yahoo! ones.

in s. A cluster starts and ends with a significant term,
and does not include long subsequences of insignifi-
cant terms. A cluster is scored on the basis of the
ratio between the significant and the total number of
terms included in the cluster. Finally, the importance
of sentence s, i.e. its informative content I(s), is given
by the maximum score of all the cluster in s.

• TF-IDF Method: Tsegay et al. [17] adopted a clas-
sical TF-IDF (Term Frequency Inverse Document Fre-
quency) method to score the various sentences s in d.
We can consider this method as an extension of the
Luhn one, which only exploits TF. Unfortunately, this
technique needs a corpus for computing IDF score.

The formula adopted is the following:

I(s) =
∑

t∈s−stopwords

(log tf + 1)× log
N

df

where tf is the raw count of a term t in the document
d where s ∈ d, N = |D| is the number of documents in
the collection, while df is the count of documents that
contain term t.

• Position in text: Edmundson [4] proposed another
weight-based method that combines the frequency with
other heuristics like the position (usually, first sen-
tences are a natural summary of a document), or the
formatting (the titles contain meaningful sentences).

Different approaches based on machine learning and many
other techniques have been proposed [14]. Recently an ef-
fective method, based on a specific function learned from
a training data, and defined in terms of multiple features
extracted from s, have been devised [12].

The query biased snippet Sd,q are a particular form of
text summarization, since the selected sentence of d not only
depend on the sentence relevance, but also on a query q.
Tombros and Sanderson [16], each sentence has the following
score:

s rel(s, q) =
|s ∩ q|2

|q|

where |s∩ q| is the number of query terms in the sentence s
and |q| the number of query terms: the more query terms a
sentence contains, the higher is his score. The relevance of
a sentence becomes a function R(s, q) biased on query q:

R(s, q) = k1 s rel(s, q) + k2 I(s)

where k1, k2 are arbitrary weigh parameters.

WSE caching techniques. Query logs record historical
usage information, and are a precious mine of information,
from which we can extract knowledge to be exploited for
a lot of different purposes [15]. The analysis of common
usage patterns to optimize system performance by means of
caching techniques is one of the most important uses of such
source of information.

The good efficiency of caching techniques in WSE imple-
mentation is motivated by the inverse power law distribu-
tion of query topics searched for [19, 15]. This high level of
sharing justifies the adoption of a caching system for Web
search engines, and several studies analyzed the design and
the management of such server-side caches, and reported
about their performance [11, 8, 5, 2].

The SERPs returned for frequently submitted queries are
cached on the WSE FE (see Figure 4 to improve responsive-
ness and throughput, while index entries of terms commonly
occurring in user queries are cached on BE to make faster
query processing. Even partial results computed for popular
sub-queries can be cached to further enhance performance.

Fagni et al. showed that combining static and dynamic
caching policies together with an adaptive prefetching pol-
icy achieves even a higher hit ratio [5]. In their experiments,
they observe that devoting a large fraction of entries to static
caching along with prefetching obtains the best hit ratio.
They also showed the impact of having a static portion of
the cache on a multithreaded caching system. Through a
simulation of the caching operations they showed that, due
to the lower contention, the throughput of the caching sys-
tem can be doubled by statically fixing a half of the cache
entries. This behavior was confirmed also in [2] were the
impact of different approaches, such as static vs. dynamic
caching, and caching query results vs. caching posting lists
was studied.

Caching techniques can also be exploited by BE, by keep-
ing in cache the uncompressed postings lists (or portions of
them) associated with terms that are frequently and/or re-
cently used. For a survey about these techniques, and the
tradeoff between caching policies adopted by the FE and/or
BE components of a WSE [2].

With regard to DR caching, which was investigated in

103

depth in this paper, we can mention the idea of the Snip-
pet Engine [17, 18], in which the original DR documents are
replaced with their surrogates. This improves DR caching,
since a surrogate takes up less space than the original one
(size can range from 20% to 60% of the original document).
Moreover, producing the snippets from a surrogate is faster
than from the original document, because we have less sen-
tences to compare with the query.

Turpin et al. [18] additionally compressed the surrogate
with a semi-static compression model, thus obtaining signif-
icant improvement in the performances. Moreover, Tsegay
et al. [17] proved that query-biased snippets built from sur-
rogate are, in most cases, identical to those built from the
whole document. They also provided an approach called
simple go-back (SGB): if a surrogate does not contain all
the terms of the query, SGB builds the snippet from the
original disk-stored document.

8. CONCLUSIONS AND FUTURE WORK
We have presented a novel technique for scaling up search

engine performance by means of a novel caching strategy
specifically designed for document snippets. Design choices
of our novel DR cache are motivated by the analysis of a
real-world query log that allowed us to better understand the
characteristics and the popularity distribution of URLs, doc-
uments and snippets returned by a WSE. Our DRCacheSsnip
stores in its entries the supersnippets that are generated
by exploiting the knowledge collected from the query-biased
snippets returned in the past by a WSE. DRCacheSsnip en-
ables the construction of effective snippets (having an av-
erage quality very close to that measured on our ground
truth) for already processed query/docID pairs and, more
importantly, the “in-cache” generation of snippets also for
query/docID pairs not previously seen. A deep experimen-
tation was conducted using a large real-world query log by
varying the size and the organization of the caches present
in an abstract WSE architecture model. The hit ratios mea-
sured for DRCacheSsnip result to be remarkably higher than
those obtainable with other DR cache organizations. In par-
ticular a hit-ratio of 62% was measured using a DRCacheSsnip
cache of 2,048MB and a docID result cache in th FE. In the
experimental evaluation, we considered also the presence of a
SERP cache on the FE that filters out most frequent queries,
without asking neither the WSE BE nor the DR. Even in
this case the hit rates measured for our supersnippet-based
cache results to be very high (up to 42%), with a very large
difference over the other cache organizations tested.

To the best of our knowledge, this is the first work dis-
cussing a cache designed to relieve the load from document
repository by exploiting the knowledge about the past queries
submitted. For this reason, several research directions re-
main open. One of the most important open questions is
related to how the document cache and the result cache in-
teract each other. What is the best combination of them.
What is the best placement option we can choose: is it bet-
ter to keep them separated on different machines (thus al-
lowing the exploitation of more aggregate memory), or to
reduce the exploitation of network is it better to keep them
on the same machine? Another interesting question regards
more strictly our supersnippet organization: preliminary
tests showed that dynamic supersnippets as the ones dis-
cussed in this paper outperform static ones. An open ques-
tion is the evaluation of the cost/performance ratio between

these two different organizations, and the analysis of pos-
sible aging effects over statically built supersnippets. One
may also investigate the effect of combining text compres-
sion and supersnippetting to allow the cache to store more
surrogates. We plan to address the previous questions in our
future work.

Acknowledgements This work was supported by the
EU-FP7-250527 (Assets) project.

9. REFERENCES
[1] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras,

and F. Silvestri. Challenges on distributed web retrieval. In
Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 6–20. IEEE, 2007.

[2] R. Baeza-Yates, A. Gionis, F.P. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. Design trade-offs for search
engine caching. ACM Transactions on the Web (TWEB),
2(4):1–28, 2008.

[3] L.A. Barroso, J. Dean, and U. Holzle. Web search for a
planet: The google cluster architecture. Micro, IEEE,
23(2):22 – 28, mar. 2003.

[4] H P Edmundson. New Methods in Automatic Extracting.
Computing, 16(2):264–285, 1969.

[5] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting
the performance of web search engines: Caching and
prefetching query results by exploiting historical usage
data. ACM Trans. Inf. Syst., 24(1):51–78, 2006.

[6] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In Proc. of the 18th Int. Conference
on World Wide Web, pages 431–440. ACM, 2009.

[7] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data
An Introduction to Cluster Analysis. Wiley Interscience,
New York, 1990.

[8] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In
Proceedings of the 12th international conference on World
Wide Web, pages 19–28. ACM, 2003.

[9] J. Lu and J. Callan. Pruning long documents for
distributed information retrieval. In Proceedings of the
eleventh international conference on information and
knowledge management, pages 332–339. ACM, 2002.

[10] H.P. Luhn. The automatic creation of literature abstracts.
IBM J. of research and development, 2(2):159–165, 1958.

[11] E.P. Markatos. On caching search engine query results.
Computer Communications, 24(2):137–143, 2001.

[12] D. Metzler and T. Kanungo. Machine learned sentence
selection strategies for query-biased summarization.
Learning to Rank for Information Retrieval, 40, 2008.

[13] D.A. Patterson and J.L. Hennessy. Computer organization
and design: the hardware/software interface. Morgan
Kaufmann Pub, 2009.

[14] D.R. Radev, E. Hovy, and K. McKeown. Introduction to
the special issue on summarization. Computational
Linguistics, 28(4):399–408, 2002.

[15] F. Silvestri. Mining query logs: Turning search usage data
into knowledge. Foundations and Trends in Information
Retrieval, 4(1-2):1–174, 2010.

[16] A. Tombros and M. Sanderson. . In Proc. of the 21st
Annual Inter. ACM SIGIR Conf. on Research and
Development in Information Retrieval. ACM, 1998.

[17] Y. Tsegay, S. Puglisi, A. Turpin, and J. Zobel. Document
Compaction for Efficient Query Biased Snippet Generation.
Advances in Information Retrieval, pages 509–520, 2009.

[18] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams.
Fast generation of result snippets in web search. In: ACM
SIGIR, 39(5):127–134, 2007.

[19] Y. Xie and D. O’Hallaron. Locality in search engine queries
and its implications for caching. In Proceedings of IEEE
INFOCOM 2002, The 21st Annual Joint Conference of the
IEEE Computer and Communications Societies, 2002.

104

