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ABSTRACT
The work reported here lays the foundations of data exchange in
the presence of probabilistic data. This requires rethinking the very
basic concepts of traditional data exchange, such as solution, uni-
versal solution, and the certain answers of target queries. We de-
velop a framework for data exchange over probabilistic databases,
and make a case for its coherence and robustness. This framework
applies to arbitrary schema mappings, and finite or countably in-
finite probability spaces on the source and target instances. After
establishing this framework and formulating the key concepts, we
study the application of the framework to a concrete and practi-
cal setting where probabilistic databases are compactly encoded by
means of annotations formulated over random Boolean variables.
In this setting, we study the problems of testing for the existence of
solutions and universal solutions, materializing such solutions, and
evaluating target queries (for unions of conjunctive queries) in both
the exact sense and the approximate sense. For each of the prob-
lems, we carry out a complexity analysis based on properties of the
annotation, in various classes of dependencies. Finally, we show
that the framework and results easily and completely generalize to
allow not only the data, but also the schema mapping itself to be
probabilistic.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases;
H.2.4 [Database Management]: Systems—Query processing; H.2.5
[Database Management]: Heterogeneous Databases—Data trans-
lation

General Terms
Theory
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plexity
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1. INTRODUCTION
Data exchange is the problem of transforming data that conform

to one schema, the source schema, into data that conform to another
schema, the target schema, in a way that is consistent with various
dependencies (i.e., constraints expressed in some logical formalism
over the two schemas). The source and target schemas, along with
the dependencies, define a schema mapping, and the results of the
consistent transformation of a source instance are called solutions.
Traditional data exchange is based on the assumption that source
data are certain. However, the need to account for uncertainty in
data has long been recognized [4, 19]. In view of the advent of
the Web and related modern applications, models of uncertain data
(typically probabilistic databases) have recently gained significant
renewed focus [9–11,24,31,33,43,44]. It is, therefore, essential to
rethink the conceptual framework of data exchange in the context
of uncertainty in the source data.

Our goal in this paper is to lay the foundations of data exchange
in the presence of probabilistic data. This is accomplished in two
main parts. First, in Sections 2–4, we establish a framework that
extends and generalizes traditional data exchange to probabilistic
(source and target) databases. This framework is general, in the
sense that it imposes essentially no restriction at all on the types of
dependencies or on the probabilistic databases (which are finite or
countably infinite spaces of ordinary finite databases, where each
database is assigned a probability). Then, in Section 5, we ap-
ply our framework to a concrete and practical setting, where the
dependencies are from widely-studied classes, and where the prob-
abilistic databases are compactly encoded in various conventional
manners (e.g., as in [2, 6, 10, 31, 43]).

Furthermore, in Section 6, we extend the framework and the re-
sults to allow the schema mapping (and the data) to be probabilistic.
In principle, we could use this extended setting right from the be-
ginning. The reason for not doing so is that it would significantly
increase the complexity of the presentation, while the key chal-
lenges and ideas arise already when only the data are probabilistic.

Formally, a schema mapping is a triple (S,T,Σ), where S and
T are the source and target schemas, respectively, and Σ is a set
of dependencies formulated as logical assertions over S and T. A
source instance is an instance I over S, and a target instance is an
instance J over T; moreover, J is allowed to include labeled nulls,
which are essentially variables that are not bound to specific values.
A target instance J is a solution if the pair 〈I, J〉 satisfies Σ. In this
paper, source and target instances are replaced with probabilistic
instances (abbrev. p-instances): a source p-instance is a probabil-
ity space Ĩ over the source instances, and a target p-instance is a
probability space J̃ over the target instances.

The first task is, naturally, to define a probabilistic solution (ab-
brev. p-solution) for a source p-instance w.r.t. a schema mapping
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(S,T,Σ). Essentially, we define a target p-instance J̃ to be a p-
solution for a p-instance Ĩ if there exists a probability space over
source-solution pairs (I, J) (i.e., J is a solution for I w.r.t. Σ),
such that the marginals coincide with the p-instance Ĩ on the one
hand, and with the p-instance J̃ on the other. Our definition of a
p-solution is based on the classical concept of a bivariate (joint)
probability space with given marginals (research of this concept
goes back to the 1950s [18,36]), but with the additional requirement
that the support (i.e., the set of samples with a nonzero probabil-
ity) is contained in a fixed relation (in this case, the source-solution
relation). To explore the coherence of this definition, we formulate
two intuitive properties that every reasonable concept of a solution
should satisfy. Each of these properties says that a p-solution prop-
erly reflects the uncertainty of the source data. Rather surprisingly,
we show that each of the two properties is actually a characteriza-
tion of a p-solution.

We then proceed to the adaptation of the notion of a universal
solution. Our definition of a universal p-solution is similar to that
of a p-solution (given above), except that we require the existence
of a probability space over pairs (I, J), such that J is a universal
solution for I (and, again, the marginals coincide with Ĩ and J̃ ).
On the surface, this definition does not imply any desired semantic
property. In traditional data exchange, a universal solution J is a
“good” solution in the sense that it generalizes all the other solu-
tions, since every solution contains a homomorphic image of J . We
want a similar property to characterize a universal p-solution. For
that, we need to figure out the meaning of generalization between
p-instances.

There are various ways of formally modeling the generalization
relationship between p-instances; we consider three natural def-
initions, where each of the three extends the traditional concept
(existence of a homomorphism) to p-instances. One definition is
(again) in terms of a bivariate distribution, and the other two are
based on the notion of a stochastic order (see, e.g., [45]). We show
that the three are different from one another (and moreover, in the
finite case, testing whether they hold belong to different complex-
ity classes). So, we do not have one robust formalization of the
generalization relationship between p-solutions. A priori, each of
the three relationships could imply a different alternative definition
of a universal p-solution, namely, one that “generalizes” all the p-
solutions. Quite remarkably, the three definitions are equivalent
to the above definition of a universal p-solution. Furthermore, as
we show next when we consider the concept of answering target
queries, a universal p-solution is also characterized by its useful-
ness in answering target conjunctive queries (as in the determinis-
tic case [15]). These results indicate that the concept of a universal
p-solution is very robust.

Since a solution in our framework (namely, a p-solution) is in-
herently probabilistic, evaluating target queries amounts to query-
ing probabilistic databases. In particular, for a source p-instance
Ĩ and a query q, every p-solution J̃ gives a (potentially different)
confidence value for each possible answer a. Consistently with the
approach of certain answers in traditional data exchange, the confi-
dence of a is defined to be the infimum of the confidence values for
a over all p-solutions. We show that (when a p-solution exists) this
is the same as the probability that a is a certain answer for a random
source instance of Ĩ. We show that a universal p-solution can be
used for answering unions of conjunctive queries (UCQs), namely,
evaluation thereon gives the correct confidence values. Moreover,
if a p-solution can be used this way in the evaluation of conjunctive
queries, then this p-solution is necessarily universal.

We then proceed to study algorithmic and computational aspects
of data exchange for finite probabilistic databases. Specifically, we

consider the following problems: testing for the existence of so-
lutions and universal solutions, materializing such solutions, and
evaluating target unions of conjunctive queries. It follows from our
results that these problems are not harder than their counterparts
in the traditional (deterministic) setting. That holds, though, un-
der the assumption that the source p-instance is represented in an
explicit manner (i.e., by specifying each possible world I along
with its probability). This is at odds with conventional practice,
which is to associate a measure of confidence (or a probabilistic
event) with each fact. Such a representation (along with some sta-
tistical assumptions) is typically logarithmic-scale compact. So,
following existing representations (e.g., ULDBs [2,43], probabilis-
tic c-tables [24] and probabilistic trees [44]), we explore a setting
where the source p-instance is represented compactly by annotat-
ing facts with conditions, which are formulas over a set of (Boolean
and probabilistically independent) random event variables. We
consider two types of annotations. In a DNF instance the anno-
tation is in disjunctive normal form; in a tuple-independent in-
stance different facts are probabilistically independent, and the an-
notation effectively specifies the probability of each fact, as done
in [6, 10, 11]).

Our analysis is based on data complexity, which is common in
studying the complexity aspects of data exchange, (e.g., [15–17,
20]). Thus, we hold fixed a schema mapping and a query (when
relevant), and the input consists of an annotated (i.e., DNF or tuple-
independent) source instance. In our analysis, we consider the
types of dependencies that were studied in [15]. Thus, we allow
st-tgds (source-to-target tgds), t-tgds (target tgds)1, and t-egds (tar-
get egds). We consider also the effect on the complexity when the
st-tgds and/or t-tgds are restricted to being full. We divide the com-
putational problems into categories that correspond to all possible
combinations of dependency and annotation types. We start with
the problems of testing whether a (universal) solution exists and of
materializing one that is encoded as a DNF instance. For each cate-
gory, we show that either the corresponding problem is tractable for
all schema mappings (in the category) or that there exists a schema
mapping for which the problem is intractable. We then consider
target-query evaluation and, in particular, show that every nontriv-
ial UCQ is #P-hard in some schema mapping of the most restrictive
category (namely, independent facts and full st-tgds). Due to this
hardness, we study the complexity of approximate query evaluation
(which, in practice, is often good enough), and give the following
complete classification. For each category, we prove one of the
following:

• For every schema mapping and for every target UCQ there
exists an efficient algorithm (randomized or deterministic)
for approximate query evaluation.

• For every nontrivial target UCQ there exists a schema map-
ping in which query evaluation is hard to approximate.

Finally, we show how to generalize the framework and all of the
aforementioned results to accommodate probabilistic schema map-
pings (in addition to probabilistic data). The combination of a prob-
abilistic schema mapping with a source p-instance requires having
a joint probability distribution over sets of dependencies and source
instances; that is, a probability space on pairs (Σ, I), where Σ is a
set of dependencies and I is a source instance. We call such a prob-
ability distribution a probabilistic problem (p-problem, in short).
In general, a p-problem allows for every correlation between the
probabilistic mapping and the source p-instance; a special case is

1We make the now standard assumption of weak acyclicity [15].
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the product space where the probabilistic schema mapping and the
source p-instance are assumed to be independent.

We show that the framework and all aforementioned results com-
pletely generalize to p-problems, under the proper adaptation of the
definitions. In particular, we use the notions of a p-solution, a uni-
versal p-solution and an answer confidence (for a target query) for
a p-problem P̃ rather than for a source p-instance Ĩ. Moreover, the
results of Section 5 are generalized by annotating the dependencies
specifying the mapping similarly to source facts (i.e., using formu-
las over event variables); event variables can be shared between
facts and dependencies, thereby allowing correlations between the
probabilistic source data and mappings to be represented.

To the best of our knowledge, this work is the first to study data
exchange over probabilistic databases. In [13, 14, 41, 42], the prob-
lem of data exchange (and specifically data integration) for deter-
ministic databases and probabilistic mappings is studied. The re-
lationship between that work and this paper is discussed in Sec-
tion 6.2.

The proofs of the results presented in this paper will appear in a
full version.

2. PRELIMINARIES

2.1 Schemas and Instances
We assume fixed countably infinite sets Const of constants and

Var of nulls, such that Const ∩ Var = ∅. A schema is a finite
sequence R = 〈R1, . . . , Rk〉 of distinct relation symbols, where
each Ri has a fixed arity ri > 0. An instance I (over R) is a se-
quence 〈RI

1, . . . , R
I
k〉, such that each RI

i is a finite relation of arity
ri over Const∪Var (i.e., RI

i is a finite subset of (Const∪Var)ri ).
We call RI

i the Ri-relation of I . We may abuse this notation and
use Ri to denote both the relation symbol and the relation RI

i that
interprets it. We use dom(I) to denote the set of all constants and
nulls that appear in I . We say that I is a ground instance if dom(I)
does not contain nulls. We denote by Inst(R) and Instc(R) the
classes of all instances and ground instances, respectively, over R.
We use R(t1, . . . , tr) to denote that (t1, . . . , tr) is a tuple in a re-
lation R and call it a fact. We identify an instance with the set of
its facts.

LetK1 andK2 be instances over the same schema. A homomor-
phism h : K1 → K2 is a mapping from dom(K1) to dom(K2),
such that (1) h(c) = c for all constants c ∈ dom(K1), and (2) for
all factsR(t) ofK1, the factR(h(t)) is inK2 (for t = (t1, . . . , tr),
the tuple h(t) is (h(t1), . . . , h(tr))). By K1 → K2 we denote the
existence of a homomorphism h : K1 → K2.

2.2 Schema Mappings
We now describe our formalism of a schema mapping, which

follows that of [15]. Suppose that S = 〈S1, . . . , Sn〉 and T =
〈T1, . . . , Tm〉 are two schemas with no relation symbols in com-
mon. We denote by 〈S,T〉 the schema that is obtained by concate-
nating S and T. Similarly, if I and J are instances of S and T,
respectively, then 〈I, J〉 is the instance K ∈ Inst(〈S,T〉) that sat-
isfies SK

i = SI
i and TK

j = T J
j for 1 ≤ i ≤ n and 1 ≤ j ≤ m; in

other words, since we identify an instance with the set of its facts,
〈I, J〉 is essentially the union of I and J .

We assume some formalism for expressing constraints over a
given schema R. If I ∈ Inst(R) and Σ is a set of formulas in
this formalism, then I |= Σ denotes that I satisfies every formula
of Σ.

A schema mapping is a triple (S,T,Σ), where S (the source
schema) and T (the target schema) are schemas without common
relation symbols, and Σ is a set of formulas over the schema 〈S,T〉.

Each formula of Σ is called a dependency. A source instance is a
ground instance I over S, and a target instance is an instance J
over T (that is, I ∈ Instc(S) and J ∈ Inst(T)). We say that the
target instance J is a solution for I (w.r.t. Σ) if 〈I, J〉 |= Σ. A so-
lution J for I w.r.t. Σ is universal if J → J ′ for all solutions J ′ for
I w.r.t. Σ (in other words, every solution contains a homomorphic
image of J).

2.3 Probability Spaces
All the probability spaces we consider are countable (finite or

countably infinite). We call such spaces p-spaces and use the fol-
lowing notation. A p-space is a pair Ũ = (Ω(Ũ), pŨ ), such that
Ω(Ũ) is a countable set and pŨ : Ω(Ũ) → [0, 1] is a function that
satisfies

P
u∈Ω(Ũ) pŨ (u) = 1. Each member u of Ω(Ũ) is a sam-

ple, and Ω(Ũ) is the sample space. We say that the p-space Ũ is
over Ω(Ũ). The support of Ũ , denoted Ω+(Ũ), is the set of all
samples u ∈ Ω(Ũ) such that pŨ (u) > 0. We say that Ũ is finite
if its support Ω+(Ũ) is finite. A subset X ⊆ Ω(Ũ) is called an
event. The probability of the eventX , denoted PrŨ (X), is the sumP

u∈X pŨ (u). We may omit the subscript Ũ from PrŨ (X) when
it is clear from the context. We use U (i.e., without the tilde sign)
to denote the random variable that represents a sample of Ũ . An
event is often represented by a logical formula over U (e.g., ϕ(U)

is the same as {u ∈ Ω(Ũ) | ϕ(u)}). We often abuse the above
notation and identify Ũ with its sample space Ω(Ũ) (e.g., u ∈ Ũ
means that u is a member of Ω(Ũ)).

3. EXCHANGING PROBABILISTIC DATA
Our goal is to study data exchange in the presence of uncertainty

in the source instance. We use the convention of modeling un-
certain data as a probabilistic database [10, 11, 24, 33, 43]. The
challenges of this generalization of data exchange arise right in the
beginning: What is the meaning of a solution for a probabilistic
source instance? The first observation is that such a solution should
by itself be probabilistic (because if the source database is uncer-
tain, then so is the target database). Next, we formalize the notion
of a probabilistic database.

Let R be a schema. A probabilistic database, or a probabilistic
instance (over R), abbrev. p-instance, is a p-space Ĩ over Inst(R).
If Ĩ is a p-space over Instc(R), then Ĩ is a ground p-instance. Note
that the sample space Inst(R) (or Instc(R)) is countable due to our
assumption that Const and Var are countable (and that ordinary
instances are finite).

Let M = (S,T,Σ) be a schema mapping. A source p-instance
is a ground p-instance Ĩ over S, and a target p-instance is a p-
instance J̃ over T. In other words, a source p-instance and a target
p-instance are p-spaces over the source and target instances, respec-
tively.

EXAMPLE 3.1. LetM be the schema mapping (S,T,Σ), where
S and T are defined as follows. Note that, for convenience, the
columns are named.

S :Researcher(name, university), RArea(researcher, topic)
T :UArea(university, department, topic)

and Σ contains the single dependency

∀r, u, t(Researcher(r, u) ∧ RArea(r, t)

→ ∃dUArea(u, d, t)) .

Figure 1 depicts a set of possible facts (e.g., re, aeir and uir) for
each of the three relations. Note that ⊥1, ⊥2 and ⊥3 are nulls
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Researcher facts
re Researcher(Emma, UCSD)
rj Researcher(John, UCSD)

RArea facts
aeir RArea(Emma, IR)
aedb RArea(Emma, DB)
ajdb RArea(John, DB)
ajai RArea(John, AI)

Source p-instance Ĩ
I1 = {re, rj, aeir, ajdb} 0.3

I2 = {re, rj, aeir, ajai} 0.3

I3 = {re, rj, aedb, ajai} 0.2

I4 = {re, rj, aedb, ajdb} 0.1

I5 = {re, aedb} 0.1

UArea facts
uir UArea(UCSD, ⊥1, IR)
uai UArea(UCSD, ⊥2, AI)
udb UArea(UCSD, ⊥3, DB)

Target p-instance J̃1

J1 = {uir, udb} 0.3

J2 = {uir, uai} 0.3

J3 = {udb, uai} 0.2

J4 = {udb} 0.2

Target p-instance J̃2

J5 = {uir, udb} 0.35

J6 = {uir, uai, udb} 0.45

J7 = {uir, uai} 0.2

Target p-instance J̃3

J8 = {uir, udb} 0.3

J9 = {uai, udb} 0.3

J10 = {uir, uai} 0.4

Figure 1: Source and target p-instances for the schema mapping M of Example 3.1

(and the rest of the data values are constants). Using the facts, the
figure depicts four finite p-instances Ĩ, J̃1, J̃2 and J̃3, where Ĩ is
a source p-instance and each J̃i is a target p-instance. Each sample
of a p-instance is represented by a two-entry row, where the left
entry shows the instance and the right one shows its probability.
For example, the probability pĨ(I1) of I1 = {re, rj, aeir, ajdb} is
0.3. Observe that in each of Ĩ, J̃1, J̃2 and J̃3, the probabilities in
the rows sum up to 1.

The challenge is to identify when a target p-instance constitutes
a solution for a source p-instance. In principle, we have a binary
relationship between deterministic instances I and J (namely, J
is a solution for I), and we want to generalize it to p-instances Ĩ
and J̃ . The probabilistic match is a systematic way of extending
a binary relationship between objects into a binary relationship be-
tween p-spaces thereof. Next, we give the formal definition of a
probabilistic match. In Section 3.2, we apply it to define our notion
of a solution in the probabilistic setting, which we call a p-solution.
Then, we show that this definition is semantically coherent, by con-
sidering two natural and desirable requirements for a notion of a
solution and showing that each of these requirements actually char-
acterizes a p-solution.

3.1 Probabilistic Match
Our notion of a probabilistic match between p-spaces is based on

the classical concept of joint (or bivariate) probability spaces with
specified marginals [18, 36]. Our new twist on this old notion is
that we require the joint distribution to have a support contained in
a given binary relation.

DEFINITION 3.2. (Probabilistic Match) Let Ũ and W̃ be two
p-spaces and let R ⊆ Ω(Ũ)× Ω(W̃) be a binary relation. A prob-
abilistic match of Ũ in W̃ w.r.t.R (or, for short, anR-match of Ũ in

W̃) is a p-space P̃ over Ω(Ũ)× Ω(W̃) that satisfies the following
two conditions.

1. The support of P̃ is contained in R (i.e., Pr(P ∈ R) = 1).

2. The marginals of P̃ are Ũ and W̃ . This means that:

(i)
P

w∈Ω(W̃) pP̃(u,w) = pŨ (u) for all u ∈ Ũ , and

(ii)
P

u∈Ω(Ũ) pP̃(u,w) = pW̃(w) for all w ∈ W̃ .

Note that an R-match of Ũ in W̃ can be viewed as a probability
space over R, whose marginals coincide with Ũ and W̃ . A special
case of a probabilistic match is the product space Ũ × W̃ , where
R is the set Ω(Ũ)×Ω(W̃) and the two coordinates are probabilis-
tically independent (that is, pŨ×W̃(u,w) = pŨ (u) · pW̃(w) for
all u ∈ Ũ and w ∈ W̃). Two other special cases, for a relation
R ⊆ Ω(Ũ)× Ω(W̃), are the following.

• An R-match P̃ is left-trivial if for every u ∈ Ω+(Ũ) there
is exactly one w ∈ Ω(W̃) such that pP̃(u,w) > 0; equiva-
lently, PrP̃(u,w) = PrŨ (u) whenever PrP̃(u,w) > 0.

• Similarly, P̃ is right-trivial if for every w ∈ Ω+(W̃) there is
exactly one u ∈ Ω(Ũ) such that pP̃(u,w) > 0; equivalently,
PrP̃(u,w) = PrW̃(w) whenever PrP̃(u,w) > 0.

EXAMPLE 3.3. Consider the p-instances Ĩ, J̃1 and J̃2 of Fig-
ure 1. The two bipartite graphs of Figure 2 depict (finite) proba-
bilistic matches of Ĩ in J̃1 (in the graph on the left side of Fig-
ure 2) and in J̃2 (in the graph on the right side of Figure 2). The
relations R are the ones given by the (solid and dashed) edges that
connect each of the two pairs of p-spaces. The probability of each
pair (I, J) is written inside a rectangular box on the corresponding
edge, unless this probability is zero and then the edge is represented
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Ĩ J̃20.45

0.3

0.3

0.2

0.2

0.3

0.3

0.2

0.1

0.1
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Figure 2: SOLM-matches of Ĩ in J̃1 and of Ĩ in J̃2 for the source p-instance Ĩ and the target p-instances J̃1 and J̃2 of Example 3.1
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as a dashed line. (Recall that the probability of (I, J) is necessarily
zero if no edge connects I and J .)

Observe that the probabilistic match of Ĩ in J̃1 on the left side
of Figure 2 is left-trivial, since every node on the left side is inci-
dent to exactly one nonzero edge. Thus, it is immediate to verify
that Item (i) in Definition 3.2 holds. Note that this match is not
right-trivial (since J4 is incident to two nonzero edges). Actually,
there cannot be any right-trivial match of Ĩ in J̃1, simply because
Ω+(J̃1) contains fewer samples than Ω+(Ĩ).

A more complex example of a probabilistic match is the match
of Ĩ in J̃2 on the right side of Figure 2. Note that this match is
neither left-trivial nor right-trivial. Consider the instance I4 in the
right side of Figure 2. In Item (i) in Definition 3.2, when the role
of u is played by I4, the sum on the left side of Item (i), which
is the sum of probabilities of the edges adjacent to I4, is 0.05 +
0.05 = 0.1, which is exactly the probability of I4, which is the
value on the right side of Item (i). Consider now the instance J6

in the right side of Figure 2. In Item (ii) in Definition 3.2, when
the role of w is played by J6, the sum on the left side of Item (ii),
which is the sum of probabilities of the edges adjacent to J6, is
0+0.1+0.2+0.05+0.1 = 0.45, which is exactly the probability
of J6, which is the value on the right side of Item (ii).

3.2 p-Solution
We are now ready to define the concept of a p-solution. For

a schema mapping M, we denote by SOLM the binary relation
that comprises pairs (I, J) ∈ Instc(S) × Inst(T), such that J is a
solution for I .

DEFINITION 3.4. (p-Solution) LetM be a schema mapping and
let Ĩ be a source p-instance. A p-solution (for Ĩ w.r.t. Σ) is a target
p-instance J̃ , such that there is a SOLM-match of Ĩ in J̃ .

Note that by a SOLM-match we mean, of course, an R-match
where the role of R is played by SOLM.

EXAMPLE 3.5. Consider again the schema mapping M of Ex-
ample 3.1 and the source and target p-instances that are depicted
in Figure 1 and described in Example 3.1. Figure 2 shows two
SOLM-matches of Ĩ: the one on the left side is in J̃1, and the one
on the right side is in J̃2. For example, there are edges from I4
to J1, J3, and J4, since J1, J3, and J4 are each solutions for I4
w.r.t. Σ (the edges from I4 to J1 and J3 each have probability 0,
which is allowed). There is no edge from I4 to J2, since J2 is not
a solution for I4 w.r.t. Σ. Thus, both J̃1 and J̃2 are p-solutions.
Later, we will show that J̃3 is not a p-solution (i.e., there is no
SOLM-match of Ĩ in J̃3).

Defining a p-solution by means of a SOLM-match is a straight-
forward application of the probabilistic-match mechanism. Next,
we give a semantic justification to this definition. We start with an
example. Consider the schema mapping M = (S,T,Σ) and the
source and target p-instances of Example 3.1. As shown in Exam-
ples 3.3 and 3.5, J̃1 and J̃2 are p-solutions. One may claim that J̃3

should be deemed a p-solution as well (even though we later show
that it is not) due to the following statement (that can be easily ver-
ified). For each sample I of Ĩ (which has the probability PrĨ(I)
of being the selected instance), there is a probability of PrĨ(I), or
even higher, that a sample of J̃ is a solution for I . Next, we show
that this property is not enough, and moreover, that J̃3 should not
be a p-solution.

For an arbitrary target p-instance J̃ , let pdb(J̃ ) be the probability
that, in J̃ , database (DB) research is done in UCSD. The source p-
instance Ĩ says that there is a probability of 0.7 that at least one

researcher of UCSD is in the DB area (as obtained by summing up
the probabilities of all the instances that contain aedb, ajdb or both).
By the schema mapping M we would like a p-solution J̃ to say
that DB research is done in UCSD with a probability of 0.7, that
is, pdb(J̃ ) = 0.7. Moreover, since Σ allows DB research at UCSD
even if the source does not contain a DB researcher at UCSD, we
should allow pdb(J̃ ) to be larger than 0.7, in addition to allowing
it to equal 0.7. Now, pdb(J̃1) is exactly 0.7 and pdb(J̃2) is 0.8, as
desired. However, this is not the case for J̃3, since pdb(J̃3) = 0.6.

To generalize the above example, consider a schema mapping
M, a source p-instance Ĩ and an event E of Ĩ (e.g., the event “one
or more researchers are in the DB area in UCSD,” which means that
aedb or ajdb or both are in the source instance), We say that a target
instance J is consistent with E if J is a solution for at least one
instance I of E. Then, as illustrated above, the following property
is desired from a p-solution J̃ . For all events E of Ĩ, the probabil-
ity that J̃ is consistent with E is at least the probability of E. An
analogous desired property is the following. For all events F of J̃
(e.g., the event “the DB area in UCSD is nonempty”, which means
that udb is in the target instance), the probability that a random in-
stance of Ĩ has a solution in F is at least the probability of F . It can
rather easily be shown that existence of a SOLM-match guarantees
these two properties. Rather surprisingly, each of the two proper-
ties implies the existence of a SOLM-match; thus, as shown in the
next theorem, each of the two is a characterization of a p-solution.

THEOREM 3.6. LetM = (S,T,Σ) be a schema mapping. Let
Ĩ be a source p-instance and let J̃ be a target p-instance. The
following are equivalent.

1. J̃ is a p-solution (that is, a SOLM-match of Ĩ in J̃ exists).

2. For all E ⊆ Instc(S),

PrJ̃

 _
I∈E

〈I,J 〉 |= Σ

!
≥ PrĨ(E) .

3. For all F ⊆ Inst(T),

PrĨ

 _
J∈F

〈I, J〉 |= Σ

!
≥ PrJ̃ (F ) .

Note that, following the above discussion about J̃3, the fact that
Part 2 of Theorem 3.6 is necessary for being a p-solution shows
that J̃3 is not a p-solution for Ĩ (by using the event E saying that
there is a DB researcher in UCSD). Theorem 3.6 is proved via the
following characterization of the existence of a probabilistic match
in the spirit of Hall’s Marriage Theorem [25].

LEMMA 3.7. Let Ũ and W̃ be two p-spaces and letR ⊆ Ω(Ũ)×
Ω(W̃) be a binary relation. There exists an R-match of Ũ in
W̃ if and only if for all events U of Ũ it holds that PrŨ (U) ≤
PrW̃

`W
u∈U R(u,W)

´
.

The proof for finite p-spaces is by an application of the max-
flow min-cut theorem. For countably infinite graphs, the max-flow
min-cut property does not necessarily hold. Nevertheless, recent
results [3] show that, under some restrictions, this property holds
for countably infinite graphs, and these restrictions are met by the
graphs that are relevant to us. Hence, our proof for finite p-spaces
extends to (countably) infinite p-spaces. We also have a direct proof
that is based only on the finite variant of max-flow min-cut.
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4. UNIVERSAL P-SOLUTIONS AND QUERY
ANSWERING

In this section, we generalize the concepts of a universal solu-
tion, and that of answering target queries, to the probabilistic set-
ting.

4.1 Universal p-Solutions
Recall that the notion of a probabilistic match provides a system-

atic way of extending any binary relationship between (determinis-
tic) objects to a relationship between probability spaces thereof. In
the case of universal solutions, this is applied as follows. Consider a
schema mappingM. Denote by USOLM the relationship between
pairs I and J of source and target instances, respectively, such that
USOLM(I, J) holds if and only if J is a universal solution for I .
Then a universal p-solution is defined as follows.

DEFINITION 4.1. (Universal p-Solution) Let M be a schema
mapping. Let Ĩ and J̃ be source and target p-instances, respec-
tively. We say that J̃ is a universal p-solution (for Ĩ w.r.t. Σ) if
there is a USOLM-match of Ĩ in J̃ .

EXAMPLE 4.2. The SOLM-match of Ĩ in J̃1 (where M, Ĩ
and J̃1 are described in Example 3.1) on the left side of Figure 2
is actually a USOLM-match, since an edge from Im to Jn has a
nonzero probability only if Jn is a universal solution for Im. Thus,
J̃1 is a universal p-solution for Ĩ. The SOLM-match of Ĩ in J̃2

on the right side of Figure 2 is not a USOLM-match since, for
example, there is an edge (with probability 0.1) between I2 and J6,
yet J6 is not a universal solution for I2. Later, we will show that
J̃2 is, indeed, not a universal p-solution for Ĩ.

We now give a proposition about the existence of a p-solution
and a universal p-solution. This proposition is straightforward, and
we record it for later use.

PROPOSITION 4.3. LetM be a schema mapping and let Ĩ be a
source p-instance. A p-solution exists if and only if a solution exists
for all I ∈ Ω+(Ĩ). Similarly, a universal p-solution exists if and
only if a universal solution exists for all I ∈ Ω+(Ĩ).

We note that when a p-solution for a source p-instance Ĩ exists,
there is a straightforward construction of a p-solution that is left-
trivial. A similar comment holds for universal p-solutions.

In the deterministic case, a universal solution is deemed a good
choice of a solution, since it is a most general one, where the no-
tion of generality is defined by means of a homomorphism; that
is, J1 generalizes J2 if J1 → J2. We would like to have a sim-
ilar characterization of a universal p-solution. For that, we need
a notion for a relationship between p-instances that corresponds
to that of homomorphism in ordinary data. One such definition
can be obtained by applying the probabilistic match. Let T be a
schema. We denote by HOMT the binary relation that includes all
the pairs (J1, J2) ∈ (Inst(T))2, such that J1 → J2. Consider two
p-instances J̃1 and J̃2 over T. We use J̃1

mat−→ J̃2 to denote that
there is a HOMT-match of J̃1 in J̃2.

REMARK 4.4. The definition of J̃1
mat−→ J̃2, restricted to finite

p-instances, is similar yet different from that of homomorphism
given in [13] where, in our terminology, only right-trivial HOMT-
matches are allowed (in particular, there is no homomorphism from
J̃1 to J̃2 in the sense of [13] if the cardinality of Ω+(J̃1) is strictly
larger than that of Ω+(J̃2)).

The HOMT-match extends the notion of homomorphism to p-
instances in the systematic way of applying the probabilistic match.
There are, though, other natural ways of generalizing this notion.
Next, we consider two such ways, which are based on the classical
notion of a stochastic order. We then explore their relationships to
the existence of a HOMT-match. First, we need some definitions.

A stochastic order is traditionally an order over numeric random
variables (cf. [45]). Here, we extend this notion from numbers to
general preordered elements, in a straightforward manner. For-
mally, let O be a countable set and let ¹ be a preorder over O
(i.e., ¹ is a reflexive and transitive binary relation ¹ over O). The
stochastic extension of¹ is the preorder¹′ over the set of all the p-
spaces over O, where for all p-spaces Ũ and W̃ , the interpretation
of Ũ ¹′ W̃ is

∀ o ∈ O (Pr(U ¹ o) ≥ Pr(W ¹ o)) .

Let T be a schema. It is well known that the existence-of-
a-homomorphism relationship can be viewed as a preorder over
Inst(T) (see, e.g., [26]), and there are basically two ways to define
this preorder. In the first, we use the preorder ¹sp, where J ¹sp J

′

is interpreted as J → J ′, namely, “J is at most as specific as J ′.”
The second preorder, ¹ge, has the complement interpretation: “J
is at most as general as J ′,” that is, J ¹ge J

′ means J ′ → J .
Having the two preorders ¹sp and ¹ge over instances, we automat-
ically obtain two preorders over p-instances, namely, the stochastic
extensions, which we denote by ¹sp−→ and ¹ge←−, respectively.2 Thus,
J̃1

¹sp−→ J̃2 if Pr(J1 → J) ≥ Pr(J2 → J) for all instances J
over T, and J̃2

¹ge←− J̃1 if Pr(J → J2) ≥ Pr(J → J1) for
all instances J over T. For uniformity of presentation, we write
J̃1

ºge−→ J̃2 instead of J̃2
¹ge←− J̃1.

We now have three ways of extending the relationship J1 → J2

(existence of a homomorphism) from instances J1 and J2 to p-
instances J̃1 and J̃2. The first is J̃1

mat−→ J̃2, namely, there exists
a HOMT-match of J̃1 in J̃2. The second is J̃1

¹sp−→ J̃2, namely,
J̃1 is at most as specific as J̃2. The third is J̃1

ºge−→ J̃2, namely,
J̃1 is at least as general as J̃2. Observe that the three are indeed
extensions of →, in the following sense. If J̃1 and J̃2 are deter-
ministic instances J1 and J2 (i.e., the probability of Ji in J̃i is 1,
for i = 1, 2), then each of J̃1

mat−→ J̃2, J̃1
¹sp−→ J̃2 and J̃1

ºge−→ J̃2 is
equivalent to J1 → J2.

The following theorem shows that mat−→ is a strictly stronger rela-
tionship than ¹sp−→ and ºge−→; that is, J̃1

mat−→ J̃2 implies both J̃1
¹sp−→

J̃2 and J̃1
ºge−→ J̃2, and there are cases where neither of the op-

posite implications holds. Moreover, it shows that ¹sp−→ and ºge−→ are
incomparable. Finally, the theorem shows that for finite p-instances
J̃1 and J̃2, testing J̃1

¹sp−→ J̃2 and testing J̃1
ºge−→ J̃2 are not

even in the same complexity class as testing J̃1
mat−→ J̃2 (assuming

NP 6= coNP) since the first two tests are DP-hard3 (yet decidable)
while the third is NP-complete.

THEOREM 4.5. The following hold.

1. For all p-instances J̃1 and J̃2, if J̃1
mat−→ J̃2 then J̃1

¹sp−→ J̃2

and J̃1
ºge−→ J̃2.

2. There are p-instances J̃1 and J̃2, such that J̃1
¹sp−→ J̃2 and

J̃1 6ºge−→ J̃2; similarly, there are p-instances J̃1 and J̃2, such
that J̃1

ºge−→ J̃2 and J̃1 6¹sp−→ J̃2. Hence, due to Part 1, neither
¹sp−→ nor ºge−→ implies mat−→.

2The choice of the notation ¹sp−→ and ¹ge←− (rather than, e.g., ¹′sp and
¹′ge) is for clarity of presentation.
3Recall that DP is the class of problems that can be formed as a
difference of two problems in NP [37].
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3. Testing J̃1
mat−→ J̃2, given two finite p-instances J̃1 and J̃2,

is in NP.4

4. Testing each of J̃1
¹sp−→ J̃2 and J̃2

ºge−→ J̃1, given finite p-
instances J̃1 and J̃2, is in EXPTIME and NEXPTIME, re-
spectively, and there is a schema T over which both tests are
DP-hard.

We can now give three additional definitions of a universal p-
solution as a most general p-solution, where generality is according
to each of the three relationships mat−→, ¹sp−→ and ºge−→. Theorem 4.5
shows that the three relationships between p-instances are inher-
ently different; hence, we might expect to get different definitions
of a universal p-solution. Surprisingly, it turns out that all three
definitions are equivalent to existence of a USOLM-match! This is
shown in the following theorem. This theorem also shows that, for
a solution J̃ , either all SOLM-matches are USOLM-matches (and
then J̃ is universal) or none of them is a USOLM-match.

THEOREM 4.6. LetM be a schema mapping. Let Ĩ be a source
p-instance and let J̃ be a p-solution. The following are equivalent.

1. J̃ is a universal p-solution (i.e., there is a USOLM-match of
Ĩ in J̃ ).

2. J̃ mat−→ J̃ ′ for all p-solutions J̃ ′.
3. J̃ ¹sp−→ J̃ ′ for all p-solutions J̃ ′.
4. J̃ ºge−→ J̃ ′ for all p-solutions J̃ ′.
5. Every SOLM-match of Ĩ in J̃ is a USOLM-match.

In Section 4.2.1, we give a query-based characterization of a
universal p-solution (Proposition 4.9). Taken together with Theo-
rem 4.6, these results show that the notion of a universal p-solution
is remarkably robust.

4.2 Query Answering
We now generalize the concept of answering target queries in

data exchange. A k-ary query over a schema R is function Q that
maps every instance J ∈ Inst(R) to a set Q(J) ⊆ dom(J)k, such
that Q is invariant under isomorphism of instances. Note that for
k = 0, the result Q(J) is either {()} (denoted true) or ∅ (de-
noted false). Such a query is called Boolean. A conjunctive query
(abbrev. CQ) and a union of conjunctive queries (abbrev. UCQ) are
special cases of queries. For completeness, we next formally define
a CQ and a UCQ.

A CQ has the form ∃yϕ(x,y, c), where x and y are tuples of
variables, c is a tuple of constants (from Const) and ϕ(x,y, c) is
a conjunction of atomic formulas over the schema R. We make
the safety requirement that all the variables of x must participate in
ϕ(x,y, c). A UCQ has the form ∃y(ϕ1(x,y, c)∨· · ·∨ϕk(x,y, c)),
where ∃y(ϕi(x,y, c)) is a CQ for all 1 ≤ i ≤ k. Given an in-
stance K over R, the set Q(K) of answers comprises all the pos-
sible assignments for x that result in a clause that is true over K.

We follow the conventional notion [9–11] of querying proba-
bilistic databases. Thus, for a query Q and a p-instance K̃ (where
both Q and K̃ are over a schema R), every tuple a ∈ (Const ∪
Var)k has a confidence value, which is the probability Pr(a ∈
Q(K)). In practice, the tuples a often come from some finite5 set
of possible answers, which can be given to the user (along with the
4Recall that there are fixed schemas over which testing J̃1

mat−→ J̃2

is NP-hard even if J̃1 and J̃2 are deterministic [8].
5This is the case when K̃ is a finite p-space.

confidence values); alternatively, the user may request k answers
with the top probabilities [38].

Let (S,T,Σ) be a schema mapping and let Q be a k-ary query
over T. In the deterministic case, answering Q means that, given a
(deterministic) source instance I , we produce the certain answers,
namely, the tuples a ∈ Constk that belong toQ(J) for all solutions
J for I . We denote this set by certain(Q, I,Σ). Next, we general-
ize the concept of certain answers to the case of probabilistic source
instances. Let Ĩ be a source p-instance. Given a, each p-solution J̃
gives a (possibly different) probability Pr(a ∈ Q(J )). Consistent
with the deterministic case, we would like to characterize a with a
property that is guaranteed in every p-solution. Therefore, we de-
fine the confidence of a, denoted conf Q(a), as follows. If there are
no solutions, then conf Q(a) = 1. Otherwise, it is the infimum of
the confidences (probabilities) of a over all the p-solutions, namely,

conf Q(a)
def
= inf

p-solutions J̃
Pr (a ∈ Q(J )) .

If Q is Boolean, we write conf Q instead of conf Q(()).
The following proposition shows that the confidence of an an-

swer a is the same as the probability that a is certain in a random
source instance (given that a p-solution exists). This equality is
interesting, because the two numbers describe apparently different
quantities: one is the infimum, over all p-solutions, of the probabil-
ity of an event defined over the p-solutions (specifically, the prob-
ability of having a as an answer), whereas the other is the proba-
bility of an event defined over the source p-instance (specifically,
the probability of having a in the certain answers). In particular,
this proposition shows the robustness of our generalization of the
notion of target-query answering.

PROPOSITION 4.7. Let (S,T,Σ) be a schema mapping, let Q
be a query over T, and let Ĩ be a source p-instance, such that a
p-solution exists. For all tuples a of constants,

conf Q(a) = PrĨ(a ∈ certain(Q, I,Σ)) .

As a part of the proof of Proposition 4.7, we construct a p-
solution J̃ , such that Pr(a ∈ Q(J )) is equal to the probability
on the right-hand side of the equality. Thus, the infimum in the def-
inition of confidence is always realized by some p-solution (hence,
it can be replaced with minimum).

EXAMPLE 4.8. Consider again the schema mapping M, and
the p-instances Ĩ, J̃1 and J̃2 of Example 3.1. Recall from Exam-
ple 3.5 that both J̃1 and J̃2 are p-solutions. Let Q be the following
target CQ, which extracts all the universities where both IR and AI
research is conducted.

Q(u):– ∃d1, d2 (UArea(u, d1, IR) ∧UArea(u, d2, AI))

For J̃1, there is only one possible answer, which is a = (UCSD).
Since Pr(a ∈ Q(J1)) = 0.3, we get that conf Q(a) ≤ 0.3. Hence,
the value of the left-hand side of the equality in Proposition 4.7 is at
most 0.3. What about the right-hand side, which is the probability
that a is a certain answer? Since a is a certain answer only for I2,
and I2 has the probability 0.3, the right-hand side of the equality
in Proposition 4.7 is 0.3. Hence, by Proposition 4.7, conf Q(a) is
0.3, and so is realized by J̃1; that is, J̃1 is a p-solution J̃ such that
Pr(a ∈ Q(J )) is minimal. In contrast, for J̃2 we have Pr(a ∈
Q(J2)) = 0.65, which is strictly larger than conf Q(a).

Earlier, in Example 4.2, we noted that the SOLM-match of Ĩ in
J̃2 on the right side of Figure 2 is not a USOLM-match. Thus,
by Part 5 of Theorem 4.6, J̃2 is not a universal p-solution for Ĩ.
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Moreover, recall from Example 4.8 that Pr(a ∈ Q(J2)) is strictly
larger than conf Q(a). The following section shows how this latter
fact gives another proof that J̃2 is not universal.

4.2.1 UCQs over Universal p-Solutions
In the deterministic case, a universal solution can be used for

answering target UCQs in the sense that the result of applying the
query to the universal solution (and then restricting to the tuples
of constants) is the set of all certain answers [15]. Moreover, a
solution that has this property for every CQ is necessarily univer-
sal [15]. The following proposition shows that, although the con-
cepts of deterministic and probabilistic query answering are inher-
ently different, this property of universal solutions generalizes to
universal p-solutions. That is, the confidence of an answer for a
UCQ is obtained by querying a universal p-solution (when one ex-
ists), and a p-solution that has this property for every (Boolean)
CQ is necessarily universal. The second part is proved by using the
third characterization of Theorem 4.6.

PROPOSITION 4.9. Let (S,T,Σ) be a schema mapping and let
Ĩ be a source p-instance. The following hold.

1. If J̃ is a universal p-solution and Q is a UCQ over T, then
conf Q(a) = Pr(a ∈ Q(J )) for all tuples a of constants.

2. If J̃ is a p-solution such that conf Q = Pr(Q(J )) holds for
all Boolean CQs Q, then J̃ is a universal p-solution.

In the next section, we study computational aspects of proba-
bilistic data exchange. In particular, we consider the tasks of test-
ing whether a (universal) p-solution exists, materializing one (when
it exists), and evaluating target UCQs. By Proposition 4.3, a p-
solution exists if and only if there is a solution for I w.r.t. Σ for all
I ∈ Ω+(Ĩ). By the discussion that follows Proposition 4.3, if a
p-solution exists, then we can materialize one, using solutions for
the instances of Ω+(Ĩ), by a straightforward construction. A sim-
ilar comment applies to universal (p-) solutions. Proposition 4.7
implies that we can compute conf Q(a) by determining whether
a ∈ certain(Q, I,Σ) for each I ∈ Ω+(Ĩ), and taking the sum of
the probabilities of the instances I for which the answer is “yes.”

Consequently, in the case of finite p-instances, these tasks in the
probabilistic setting are not harder than their traditional counter-
parts. Nevertheless, this analysis is based on the assumption that
source p-instances are represented in an explicit manner (i.e., by
specifying each possible instance along with its probability). This
is not a practical assumption, as evidenced by existing models of
probabilistic databases (e.g., [2, 6, 10, 11, 43]) that usually employ
a (typically logarithmic-scale) compact encoding of the possible
worlds. So, the next section studies the above computational prob-
lems under some typical compact representations of probabilistic
databases.

5. COMPACT REPRESENTATION
In this section, we explore complexity aspects of data exchange

in a concrete setting where dependencies are in the form of tgds
and egds [5, 15] (the formal definitions are in Section 5.2), and p-
instances are represented compactly by annotating facts with prob-
abilistic conditions [19,23,24] rather than explicitly specifying the
whole probability space.

5.1 Annotated Instances
We consider p-instances that are represented by means of Boolean

pc-tables [24] (which are the probabilistic version of c-tables [27])

Iα
p

Fact f Condition α(f)

re Researcher(Emma, UCSD) true

rj Researcher(John, UCSD) e1 ∨ e2 ∨ e3 ∨ e4
aeir RArea(Emma, IR) e1 ∨ e2
aedb RArea(Emma, DB) ¬e1 ∧ ¬e2
ajdb RArea(John, DB) e1 ∨ (¬e2 ∧ ¬e3 ∧ e4)
ajai RArea(John, AI) (¬e1 ∧ e2) ∨ (¬e1 ∧ e3)

EVar(α) = {e1, e2, e3, e4}

p : EVar(α) → [0, 1]

p(e1) = 3/10, p(e2) = 3/7, p(e3) = p(e4) = 1/2

Figure 3: A DNF instance Iα
p

where the condition assigned to each fact is a logical formula over
event variables—probabilistically independent Boolean (Bernoulli)
random variables. In pc-tables conditions can be phrased as arbi-
trary propositional-logic formulas, which renders the most basic
operations as intractable, since, for one, it is NP-complete even
to decide whether a given fact occurs with a nonzero probability.
Thus, our focus is on two restricted representations that correspond
to (or subsume) various representations in the literature. In the first,
conditions are in disjunctive normal form (DNF), and in the second,
the facts are probabilistically independent. Next, we give the for-
mal definitions.

We assume an infinite set EVar of event variables. Let R be a
schema. A DNF instance (over R) comprises an instance I over
R, a function α that maps every fact f of I to a DNF formula α(f)
over EVar, and a function p : EVar(α) → [0, 1] where EVar(α)
is the set of all the event variables that appear in the image of α.
The DNF instance given by I , α and p is denoted by Iα

p . A DNF
instance Iα

p naturally encodes a p-instance, which we denote by
p-space(Iα

p ), where a sample I ′ is obtained as follows. First, a
random truth assignment τ : EVar(α) → {true, false} is chosen
for the event variables of I; this assignment is obtained by indepen-
dently picking a random Boolean value τ(e), with probability p(e)
for true, for each member e of EVar(α). Second, all the facts f
such that τ satisfies the formula α(f) are selected as members of I ′

(alternatively, I ′ is obtained from I by removing all the facts f such
that α(f) is violated). Thus, p-space(Iα

p ) is the finite p-instance Ĩ
such that Ω+(Ĩ) comprises instances with facts from I , and for all
I ′ ⊆ I the probability pĨ(I

′) is that of obtaining I ′ in the above
process (namely, the sum of the probabilities of all the assignments

Iα
p

Fact f α(f) p(α(f))

re Researcher(Emma, UCSD) e′0 1.0

rj Researcher(John, UCSD) e′1 0.9

aeir RArea(Emma, IR) e′2 0.6

aedb RArea(Emma, DB) e′3 0.4

ajdb RArea(John, DB) e′4 0.4

ajai RArea(John, AI) e′5 0.5

Figure 4: A tuple-independent instance Iα
p
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that satisfy every formula of I ′ and none of I \ I ′).

EXAMPLE 5.1. Figure 3 depicts a DNF instance Iα
p . The table

on the top of the figure has a row for each fact, and the right column
contains the condition of the corresponding fact. As shown in the
middle part of the figure, EVar(α) contains the four event variables
e1, . . . , e4. Finally, the function p is specified in the bottom.

Note that the facts of I are those that are depicted in the up-
per row of Figure 1, that is, the facts of the p-instance Ĩ. The
reader can verify that Iα

p encodes6 exactly the p-instance Ĩ; that is,
Ĩ = p-space(Iα

p ) (which means that Ĩ and p-space(Iα
p ) have the

same support, and the same probability for each instance in their
support). As an example, let us compute the probability of the in-
stance I5 = {re, aedb} (from Figure 1). In general, an instance
can be produced by multiple truth assignments, but I5 is produced
by only the assignment that maps all four variables to false, be-
cause rj /∈ I5. Let τ be that assignment. Observe that τ indeed
produces I5 since it violates the condition of every fact other than
re and aedb. Therefore, the probability of I5 is the probability of
τ , namely, 7

10
× 4

7
× 1

2
× 1

2
= 28

280
= 0.1. As another example,

the reader can verify that the assignments τ that map e1 to true
are exactly those that result in the instance I1 = {re, rj, aeir, ajdb};
therefore, the probability of I1 is p(e1) = 0.3.

In [24] it is shown that every finite p-instance can be repre-
sented by means of Boolean pc-tables (i.e., Boolean pc-tables are
“complete”). In particular, every finite p-instance Ĩ is equal to
p-space(Iα

p ) for some DNF instance Iα
p , since every formula in

propositional logic can be transformed into DNF. Note that this
translation may entail an exponential blowup. But, one can effi-
ciently translate into DNF instances other representations like block-
independent disjoint databases [38–40] and probabilistic rdb’s [31].

A special case of a DNF instance is one where tuples are proba-
bilistically independent. Formally, a tuple-independent instance is
a DNF instance Iα

p , such that for all facts f ∈ I , the condition α(f)
is a distinct atomic event variable ef (i.e., ef 6= eg for f 6= g); in
particular, the facts of Iα

p are probabilistically independent. We re-
quire a tuple-independent instance Iα

p to be such that the function p
is strictly positive (i.e., p(e) > 0 for all e ∈ EVar(α)). This is not
a restriction, since a fact with zero-probability event can simply be
removed.

EXAMPLE 5.2. Figure 4 depicts a tuple-independent instance
Iα

p . Each row shows a fact f , the unique variable e′i = α(f) and
the probability p(e′i). The facts of Figure 4 are the same as those of
Figure 1 (and those of Figure 3, which is discussed in Example 5.1).
Let Ĩ be as in Figure 1. The probability of each fact f in Iα

p is
the marginal probability of f in Ĩ (i.e., p(α(f)) is the sum of the
probabilities of the instances I ∈ Ω+(Ĩ) with f ∈ I). However,
unlike Figure 3, the instance Iα

p of Figure 4 does not encode Ĩ (that
is, p-space(Iα

p ) 6= Ĩ). Moreover, no tuple-independent instance
encodes Ĩ, simply because the facts of Ĩ are not independent. As an
example, the facts aeir and aedb are mutually exclusive in Ĩ (hence,
they are not independent).

In terms of representations of probabilistic data in the literature,
tuple-independent instances are sets of p-?-tables [24], and they are
the same as the tuple-independent probabilistic structures of [11]
(called probabilistic databases in [12]). We could avoid using event
variables in tuple-independent instances, and just write a number
next to each fact (as done in [11, 12]). However, it is convenient
6The translation of Ĩ into Iα

p follows standard techniques of en-
coding finite p-spaces by annotations (see, e.g., [24, 44]).

for us to syntactically view these instances as special cases of DNF
instances.

Consider a schema mapping M = (S,T,Σ). A source DNF
instance is a DNF instance Iα

p over S, such that I is a ground in-
stance, and a target DNF instance is a DNF instance Jβ

q over T
(J is not necessarily ground). Special cases are source and tar-
get tuple-independent instances. Clearly, if Iα

p and Jβ
q are source

and target DNF instances, then p-space(Iα
p ) and p-space(Jβ

q ) are
source and target p-instances, respectively.

5.2 Tuple/Equality-Generating Dependencies
We consider two specific types of dependencies that were studied

in past research on data exchange (e.g., [15, 16]); each dependency
is a tuple-generating dependency (tgd) or an equality-generating
dependency (egd) [5]. More particularly, let (S,T,Σ) be a schema
mapping. A source-to-target tgd (st-tgd) is a formula of the form

∀x (ϕS(x) → ∃yψT(x,y)) ,

a target tgd (t-tgd) is one of the form

∀x (ϕT(x) → ∃yψT(x,y)) ,

and a target egd (t-egd) has the form

∀x (ϕT(x) → (x1 = x2)) .

In the above formulas, ϕS(x) is a conjunction of atomic formulas
over S, and each ofϕT(x) andψT(x,y) is a conjunction of atomic
formulas over T. Moreover, all the variables of x appear in both
ϕS(x) and ϕT(x), and x contains the variables x1 and x2. As a
special case, full st-tgds and full t-tgds are ones that do not contain
existentially quantified variables (i.e., y is empty).

5.3 Complexity Results
We use data complexity for analyzing the computational prob-

lems that we address. In particular, we assume that the schema
mapping M = (S,T,Σ) is fixed, and the input consists of the
source DNF instance Iα

p . If a query Q is involved, then it is fixed
as well. For all variables e ∈ EVar(α), the number p(e) is a ratio-
nal number represented by a pair of integers (the numerator and the
denominator). Finally, we consider only schema mappings where
the set Σ of dependencies is the union of finite sets Σ1 and Σ2, such
that Σ1 contains only st-tgds and t-egds, and Σ2 is a weakly acyclic
set of t-tgds (see [15] for the formal definition of weak acyclicity).

The complexity results are shown in Table 1. We study five
computational problems, and give their complexity for each of the
two types of source p-instances: the top five rows of Table 1 con-
sider source DNF instances, and the bottom five rows are for source
tuple-independent instances. Each row is associated with a specific
problem. Each column corresponds to a class of schema mappings.
For example, the column entitled “full st-tgds, t-egds” considers
schema mappings (S,T,Σ) such that Σ contains only full st-tgds
and t-egds. An upper bound (e.g., “PTIME” or “FP”) refers to all
schema mappings in the corresponding column, whereas a lower
bound (e.g., “no FPRAS if P 6= RP” or “/∈ FP if NP 6= RP”) means
that there exists a schema mapping, in the corresponding column,
for which the result holds. By “coNP-complete” we mean that the
problem is in coNP for all schema mappings in the correspond-
ing column, and there is a schema mapping, in the corresponding
column, where the problem is coNP-hard. The meaning of “FP#P-
complete” is similar (we later give the definition of FP#P). Next,
we explain the problems we study and the complexity results.

Existence of p-solutions. The first problem is that of deciding
whether a p-solution exists. This problem is the same as deciding
whether a universal p-solution exists, as it follows from [15] and
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Iα
p Problem st-tgds, t-egds,

w.a. t-tgds st-tgds, t-egds st-tgds,
w.a. t-tgds

full st-tgds,
t-egds, full t-tgds

full st-tgds,
full t-tgds

full st-tgds,
t-egds st-tgds full st-tgds

D
N

F

Existence of a
(U.) p-Solution

coNP-
complete

coNP-
complete trivial coNP-complete trivial PTIME trivial trivial

Materializing a
p-Solution

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP FP /∈ FP if P 6= NP FP FP FP FP

Materializing a
U. p-Solution

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP /∈ FP if P 6= NP /∈ FP if

P 6= NP FP FP FP

Target UCQ:
Exact

FP#P-complete

Target UCQ:
Approx.

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP FPRAS FPRAS FPRAS

Tuple-Independent

Existence of a
(U.) p-Solution PTIME PTIME trivial PTIME trivial PTIME trivial trivial

Materializing a
p-Solution

FP

Materializing a
U. p-Solution

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP FP FP FP

Target UCQ:
Exact

FP#P-complete

Target UCQ:
Approx.

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP FPAS FPAS FPAS

Table 1: Complexity of testing for the existence of a (universal) p-solution, materializing a candidate (universal) p-solution as a DNF
instance, and (exact and approximate) evaluation of target UCQs

Proposition 4.3 that (for the class of schema mappings we study)
a p-solution exists if and only if a universal one exists. This prob-
lem corresponds to the rows of Table 1 entitled “Existence of a
(U.) p-Solution.” By “trivial” we mean that a p-solution always ex-
ists. These are the cases where Σ is the union of a set of st-tgds
and a weakly acyclic set of t-tgds (and Σ has no t-egds). Observe
that for tuple-independent instances, existence of p-solutions is al-
ways tractable or trivial. For DNF instances, however, the nontriv-
ial cases are coNP-complete, except for the tractable case where Σ
contains full st-tgds and t-egds.

Materialization. The second problem corresponds to the rows
entitled “Materializing a p-Solution,” and is that of materializing
a candidate p-solution, namely, a target p-instance J̃ that forms a
p-solution if one exists. We restrict to generation of candidate p-
solutions J̃ that are represented as DNF instances Jβ

q (i.e., J̃ =

p-space(Jβ
q )). The third problem is the universal version of the

second, namely, generation of a candidate universal p-solution, and
it corresponds to the rows entitled “Materializing a U. p-Solution.”
For these problems, the table contains three types of results: FP,7

not in FP unless P = NP, and not in FP unless RP = NP.8

Table 1 shows that, for source DNF instances, we can some-
times efficiently materialize a candidate universal p-solution (e.g.,
when Σ has only st-tgds) whereas in other cases we cannot effi-
ciently materialize even a (not necessarily universal) candidate p-
solution. If source instances are tuple-independent, then materi-
alizing a candidate p-solution is always tractable. However, for
materializing candidate universal p-solutions, the intractable cases
for source DNF instances remain intractable for tuple-independent
instances. The positive results are obtained by combining the chase
algorithm [5,15,35] with the known concept of maintaining condi-
tions (or provenance) in relational operators, which is used in [23,

7FP is the class of polynomial-time computable functions.
8RP comprises the sets that are efficiently recognizable by a ran-
domized algorithm with a bounded one-sided error (i.e., the answer
may mistakenly be “no”). NP=RP is equivalent to NP⊆BPP [32]
(where BPP comprises the sets that are efficiently recognizable by a
randomized algorithm with a bounded two-sided error) and implies
that BPP contains the whole polynomial hierarchy [48].

24,27] for showing closure of annotated databases under relational
algebra.9 The lower bounds are proved using the inapproximability
of determining the number of assignments satisfying a monotone
2-CNF formula (see, e.g., [49]), and the Monte-Carlo algorithm
of [29] as a reduction technique.

Answering target UCQs. The fourth problem is that of evaluat-
ing unions of conjunctive queries, and it corresponds to the rows of
Table 1 entitled “Target UCQ: Exact.” Formally, for a schema map-
ping (S,T,Σ) and a UCQ Q over T, the problem is the following.
Given a source DNF instance Iα

p and a tuple a of constants, com-
pute conf Q(a). As shown in the table, in every studied case (even
when there are only full st-tgds and source instances are tuple-
independent) there is a schema mapping such that this problem is
FP#P-complete. Recall that FP#P is the class of functions that
are efficiently computable using an oracle to some function in #P.10

Note that a functionF is FP#P-hard11 if there is a polynomial-time
Turing reduction (or Cook reduction) from every function in FP#P

to F . Actually, we can show even more: in the most restricted case
(source tuple-independent instances and only full st-tgds), for ev-
ery nontrivial target UCQ Q there exists a schema mapping such
that evaluating Q is FP#P-hard, where a trivial UCQ is a Boolean
UCQ that is equivalent to true. To show this lower bound, we
use hardness results of [11,12]; membership in FP#P is shown by
adapting some of the techniques given in [21].

Given this intractability, the best that one can hope for when
looking for tractable classes of schema mappings (in terms of target-
query evaluation) is an evaluation in an approximate manner; in
practice, such an evaluation is often good enough. So, the fifth
problem is that of approximately evaluating target UCQs, and it is
considered in the rows of Table 1 entitled “Target UCQ: Approx.”
Formally, let (S,T,Σ) be a schema mapping, and let Q be a UCQ
over T. A fully polynomial randomized approximation scheme (ab-
9A similar construction is used in [22] for the task of propagating
trust conditions through data exchange between peers in a network.

10#P [47] is the class of functions that count the number of accepting
paths of the input of an NP machine.

11Using an oracle to a #P-hard (or FP#P-hard) function, one can
efficiently solve every problem in the polynomial hierarchy [46].
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brev. FPRAS) for Q is a randomized algorithm A that gets as input
a DNF instance Iα

p over S, a tuple a, and a number ε > 0, and
returns a (random) value A(Iα

p ,a) such that

PrA

„
p

1 + ε
≤ A(Iα

p ,a) ≤ (1 + ε)p

«
≥ 2

3
,

where p = conf Q(a).12 Moreover, A is required to run in polyno-
mial time in the size of Iα

p and in 1/ε. An even stronger notion is
that of FPAS, where the approximation algorithm is deterministic
(i.e., the reliability factor 2/3 is replaced with 1).

Table 1 shows that for source DNF instances, there is an FPRAS
for a UCQ when Σ contains only st-tgds, or full st-tgds with t-
egds. For such Σ, there is even an FPAS if source instances are
tuple-independent. To prove these results, we use techniques for
approximating the number of satisfying assignments for a DNF for-
mula [29, 34] (as done in, e.g., [12, 30]). For the rest of the studied
cases, there is always a schema mapping Σ and a UCQ Q such that
no FPRAS exists unless RP = NP. Actually, this holds even if we
fix the approximation ratio ε (that is, the running time of the algo-
rithm is no longer required to depend polynomially on 1/ε). More-
over, this holds for all nontrivial UCQs Q, except for the cell of the
column entitled “st-tgds, t-egds” in the bottom row of the table (in
the “tuple-independent” part), where this result holds for all UCQs
Q except for near-trivial ones. A UCQQ over a schema T is near-
trivial if it is a statement about non-emptiness of the relations; more
precisely, it is a Boolean UCQ such thatQ(J1) = Q(J2) whenever
J1 and J2 are instances such that RJ1 = ∅ if and only if RJ2 = ∅
for all relation symbolsR of T. Note that this notion is weaker than
UCQ triviality; this weakening is necessary, since it can be shown
that over tuple-independent source instances, there is an FPAS for
every near-trivial UCQ if Σ contains only st-tgds and t-egds.

General comments. Table 1 shows that the studied problems
are often hard. On the positive side, observe that for the rightmost
three columns, all the problems (except for exact query answering)
are tractable. Not all the possible combinations of (full) st-tgds,
(full) t-tgds and t-egds are mentioned in Table 1. However, this
table actually covers all possible combinations, in the following
sense. Each missing combination lies between two combinations
that have the same complexity results in the table. For example,
the combination “st-tgds, full t-tgds” (which is not in the table) is
between “full st-tgds, full t-tgds” and “st-tgds, w.a. t-tgds,” and the
complexity results for these two combinations are exactly the same;
hence, these results also hold for the missing “st-tgds, full t-tgds.”

6. PROBABILISTIC MAPPINGS
In this section, we generalize the framework and results of the

previous sections to accommodate uncertainty in the schema map-
ping. More formally, in this generalization not only is the source
data probabilistic, but the set of dependencies specifying the schema
mapping is probabilistic as well. Moreover, we will allow the
source p-instance and the probabilistic mapping to be arbitrarily
correlated. Next, we give the basic definitions. Later, we discuss
the generalization of the results of the previous sections to this new
setting.

Let S and T be two schemas with no relation symbols in com-
mon. We assume that there is a fixed countably infinite set DepST

of formulas over 〈S,T〉, such that every set Σ of dependencies
specifying a schema mapping is a finite subset of DepST. We de-
note by Dep∗ST the (countable) set of all finite subsets Σ of DepST.

12Note that the choice of the reliability factor 2/3 is arbitrary, since
one can improve it to (1 − δ) by taking the median of O(log δ)
trials [28].

Up until now, we considered schema mappings that are specified
by triples (S,T,Σ) where Σ ∈ Dep∗ST. Here, as a starting point,
we are interested in replacing the fixed Σ with a p-space Σ̃ over
Dep∗ST. Thus, both the source instance Ĩ and the schema map-
ping (S,T, Σ̃) are probabilistic. However, separating the prob-
abilistic schema mapping from the source p-instance necessitates
the assumption of probabilistic independence (or some other spe-
cific correlation) between the two. In practice, such an assumption
is often a limitation. Therefore, in this section we do not use these
two notions; instead, we use a generalized definition that is based
on the notion of a probabilistic problem (abbrev. p-problem). The
formal definition is the following.

DEFINITION 6.1. (p-Problem) Let S and T be schemas with-
out common relation symbols. A p-problem (from S to T) is a
p-space P̃ over Dep∗ST × Instc(S).

Observe that the marginals of a p-problem P̃ define a unique
probabilistic schema mapping (S,T, Σ̃) and a unique source p-
instance Ĩ; however, P̃ is not necessarily the product space of Ĩ
and Σ̃.

A p-solution J̃ for a p-problem P̃ is defined similarly to the case
of a fixed Σ, except that now the probabilistic match is from P̃ to
J̃ (rather than from the source p-instance Ĩ to J̃ ). Formally, given
a p-problem P̃ from S to T, a target p-instance J̃ is a p-solution
(for P̃) if there is a dSOLST-match of P̃ in J̃ , where dSOLST

is the binary relation between pairs (Σ, I) and instances J , such
that I ∈ Instc(S), J ∈ Inst(T), Σ ∈ Dep∗ST, and 〈I, J〉 |= Σ.
(The letter d in dSOLST denotes that dependencies are involved in
the relation.) Similarly, J̃ is a universal p-solution (for P̃) if there
is a dUSOLST-match of P̃ in J̃ , where dUSOLST is the relation
between pairs (Σ, I) and instances J such that J is a universal
solution for I w.r.t. Σ.

6.1 Generalization of the Results
We now discuss the generalization of our results to the notion

of a p-problem. Basically, all the results generalize to p-problems.
For Sections 3 and 4, this generalization is via a rather mechanical
replacement of the p-space Ĩ with the p-space P̃ . Generalizing the
results of Section 5 is a little more involved.

We start with the results of Sections 3 and 4. In Theorem 3.6,
we need to replace every occurrence of Ĩ with P̃ and, in addition,
the event E of Part 2 is a subset of Dep∗ST × Instc(S) (rather than
Instc(S)). In Theorem 4.6, we replace the source instance Ĩ with a
p-problem P̃; moreover, the sets SOLM and USOLM are replaced
with dSOLST and dUSOLST, respectively. In Proposition 4.7 the
probability space Ĩ is replaced with P̃; that is, conf Q(a) is equal to
the probability that a random pair (Σ, I) of P̃ is such that a is a cer-
tain answer (i.e., a ∈ certain(Q, I,Σ)). Finally, Proposition 4.9
generalizes, again, by simply replacing Ĩ with P̃ .

We now show how the results of Section 5 are generalized. For
that, we need to explain how a p-problem is encoded. Recall that a
source p-instance is encoded as a DNF instance Iα

p . We use a simi-
lar encoding for a probabilistic mapping. That is, every dependency
σ is assigned a DNF formula over EVar (namely, a condition) and
each variable is given a probability in [0, 1]. Formally, a DNF
schema mapping (S,T,Σγ

r ) comprises source and target schemas
S and T (without common relation symbols), a set Σ ∈ Dep∗ST of
dependencies, a function γ that assigns to each σ ∈ Σ a DNF for-
mula γ(σ) over EVar, and a function r : EVar(γ) → [0, 1] (where,
as usual, EVar(γ) is the set of all the event variables that appear
in the image of γ). Now, we allow the source DNF instance Iα

p

and the DNF schema mapping (S,T,Σγ
r ) to share events, that is,
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EVar(α) and EVar(γ) are not necessarily disjoint. In this case, we
require p and r to agree on the common variables (i.e., p(e) = r(e)
for all e ∈ EVar(α) ∩ EVar(γ)).

A DNF schema mapping (S,T,Σγ
r ) and a source DNF instance

Iα
p naturally encode a finite p-problem from S to T, where a sample

(Σ′, I ′) is obtained as follows. First, a random truth assignment
τ : EVar(γ) ∪ EVar(α) → {true, false} is chosen for all the
event variables e of (S,T,Σγ

r ) and Iα
p , by independently picking

a random Boolean value τ(e), such that the probability for true is
r(e) or p(e) (depending on whether e ∈ EVar(γ) or e ∈ EVar(α)).
Second, all the members of Σ and I having their condition satisfied
by τ are selected as members of Σ′ and I ′, respectively. We denote
this probability space by p-space(Σγ

r , I
α
p ). Observe that, since γ

and α are allowed to use the same variables, the marginal source
p-instance and probabilistic schema mapping are not necessarily
probabilistically independent. Moreover, it is easy to show (e.g., by
using the encoding of finite probabilistic databases given in [1,24])
that every finite p-problem can be represented as a combination of
a DNF schema mapping (S,T,Σγ

r ) and a source DNF instance Iα
p .

When analyzing the complexity of the problems considered in
Section 5, we make the assumption that the DNF schema mapping
(S,T,Σγ

r ) is fixed (i.e., as in Section 5, data complexity is actually
analyzed) and, moreover, that every sample (S,T,Σ′) (obtained
by choosing a random truth assignment for EVar(γ)) is a union of
two finite sets, such that the first contains only st-tgds and t-egds,
and the second is a weakly acyclic set of t-tgds. Thus, as in Sec-
tion 5, the input for a computational problem consists of a source
DNF (or tuple-independent) instance Iα

p . Then, all the results of
Table 1 remain correct. For example, if Σ contains only st-tgds
and t-tgds (and the above assumption about the samples (S,T,Σ′)
of (S,T,Σγ

r ) holds), then testing whether a p-solution for the p-
problem p-space(Σγ

r , I
α
p ) exists, given a source DNF instance Iα

p ,
is coNP-complete, but it is solvable in polynomial time if Iα

p is a
tuple-independent instance.

6.2 Probabilistic Mappings in the Literature
Data integration under uncertainty is studied in [13, 14, 41, 42],

where the schema mapping (which is called there a p-mapping) is
probabilistic and the source data are deterministic. We can compare
our basic notions to those of [13, 14, 41, 42] by restricting our p-
problem to a finite one where the source instance is deterministic.

Given a source instance I and a p-mapping M̃, a by-table so-
lution, as defined in [13, 42], is a special case of what we call a
p-solution, namely, a finite p-solution J̃ such that there is a left-
trivial dSOLST-match of the corresponding p-problem P̃ (namely,
the product space M̃× I) in J̃ . (See Section 3.1 for the definition
of a left-trivial probabilistic match.) Thus, the notion of a by-table
solution is more restrictive than our notion of a p-solution (even if
we restrict to deterministic source instances); namely, a by-table
solution is a p-solution but not necessarily vice versa. In particular,
the characterization of Theorem 3.6 for a p-solution does not hold
for a by-table solution. As an example, for a by-table solution J̃ ,
the set Ω+(J̃ ) must be at most as large as Ω+(M̃) whereas no
restriction of this nature exists for our p-solution.

A different type of solution studied (explicitly or implicitly) in [13,
14,41] is the by-tuple solution.13 A by-tuple solution differs from a
by-table solution in that a by-tuple solution allows different tuples
to be transformed by different possible worlds of the p-mapping;
that is, for each tuple there is a probabilistic choice of the mapping
to apply thereon. This notion is restrictive, since it is makes sense
only when the mappings are transformations of individual facts. In

13In [42], only the by-table type is considered.

particular, the mappings of [13, 14, 41] for the by-tuple semantics
are essentially inclusion dependencies [7].

7. CONCLUSIONS
In this paper, we developed a broad and flexible framework for

data exchange over probabilistic data. For that, we had to consider
the fundamental notions of traditional data exchange, such as solu-
tion, universal solution, and target query evaluation, and generalize
them appropriately. In particular, to accommodate source and tar-
get p-instances we defined the notion of a p-solution in terms of a
probabilistic match (namely, the SOLM-match). We explored the
coherence of our basic definitions by scrutinizing them and pro-
viding several different characterizations for each of them. We ex-
plored the application of the framework to a concrete setting where
p-instances are compactly encoded by annotations. Finally, we
generalized the framework to allow for probabilistic schema map-
pings, by introducing the p-problem as a construct that represents a
joint probability distribution over the data and mappings.

The notion of a probabilistic match allows us to systematically
extend other concepts of data exchange into the probabilistic set-
ting. An example is the core solution [16, 20]; in fact, it turns out
that this extension of the core has various desired properties, which
will be presented in a full version of the paper.
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