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ABSTRACT

A question that database administrators (DBAs) routinely need to
answer is how long a batch query workload will take to complete.
This question arises, for example, while planning the execution of
different report-generation workloads to fit within available time
windows. To answer this question accurately, we need to take
into account that the typical workload in a database system con-
sists of mixes of concurrent queries. Interactions among different
queries in these mixes need to be modeled, rather than the conven-
tional approach of considering each query separately. This paper
presents a new approach for estimating workload completion times
that takes the significant impact of query interactions into account.
This approach builds performance models using an experiment-
driven technique, by sampling the space of possible query mixes
and fitting statistical models to the observed performance at these
samples. No prior assumptions are made about the internal work-
ings of the database system or the cause of query interactions, mak-
ing the models robust and portable. We show that a careful choice
of sampling and statistical modeling strategies can result in accu-
rate models, and we present a novel interaction-aware workload
simulator that uses these models to estimate workload completion
times. An experimental evaluation with complex TPC-H queries on
IBM DB2 shows that this approach consistently predicts workload
completion times with less than 20% error.

Categories and Subject Descriptors

D.4.8 [Performance]: Modeling and prediction; H.2.m [Database
Management]: Miscellaneous
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1. INTRODUCTION

Data warehouses and the Business Intelligence (BI) workloads
that they run are an important and growing segment of the database
market [5, 8, 12, 15]. A large fraction of BI workloads are long-
running batch query workloads that are run repeatedly [20]. For
example, enterprises run report-generation workloads on a frequent
basis to analyze customer and sales activity. Such batch query
workloads are critical for operational and strategic planning, so
they have to be run and managed efficiently.

Figure 1 illustrates a question that arises frequently in batch work-
load management. A database system has to process a batch of
queries q1, q2, ..., qn. The multi-programming level (MPL) of
the system is set to M, so the system can run M queries concur-
rently at any point in time. Whenever a query ¢ finishes among
the M queries running currently, a new query ¢’ from the batch
will be scheduled in its place based on a given scheduling policy.
(First-in-First-out, or FIFO, and Shortest-Job-First are two popular
scheduling policies.) Given the query batch, scheduling policy, and
MPL, can we predict (ahead of time) how long the database system
will take to process the entire batch of queries?

Automated tools to answer this question with good accuracy and
efficiency are needed in a number of workload-management tasks:

e Database administrators (DBAs) may need to plan the execu-
tion of different report-generation workloads to fit within avail-
able time windows.

e Accurate prediction can be used to give data analysts continu-
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Figure 2: Completion times for workloads running different
query mixes

ous feedback on the progress of running workloads.

e Such tools form what-if modules [10, 19] to determine which
scheduling policy to use for a workload or the resources needed
to complete a high-priority workload within a given deadline.

e Estimating workload completion time can be used as a what-if
module to partition a query workload across multiple database
instances in a parallel database system.

e As we show shortly, such a tool can enable query reordering for
increased efficiency in systems that use FIFO scheduling.

A major challenge in predicting the completion time of batch
query workloads in database systems 1is that the queries in a work-
load interact with each other when they execute concurrently. When
a mix of concurrently running queries is executed as part of a batch
workload, the queries in the mix will affect the performance of each
other, and this effect may be negative or positive. Not taking such
interactions into account, as in previous work such as [13], can lead
to inaccurate predictions for BI report-generation workloads where
both queries and query interactions can be complex. We demon-
strate the effect of query interactions on workload completion time
using a real example based on the widely-used TPC-H decision-
support benchmark [32].

In this example, we are given a batch of 60 TPC-H queries to
be run on an IBM DB2 database system with MPL 10 running a
TPC-H 10GB database.' The scheduling policy is FIFO, which is
the default (and often only) policy in most commercial database
systems. The FIFO policy schedules queries in the order in which
they are added to the batch. We created three separate workloads,
denoted W1-W3. In all three workloads, the queries being exe-
cuted are exactly the same, but we change the arrival order of the
queries. The different orderings of the queries results in different
concurrent mixes getting scheduled in W1-W3. Figure 2 shows the
actual completion times of W;-W3. Note that the times vary from
3.3 to 5.4 hours; a significant variation in both absolute and relative
terms.

While the same batch of queries was processed in all three cases,
the query mixes that executed on the database system in each case
were different. A query mix consists of a set of queries that exe-
cute concurrently with each other, and we can view the execution
of a workload as a sequence of query mixes. Queries executing con-
currently in a mix interact with each other. For example, a query
q1 can bring data into the buffer pool that, in turn, enables a con-

'The details of our experimental setup are given in Section 8.
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Figure 3: Solution overview

currently running query g2 to reduce its I/O (an example of posi-
tive interaction). Alternatively, g1 and g2 could interfere with each
other on hardware resources such as CPU or memory, or on internal
database system resources such as latches or locks (all examples of
negative interaction).

The results in Figure 2 show the considerable impact query in-
teractions can have on performance. Queries that compete for re-
sources get executed concurrently in Wy, resulting in negative in-
teractions and poor performance. In W5 and W3, the interactions
are less negative, and occasionally even positive, where queries that
help each other get executed concurrently. The only difference be-
tween these three workloads is in the query interactions that arise. It
is therefore clear that ignoring interactions when predicting work-
load completion times can lead to very inaccurate predictions.

Surprisingly, there are no research or industry-strength automated
tools for predicting batch query workload completion times in a
general way. In this paper, we address this limitation and present
an interaction-aware solution for predicting workload completion
times.> Figure 2 also shows the predictions of our solution for
workloads W1-W3, and it can be seen that the predictions are quite
accurate. The defining feature of our solution is that it treats a
batch query workload as a sequence of query mixes, and accounts
for the query interactions that arise in these mixes. Our solution
does not rely on predefined knowledge of the internal workings of
the database system or the cause of query interactions, making it
robust and portable across database systems.

1.1 Anatomy of an Interaction-aware Predic-
tor

We begin with an overview of our interaction-aware predictor of
batch workload completion times. The predictor comprises a sim-
ulator that can simulate the execution of query mixes in a given
database system. The simulator performs this nontrivial task using
interaction-aware performance models that can estimate the run-
ning time of queries executing with other queries in a mix.

Figure 3 shows the overall workflow of the predictor, which con-
sists of a predominantly oft-line learning component and an on-line
prediction component. The workflow is invoked by a database ad-
ministrator (DBA) when she identifies a context where batch work-
loads are executed repeatedly, and predictions of workload comple-
tion times can be useful. As input to the off-line phase, the DBA
provides a set of query types (or templates) such that each query

2A short version of this paper appears in [4].



in the batch workloads of interest can be mapped to one of these
types. A number of tools are available that can help the DBA to
extract templates from query logs (e.g., [22]). We make two key
observations:

1. Sampling and modeling constitute the off-line training phase.
Once models are trained for a given set of 1" query types, these
models can be used on-line by the simulator to estimate the
completion time of different workloads composed of any num-
ber of query instances of these 1" types.

2. Model training is completely independent of the size or comple-
tion time of the workload (e.g., the number of instances of each
query type in the workload), or the number of distinct work-
loads for which predictions are needed.

Sampling and Modeling (Off-line Phase): Query interactions ex-
hibit complex patterns that are hard to model analytically. Instead,
we propose a new approach that designs and conducts experiments
to sample the space of possible interactions. Each experiment runs
a chosen query mix. The database monitoring data collected from
all experiments is used to train a statistical model that captures the
significant query interactions that can arise in the workloads of in-
terest. This approach requires no prior assumptions about the in-
ternal workings of the database system or the nature or cause of
query interactions, making it portable across systems. We address
a number of challenges to make this approach practical: (i) choos-
ing an appropriate model, (ii) developing an algorithm that selects
a minimal and representative set of experiments, and (iii) develop-
ing an incremental sampling technique to interleave sampling and
modeling with on-line simulation of workload execution.

Simulating Workload Execution (On-line Phase): The simula-
tor uses a recurrence relation in conjunction with interaction-aware
performance models to simulate the execution of the workload as a
sequence of query mixes. This approach overcomes a major disad-
vantage of conventional analytical modeling and simulation, where
domain experts have to spend many hours developing the simula-
tor and the analytical models that it uses, only for it to become
inaccurate when database internals are modified. We believe that
simulation is a very powerful approach to database administration
and tuning. However, very few works in this area (e.g., [24]) have
harnessed the power and flexibility of simulation. Another note-
worthy feature of our simulator is that it incorporates the simula-
tion of the scheduling policy as a pluggable component. While
we used this feature to support two common scheduling policies,
FIFO and Shortest-Job-First, a variety of sophisticated scheduling
policies can be supported if needed.

Roadmap: This paper is organized as follows. Section 2 presents
an overview of related work. Section 3 demonstrates the signif-
icant impact that query interactions can have, and why modeling
interactions is nontrivial. The simulator is described in Section 4.
Our algorithms for sampling and modeling are presented in Sec-
tions 5 and 6, respectively. Section 7 discusses some design choices
and possible extensions. Section 8 presents an experimental study
using TPC-H queries on DB2, demonstrating the accuracy of our
predictions for different workloads, scheduling policies, and data
distributions. We present our conclusions in Section 9.

2. RELATED WORK

We are not aware of any work focusing on predicting the com-
pletion time of BI workloads, particularly in an interaction-aware
manner. Overall, there is very little work that deals in a general way
with the performance of query mixes and the interactions among
concurrently executing queries within these mixes. In our prior
work [2, 3], we showed that the presence of query interactions
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| Symbol

Description

M Multiprogramming level
T Number of query types
Q; Query type j
q; An instance of query type j
m; = A query mix, m;, with N;; instances of
(Ni1, Nia, ..., Ni7) | each query type Q;
tj Average execution time of a (); query
instance when running alone
Asj Average completion time of a (); query
instance when running in mix m;
Aij Estimated completion time of a (); query
instance when running in mix m;
li Length of phase ¢ in workload simulator
Weij Fraction of g;’s work completed in its
phases 1 to ¢ in workload simulator

Table 1: Notation used in the paper

can cause highly suboptimal database performance if interaction-
oblivious query schedulers are used. We developed two new query
scheduling algorithms that significantly improve performance by
choosing the appropriate query mixes to schedule based on perfor-
mance models that capture the effect of query interactions. In [31],
interaction-aware techniques are used to avoid overload in three-
tier transactional systems. In these works, it was sufficient to dis-
tinguish between good and bad query mixes to be able to obtain
good schedules or avoid overload. In this paper, we focus on pre-
dicting the completion time of a batch query workload, which is
a far more challenging problem. For accurate prediction of work-
load completion time, the sequence of query mixes that will execute
when the batch query workload is run, and the completion time of
these mixes, need to be predicted with high accuracy. This required
developing new sampling and modeling techniques to address the
problem of predicting completion times with sufficiently high ac-
curacy. We also develop a simulator to track the progress of the
workload, and the novel sampling and modeling techniques that
we propose help the simulator achieve good accuracy.

Other prior work on concurrently running query mixes gener-
ally falls into two categories: work on multi-query optimization
(e.g., [25]), and work on sharing scans in the buffer pool (e.g., [23]).
Both of these categories try to induce positive interactions between
queries based on detailed knowledge of database system internals,
but are fairly restricted in the types of interactions considered. In
contrast, our work focuses on capturing different kinds of both pos-
itive and negative query interactions, regardless of their underlying
cause; and without explicit knowledge of database system internals.

Some recent papers have employed the concept of transaction
mixes in different application areas. These papers define a transac-
tion mix as all the transactions of different types that run during a
time interval or monitoring window without considering which of
these transactions ran concurrently. This is fundamentally different
from our notion of a concurrent query mix. Like our work, these
papers use statistical techniques to learn models to estimate perfor-
mance metrics for transaction mixes. Transaction mix models have
been used for performance prediction, capacity planning, and de-
tecting anomalies in performance [18, 30, 35, 34]. However, unlike
our work, none of these papers consider interactions caused by the
concurrent execution of transactions.

Machine learning and statistical performance modeling is gain-
ing acceptance as a way to build robust performance models for
complex problems in database systems. It was used in [13] to



Query Type QL | Q7

Q9 [ Q13 | QI8 | Q21

Run Time ¢; (sec) 10.07 | 5.76

9.66 | 6.12 | 712 | 73

Table 2: Average run time, ¢;, of different TPC-H query types on a 1GB database

Q1 Q7 Q9 Q13 Q18 Q21
mi || Il | 1439 | 8 | 1446 | 3 |2012| 2 | 978 | 2 | 1498 | 4 | 1275
ma || 2 [ 3617 8 |[2086| 1 |4760| 18 | 1212 0 | 00 1 | 2312

Table 3: A;; (in seconds) for different query types in query mixes on a 1GB database

Query Type Q1 Q7

Q9 Q13 Q18 Q21

Run Time ¢; (sec) || 294.61 [ 102.06 | 578.61 | 101.27 | 554.56 | 570.37

Table 4: Average run time, ¢;, of different TPC-H query types on a 10GB database

o1 Q7 Q9 Q13 Q18 021
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij
ms 1 1897.4 2 72.7 5 2919.3 0 0.0 2 1904.1 0 0.0
ma 4 538.0 0 0.0 0 0.0 0 0.0 1 539.3 0 0.0
ms 0 0.0 4 264.5 0 0.0 0 0.0 1 3413.7 0 0.0

Table 5: A;; (in seconds) for different query types in query mixes on a 10GB database

predict performance metrics for database queries. The proposed
techniques are able to make performance predictions for individ-
ual query types with less than 20% error for 85% of the test cases.
The authors point out that statistical learning techniques can be har-
nessed to great advantage in the area of database performance mod-
eling. However, their work focuses exclusively on single query
types and does not consider interactions and query mixes, which
are our focus in this paper. By using interaction-aware techniques,
we are able to achieve prediction accuracy similar to [13] for batch
BI workloads with complex interacting queries. Machine learning
techniques are used in [16] to predict the range of execution time
for a query in a database system. Similarly, machine learning is em-
ployed for database provisioning in [9, 14]. Experiment-driven
performance modeling has also been used for tuning database con-
figuration parameters [6, 11, 29]. In [11], the authors propose a
tool that helps in finding better configuration parameter settings for
a database system by planning experiments corresponding to dif-
ferent parameter values. In [29], the authors propose techniques
to better tune the CPU and memory allocations for database work-
loads running inside virtual machines.

3. QUERY MIXES AND INTERACTIONS

We begin with a brief illustration of the complex patterns of
query interactions and their impact on database performance. We
use the TPC-H decision-support benchmark with two data sizes,
1GB and 10GB. The TPC-H benchmark defines 22 guery types.
Each query type is a template with parameter markers that are in-
stantiated with values to generate query instances in the batch work-
load. The workloads are then run on a DB2 database system. Q1-
Qr denote the T" query types specified by the DBA. A batch work-
load W consists of zero or more instances of each of these types. A
query mix m; can be represented as a vector (N;1, Nio, ..., NiT),
where N;; is the number of instances of query type (); in m;, and
Zle N;j=M. M is the MPL of the database system. Table 1
presents a summary of the notation used in this paper.

To study the impact of query interactions, we need to measure
the completion time of different queries in a mix. We also need
this information to train the performance models that we use to
predict workload completion times. We use the following pro-
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cedure to obtain this information for a given query mix m; =
(Ni1, Ni2, ..., Niy7). All queries in the mix are started at the same
time, ts. The different queries in the mix have different run times
and they do not finish at the same time. So in order to make sure
that we are running the same query mix m; throughout the mea-
surement interval, as soon as a query of type (Q; finishes, we start
another instance of ();. The longest running query instance of the
initial set of query instances started at ¢ finishes at some time ¢y.
We consider m; to be finished at ¢ and we do not start any further
instance after ¢;. Thus the longest running query type in the mix
will have a completion time of t; — ¢, while other query types in
the mix will have a completion time in the range [0— (t§ —ts)]. We
always sample query mixes on a database with a warm buffer pool.
To warm up the buffer pool, we run some random query mixes be-
fore collecting any samples.

We use t; to denote the average completion time of queries of

type @; when run alone in the system at M = 1. We use A;j
to denote the average completion time of queries of type J; when
run in mix m;. Interactions among queries that run concurrently
in mixes can be negative or positive. The effect of any significant
interaction involving Q; in m;, regardless of the cause of the inter-
action, will be observed in A;;. We say that a query of type @); has
negative interactions in mix m; if A;; > t;, i.e., an instance of @Q;
is expected to run slower in the mix than when run alone. On the
other hand, A;; < t; indicates positive interactions.
Performance Impact: Table 2 shows the run time of the 6 longest
running TPC-H queries on a 1GB database when they run alone
in the system (i.e., the t; values). Table 3 shows two mixes, m
and meg, consisting of these 6 query types. For each mix, the table
shows N;; and A;; values. The large differences in A;; values for
the same query type illustrate the impact of query interactions. The
following observations can be made about m; and mo:

e In both m; and ma, all A;; values are much higher than the
corresponding t; values shown in Table 2. Thus, all queries are
impacted negatively in these mixes.

e Both mixes have the same number (N;; = 8) of instances of
Q)7 and the same total number of queries (M = 30). However,
Ay for Q7 in my is almost twice the A;; for Q7 in m1. Thus,
instances of ()7 are expected to run twice as slow in m2 as they



run in my.
Next, we turn our attention to the same 6 query types on a 10GB
database. Table 4 shows the run time of these query types when
they are alone in the system. Table 5 shows three query mixes for
this setting. A number of observations can be made about these
tables, illustrating the high impact and complex patterns of query
interactions:

e The A;; value of Q7 in mix mg is 72.7 seconds, which is lower
than Q7’s t; of 102.06 seconds. Thus, m3 generates positive
interactions for (Q7: instances of (7 run faster on average in
mix m3 than when they run alone in the system.

e Mix my4 generates mild positive interactions for (Q1s. Other
interactions are strongly negative.

e Contrast (Q13’s performance in m4 and ms. Both mixes have
the same total number of queries (M = 5), and one instance
each of QQ18. Q15 benefits from positive interactions in m4, but
suffers a 6x slowdown in ms. Thus, QQ1s interacts positively
with @1, but negatively with QQ7; which we may not expect
from the performance of 1 and ()7 in isolation (Table 4).

All the mixes used in these examples were run repeatedly to ver-
ify consistency and statistical significance. We observed the same
performance patterns across runs, and the standard deviation of the
completion times was always less than 4% of the mean for all query
types in all the mixes reported here.

From these examples we see that: (a) Interactions in query mixes
impact query run times significantly, sometimes by orders of mag-
nitude. (b) Interactions are fairly complex in nature. Rules of
thumb or simple intuitions cannot always explain query behavior
in mixes. (c¢) The performance of a query () cannot be predicted
unless we are able to model the effect of other queries running con-
currently with Q. Thus, it is important to develop mix-based rea-
soning about query workloads to better manage the performance
of database systems. Further demonstration of the impact of query
interactions can be found in [1].

4. SIMULATING WORKLOAD EXECU-
TION

We now describe the simulation of workload execution. Apart
from the inputs in Figure 1—query batch, MPL, and scheduling
policy—the simulator gets two inputs from the workflow in Fig-
ure 3: (i) the list of T" query types, and (ii) interaction-aware per-
formance models of these query types generated by experiment-
driven sampling and modeling. For extensibility, the scheduling
policy is itself a simulator with a standard API. The main API calls
include returning the initial query mix to be scheduled, and return-
ing the next query to be scheduled when a running query finishes.
In FIFO, for example, the initial query mix (Nj1,...,/Ny7) consists
of the first M queries added to the batch, with later queries sched-
uled in FIFO order.

The execution of the workload is simulated as the execution of
a sequence of query mixes. The execution of each mix is called a
workload phase. A phase change happens when a running query
finishes and another one starts. The goal of the simulator is to sim-
ulate the execution of workload phases and the transitions among
them, and to estimate how long each phase will take. The predicted
workload completion time is the total time taken by all phases.

The simulator tracks the fraction of total work completed by each
query in each workload phase. Consider a query instance g; of
type ;. This query instance will start its execution at the start of
some workload phase, which we call query phase 1 for this query
instance. The query will execute through different workload phases
until it completes all the work that it needs to perform.

Let wc;; be the fraction of g;’s work completed in its query
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phases 1 to 7. When g; starts, its wc;;=0, and g; is done when

its we;j=1. The following recurrence relation tracks wec;; through

all the query phases:
WCoj; = 0

li
we(i—1); + —=—

1
1 (1)

WCeij
we(;—1y; is the fraction of g;’s total work completed up to query

phase ¢ — 1. The term Ali is the fraction of g;’s total work that

gets completed during que;y phase ¢. Here, [; is the running time
of phase ¢ and AZ’]‘ is the estimated run time of g; when it runs in
the query mix of phase ¢. That is, Aij is the estimated time for
a query instance of type (); to execute, from start to finish, if it
executes solely in this mix . Since phase ¢ runs only for time [;, g;

will complete only a fraction Ali of its work in this phase.

]

Estimating A;; and ;: Let m;=(Ni1, ..., Ny7) be the mix that
runs in g;’s query phase ¢. The simulator uses interaction-aware
performance models to estimate AZ ; and [; in Equation 1. We show
in Section 6 that these models can estimate the run time Az‘j of
any instance of a query type @; in m;. Recall that wec;_y1); is
the fraction of g;’s total work completed up to its query phase -
1. Since 1-wc(;_1); represents the fraction of work remaining for
gi» (l-we—yy ;)Ai; represents the remaining time to completion
of g; in m;. Thus, [;, the length of phase ¢, is the minimum (1-
wei—1) ]‘)Aij over all query instances in this phase.

Phase ¢ ends when the query instance with minimum remaining
time to completion in it finishes, at which point the simulator tran-
sitions to phase i+1. When a phase ends, the simulator updates
the state of the simulation, namely, the wc;; values of all unfin-
ished queries. The simulator then transitions to the next phase by
adding the next query (if any) given by the scheduling policy sim-
ulator. This process continues until all queries in the workload are
completed. The estimated completion time of the workload is the
sum of the lengths (I;) of all distinct phases encountered during the
simulation.

The simulator has a special case for handling the last phase of
the workload. At the start of this phase, there are M running
queries, but as these queries finish, they will not be replaced by
other queries. The simulator makes a simplifying assumption and
estimates the length of this phase as the maximum (1-wcg;—1); )/11 j
over all query instances in this phase, ignoring the change in query
mix as queries finish. This simplifying assumption enables the sim-
ulator to use the same performance model (with the same MPL) for
all workload phases without affecting prediction accuracy.

5. SAMPLING

Interaction-aware performance models form key building blocks
of our overall solution. For each query type (Q;, the workload sim-
ulator needs an interaction-aware performance model that can take
as input the query mix mp = (Np1, Np2, ..., Npr) running in a
phase, and return an estimate Am- of the completion time of an
instance of @); in m.

We map the problem of generating an interaction-aware perfor-
mance model for @); as the problem of training a regression model.
The model is trained from a set of n samples, where sample s;, 1 <
1 < n, has the form s; (mi, AL]> = <,Ni17 ..., Nir, AL]> Sam-
ple s; denotes an observation that an instance of type ();, when
run in mix m;, is completed in time A;;. An appropriate type of
regression model model; can be fitted to the n samples s1, ..., s,
to predict the completion time Apj for an instance of (); when run
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Figure 4: Space-filling sampling from the space of possible
mixes via Latin Hypercube Sampling (LHS)

in any mix m,. The model will have the form: A,; = model;(m,)
=model;j(Np1, ..., Npr). Two key questions arise:
o Sampling question: How to efficiently generate a representative
set of samples from which to train the model?
e Modeling question: What type of regression model gives the
best accuracy in estimating query completion times in mixes?

The rest of this section considers the sampling question. The mod-
eling question is considered in Section 6.

5.1 Latin Hypercube Sampling (LHS)

One straightforward sampling technique is to sample randomly
from the space of possible mixes. Each selected sample would be a
query mix that is run to observe its performance. However, random
sampling is inefficient from the modeling perspective. The number
of observed mixes required to learn a good model through random
sampling can be very large, especially when the number of query
types (i.e., the dimensionality of the mix space) is large; the rea-
son being that mixes from the same local space may be repeated
unnecessarily. The family of space-filling designs contains more
efficient sampling techniques. Latin Hypercube Sampling (LHS)
comes from this family and performs well in practice [17]. LHS
selects n mixes from a space of 7" query types as follows:

S1: The range of the possible number of instances of each query
type is broken into n equal subranges.

So: n mixes are selected from the space such that each subrange
of each query type has one and only one selected mix in it, and
the minimum distance between selected mixes is maximized.

Intuitively, given the same number of mixes that can be selected,
LHS gives better coverage of the mix space than random sampling.

Figure 4 shows an example where we have 7' = 2 query types,
and we select n = 5 mixes using LHS. The two dimensions V;1
and N;2 denote the number of instances of each query type in a
mix. LHS divides each of these dimensions into 5 equal subranges
and selects the mixes to sample such that each subrange in each
dimension has one sample. The “x” symbols in Figure 4 denote the
set of mixes that LHS selects.

LHS samples are very efficient to generate because of their sim-
ilarity to permutation matrices from matrix theory. Generating n
LHS samples involves generating 7" independent permutations of
1,...,n, and joining the permutations on a position-by-position
basis. The 7" = 2 permutations {1, 2, 3,4,5} and {4, 5,2, 1,3}
were combined to generate the n = 5 LHS samples in Figure 4.

Although LHS is efficient and gives good coverage of the mix
space, it cannot be applied directly in our setting for two reasons:
1. Database systems that process batch BI workloads predomi-

nantly run at a fixed MPL M: most actual mixes that run will
have M query instances, and no mix will have > M instances.
Thus, it is more productive to sample query mixes that have
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Training | Test | Q1 Q7 Qo | Q3 | Qs | Q21
TR1 TT1 | 21% | 28% 26% | 21% | 20% | 41%
TR1 TT> | 62% | 230% | 101% | 79% | 54% | 122%
TR> TT: | 32% | 50% 45% | 36% | 31% | 69%
TR> TT> | 15% | 25% 19% 16% | 15% | 25%

Table 6: Prediction errors for different test sets of mixes

close to, but no more than, M query instances.

2. As Section 5.2 shows, to build accurate models for prediction,
the training samples should cover all possible interaction levels
(ILs) of mixes. The interaction level of a mix m is defined as
the number of distinct query types in m. More query types in a
mix lead to more distinct kinds of query interactions.

MPL and IL can be seen as two important meta-properties of a
mix. A fundamental insight from our work is that these two meta-
properties play a critical role in sampling and modeling, so they
have to be treated specially. However, conventional LHS cannot
handle our requirements regarding MPL and IL. Section 5.3 de-
scribes our new sampling algorithm that addresses this problem.

5.2 Making Sampling IL.-Aware is Important

We present an empirical result to show that covering all ILs of
mixes is important for accurate prediction on real workloads. The
hypothesis tested is: Given a fest set of mixes for performance pre-
diction, training on the subspace of mixes with the same ILs as
the test mixes can produce a more accurate prediction model than
training on the subspace of mixes with ILs different from those in
the test mixes.

We took two sets of TPC-H query mixes: (i) Set I contains mixes
with IL € [1, 2, 3], and (ii) Set I contains mixes with IL € [4, 5, 6].
We randomly picked 500 mixes from Set I as training mixes 7R,
and picked another disjoint 300 mixes from Set I as test mixes 777 .
Similarly, from Set II we created training mix set 7R with the same
size as TR, and test mix set 77> with the same size as 77T1.

Table 6 shows the prediction errors—measured using the mean
relative error (MRE) metric—for the four different combinations of
training and test sets. MRE is defined as W x100%
averaged over all the test mixes, where actual and predicted are the
actual and predicted values of the run time of a given query in a test
mix. The main observations from Table 6 are:

e When training mixes and test mixes come from similar sets of
interaction levels, prediction is more accurate (i.e., lower error
in Table 6).

e In both cases where training mixes and test mixes are from dif-
ferent ILs (the second and third rows in Table 6), the prediction
errors are relatively high. However, using TR> to predict for
TT, is much better than using TR, to predict for 7T>. Recall
that 7Rz and TT> are both from IL € [4,5, 6] which partially
capture query interactions in mixes from IL € [1,2, 3]. So the
model learned from 7R> covers more query interactions than
the model learned from TR;.

5.3 IL-Aware LHS Algorithm

The above empirical exercise shows that we need to sample mixes
that cover different ILs in order to make accurate predictions for
real workloads. Meanwhile, there is a hard constraint that the num-
ber of concurrent query instances in a sampled mix should not ex-
ceed the fixed MPL M. The original LHS technique cannot handle
either of these requirements. Therefore, we adapt LHS in order to
make it /L-aware and also to satisfy the condition on MPL. Our
modified, IL-aware LHS algorithm works as follows:



Goal: Sample n mixes for the given 1" query types and MPL=M:
e For a given IL=k, generate a permutation matrix P, of size nx1

using standard LHS. Each row in P, represents a mix.

For each mix (row) in Py, randomly set the values of T-k of its

columns to 0 to make its IL equal to k. Then, uniformly scale

the nonzero values to make them integers such that their sum is

as close to, but does not exceed, the given MPL M.

Since our budget is n samples and we want to cover each IL, the

number of mixes that are allowed for IL=k is ceil(m)

where num_ILs = min(T, M). We randomly pick this many
mixes from the n rows of P.
Section 8 shows empirically that our IL-aware LHS sampling gen-
erates training samples that produce good prediction models.

5.4 Incremental IL-Aware Sampling

As we demonstrate empirically in Section 8, very good predic-
tions can be obtained by sampling around 107" mixes. At the same
time, we also observe that 57" training samples or less are often
good enough. Basic LHS as well as its IL-aware version are both
designed to collect a batch of samples of a predetermined size. This
batch nature of sampling creates a difficult decision problem for the
DBA who has to decide how much time and resources to dedicate
to sample generation before any predictions can be made. To sim-
plify this decision-making process, we developed an incremental
version of the IL-aware sampling algorithm that works as follows:

1. First, select the 1" samples with IL=1 which correspond to the
“corner points” of the mix space of the form (M, 0,0, ..., 0),
(0, M, ...,0),...,(0,0, ..., M) (M=MPL). These samples cover
the case where there are no significant interactions across dif-
ferent query types. Also, if the model has to be trained from a
small number of samples, this step guarantees that every query
type has at least one sample where its instances are nonzero.

. Use the IL-aware LHS algorithm from Section 5.3 to plan a set
S of n=9T training samples to collect from the feasible ILs> 1.

. Generate a sequential list of samples by sampling randomly
without replacement from S. Since the 107" samples from Steps
1 and 2 are distributed uniformly across all ILs, this step main-
tains a roughly uniform distribution across ILs as more samples
are collected (a desired property from Section 5.2).

. The DBA can collect samples incrementally based on the se-
quential list from Step 3. She can suspend the sampling process
any time, and resume it later if the need for more accuracy is
felt, e.g., based on comparing predicted workload completion
times with the actual run times seen on the production system.

6. MODELING

We now turn to the question of which type of regression model to
train from the collected samples. The machine-learning literature
provides many candidate model types, some of which have been
used in previous work on predicting single query completion times
(e.g., [13]). Our selection of the model type is driven by two key
differences between our problem scenario and previous ones. First,
we cannot rely on the features of individual queries alone since we
have to capture query interactions. Second, large numbers of train-
ing samples (a few 1000s) were considered available in previous
problem settings. In contrast, we expect few 10s-100s of training
samples per model because of the higher cost of sample generation,
and we seek techniques that work well in these regimes. As a rule
of thumb in machine learning, more complex model types can be
more accurate if (and only if) trained well, but need more samples
for accurate training. We have to walk this line carefully.

We tried conventional models like linear and quadratic regres-
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sion, and found them suboptimal for predicting query completion
times in mixes. Such models attempt to fit a predefined “struc-
ture” to the distribution of query completion times in the training
samples, and then make predictions based on this fitted structure.
This approach is hit or miss: the predictions of the model are ac-
curate only if the true structure of the data distribution matches the
assumed structure of the model.

The above observations motivated us to consider a different ap-
proach called instance-based learning [33]. The basic idea here is
to infer the performance of a mix m, of interest from the perfor-
mance of mixes in the training set that are similar to m,. (Sim-
ilarity metrics can be derived, e.g., from the popular Lo norm.)
Intuitively, instance-based learning focuses on the “local space”
around m,, at prediction time rather than using a structure learned
previously. A simple type of instance-based learning is a /-nearest
neighbor (1-NN) model. When asked to estimate A,;, the average
running time of query type ; in mix my, a 1-NN model returns
the average running time of (); in the mix that is most similar to
m,, among the training samples.

A k-nearest neighbor (k-NN) model is a more robust alternative
to 1-NN models. A k-NN model finds the top k mixes most simi-
lar to m,, among the training samples—denoted my, . . . , my, with-

out loss of generality—and returns the estimate Apj = %
While k-NN is great in theory, it is hard to tune k& for good accu-
racy because the density of samples can differ across regions of the
full space. The parameter k degrades to a coarse and unpredictable
tuning knob as k-NN focuses on the local space in dense regions
and becomes more global in less dense regions.

An elegant alternative is to use all n training samples available,
(mi, Aij), 1 < i < n,toestimate A,; as a weighted combination
of A;; values from the individual training mixes. The weight of A;;
will be a measure of the correlation (similarity) between mixes m;
and m,. We adopt this approach, and we leverage Gaussian pro-
cesses from machine learning [33] to develop a new model called
the Gaussian Process model for query Mixes (GPM).

To estimate A,; as a weighted combination of the A;; values
from the training samples, GPM needs a weight for each A;; that
reflects the correlation (similarity) between mixes m; and m,. There
can be different choices for the correlation function, and we use the
following function for GPM:

@)

This function captures the intuitive phenomenon that the correla-
tion between mixes m; and m, decreases as m; and m, become
more dissimilar in terms of the number of instances of each query
type. The parameters 6, > 0 and J, > 0 are constants specific
to query type Q. These constants capture the fact that each query
type QQ may have its own rate at which the performance impact
changes as the number of instances of (), vary. The values of these
constants are not predetermined, and are learned from the training
samples using maximum likelihood estimation. Next, we describe
GPM and how it uses the correlation functions.

GPM uses a simple trick to combine the best of conventional
regression models and Gaussian processes. GPM models the resid-
uals Ryj=Ap;— f*(m,) that denote the difference between true
and estimated values after fitting a regression model (represented

by f'(my)B). Here, f(mp)z[fl(mp)’f2(mp)’- o fn(mp)] s a
vector of basis functions for regression, and f is the correspond-
ing hx1 vector of regression coefficients. The ¢ notation repre-
sents the matrix transpose operation. An example is: ft(mp) 5

= 0.1 4+ 3Np1 — 2Np1 Np2 + N7, In this case, F(mp)=[1,Np,

corr(mi,mp) = Hleexp(—t% |Niz — Npg |5’”)



Ny, NpiNp2, N2, N3t and §=[0.1,3,0,-2,0,1]°. Given
the actual training samples (m;, A;;) for a query type @Q;, we
can train the ft(mp) /3 model using popular techniques like least-
squares estimation [33], and then generate the corresponding sam-
ples (m;, R;;). GPM models the residuals as Gaussian-distributed
random variables, as described in the following definition.

DEFINITION 1. Gaussian Process model for query Mixes
(GPM): For any set of L query mixes m;, 1 < ¢ < L, and
corresponding residuals R;; for a query type Qj, the vector of
random variables [R1;, Roj, ..., Rr;] has a multivariate Gaus-
sian (MVG) distribution. (Note that any MVG can be described
fully by its mean vector and matrix of pairwise covariances.)
The mean vector of [R1j,...,Rr;]’s MVG consists of all zeros.
The covariance matrix of the MVG is given by Cov(Ra;, Ryj)
Pcorr(me,my), ,y € [1,...,L]. «is a constant and
corr(mg, my) is as per Equation 2. O

GPM has the following property that we use for prediction [27].

PROPERTY 1. Prediction using GPM: We are given training
samples (mij;, Aij), 1 < i < n, for a query type Q;. For any mix
mp, GPM generates an estimate of A, that is Gaussian distributed
with mean Ap; and variance vgj. When a prediction (Aij) of Apj
is needed, we return a sample from this distribution. Ap; and vf,j
are defined as follows:

Apj = f1(mp)f + ECT(4; — Fp) 3
2 2 St ~—1 (1 — tha2
'Upjfa [I—CC c+ W] (4)

where € [corr(myp,m1),...,corr(my,my)],, C is an

nXn matrix with element i,j equal to corr(ms,m;), A;
[A1j,..., Anj]t, and F is an nxh matrix with the ith row com-
posed of f_%(mi), Tis an nx1 vector of all 1s. O

Note that ft(m,,)ﬁ in Equation 3 is simply a plug in of mix m,
into the conventional regression model used in the GPM model.
The second term in Equation 3 is an adjustment of the prediction
based on the errors (residuals) seen at the training samples, i.e.,
Aij — fH(mi)B, 1 < i < n. Intuitively, the prediction at mix m,,
can be seen as a combination of the estimate from the conventional
regression model with a correction term computed as a weighted
sum of the residuals for the training samples, where the weights
are determined by the correlation function from Equation 2. The
weights ensure that the prediction at m,, is affected more by the
residuals of nearby mixes than by the residuals of far-away mixes.

7. DISCUSSION AND EXTENSIONS

We now discuss some design decisions as well as avenues for
future extensions. Given the 7" query types that can appear in
workloads, we use an IL-aware algorithm to generate sample query
mixes, run the mixes to generate training data, and fit a GPM to
this data. It is important to note that once this training is done (a
one-time off-line process), the model and simulator can be used
to estimate the completion time of any workload composed of any
number of queries of these 7" types. New query types can be added
efficiently to an existing set because we can generate new samples
incrementally to update the GPM models.

It is also important to note that our technique does not place an
unduly heavy burden on the DBA. The role of the DBA is explained
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in the workflow presented in Figure 3. The DBA needs to identify
the scenarios where repeated prediction is needed for workloads
consisting of a set of query types. To obtain these predictions, the
DBA needs to identify the different query types. We describe else-
where [3] automatic techniques for identifying query types given
a query log, which can itself be collected using automated tools.
Once the query types have been identified, our workflow generates
training mixes, runs experiments for collecting performance data
for these mixes, and trains performance models on the collected
data. All these steps are off-line steps that are performed automat-
ically and only once. The role of the DBA is mainly to schedule
the sampling experiments in times where they would not interfere
with the normal operation of the system as outlined in Section 5.4.
Once the models are trained, the on-line simulator can be invoked
by the DBA to predict the completion times of workloads, and this
invokation is a very simple process.

Another role of the DBA is to decide when to retrain the perfor-
mance model. New query types can be added to the model incre-
mentally by collecting sample mixes that contain these query types.
However, the question is: When is a complete retraining of the
model required? Strictly speaking, any significant change in hard-
ware, software configuration, or database characteristics should re-
quire model retraining. But in reality, models can remain accurate
even in the face of such changes. One simple approach to decide
when to retrain is for the DBA to monitor the accuracy of the com-
pletion time predictions, and decide to retrain the model only if
this accuracy becomes unacceptable. More elaborate techniques
are possible, but we leave them for future work. For example, we
can use techniques such as those described in [21] to evolve models
collected for one system and database configuration so that these
models are accurate for another system and database configuration.

We have chosen to capture and simulate interactions in a database
workload at the granularity of query types. A range of other op-
tions exist. A simpler scheme than ours is to categorize queries
into CPU or I/O bound, so that two or more concurrent CPU (I/0)
bound queries will interact negatively. A more complex scheme
than ours involves capturing interactions at the level of different
execution phases of physical operators in database query execution
plans (e.g., hash join and sort). Note that our overall methodology
of statistical modeling based on samples from planned experiments
applies regardless of the modeling granularity. Our empirical re-
sults indicate that query-level modeling provides good accuracy. A
possible avenue for future work is to use machine-learning tech-
niques like crossvalidation [33] on the samples to determine the
best modeling granularity automatically.

The sampling techniques from Section 5 are proactive in the
sense that they deliberately execute a set of selected mixes to gener-
ate a representative sample set. An alternative approach, which we
call passive sampling, relies on monitoring the execution of query
mixes as part of the regular workload on the database system. Each
time an instance of (); runs from start to finish in a mix m;, an
(ms, Ay;) sample is obtained. It is possible to supplement proac-
tive samples with passive samples that are available almost for free.
Passive sampling by itself cannot guarantee a representative set of
samples because passive sampling is at the mercy of the workloads
seen and scheduling decisions made.

A number of solutions have been proposed recently to support
proactive sampling techniques in a production environment with-
out affecting the user-facing workload. Oracle 11g provides such a
service called Test-Execute in the database system [7]. This service
is used to test new plans for poorly-tuned queries. Systems to col-
lect samples on standby databases and on virtualized resources in
data centers are proposed in [11] and [36], respectively.



8. EXPERIMENTS

Our empirical evaluation was done using the TPC-H benchmark on
a DB2 version 8.1 database server. The server has dual 3.4GHz
Intel Xeon CPUs with 4GB RAM, and runs Windows Server 2003.
TPC-H scale factors 1 and 10, denoted by 1GB and 10GB, respec-
tively, were used. The buffer pool size of the database was set to
400MB for the 1GB database, and 2.4GB for the 10GB database.
Configuration parameters and indexes were tuned for the TPC-H
workloads using the DB2 Configuration Advisor and the DB2 De-
sign Advisor.
Query Types: We consider all the 22 TPC-H query types except
for @Q15. We omit Q15 which creates and drops a view for ease of
implementation (and not because of a limitation of our prediction
technique). In addition to query batches that include all the 7'=21
query types, we also considered batches containing instances of
only the top 12 and the top 6 longest-running query types (when
queries run alone in the system as shown in Tables 2 and 4). Thus,
our batch workloads have 7' =6, T = 12, or T' = 21.
Scheduling policies: We consider the FIFO and Shortest-Job-First
(SJF) scheduling policies. Since FIFO depends on the order in
which queries are added to the batch, we systematically vary this
order to create a number of different workloads. Each workload is
defined by an initialization parameter IQ and an arrival order skew
B. To construct a query batch, we first go through the given list of
query types and add /Q instances of each type. Going through the
list again in a round-robin fashion, we keep adding B instances of
each query type to the batch until all the queries are added. Intu-
itively, as B increases, more queries of the same type are scheduled
together by FIFO. For SJF scheduling, the average run time of in-
stances of a query type running alone in the system is computed as
shown in Tables 2 and 4, and then used as the estimated run time of
all instances of that query type.
Workloads: For the 1GB database, we use /() = 10 and B = 5,
25, and 50. We use 60 instances of each query type. Thus, batches
with T" = 21 query types consist of 1260 query instances, batches
with T' 12 query types consist of 720 query instances, and
batches with T = 6 query types consist of 360 query instances.
Query instances are generated by instantiating TPC-H query tem-
plates with different parameter values chosen as per TPC-H rules.
For these workloads, we use MPL M € {5, 10, 20, 30, 40, 50}.
For the 10GB database, we use IQQ = 0 and B = 2, 5, and
10. We use T' = 6 and 10 instances of each query type. When
running these workloads, we use MPL M € {5, 10}. We limit the
workload sizes and MPL for the 10GB database due to the long run
times of queries on this database. Recall from Figure 2 that 60-
query workloads on the 10GB database can take more than 5 hours
to complete.
Performance Models: To build the performance models required
by our workload simulator, we collect samples using the IL-aware
LHS sampling algorithm (Section 5) and train a GPM from the
collected samples (Section 6). We used the Weka data mining
toolkit [33] to implement GPMs.
Methodology: By systematically varying the choice of query types,
size of query batch, and scheduling policy, the parameter B, and
MPL M, we generated 120 distinct and varied workloads. We run
these workloads with a warm buffer pool and measure their com-
pletion times. These workloads have actual completion times rang-
ing from 30 minutes to more than 5 hours. For each workload W,
we compare W’s actual completion time act with WW’s completion
time predicted by our technique, pred. Our error metric is the pre-
diction error computed as:

d — act
Prediction error = M x 100%

act
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Figure 5: Prediction error across all workload runs for 57" and
107" samples

Section 8.1 analyzes the cumulative distribution of the prediction
error across all 120 workloads. Section 8.2 studies the robustness
and scalability of our solution.

8.1 Opverall Accuracy

Our first experimental result demonstrates the overall accuracy
of our predictions. Figure 5 shows the cumulative frequency dis-
tribution of the relative prediction error in all our 120 workload
runs.®> We consider two cases that correspond to the two plots in
Figure 5. In one case, we use GPM models trained on 57" samples
collected by our IL-aware LHS algorithm. In the other case, we use
GPM models trained on 107" samples. (Recall that 1" denotes the
number of query types.) Thus, for 7'=21 TPC-H query types, in the
case of 57" and 107", we sample no more than 105 and 210 query
mixes, respectively, to train the models. All samples are collected
with a warm buffer pool.

Figure 5 shows that, in the case of 5T samples, about 75% of
the time the prediction errors are less than 20%. If the database
administrator (DBA) has a larger sampling budget and is willing
to collect up to 107" samples, then the overall accuracy improves to
the point where more than 85% of the time the prediction errors are
less than 20%. These end-to-end results show that our sampling,
modeling, and workload simulation algorithms result in accurate
and robust predictions across a wide range of workloads. The DBA
can now make accurate predictions for the future workloads in her
database by collecting a small number of samples just once (which
can be done along with initial system setup and workload tuning).

Our empirical observations indicate that 57" training samples
provide sufficient accuracy for most cases. If the DBA is unsure
about the time and resources to invest upfront for sampling, then
she can use our incremental sampling algorithm from Section 5.4.
Figure 6 shows the results for the incremental sampling algorithm.
The plots with “-inc” suffix show how the prediction error drops as
incremental sampling brings in 37", 57, and 71" samples over time.
From the figure, we can see that even in case of 37" samples about
40% of the time the errors are less than 20%, and more than 60%
of the time the errors are less than 30%. These accuracies may
be enough for the workloads that a DBA is seeing, and she needs
to go no further. The effectiveness of the approach is clear in that
this case requires only 63 samples for 21 TPC-H query types (as
opposed to 210 samples for 107"). 57" incremental samples give

3 An error line towards the upper-left corner represents lower error
(higher accuracy) than one towards the lower-right corner.
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Figure 6: Prediction error across all workload runs for incre-
mental sampling

Prediction scenario || Training Ratio of training time to
(given by DBA) time avg workload run time
M=5T=21,1GB 0.6 hours | 0.9 (1260-query workloads)

M=30,T=21,1GB 4.3 hours | 3.9 (1260-query workloads)

M=10,T=6,10GB 15 hours 4 (60-query workloads)

Table 7: Training overhead of representative prediction tasks

us errors lower than 25% almost 80% of the time. The figure also
shows that the results for 77" are very close to 107", so the DBA
will often not need to go all the way up to 107".

The time required to obtain these predictions consists of the off-
line time to collect samples and build the model, and the on-line
time used by the simulator. The simulator run time is minimal:
for the largest workload consisting of 1260 queries, the simulator
takes less than 5 seconds overall. For workloads with fewer queries,
the simulator run time is typically a fraction of a second. Table
7 shows the training overhead of our solution for a representative
subset of prediction scenarios. The first column is the prediction
scenario identified by the DBA. The second column shows the ab-
solute training time: the time needed by our incremental sampling
algorithm to generate samples and learn a model that gives <20%
error for >80% of the time. Absolute training times do not tell the
full story. The third column shows relative training time: the ratio
of the absolute training time to the average time to run a workload
corresponding to that scenario in our experiments. Notice that the
training time is equal to the time to run a very small number of
workloads. Our solution offers three important advantages:

e Recall that once the models are trained, they can be reused to
give predictions for any number of workloads that match the
prediction scenario.

e The relative training time drops as the number of query in-
stances |W| in the batch workload increases, since absolute
training time is independent of [WW|. Once we train the mod-
els, we can give predictions for workloads of any size. In prac-
tice, batch workloads can be large in size. For the 10GB case,
a typical 60-query workload can take more than 5 hours to run,
and a 1260-query workload can take more than 100 hours. In
comparison, our training time is 15 hours.

e Incremental sampling gives the DBA the flexibility to collect
more samples as and when resources are available. The training
overhead can be spread out over time, and there is no need to
allocate a contiguous block of (absolute) training time.
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Figure 7: Prediction error across different MPL settings

8.2 Robustness and Scalability

Next, we drill down into the accuracy data presented in Figure 5
to study different aspects of the performance of our techniques. In
all the figures in this section, we use 107" training samples and
omit other cases due to lack of space. The trends that we note in
the following discussion were observed for all sample sizes.

Effect of MPL: Recall that to study the accuracy of our approach
in different settings, we vary MPL from 5 to 50. Figure 7 shows
the cumulative frequency distribution of error for the above 120
runs partitioned by MPL. The figure shows that in the case of lower
MPLs (5, 10, 20), around 95% of the predictions have error less
than 20%. On the other hand, for higher MPLs, around 80% of the
predictions have error less than 20%.

The increase in prediction error is due to two factors. At high
MPLs, there is more load on the system. Thus, the variance in
query completion times is higher, making prediction harder. (In
practice, DBAs are very careful in setting MPL values to avoid
regimes with high variance in performance.) The second factor
that leads to reduced accuracy at higher MPLs is that the space of
possible query mixes (from which we have to sample) grows sub-
stantially with increasing MPL. For MPL M and number of query
types T, the total size of this space is the number of ways we can
select M objects from 7" object types, unordered and with repeti-
tion. The number of possible selections is given by S(T, M) =
(M*71) [26]. Even for the simple case of 6 query types, we get
S(6,20) = 53130 and S(6, 50) = 3478761; a 65-fold increase in
the size of the space to be modeled. However, in our experiments,
we did not increase the number of samples, always collecting the
same number of samples for every MPL for a given database size.
Despite the high system load and explosion in the modeling space,
we still maintain good prediction accuracy, which demonstrates the
robustness of our approach. The current state of art offers no tools
that DBAs can use to predict workload completion times with such
degrees of accuracy even at low loads.

Sensitivity to workload parameters and scheduling policy: We
now turn our attention to varying different parameters that can af-
fect prediction accuracy, such as the number of query types, schedul-
ing policy, and workload size. We study the change in error distri-
bution as these settings vary. Results are shown across all MPLs.
Since our workload simulator makes predictions based on chang-
ing query mixes, we want to see how well it performs when the
workload size changes. When there are more queries to sched-
ule, the simulator will encounter more distinct mixes; so there is
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Figure 9: Prediction error for workloads on a 10GB database

a higher likelihood that it accumulates error in its prediction of
workload completion time. To study the effect of workload size
on accuracy, Figure 8 shows the error distribution for three types of
workloads: (i) 1GB workloads that consist of 1260 queries picked
from 1" = 21 distinct query types, (ii) 1GB workloads that con-
sist of 720 queries picked from 7" = 12 distinct query types, and
(iii) 1GB workloads that consist of 360 queries picked from 7" = 6
distinct query types and 10GB workloads that consist of 60 queries
picked from T" = 6 distinct query types.

The figure clearly shows the robustness and scalability of our
approach when the number of query types is increased. In fact, we
see slightly better accuracy for increased number of query types and
larger workloads. Increasing the number of query types increases
the sampling space. However, recall that when we use fewer query
types, we use the longest-running query types in the system. When
the workload consists solely of long-running queries that signifi-
cantly interact with each other (in particular at high MPLs), there
is more variance in completion time as compared to a workload
where these long-running queries are separated by more predictable
short-running queries.

Figure 9 shows the error distribution of the workloads that run
on a 10GB database. These are long-running workloads, on aver-
age taking more than 4 hours to finish. The figure shows that even
when we limit ourselves to only 57" samples, the prediction accu-
racy remains good, which shows that our approach is robust in the
case of long-running queries even with a small number of samples.
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Figure 10: Prediction error for different scheduling policies
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Figure 11: Prediction error for skewed data

Figure 10 shows prediction errors for the two different schedul-

ing policies that we consider, FIFO and SJF. The errors are very
similar for both policies, illustrating that our approach is robust to
variations in the scheduling policy.
Sensitivity to data skew: So far we considered each of the 21
TPC-H query templates to be a distinct query type. These tem-
plates are parameterized, and for the same query type, the workload
contains query instances with different values of the corresponding
parameters. Because TPC-H has uniform data distribution by de-
fault, all instances of the same query type exhibit similar perfor-
mance. However, in the presence of skewed data distributions, we
may have to partition a query template into more than one query
type to maintain the property that instances of the same query type
have similar performance. We decide whether a query template
needs such partitioning by (i) generating a large number of query
instances with different parameter instantiations using the template,
(ii) obtaining the corresponding query plans and their costs from
the query optimizer, and (iii) clustering the plans based on the op-
timizer’s estimated cost. This process is efficient because the plans
need not be run. Full details are given in [3].

We report one empirical result to show the effectiveness of our
approach. We used the skewed TPC-D/H database generator [28]
to generate a 1GB TPC-H database that follows a Zipfian distribu-
tion with skew parameter z = 1. On this database, the skew-aware
approach for identifying query types partitioned the QQ9 query tem-
plate into 4 sub-query types. Figure 11 shows the error distributions



for workloads on this skewed database with 360 query instances
comprising the 6 longest-running TPC-H query types. The figure
shows the error for the skew-aware algorithm that partitions Q)9 into
sub-query types, and for the skew-oblivious algorithm that does not
partition Q9. Both algorithms have good accuracy, but the skew-
aware algorithm is more accurate, illustrating that our techniques
can effectively handle data skew.

Overall, we see that the combination of our sampling, modeling,
and workload simulation algorithms result in accurate and robust
predictions across a wide range of workload settings.

9. CONCLUSION

It is important for a DBA in a business intelligence setting to be
able to predict the completion time of different batch workloads.
Such predictions are required, for example, to plan the execution
of workloads in a batch window or to answer what-if tuning and
capacity-planning questions. The state of the art does not offer
tools or techniques that a DBA can use for this task. In this paper,
we demonstrated that accurate prediction of workload completion
times necessarily requires reasoning about interacting query mixes,
and not individual query types. We presented an interaction-aware
approach for predicting workload completion times that relies on:
(1) principled interaction-aware sampling of the space of possible
query mixes, (2) modeling the performance of queries in differ-
ent mixes based on the collected samples using an instance-based
statistical learning technique suited to the problem, and (3) a work-
load simulator that uses the performance models to simulate the
query mixes that will be encountered during workload execution,
and thereby predict the completion time of the workload. An ex-
perimental evaluation with the TPC-H benchmark running on IBM
DB2 showed that our interaction-aware approach can predict work-
load completion times with high accuracy.
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