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ABSTRACT

While projection techniques have been extensively investi-
gated for XML querying, we are not aware of applications to
XML updating. This paper investigates a projection based
optimization mechanism for XQuery Update Facility expres-
sions in the presence of a schema. This paper includes a
formal development and study of the method as well as ex-
periments testifying its effectiveness.

Categories and Subject Descriptors

H.2 [Database Management]: Systems—Query process-
ing

1. INTRODUCTION
XML projection is a well-known optimization technique

for reducing memory consumption of XQuery in-memory en-
gines. The main idea behind this technique is quite simple:
given a query q over an XML document t, instead of evaluat-
ing q over t, the query q is evaluated on a smaller document
t′ obtained from t by pruning out, at loading-time, parts of
t that are not relevant for q. The queried document t′, a
projection of the original one, is often much smaller than t
due to selectivity of queries.

In order to determine an optimal projection of t several
approaches exist [11, 12, 18, 19]. Most of them are based
on query path extraction: all the paths expressing the data-
needs for the query q are first extracted and then used for
projecting t. In particular, the type based approach [11] as-
sumes that documents are typed by a dtd and combines
path extraction with type inference, to determine the type
names (labels) of the elements required for the query. This
set of type names is dubbed type-projector, and used at load-
ing time to prune out elements whose type labels do not
belong to it.
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While projection techniques have been extensively investi-
gated for XML querying, we are not aware of any application
to XML updating, although several XML querying engines
like Galax [2], Saxon [7], QizX [5, 4], and eXist [1] per-
form updates in main-memory: the input document is first
loaded in main memory, then updated, and finally stored
back on the disk. As a consequence, each one of these sys-
tems has some limitations on the maximal size of documents
that can be processed. For instance, we checked that for
eXist, QizX/open [5] and Saxon it is not possible to update
documents whose size is greater than 150 MB (no matter the
update query at hand) with standard settings and memory
limitations.

XML projection, as described above, cannot be applied di-
rectly for updating XML documents. Obviously, updating a
projection of a document t is not equivalent to updating the
document t itself: the pruned out sub-trees will be missing.

In this paper, we develop a type based optimization tech-
nique for updates. Our update scenario is designed as fol-
lows for an update u and a document t typed by a dtd D.
First, the projection t′ of t is built using a type-projector
π. Second, the update u is performed over the projection t′,
yielding the partial result u(t′). We would like to emphasize
that no rewriting of the update u is required. The last step,
called Merge, parses in a streaming and synchronized fashion
both the original document t and u(t′) in order to produce
the final result u(t). For the sake of efficiency, the Merge step
is designed so that (a) only child position of nodes and the
projector π are checked in order to decide whether to out-
put elements of t or of u(t′) and (b) no further changes are
made on elements after the partial updated document u(t′)
has been computed: output elements are either elements of
the original document t or elements of u(t′). It should be
noted that the revalidation issue is not considered in this
paper.

Contributions. The main contributions of the paper are:

i) A new 3-level type projector for updates: the first issue is
to deal with update expressions; the second issue is related
to the choices (a) and (b) for Merge; these choices have a
significant impact on the specification of the type-projector;
the next section develops motivating examples. Interestingly
enough, the new 3-level type projector designed for updates
provides interesting improvements for pure queries.

307



doc → a* b → String
a → b*,c*,d? d → (f | g)∗ for $x in /doc/a where $x/d return delete $x/b

πno={doc, a, b, d}
πolb=πeb=∅

(1) The dtd D (2) The update u (3) The projector π for u

doc

[ǫ]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

doc

[ǫ]

a
[1]

b
[1.1]

d
[1.4]

a
[2]

d
[2.1]

doc

[ǫ]

a
[1]

d
[1.4]

a
[2]

d
[2.1]

doc

[ǫ]

a
[1]

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(4) XML document t (5) Projection t′ of t wrt π (6) Partial update u(t′) (7) Final result u(t)

Figure 1: A motivating example of the Update Scenario

ii) A new path extraction mechanism required for the deriva-
tion of the update type projector.

iii) Design and implementation of a simple and thus efficient
algorithm Merge, to make updates persistent. The Merge al-
gorithm uses a buffer whose size is upper bounded by the
maximal depth of the input document t.

iv) Extensive experiments whose results validate the effec-
tiveness of the proposed approach. We have implemented
the projection and merging algorithms in Java and consid-
ered several popular systems to perform tests.

Related Work. The approach here presented introduces sub-
stantial novelties wrt the type based approach for queries
presented in [11]. As it will be explained in Sec. 2, we adopt
a three-level projector, while the projector proposed in [11] is
one level. A three level projector, allows to optimize (mini-
mize) the size of projections. In particular, it allows to avoid
keeping in the projection useless text nodes that would be
kept with the technique proposed in [11]: this can result into
substantial improvements since in many cases large parts of
documents consist of textual content.

Other works propose techniques to optimize update exe-
cution time by using static analysis in order to detect inde-
pendence between several update operations, so that query
rewriting techniques can be used for logical optimization [16,
17, 8, 9]. Our work is definitely orthogonal wrt this line of
research, and indeed, the two techniques can be combined
in order to increase the efficiency in terms of time.

Some recent works [13, 14] addressed the problem of trans-
lating an XQuery update expression u into a pure query ex-
pression Qu, with the aim of executing the update u via
the query Qu. The advantages of these approaches are that
updates can be executed even if the XQuery engine only
deals with queries, and well established query-optimization
techniques can be adopted to optimize update execution. A
peculiar characteristic of these approaches [13, 14] is that
the query Qu needs to select and return all nodes that are
not updated, while those which are updated are selected and
processed to compute new nodes. As a consequence, using
standard projection techniques [11, 18] for the query Qu

would lead to no improvement, since the whole document
would be projected.

It is worth observing that, although not directly, existing
projection techniques [11, 18] could be used for a single up-
date, provided that the projected document is used only to
compute the update pending list, so that this last one can be
then propagated to the input document in a streaming fash-

ion. Such approach would require some techniques similar
to those here developed in order to: opportunely determine
the projection, and make node identity persistent in order to
propagate, in the second phase, the calculated update pend-
ing list. This approach has two drawbacks. Firstly, it does
not allow to use XML querying engines in a straight manner
as we propose to do: controlling the two phase evaluation of
XML updates would become necessary. Secondly, this ap-
proach would perform very inefficiently in the quite frequent
case where a bunch of n updates has to be executed, accord-
ing to a given order, because each update would need to be
fully processed one after the other entailing the document to
be processed/parsed n times. Our approach is different and
allows to evaluate the n updates by processing our method
just once: a global projector can be easily inferred (it is suf-
ficient to consider the union of each update projector); the
n updates are evaluated on the global projection wrt the
specified order; finally, the updates are propagated on the
original document in a single pass, using the Merge function.
As testified by our tests (Section 6), this results in a much
more efficient processing.

Organization. The article is organized as follows. Section
2 introduces the main features of our method through exam-
ples. Section 3 brings all necessary notation and definitions.
Section 4 provides a formal presentation of our method al-
though the inference of the update type projector is ad-
dressed separately in Section 5. Section 5 formally states
soundness and completeness of our method; it carefully out-
lines the proof of the main result. The implementation and
experiments of the method are reported in Section 6 just
before concluding and developing future research directions
in Section 7.

2. MOTIVATING EXAMPLES
This section is devoted to introducing and illustrating,

through examples, the main features of our method and es-
pecially of the update type projector. The choices and as-
sumptions made in the formal presentation are motivated.

Merge explained on a simple example. Let us consider
the example in Fig. 1 and assume that the partial updated
document u(t′) has been produced by first pruning the origi-
nal document t leading to t′ and then updating t′ with u. In
order to produce the final result u(t), we parse and merge
the initial document t and the partial updated document
u(t′).
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Notice that each node of the initial document t is adorned
with its label (a, b, ...) and with an identifier i inside square
brackets (1, 1.1, ...). A node of a document t whose identifier
is i is next denoted by t@i. We make the choice that the
identifier of a node in t gives its position in t according to
document order. In the projection t′ of t, the identifier of
a projected node is kept and thus may no more correspond
to the position of the node in t′ (it is the case, for instance,
of the node t′@1.4 in Fig. 1.5). In the partial updated
document u(t′), new identifiers are assigned to inserted or
replaced nodes (see next examples).

Concerning our example, while merging t and u(t′), noth-
ing special happens until the nodes t@1 and u(t′)@1, both
labelled a, have been parsed. At this point, the two nodes
examined by Merge are: the first child node t@1.1 labelled
b of t@1, and the first child node u(t′)@1.4 labelled d of
u(t′)@1 . Because the child rank 4 of u(t′)@1.4 is strictly
greater than the child rank 1 of t@1.1 and because the label
b belongs to the projector π, indicating that the node t@1.1
has been projected in t′, the node t@1.1 is not output (it
has been deleted by the update u), the original document t
is further parsed. The next two nodes examined are: t@1.2
labelled c and u(t′)@1.4 labelled d. Once again, the child
rank 4 of u(t′)@1.4 is strictly greater than the child rank 2
of t@1.2, however this time, the label c does not belong to
the projector π (the node t@1.2 was not needed for the par-
tial update and thus not projected in t′) and thus the node
t@1.2 is output in the final result, the original document t
is further parsed. The process will continue parsing t and
u(t′) until both documents are fully scanned. Note that,
positions of nodes (more precisely child rank) in the initial
document play a crucial role in the Merge process.

Dealing with insertion. Consider the update u1 specified
by for $x in /doc/a return insert as last <e>’new’</e>

into $x with the same dtd D and document t of Fig.1.1 and
1.4. Intuitively, the path corresponding to data relevant for
the update u1 is /doc/a and the types of nodes traversed by
this path are π1={doc, a}. The projection π1(t) of t is given
below as well as the partial update u1(π1(t)). Recall that
node identifiers in π1(t) correspond to node identifiers in t,
the same holds for unchanged nodes in u1(π1(t)), and that
new (inserted or replaced) nodes in u1(π1(t)) are given new
identifiers. In the table below, i and i′ are new identifiers.

doc

[ǫ]

a
[1]

a
[2]

doc

[ǫ]

a
[1]

b
[1.1]

c
[1.2]

c
[1.3]

d
[1.4]

a
[2]

d
[2.1]

π1(t) πu1(t)

doc

[ǫ]

a
[1]

e
[i]

’new’

a
[2]

e
[i′]

’new’

doc

[ǫ]

a
[1]

b
[1.1]

c
[1.2]

c
[1.3]

d
[1.4]

e
[i]

’new’

a
[2]

d
[2.1]

e
[i′]

’new’

u1(π1(t)) u1(πu1 (t))

Let us proceed to merging the initial document t and the
partial result u1(π1(t)) in order to produce the final result

u1(t). After visiting the root nodes of the two documents,
the two nodes examined by Merge are: t@1.1 labelled b and
the new node u1(π1(t))@i labelled e. Here, the new identifier
i conveys no information about child rank of the new node
and even if the projector tells us that the node t@1.1 has
been projected out, there is no way to decide whether it has
to be output before the inserted node or vice-versa. Recall
here the assumption made for Merge: information about the
update u1 is not available.

In order to solve this problem, related to insertion, we
modify the projector. The new projector for the update u1

takes into account that the path /doc/a is the target of an
insertion. As such, the projector πu1 will have 2 compo-
nents: the type doc of category ‘node only’ and the type a
of category ‘one level below’. Applying this new projector to
a document proceeds as follows: the nodes labelled by types
of category ‘node only’ are projected; the nodes labelled by
types of category ‘one level below’ are projected together
with each of their children.

For our example, applying the projector πu1=(πno, πolb)
with πno={doc} and πolb={a} to the document t leads to
the document πu1(t) depicted in the table above together
with the partial update u1(πu1(t)). Since now the new nodes
are inserted in a projection containing all their siblings, it
is easy to check that the documents t and u1(πu1(t)) can be
merged in a valid, simple and efficient way.

We would like to stress that our projector avoids unnec-
essary node projection: the projection of all children of a
‘one level below’ node is forced but, and this is important,
without requiring the labels of these children to be part of
the projector. Finally, of course, the reader should not con-
fuse projecting all children of a ‘one level below’ node with
projecting all its descendants.

Dealing with String and mixed-content. We are now go-
ing to slightly modify the dtd D by redefining the rule
for b as b→(String | c)∗ and consider the update u2 spec-
ified by for $x in /doc/a where $x/b/text()=’foot’ return

delete $x/d. Intuitively, /doc/a/d and /doc/a/b/text() are
the paths corresponding to data relevant for the update u2.
The associated types are π2={doc, a, b, String, d}. Let us
consider the document t2 given below and its projection
π2(t2). Notice that projecting t2 wrt π2 has the side effect to
concatenate the two Strings ’fo’ and ’ot’ and consequently,
the node u2(π2(t2))@1.4 labelled d is deleted when the up-
date u2 is applied on the projected document π2(t2). Recall
the assumption that Merge is not supposed to change the
elements parsed in t2 and u2(π2(t2)) and has only access to
the projector. Thus, we cannot expect that merging the ini-
tial document t2 and the partial updated result u2(π2(t2))
will produce the final updated document.

doc

[ǫ]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

c
[1.3]

d
[1.4]

doc

[ǫ]

a
[1]

b
[1.1]

’foot’

d
[1.4]

doc

[ǫ]

a
[1]

b
[1.1]

’foot’

doc

[ǫ]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

d
[1.4]

t2 π2(t2) u2(π2(t2)) πu2(t2)

The problem here is due to mixed-content nodes and solved
by modifying the projector in the same way as for inser-
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tion. The new projector πu2 generated for the example
will have 2 components: πno={doc, a, d} of category ‘node
only’ and πolb={b} of category ‘one level below’. This ex-
ample is well suited to stress that the notion of projec-
tion presented in the paper allows one for a better pre-
cision. On the one hand, the projector πu2 allows us to
prune out c children of a nodes as the table above shows.
Indeed, we could have solved the problem, in a syntactic
manner, by extending the extracted path /doc/a/b/text()
to /doc/a/b/text()/parent :: node()/child :: node() lead-
ing (by type inference) to a simple projector {doc, a, b, c, d,
String} which in fact projects the whole document t2. On
the other hand, the projector πu2 allows us to restrict the
projection of text nodes to children of b nodes. To bet-
ter illustrate this, let us assume that doc is now defined
by doc→(a | String)∗, then applying the simple projector
{doc, a, b, c, d, String} inferred by [11] would lead to project
all text children of a although not useful for the update. This
last point is a significant improvement wrt [11] in reducing
the size of the projected document as our experiments will
show and can also benefit to pure queries.

Dealing with element extraction. Consider the dtd D
and the update u3 for $x in /doc/a return replace $x/b with

$x/d. First, it is clear that replace updates have to be
treated like insert wrt to the target path $x/b: replace is
a delete followed by an insert. Second, because the path
/doc/a/d is meant to return the element copied at the tar-
get node computed by /doc/b, the complete subtrees rooted
at nodes of type d have to be completely projected. For
this update, we propose to generate a projector πu3 com-
posed of three sets of types: πno={doc} of category ‘node
only’, πolb={a} of category ‘one level below’, and πeb={d}
of category ‘everything below’ (abbreviated ‘∀ below’).

Let us explain the behavior of the 3-level type projector
wrt the category ‘everything below’: a node labelled by a
type of this category is projected together with its sub-forest.
Indeed, applying the projector πu3 on the document t of Fig.
1.4 produces almost the whole document with the exception
of the String ’oof’ which is pruned out.

Once again, this third feature of our projector brings more
precision and efficiency wrt [11]: it allows us for optimizing
the projection (by avoiding to include in the projector the
types of the nodes in the subtree of a ‘∀ below’ node) and it
accelerates the projection it-self.

3. PRELIMINARIES

Data Model. The data model is essentially that of [10] and
thus XML documents are represented using the notion of
store.

Next, I, J,K designate sets (id-set) or lists (id-seq) of
identifiers denoted by i, j ...; () denotes the empty id-seq;
I ·I ′ denotes id-seq composition, and the intersection of I
and J preserving the order in the id-seq I is denoted by I|J .

A store σ over the id-set I is a mapping associating each
identifier i∈I with either an element node a[J ] or a text node
text[st] where a is a label, J is an id-seq of identifiers in I
(the ordered list of children) and st is a string. We define:
− lab(i)=a if σ(i)=a[J ], and lab(i)=String if σ(i)=text[st],
− child(σ, I)={j | ∃i∈I, σ(i)=a[J ] and j∈J},
− roots(σ)={i | ¬∃j, i∈child(σ, {j})}.

Given a store σ over I , the projection on J⊆I of σ, is
a store over J , denoted ΠJ(σ), defined by: for each j∈J ,
if σ(j)=a[K] then ΠJ(σ)(j)=a[K|J ] otherwise σ(j)=text[st]
and ΠJ(σ)(j)=σ(j). The reader should pay attention to the
fact that the domain and the ”co-domain” of the projection
on J of σ is J .

We only consider stores corresponding to XML forests and
trees. A forest f over I is given by a pair (J, σ) where σ is
as above and J=roots(σ). We write dom(f) for I and σf for
σ and f◦f ′ for the concatenation of two disjoint forests f
and f ′.

Similarly, a tree t over I is given by (rt, σt) where rt is the
root identifier of the store t over I that is, roots(σt)={rt}.
The subforest of t, denoted subfor(t), is defined by ΠI\{rt}(t).

For the sake of the formal presentation, the identifiers used
in the definition of a store are sometimes giving the position
of the nodes in the XML document (see the motivating ex-
ample of Section 2). Such stores are called p-stores.

We consider XML trees valid wrt a schema defined by
means of the dtd language, which features the core mecha-
nisms of mainstream schema languages.

dtds are defined as in [15]: given a finite set of labels
Σ, and the reserved symbol String, a dtd over Σ is a tuple
(D, sD) where D is a total function from Σ to the set of
regular expressions over Σ ∪ {String}, and sD ∈ Σ is the
root symbol. Given a regular expression r, the language
generated by r, resp. the set of symbols in Σ occurring in
r, is denoted by L (r), resp. S(r). We denote t∈D the fact
that t is valid wrt D.

Update query language. The update language we con-
sider is the one proposed in [10], a large core of XQuery
Update Facility. The effect of an update u over an XML
document is defined in two steps. A first evaluation of u
produces a sequence of atomic update operations. After
checking some properties over these atomic updates, they
are ordered and finally applied over the document. Next,
we introduce the minimal syntactical and semantic ingredi-
ents useful for the presentation.

Atomic updates are defined as follows :

atom up ::= ins(I, δ, i) | del(i) | repl(i,I) | ren(i, a)
direction ::= ← | → | ↓ | ւ | ց

The insertion of a set of elements, given by their root iden-
tifiers I , targets a node i; it uses a direction parameter δ to
specify whether to insert before (←), after (→) a node, or
into the child list of a node in first (ւ), last (ց) or arbitrary
position (↓). Deletion or renaming of a subtree t uses the
identifier i of its root.

Due to space limitation, we do not present the syntax of
the query language underlying update expressions. The path
axes considered are: child, descendant, parent and ancestor.
The syntax of updates is given by:
u ::= () | insert q δ q0 | del q0 | replace q0 with q |

rename q as a | u, u′ | if q then u1 else u2 |
for x in q return u | let x = q return u

Obviously, above, q and q0 are queries where q0 is called
the target query expression. For instance, the update ex-
pression insert q δ q0 requires to insert a copy of (the result
of) q in position δ relative to the result of q0. In each case
the target expression is assumed to evaluate to a single node
(identifier) and if not, the evaluation fails.
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Semantics of update expressions is defined as in [10]. Now,
we outline the definition structure of the judgements intro-
duced in [10]. Below, the stores σ, σ′ are forests and γ is a
variable environment. Queries and updates are also assumed
to be closed.
− σ, γ|=q ⇒ σ′, I : the evaluation of the query q over the
forest σ under the environment γ leads to the new store σ′

(an extension of the initial store σ) together with the id-seq
I which is the list of identifiers of answer element roots.
− σ, γ|=u ; σ′ : applying an update u over σ produces the
store σ′; intermediate steps are: producing an atomic update
pending list, checking properties of the atomic updates (out
of the scope of the paper), and applying the atomic updates.

− σ, I
copy

⊢ σ′, I ′ : the copying judgment extends the initial
store σ by copying each of the subtrees identified by the list I
of their roots to a fresh subtree, collecting the root identifiers
of the new subtrees in the list I ′ (the fresh subtree is built
with new identifiers).
− σ, γ|=u ⇒ σ′, ω : the evaluation of the update u over
σ given the environment γ, starts by producing an update
pending list ω (a list of atomic updates) and a new store
σ′; the store σ′ extends σ with the new or copied elements
generated by this phase and required later for evaluating the
pending list;
− σ|=ω ; σ′ : applying the update pending list ω on σ
produces the new store σ′.

Of course, u(t) denotes the store t′ such that t, ()|=u ; t′.
Given a query path P over a tree t, the evaluation is assumed
to start at the root of the document (recall that P=/RelP ).
As it does not touch the store, we write t, ()|=P ⇒ t, I .

4. UPDATE MECHANISM
Let us recall the main steps of the update scenario for

an update expression u and a document t. Step 1: an up-
date type projector π for u is inferred and t is projected wrt
π. The notion of update type projector is defined below;
the inference of the type projector is described in Section 5;
Step 2: the update u is evaluated over the projected doc-
ument π(t) producing a partial result u(π(t)); Step 3: the
fully updated document u(t) is built by merging the initial
document t and u(π(t)); this step is detailed below.

Update type projector. First of all, we formally define 3-
level type projectors:

Definition 4.1 (Type Projector). Given a dtd
(D, sD) over the alphabet Σ, a type projector π is a triple
(πno, πolb, πeb) such that (π also denotes πno∪πolb∪πeb):
i) π⊆Σ,
ii) πno, πolb and πeb are pairwise disjoint, and
iii) sD∈π and for each b∈π there exists a∈π such that D(a)=r
and b occurs in r.

The πno (resp. πolb and πeb) component of π contains ‘node
only’ types (resp. ‘one level below’ and ‘∀ below’ types).
Notice that condition iii) ensures some closure property wrt
to the dtd D: label a∈π cannot be deconnected from the
root label sd although it does not need to be connected in
all possible manners (see projector π4 below). Notice that
the String type itself never belongs to a type projector π:
as explained in Section 2, a string is projected “indirectly”
when its parent node type is of category ’olb’ or ’eb’.

a→(b | e)∗
b → c

e → c

πno={a, b, c}
πolb=∅
πeb=∅

a

[ǫ]

b
[1]

c
[1.1]

e
[2]

c
[2.1]

a

[ǫ]

b
[1]

c
[1.1]

dtd D4 Projector π4 t4 π4(t4)

Figure 2: Type projection: an example.

Definition 4.2 (Type Projection). Let us consider
the dtd (D, sD), the type projector π=(πno, πolb, πeb) and
the document t∈D with roots(t)={rt} and subfor(t)=F .
The projection of t wrt π, denoted π(t), is the tree ΠK(t,π)(t)
where K(t, π) is recursively defined by:
− if lab(rt) 6∈π then K(t, π)=∅,
− if lab(rt)∈πα then K(t, π)={rt}∪Kα(F ) for α∈{no,olb,eb}
with:

Kα(F )=∅ if F=() and otherwise, assuming F=t′◦F ′,
Kno(F )=K(t′, π)∪Kno(F

′),
Kolb(F )=K(t′, π)∪Kolb(F

′) if lab(rt′)∈π
Kolb(F )={rt′}∪Kolb(F

′) if lab(rt′) 6∈π
Keb(F )=dom(F ).

Let us consider in Fig. 2 the dtd D4 and the update pro-
jector π4. This projector is well-defined: the type c is con-
nected to the root type a by b. For the document t4, the
set K(t4, π4) is {ǫ, 1, 1.1}. Observe that, although c∈πno,
we have 2.16∈K(t4, π4) because e 6∈π4.

The closure property iii) of definition 4.1 entails that the
result of a type projection is a well-formed tree although it
may not conform to the dtd D:

Property 4.3. ΠK(t,π)(t) is a tree.

The merge phase. The task of Merge is to build the result
u(t) of the update u over t starting from the initial p-tree t
and the updated partial tree u(π(t)). The main assumption
here is that the input document t is a p-store, implying that
node identifiers correspond to node positions in the docu-
ment. The function Merge uses this information, the 3-level
projector π and nothing else. Positions are not materialized
in the input document but generated at loading time (See
Sec. 6).

Finally, for the purpose of insert and replace operations,
it is assumed that the update u generates ’new’ (not already
used in t) identifiers .

The functions Merge and CMerge are formalized in Fig. 3
and Fig. 4. For the sake of simplicity, the update projector
π is kept implicit in the specification.

The functions Merge and CMerge have to be thought of as
mechanisms parsing in parallel two forests: Fi belonging to
the initial p-tree t and Fu belonging to the updated partial
tree u(π(t)); parsing synchronization is captured by the fact
that the parent nodes of Fi and Fu are assumed to share
the same identifier; because of projection and update, Fu

contains identifiers belonging to t, besides the new ones due
to insert and replace operation.

The two functions differ on the following pre-conditions:
− Merge assumes that (†) the parent node n of the forest
Fi is of category ‘node only’ which implies that, because of
synchronization, i) none of the top level trees in Fu is of type
String, ii) root identifiers of top level trees in Fu belong to
Fi that is roots(Fu)⊆roots(Fi).
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1 Merge(Fi | Fu) = Fu if roots(Fi)=∅,
otherwise assume Fi=ti◦fi

2 ti ◦ Merge(fi | Fu) if σti(rti)=text[st],
otherwise assume σti(rti)=a[J ],

3 Merge(fi | Fu) if a∈π and either roots(Fu)=∅ or Fu=tu◦fu with rtu>rti

4 TreeMerge(ti | tu) ◦ Merge(fi | fu) if a∈π, Fu=tu◦fu and rti=rtu

5 ti ◦ Merge(fi | Fu) if a 6∈π

Figure 3: The function Merge

c.1 CMerge(Fi | Fu) = Fu if roots(Fi)=∅,

c.1′ () if roots(Fu)=∅,
otherwise assume Fu=tu◦fu

c.2 tu ◦ CMerge(Fi | fu) if σtu(rtu)=text[st] or new(rtu)=true,

otherwise assume σtu(rtu)=b[K] and Fi=ti◦fi

c.3 CMerge(fi | Fu) if σti(rti)=text[st] or σti(rti)=a[J ] with a∈π and rtu > rti

c.4 TreeMerge(ti | tu) ◦ CMerge(fi | fu) if a∈π, σti(rti)=a[J ], and rti=rtu

c.5 ti ◦ Merge(fi | fu) if a 6∈π and σti(rti)=a[J ]

Figure 4: The function CMerge

− CMerge considers that (††) the node n is of category ‘one
level below’ which implies that each node in roots(Fi) has
been projected and that roots(Fu) are exactly the top level
nodes of Fu that have to be output by CMerge.

The function Merge proceeds as follows:
Line 2 takes care of the case where the current parsed tree ti
of Fi is a String. The assumption † entails that it has been
pruned out by π. Thus, the String ti is simply output.
Line 3 deals with the case where the label a of the root rti
of ti belongs to π (thus a subtree of ti has been projected)
and rti does not occur in Fu (the projection of ti has been
deleted by the update). When Fu is not empty, this latter
fact is identified by comparing the identifiers of the currently
parsed nodes (which are positions in Fi): rtu<rti indicates
that the tree ti comes after the tree tu in the forest Fi. Thus
ti is not output.
Line 4 takes care of synchronization on the nodes rtu and
rti : these nodes can only differ by their labels because of
some renaming. In that case, the tree TreeMerge(ti | tu) is
output. The root of the tree TreeMerge(ti | tu) is labelled by
lab(rtu) and its sub-forest is defined by:

Merge(subfor(ti) | subfor(tu)) if lab(rti)∈πno

CMerge(subfor(ti) | subfor(tu)) if lab(rti)∈πolb

subfor(tu) if lab(rti)∈πeb

Note that, in case of lab(rti)∈πeb: TreeMerge(ti | tu)=tu.
Finally, line 5 deals with the case where the label a of ti

root does not belong to the projector π implying that ti has
been pruned out. Hence ti is output.

Recall that the function CMerge, specified in Fig. 4, is
built assuming (††). Parsing Fi and Fu in parallel is thus
essentially guided by Fu, as opposed to Merge.
Line c.2 deals with the case where the current parsed tree
tu of Fu is either of type String or a newly inserted element.
This latter case is identified by checking whether the iden-
tifier rtu is new (/∈dom(t)). Hence, the tree tu is output.
The reader may notice that no move on Fi is performed: a

simple case analysis shows that synchronization is recovered
through other cases.
Line c.3 is similar to line 3, although it should be paid at-
tention to the sub-case where the root of ti is of type String:
ti is then ignored because the corresponding String element
in Fu (updated or not by u) has, eventually, already been
output by a previous application of line c.2.
Lines c.4, c.5 are the dual of lines 4, 5 of the Merge definition.
The reader should pay attention to line c.5 where, although
implicit, the equality rti=rtu holds (as opposed to the case
”line 7” of Merge): even if a 6∈ π, because of (††), the node
identified by rti=rtu is in both forests Fi and Fu.

5. UPDATE TYPE PROJECTOR
This section focuses on the inference of a type projector π

given an update u and a dtd D. The extraction of the type
projector is decomposed into three steps. First, we proceed
to the path extraction from u. Three categories of paths are
extracted from u: paths whose targets correspond to ‘node
only’ nodes, resp. to ‘one level below’ and ‘∀ below’ nodes.
Second, for each category of paths, the dtd D is used in
order to derive the labels traversed by these paths and their
target labels. The last step is technical and meant to enforce
the pairwise disjointness of the projector components (Def.
4.2).

Update Path extraction. It is obvious from the syntax of
updates that queries are first class components of updates.
An update u may be decomposed into two parts: the con-
text part used to proceed to some navigation and the action
part specifying changes to be made over the document. The
action part itself can be further decomposed into a source
query in charge of building elements to be copied at some po-
sition in the document and a target query collecting nodes
where changes (insertion, deletion, replacement or renam-
ing) have to be made. To illustrate this, let us consider
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ins− rep

(Γ, q0) ;su P0 (Γ, q0) ;sr R0 (Γ, qo) ;nr R
′
0 (Γ, q) ;su P (Γ, q) ;sr R

(Γ, ins-rep(q, q0)) ;olb Par(P0 ∪R0 ∪R
′
0 ∪P ∪R)

t

(Γ, q0) ;nu P0 (Γ, q) ;nu P
(Γ, ins-rep(q, q0)) ;no P0 ∪P

t
(Γ, q0) ;ebu P0 (Γ, q) ;ebu P (Γ, q) ;nr R

(Γ, ins-rep(q, q0)) ;eb P0 ∪ P ∪R
t

insert-into/as-first/as-last

(Γ, q0) ;su P0 (Γ, q0) ;sr R0 (Γ, qo) ;nr R
′
0 (Γ, q) ;su P (Γ, q) ;sr R

(Γ, insert q δ q0) ;olb Par(P0 ∪R0 ∪R ∪P) ∪R
′
0

t δ ∈ {ւ, ↓,ց}

delete

(Γ, q0) ;su P0 (Γ, q0) ;sr R0

(Γ, del q0) ;olb Par(P0 ∪R0)
t

(Γ, q0) ;nu P0 (Γ, q0) ;nr R0

(Γ, del q0) ;no P0 ∪R0
t

(Γ, q0) ;ebu P0

(Γ, del q0) ;eb P0
t

rename

(Γ, q0) ;nu P0

(Γ, rename q0 as a) ;no P0
t

(Γ, q0) ;su P0

(Γ, rename q0 as a) ;olb P0
t

(Γ, q0) ;ebu P0

(Γ, rename q0 as a) ;eb P0
t

Figure 5: Path extraction for updates

the update u3 of Sec.2: its context part contains the query
/doc/a, its action part is built with the source query $x/d and
the target query $x/b. As a consequence, specifying path ex-
traction for updates requires first specifying path extraction
for queries.

Our path extraction for queries generalizes [18] where two
kinds of paths are distinguished: used paths corresponding
to navigation and side queries (for instance, for checking an
existential condition) but not involved in building the query
result itself; returned paths specifying root nodes of answer
elements. Here, for the purpose of our study, among used
paths, we further differentiate between (i) the ones target-
ing nodes needed by the query (node used paths), (ii) the
ones targeting a string (string used paths) and finally, (iii)
the ones capturing the root nodes of elements used by the
query (∀ below used paths). Among returned paths, we dif-
ferentiate between those returning roots of answer elements
(node returned paths) and those returning text (string re-
turned paths).

Next, the expressions (judgments) of the form (Γ, do) ;cat

X should be read: given the environment Γ, the paths X
of category cat are derived from the query/update do. The
table below introduces judgments for query path extraction.
Due to space limitation, query path extraction itself is not
presented.

Category Judgement Category Judgement
node returned (Γ, q) ;nr R node used (Γ, q) ;nu P
string returned (Γ, q) ;sr R string used (Γ, q) ;su P

∀ below used (Γ, q) ;ebu P

Judgements for query path extraction.

On the basis of the query path classification, we now concen-
trate on path extraction for updates. The three categories
of paths that are going to be considered have already been
introduced in Sec. 2: node only, one level below and ∀ be-
low. The corresponding judgement notation are presented
below while the associated rules for elementary updates are
partially provided in Fig. 5. Here, ins-rep(q, q0) is used
to designate either an insertion of the form insert q δ q0
with δ∈{←,→} or a replace replace q0 with q. Given a set
of paths P, Par(P) denotes the set of paths {P/parent ::

node() | P∈P}.

Category Judgement Path set derived
node only (Γ, u) ;no P Pno

one level below (Γ, u) ;olb P Polb

∀ below (Γ, u) ;eb P Peb

Judgements for update path extraction.

The guideline to understand the rules for update path ex-
traction relies on analyzing the five categories of paths ex-
tracted for queries wrt the environment (context, source,
target) of the query path within the update. Let us illustrate
this with the update u3. The node returned path /doc/a is
inferred from the context query of u3 and thus, for the up-
date u3, /doc/a is inferred as a node only path. The node
returned path /doc/a/b is inferred from the insert target of
u3 and as such, for the update u3, /doc/a is inferred as a one
level below path (here the fact that the action is an insertion
is used to derive /doc/a from /doc/a/b). Finally, the node
returned path /doc/a/d is inferred from the insert source of
u3 leading to derive, for u3, /doc/a/d as a ∀ below path.

We now present informally and not exhaustively the gen-
eral analysis underlying path extraction rules for updates
given in Fig. 5. Each case considered below is specified by
a query path Pq extracted from a query component of an
update u, more precisely it is specified by the category of Pq

and the environment of q within u. The presentation relies
on the frames in Fig. 6. Each frame shows the target i of a
query path Pq and possibly the target j of the correspond-
ing update path Pu when Pu differs from Pq (when Pu=Pq,
we have j=i). Each case explains how the path Pu and its
category are derived. The nodes that need to be projected
are surrounded by dashed lines (a rectangle corresponds to
all siblings of a node and a triangle to all its descendants).
1. Assume that Pq is a node used query path extracted from
q occurring in the context of the update u, then Pq is a node
only update path for u. The same will be derived if q is a
source or target query in u (see Frame 1).
2. Assume that Pq is a ∀ below used query path extracted
from either the context, source or target of u, then Pq is a
∀ below update path for u (see Frame 2).
3. Assume that Pq is a string used query path extracted from
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Figure 6: Update path extraction: analysis.

any environment of q, then Pu=Pq/parent :: node() is a one
level below update path for u. This case (mixed-content
data) has been motivated in Sec. 2 (see Frame 3 where i has
been replaced by st in order to represent that the target of
Pq is a string).
4. Let us turn to the case where Pq is a node returned query
path extracted from the query q of the action del(q) of u.
This case is quite simple: it is unnecessary to project the
siblings of node i and thus Pq is inferred as a node only
update path for u. Note that the case where a string node
is deleted is captured as an access to a string followed by
delete and as such falls into case 3. above.
5. Now consider that Pq is a node returned query path ex-
tracted from the query q of u=insert q′ δ q with δ∈{←,→}.
Then (see Frame 5), as motivated in Sec. 2, all siblings of
node i need to be projected to give Merge the ability to re-
cover the nodes in valid order: thus Pu=Pq/parent :: node()
is derived as a one level below update path. The same con-
clusion is obtained when u=replace q with q′.
6. Finally, consider that Pq is a node returned query path ex-
tracted from the query q of u=insert q δ i with δ∈{ւ,↓,ց}.
This time, the insertion possibly adds a new child to i. Thus,
Pq itself is derived as a one level below update path.

Path Type Inference. This step relies on the type inference
rules of [11] which are not reported here. It starts with the
three sets of path expressions Pno, Polb and Peb inferred
for u. For each set P, it produces a pair (T, C) of sets of
types.

− Considering path expressions in P as (simple) queries,
T collects all labels of the answer roots for these queries.
Formally, for any t∈D and P∈P, assuming t, ()|=P ⇒ t, J :

if i∈J and σt(i)=a[I ′] then a∈T

Note that here, we only infer element labels. The String
type is not considered in the inferred type because, in our
setting, projecting a String node is a side effect of marking
its parent node label as one level below.

For the update u3, from Pno={/doc/a}, Polb={/doc/a}
and Peb={/doc/a/d}, we derive: Tno={a}, Tolb={a} and
Teb={d}.

− Besides inferring an answer type set T , we also infer
a context type set C containing labels of all ancestors of
nodes in the sequence I output by P . As explained in [11]
the use of context types is crucial to ensure precision of the
projector. Formally, for any t∈D and for P∈P, assuming
t, ()|=P ⇒ t, J :

if i∈idmatch(t, J) and σt(i)=a[I ′] then a∈C

where given a set J of identifiers, idmatch(t, J) collects, for
each j∈J the node identifiers along the (concrete) paths from
the root to j, excluding the identifier j.

For the update u3, we derive Cno={doc}, Colb={doc},
and Ceb={doc, a}.

So type inference actually produces a pair Σ=(T,C). As
for query path and update path extraction, type inference
rules specify the judgement Σ′⊢DP : Σ where Σ′ = (Tc, Cc)
is a starting environment. This judgement means that given
a dtd D, starting from the labels in Tc and the context Cc,
the path P generates the labels T with its context C.

The main theorem satisfied by type inference rules is the
following:

Theorem 5.1 ([11]). Let (D, sD) be a dtd, P a path,
and t∈D. If t, ()|=P ⇒ t, J and ({sD}, {})⊢DP : (T, C)
then:

TP ⊆ T and CP ⊆ C

where TP={a | j∈J and σt(j)=a[I ′]}, and
where CP={a | j∈idmatch(t, J) and σt(j)=a[I ′]}.

Type-projector inference. The final step of the update
type projector derivation starts with the three pairs of type
sets (Tno, Cno), (Tolb, Colb) and (Teb, Ceb) inferred for u.
This step is quite straightforward although it contributes to
the efficiency and precision of the type projector by enforc-
ing pairwise disjointness of the 3 components of the type
projector. First, it is rather immediate to see that types
in Cα are all of the category ‘node only’. Then, it is also
obvious (from the definition of the projection) that types of
category ‘∀ below’ do not need to be kept neither in the cat-
egory ‘one level below’ nor in the category ‘node only’ and
similarly, types of category ‘one level below’ do not need to
be kept in the category ‘node only’.

Definition 5.2 (Type Projector Extraction). The
type projector π=(πno, πolb, πeb) for u is given by:
Let τno=Tno ∪ Cno ∪ Colb ∪ Ceb. Then :

πno = τno − (πeb ∪ πolb),
πolb = Tolb − πeb, and
πeb = Teb

The type projector for the update u3 is given in Section 2.
At this point of the presentation, we would like to high-

light how simple it is to use our framework to execute a
sequence of updates u1, ..., un.

1 Indeed, it suffices to gen-
erate each projector πi for ui and build the global pro-
jector π as the union of the πi (enforcing in the obvious
manner disjointness of the 3 projector components). Given
a document t∈D, the updated document un(...(u1(t)...) is
obtained by first projecting t wrt π then applying succes-
sively u1, ..., un on the projection π(t), and finally merging
the initial document with the partially updated document
un(...(u1(π(t))...).

Main Results. The main result states that the update sce-
nario based on the 3-level type projection is sound and com-
plete. Formally:

1The reader should not confuse the single update u1, ..., un

with the sequence of updates u1, ..., un. Here we focus on
the latter case.
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pending list
evaluation

ΠJ

Figure 7: Soundness of the update type projector.

Theorem 5.3. Let u be an update over D and π be the
inferred type projector for u. Then for each p-tree t∈D, we
have: Merge(t | u(π(t))) ∼ u(t).

Above, value equivalence ∼ (formally defined later on)
captures the idea that the two processes return the same
document up to node identifiers.

The previous result strongly relies on the fact that the
inferred type projector is sound which is formally stated by:

Theorem 5.4 (Soundness of update type projector).
With the same assumption as in Theorem 5.3, we have:
u(π(t)) ∼ ΠJ(u(t)) where J=dom(u(t))−[dom(t)−K(t, π)].

This result corresponds to some kind of commutative di-
agram (see Fig. 7) involving projection and the update u:
roughly, it tells that updating the projection is equivalent to
projecting the update of t. The reader should pay attention
on the way u(t) is projected wrt J . The set J contains the
identifiers of u(t) that have to be kept during the projec-
tion which include, of course, all new identifiers introduced
by the update u and the identifiers used by the projection
π and still in u(t). Said differently, the above result states
that elements in t located “out” of the position set K(t, π),
captured by dom(t)−K(t, π), are not influential for the up-
date: the queries of the update do not use these elements
which are neither updated (touched by an insert, a rename,
a replace or a delete).

The proof of the main Theorem 5.3 is decomposed in two
main steps. First we prove Theorem 5.4 stating that ele-
ments pruned out by the projector set K(t, π) are not influ-
ential for the update u. Then, assuming Theorem 5.4, we
show that Merge builds the document u(t).

Sketch of proof of Theorem 5.4. Recall that the seman-
tics of updates is specified in two steps: (1) producing an
update pending list, (2) applying the elementary updates of
the pending list after some test and reordering. The proof
of Theorem 5.4 (soundness wrt update) essentially relies on
the intermediate semantics given by update pending list.
The intermediate result 5.9 below is the core of the proof of
5.4. In order to state this result, we need some preliminary
definitions. The purpose of the first definition is to check
whether two lists of trees are equal up to identifiers.

Definition 5.5 (Value equivalence). Let σ and σ′

be stores over I and I ′ resp. Let J and J ′ be two id-seqs such
that J⊆I and J ′⊆I ′. The value equivalence (J, σ)∼(J ′, σ′)
is recursively defined by:
− ((), σ)∼((), σ′) always holds,
− (i·J, σ)∼(i′·J ′, σ′) iff (J, σ)∼(J ′, σ′) and
∗ σ(i)=a[K] implies σ(i′)=a[K′] and (K,σ)∼(K′, σ′),
∗ σ(i)=text[st] implies σ(i′)=σ(i)=text[st].
Value equivalence can be extended to a pair of forests f

and f ′. We write f∼f ′ for (roots(f), σf )∼(roots(f
′), σf ′).

The purpose of the second definition is to check whether
two update pending lists are equal, once again up to identi-
fiers.

Definition 5.6 (Update list equivalence). Let σ
and σ′ be stores over I and I ′ resp. Let ω and ω′ be two
atomic update lists. The equivalence (ω,σ) ∼ (ω′, σ′) is re-
cursively defined, in the obvious manner, from the base cases
given below:

− (ins(J, δ, i), σ)∼(ins(J ′, δ, j), σ′) iff i=j and (J, σ)∼(J ′, σ′),

− (del(i), σ)∼(del(j), σ′) iff i=j

− (repl(i, J), σ)∼(repl(j, J ′), σ′) iff i=j and (J, σ)∼(J ′, σ′)

− (ren(i, a), σ)∼(ren(j, b), σ′) iff a=b and i=j

The two following definitions establish what is meant for
a projector set to be sound wrt to a path expression, in the
one hand and wrt to an update, in the other hand. As in
the rest of the presentation, we make the choice here not
to detail what happens for pure queries that is what is a
sound projector set for a pure query, although it is of course
a component of the proof.

Definition 5.7 (Sound projector for a path).
A pair of id-set (KT ,KC) is a sound projector for the path

expression P on the p-tree t iff
− t, ()|=P ⇒ t, J implies ΠK(t), ()|=P ⇒ ΠK(t), J
− where K=KT∪KC, and
− J⊆KT .

Recall that the set of identifiers J in t, ()|=P ⇒ t, J cap-
tures identifiers of answer roots for P . Intuitively, in the
above definition, the id-set KT is a super set of J and thus
captures, at least, the answer roots for P , while the id-set
KC captures, at least, identifiers in idmatch(t, J). Here, the
distinction between KT and KC is necessary to proceed to
the right treatement of targets of path matching P depend-
ing on the category they belong to.

Definition 5.8 (Sound projector for an update).
An id-set K is a sound projector for the update (pending list
of) u on the p-tree t iff t, ()|=u⇒ σ, ω implies ΠK(t), ()|=u⇒
σ′, ω′ and (ω, σ)∼(ω′, σ′).

Of course, soundness wrt to update of a projector set is
expressed based on the intermediate semantics given by up-
date pending list. Indeed, the proof of Theorem 5.4 is based
on showing that for a given document, the projector set
K(t, π) is sound. Formally:

Lemma 5.9. Let D be a dtd and u be an update with its
infered type projector π. For any tree t∈D: K(t, π) is a
sound projector set for the update (pending list of) u on the
tree t∈D.

The proof of this lemma relies on showing that the update
path inference is sound wrt update. Formally, we show that:

Theorem 5.10 (Soundness of Path Inference I).
Let us consider the id-set K=Kno ∪Kolb ∪Keb defined

below. We have that K is a sound projector for the (pending
list of the) update u on the p-tree t.

• Let us assume that (Γ, u) ;no Pno with
Pno={P

1
no, ..., P

kno
no } and consider for i=1..kno,

a sound projector set (KT i
no,KCi

no) for P i
no.

Then, Kno= ∪i=1..kno (KT i
no ∪KCi

no).
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• Let us assume that (Γ, u) ;olb Polb with

Polb={P
1
olb, ..., P

kolb
olb
} and consider for i=1..kolb, a

sound projector set (KT i
olb,KCi

olb) for P i
olb. Then,

Kolb= ∪i=1..kolb
(KT i

olb ∪KCi
olb ∪ child(t,KT i

olb))

• Let us assume that (Γ, u) ;eb Pebwith

Peb={P
1
eb, ..., P

keb
eb
} and consider for i=1..keb,

a sound projector set (KT i
eb,KCi

eb) for KP i
eb.

Then, Keb=∪i=1..keb
(KT i

eb ∪KCi
eb ∪ desc(t,KT i

eb))

Indeed, we start by proving the following intermediate
result which is, in some sense, more precise:

Lemma 5.11 (Soundness of Path Inference II). Let us
consider the id-set K=Kno ∪Kolb ∪Keb defined below. We
have that K is a sound projector for the (pending list of the)
update u on the p-tree t.

• Let us assume that (Γ, u) ;no Pno with
Pno={P

1
no, ..., P

kno
no } and

for i=1..kno, t, ()|=P i
no ⇒ t, J i

no. Then,
Kno= ∪i=1..kno (J i

no ∪ idmatch(t, J i
olb).

• Let us assume that (Γ, u) ;olb Polb with

Polb={P
1
olb, ..., P

kolb
olb
} and

for i=1..kolb, t, ()|=P i
olb ⇒ t, J i

olb. Then,
Kolb=∪i=1..kolb

(J i
olb∪idmatch(t, J i

olb)∪child(t, J
i
olb))

• Let us assume that (Γ, u) ;eb Peb with

Peb={P
1
eb, ..., P

keb
eb
} and

for i = 1..keb, t, ()|=P i
eb ⇒ t, J i

eb. Then,
Keb= ∪i=1..keb

(J i
eb ∪ idmatch(t, J i

eb) ∪ desc(t, J i
eb))

In order to prove Theorem 5.10, the above result (Lemma
5.11) is combined with type inference (see Theorem 5.1).

Sketch of proof of Theorem 5.3. To conclude this section,
we would like to highlight that the proof of Theorem 5.3,
and more precisely the part showing that Merge builds the
updated document u(t) uses the fact that the type projec-
tor π is initially applied over a p-tree. Once again, p-tree
are specified such that node identifiers correspond to node
positions. Intuitively, lemma 5.9 expresses that the update
pending list generated for the projected document ΠK(t,π)(t)
and u targets the same positions for performing changes as
the update pending list generated for the initial document
and u.

From this, proving that Merge builds a valid result u(t)
from t and u(t′) does not present any deep difficulty although
it is technically involved. It suffices to proceed recursively
to a careful case study.

6. IMPLEMENTATION & EXPERIMENTS

Implementation issues. In order to validate the effective-
ness of our method, we have implemented both projection
and merge algorithms in Java. The only technical gap be-
tween the formal method and its implementation concerns
node identifiers or positions. Although made explicit in the
formal scenario, the implementation does not materialize po-
sitions in the input document t: it is not necessary. Positions
are generated on the fly while parsing t, during projection

and during Merge. Indeed, for each node, the implementa-
tion generates its rank among its siblings: full node position
is not necessary. In π(t), this rank is stored by means of
a special new attribute for node only/one level below nodes
and by means of another new attribute for ∀ below node.
The potential overhead due to these special attributes is
mitigated by the size reduction ensured by projection. The
use of two distinct attributes is required for technical reason
related to insertion and replace updates and also to the way
source elements are copied during their execution.

The algorithm Merge is implemented by means of two
threads, parsing resp. t and π(t). These threads are de-
fined in terms of classes obtained by extending existing SAX
parser classes [6]. The two threads interact with each other
according to the Producer-Consumer pattern.

Experiments. Several tests have been performed using our
Java implementation and 7 updates on XMark documents of
growing size. These updates, together with their associated
projectors, are reported in the following, and cover the main
update operations made available by XQuery Update Facil-
ity (insert, rename, replace and delete). All experiments
were performed on a 2.53 Ghz Intel Core 2 Duo machine (2
GB main memory) running Mac OSX 10.6.4 .

The sizes of projected documents are reported in Fig. 8.

Figure 8: Documents size reduction after pruning

The first kind of tests aims at detecting memory limita-
tions of four popular query processors implemented in Java:
Saxon EE 9.2.0.2 [7], QizX Free-Engine-3.2.0 [4], eXist 1.2.5
[1] and MXQuery 0.6.0 [3]. We set to 512 MB the Java vir-
tual machine memory, while the size of XMark documents
considered goes from 50 MB to 2 GB. The sizes of largest
documents these processors could update without projection
are reported in Fig. 9. For this test, we used the less mem-
ory consuming update U4. Three out of four systems can-
not deal with documents whose size is greater than 150 MB,
while QizX is able to process documents whose size is slightly
higher than the Java virtual memory size (this is due to some
efficient techniques adopted by QizX for compacting internal
document representation).

The second kind of tests evaluates our projection based
technique. We focused on two systems Saxon and QizX,
and used the whole set of 7 updates. In both cases, tests

Saxon QizX F-E eXist MXQuery
MB 128 580 148 52

Figure 9: Maximal input sizes
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show that our technique can ensure great improvements. In
all figures, missing value for time means memory failure.

Concerning Saxon, tests results are synthesized in Fig.
10.1 and 10.2, reporting, respectively, total execution time
by using and by not using projection. They clearly show
that our technique succeeds in its primarily purpose: mak-
ing possible to update very large documents with in-memory
systems, in the presence of memory limitations. Note that
the total time in the case of projected documents (Fig. 10.2
and 10.4) includes time for i) projecting the input, ii) stor-
ing the projection, iii) updating the projection and storing
it, and iv) performing the final merge. Nevertheless, for
documents that can be updated even without projection,
execution time with projection remains comparable to that
without projection. This is because the time spent for pro-
jection, merging and so on is recovered by a faster update
process thanks to a significantly smaller size of the projected
document (Fig. 8). Also observe that for U5, Saxon with
projection was not able to update documents for size greater
than 1 GB (due to memory failure). The projector of this
update reveals that this is due to its low selectivity.

QizX shows less severe memory limitations. Total execu-
tion times are reported in Fig. 10.3 and 10. 4. We still have
great improvements in terms of memory: with projection,
we can update up to 2GB for all queries, while without pro-
jection the limit is 520 MB. However, for QizX, projection
also ensures sensible total execution time reduction. This is
in part due to the fact that QizX needs a significant time to
build auxiliary indexes at loading time. This improvement in
terms of execution time also testifies the effectiveness of our
design choices at the projector, path extraction (Sec. 2 and
5), and Merge function level. For the 52MB document, we
have the following reductions of execution times, expressed
in percentages: U1 (45,4%), U2 (60,3%), U3 (74,3%), U4
(72,2%), U5 (45,2%), U6 (63,6%), U7 (24%). We had simi-
lar percentages for documents of other sizes.

A last kind of tests we made concerns the computation of
a unique projection for all the updates, executed in the fol-
lowing order: U1, U2, U3, ..., U7. The document has been
projected once, then all the updates have been evaluated on
the projection, and finally Merge has been executed once to
obtain the final document. With Saxon and QizX this took,
respectively, 82 and 64 seconds on the 128MB document.
For this document, the sum of total times needed to pro-
jecting, updating and merging for each single update was
much higher, respectively 181 and 194 seconds for Saxon
and QizX.

The updates and the corresponding projectors.

U1. for $x in $doc/site/closed_auctions/closed_auction
where not ($x/annotation) return
insert node <annotation>Empty Annotation</annotation>
as last into $x

U2.for $x in $doc/site/people/person/address
where $x/country/text()="United States" return

(replace node $x with
<address>

<street>{$x/street/text()}</street>
<city>"NewYork"</city>
<country>"USA"</country>
<province>{$x/province/text()}</province>
<zipcode>{$x/zipcode/text()}</zipcode>

</address>)

πno πolb πeb

U1 site, closed auctions, anno-
tation

closed auct. ∅

U2 site, people, address person,
country,
street,
province,
zipcode

∅

U3 site, regions, africa, asia,
australia, europe, namerica,
samerica, item

location ∅

U4 site, regions, africa, asia,
australia, europe, namer-
ica, samerica, item, mailbox,
mail

∅ ∅

U5 site, regions, africa, asia,
australia, europe, namer-
ica, samerica, listitem,
bold, mailbox, mail,
item, description, text,
open auctions, open auction
closed auctions,
closed auction, annota-
tion, parlist

∅ ∅

U6 site, people, homepage person,
name

∅

U7 site, people person,
name,
country

address

U3.for $x in $doc/site/regions//item/location
where $x/text()="United States"
return (replace value of node $x with "USA")

U4.delete nodes $doc/site/regions//item/mailbox/mail

U5.for $x in $doc/site//text/bold return
rename node $x as "emph"

U6.for $x in $doc/site/people/person
where not($x/homepage)
return insert node
<homepage>www.{$x/name/text()}Page.com</homepage>
after $x/emailaddress

U7.for $x in $doc/site/people/person,
for $y in $doc/site/people/person

where $x/name = $y/name
and not ($y/address) and $x/country=’Malaysia’
return insert node $x/address

after $y/emailaddress

7. CONLCUSIONS AND FUTURE WORKS
To the best of our knowledge, the technique we have pre-

sented here is the first XQuery update optimization tech-
nique based on the use of projection and schema informa-
tion. One of its main distinctive features is a new notion of
projector allowing to strictly minimize the resulting projec-
tion, and to efficiently propagate updates from the updated
projection to the initial database. Another distinctive fea-
ture is that the proposed framework can be exploited with-
out changing any internal part of the query/update engine.

In order to have a more efficient implementation, we plan
to eliminate: (i) storing the pruned document on the disk,
and (ii) storing and re-reading the partial update pruned
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(1)Updating without projection using Saxon (2)Updating with projection using Saxon

(3)Updating without projection using Qizx (4)Updating with projection using Qizx

Figure 10: Results of the tests performed on Saxon and Qizx

document. This requires some strong interaction with the
update processor, and hence further implementation efforts;
anyway, we realized that this would probably lead to a re-
duction of about 50% of the time indicated now in Table
10.2. This would also imply, that even when projection is
not necessary, it can reduce execution time for Saxon as well
(for QizX we already have sensible improvements in terms
of time).

We are currently working on several directions in order to
further reduce the size of projected documents. One of the
goal is to replace the one level below projection process by a
less greedy one. This could be done by further refining the
update expression analysis, taking into account the kind of
insertion occurring in the update. Relaxing the“no rewriting
of update” assumption, on which our update scenario has
been built, is another interesting direction of investigation.

We are also currently investigating how projection based
update can be applied to temporal XML documents in order
to ensure a compact storage.
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