
Lost Source Provenance

Jing Zhang
∗

University of Michigan
4957 CSE Building

2260 Hayward Street
Ann Arbor, MI 48109

jingzh@umich.edu

H.V. Jagadish
University of Michigan

4601 CSE Building
2260 Hayward Street
Ann Arbor, MI 48109
jag@umich.edu

ABSTRACT
As the use of derived information has grown in recent years,
the importance of provenance has been recognized, and there
has been a great deal of effort devoted to developing tech-
niques to identify individual source tuples used in the deriva-
tion of any result tuple. Often, however, the source database
may have been updated since the result was derived, and
the source tuples of interest are not in the database any
more. In such situations, the provenance management sys-
tem has to reconstruct relevant historical fragments of the
source database as they were at derivation time. In this
paper, we develop techniques to address this problem. Our
experimental assessment shows that these techniques do so
efficiently, and with low storage overhead.

1. INTRODUCTION
Provenance of a derived data item in a database explains

how this data item is derived from other (source) data items.
In a database that allows overwriting operations, such as
deletes or updates, the source data items might be modified
or removed after the derivation was finished.

Consider a data repository that provides data to distributed
online users. Suppose a user derived a data item D from a
data item S in the repository by using a query Q, and stored
D in his local database. After the user finished the deriva-
tion, S in the repository was updated to a new value. Later,
the user wanted to retrieve the source data item that is used
to derive D. Where to find the proper value of S that is
used in the derivation, given the query Q and the data item
D? If the value of S had been updated more than once, then
which one is the proper one?

Example 1.1. Consider a simple source database com-
prising two tables1 Book and Price as shown in Figure 1

∗This work was supported in part by NIH grant
#U54DA021519.
1The attribute named since in the tables is reserved for
our provenance approach. Its meaning will be explained in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 . . . $10.00

and Figure 2 respectively. A query Qbb is shown in Fig-
ure 4, which selects all the books whose prices are under or
equal to 10 dollars. The query result of Qbb is stored in a
new table called BargainBook, as shown in Figure 3. After
the query Qbb is executed, the update Up (Figure 4) on the
table Price is executed, which increases the prices of books
by Stephen Hawking.

ISBN Title Author since

0007208642 1940s Omnibus A. Christie 0
0002310198 After the Funeral A. Christie 0

0553380168
A Brief History

S.W. Hawking 0
of Time

0742627098
Adventures

A.C. Doyle 0
of Gerard

Figure 1: Book

ISBN Price since

0007208642 9 0
0002310198 12 0
0553380168 10 0
0742627098 25 0

Figure 2: Price

Title Price since

1940s
9 1

Omnibus
A Brief

10 1History
of Time

Figure 3: BargainBook

Qbb SELECT b.Title, p.Price

FROM PRICE p INNER JOIN BOOK b

ON p.ISBN=b.ISBN

WHERE p.Price<=10

Up UPDATE PRICE

SET p.Price=p.Price*1.1

FROM PRICE p INNER JOIN BOOK b

ON p.ISBN=b.ISBN

WHERE b.Author=’Stephen Hawking’

Figure 4: Two Database Operations

Taking the tuple 〈“A Brief History of Time”, 10〉 as an ex-
ample. Its source tuple in the table Price is 〈0553380168, 10〉,
which is no longer in the table Price after the two opera-
tions in Figure 4 finished executing. In fact, this book is
now priced 11 dollars, and would not be considered a bar-
gain book at its current price. Explaining its inclusion in the

Section 2.

311

BargainBook table requires an understanding of its histor-
ical price.

Existing techniques of provenance retrieval, such as trac-
ing queries [7] or propagating the identifiers of the source
rows as annotations [11], rely on an assumption that the
source tuples are still in the database. Thus, they can be
retrieved either by executing tracing queries or by referring
to their identifiers. This assumption holds when the derived
data is synchronized with the source data, e.g., the data in
a materialized view is synchronized with the source data in
the base tables. However, in many scenarios, derived data
does not reflect the changes made to the source data, e.g.,
the derived data is stored locally while the source data is in
some remote repository.

When the source data items are not current in the database,
for the existing techniques to find them, a historical version
of the database needs to be reconstructed such that this his-
torical version is exactly what the database was when the
derivation happened. Thus, the existing techniques can be
applied to this historical version. However, to reconstruct
a complete database to its state at some previous time is
expensive.

Usually only a small portion of the database is used in
the derivation, which means during the provenance retrieval,
only this portion of the database at derivation time needs to
be reconstructed. In particular, the tracing queries can be
extended such that they search not only the current database
but also the relevant historical data, which is just enough to
reconstruct the involved portion of the database.

In this paper, we describe such an improved approach
to provenance capture and retrieval, which is aware of his-
torical data and can retrieve source data items when they
are not current in the database. This paper is organized
as follows: Section 2 is the background information about
database provenance and historical data; Section 3 gives the
overview of our approach and introduces the necessary data
structures required by our approach; Section 4 describes the
provenance reconstruction algorithm in detail and analyzes
its time and space costs; Section 5 shows the experimental
results of these costs in a realistic setting; finally, Section 6
and Section 7 are the related work and the conclusion re-
spectively.

2. PRELIMINARIES
In a relational database, the database operations are usu-

ally intended to manipulate tuples. Therefore, we focus on
the provenance of tuples.

We denote the database as D. The tables inside D are
denoted using capital letters, e.g., T . We assume set seman-
tics, therefore, every table is a set of tuples. Tuple variables
are denoted with small letters, e.g., t or s.

For each table T , its attribute is denoted as capital letters,
e.g., T.A, where A is an attribute. The schema of a table T is
denoted as T : 〈A1,, Am〉, where A1, ..., Am are attributes.

2.1 Query Language
A safe query on the database can be expressed in Tu-

ple Relational Calculus (TRC) as {t|f(t)}, where t is the
only free tuple variable in the formula f(t). In this TRC
query, the part before | is called answer. Sometimes, a TRC
query also takes the form {t : 〈A1, ..., An〉 | f(t)}, where
〈A1, ..., An〉 is a list of attributes in the answer tuple, also
called target list.

In this paper, we only consider conjunctive queries with
aggregations, i.e., ASPJ queries. An SPJ query (a.k.a. a
conjunctive query) expressed in TRC is of the form {t|∃s1, ..., sm

S1(s1)∧...∧Sm(sm)∧f(s1, ..., sm, t)}. Si(si) (i = 1, ..., m) is
an atomic formula that evaluates to true if si is a tuple in the
table Si. f(s1, ..., sm, t) is a conjunction of atomic formulas.
The atomic formula is either a predicate, e.g., S1(s1), or
the comparison of a table’s attribute to some value or some
other attribute, e.g., S1.A = 2. In particular, f(t) in an
SPJ query does not contain the universal quantifier ∀ or the
negation ¬ or the disjunction ∨.

An SPJ query can be extended with aggregations by allow-
ing aggregate attributes in the target list, e.g., {t : 〈A1, ..., An,
G AS agg(An+1)〉 | ∃s1, ..., sm S1(s1)∧...∧Sm(sm)∧f(s1, ..., sm, t)}.
In this form, A1 through An are grouping attributes, An+1

is the attribute to which the aggregate function agg is ap-
plied, and G is a new attribute storing aggregate values. If
in a query, aggregate attributes appear in the formula part
(the part after |), the query can be decomposed into several
queries by introducing new intermediate tables, and each of
them either has aggregate attributes only in its target list or
does not have aggregations. We will show how this is done in
Appendix B. In fact, this decomposition corresponds to the
decomposition of an aggregate query into canonical segments
in [7]. Since an ASPJ query sometimes needs to be divided
into several (A)SPJ queries, the provenance retrieval for this
ASPJ query becomes a recursive process correspondingly.

From here on, we use {t : 〈A1, ..., An, G AS agg(An+1)〉 |
∃s1, ..., sm S1(s1)∧ ...∧Sm(sm)∧f(s1, ..., sm, t)} as the gen-
eral form of queries under our consideration. Notice that Si

and Sj (i 6= j) may refer to the same table.

2.2 Provenance of Tuples
The provenance of a given tuple can be defined in many

different ways. In this paper, we adopt the definition from [7].
We restate the definition here.

Definition 2.1. [Provenance] Assume a database D have
tables T1, ..., Tn. Given a tuple t in the result set of a query
Q executed on D, denoted as t ∈ Q(T1, ..., Tn), the prove-
nance of t is a subset of D that has tables T ′1, ..., T

′
n, where

T ′1, ..., T
′
n are the maximal subsets of T1, ..., Tn such that:

1. {t} = Q(T ′1, ..., T
′
n)

2. ∀T ′k : ∀t′ ∈ T ′k : Q(T ′1, ..., T
′
k−1, {t′}, T ′k+1, ..., T

′
n) 6= ∅

If a single table is referenced more than once in the query,
e.g., in the case of self-joins, each instance is regarded as
a separate table, and is renamed correspondingly such that
each table name only appears once in the query. With this
treatment, there always exists a set of tables, T ′1, ..., T

′
n, that

satisfies the two requirements listed in the above definition.
Moreover, in this paper, we assume set semantics. Under
set semantics, it has been proved in [7] that the provenance
defined above for a given tuple is unique.

2.3 Historical Data
When a tuple in the database is deleted or updated, this

tuple becomes a historical tuple. As illustrated in the ex-
ample in Section 1, this historical tuple can be the source
tuple of some derived tuple and may need to be retrieved.
In such cases, the archiving of historical tuples is essential
to the retrieval of provenance.

312

The implementation of storing historical data can be done
in many different ways as explored in the temporal database
literature. Although the intensive study on data models, in-
dexes and query languages of historical data is essential to
temporal databases, it is out of the scope of this paper. We
adopt a simple implementation of historical data storage,
since it does not impact our purpose to show the improve-
ment of our provenance approach over the baseline approach.

In the next section, we are going to describe our way of
storing historical data, together with other auxiliary data
structures necessary for the retrieval of non-current prove-
nance.

3. APPROACH OVERVIEW AND AUXILIARY
DATA STRUCTURES

Our approach to provenance retrieval consists of two steps:
constructing an extended tracing query and executing it.
The extended tracing query, in order to retrieve provenance
that is not current in a database, should be able to retrieve
both from the historical data and from the current database.

The historical data is stored in several data structures.
These extra data structures are populated every time a data
operation happens and are queried by our extended tracing
queries.

We define two additional table-like data structures: a
provenance log and a set of shadow tables. Furthermore, we
define an extra annotation attribute since in each regular
relational table.

3.1 Provenance Log
Most, if not all, databases have logs. Usually, there is

more than one log, each for a specific purpose. Therefore,
each of these logs can be designed in a way such that it can
best serve a specific purpose.

In our approach, we define a provenance-oriented log: prove-
nance log.

If a specific DBMS is under consideration, its existing logs
may already be sufficient for provenance purpose in the sense
that they have all the information that the provenance log
has. If so, the provenance log does not necessarily have to
be an additional log, but instead it can be some view defined
over the existing logs.

The provenance log, denoted as Plog, consists of a se-
quence of log entries. Each entry corresponds to an op-
eration executed in the database system. Each entry has
the structure (ID, timestamp, user, sqlStatement). ID is
an unique ID assigned to every entry in the log, and an
operation that is committed later has a bigger ID for its
corresponding log entry. That is to say, the ID indicates the
order of the commitment of all the operations. sqlStatement
stores the SQL statement of the committed operation. timestamp
is the time when the operation is committed. user specifies
the user who commits the operation.

Recall Example 1.1. The provenance log after the execu-
tion of the two operations Qbb and Up is shown in Figure 5.

ID timestamp user sqlStatement
1 2009-08-01 01:00:00 Alice Qbb

2 2009-08-02 11:00:00 Bob Up

Figure 5: Provenance Log Example

3.2 Shadow Table
Historical tuples are stored in shadow tables. For each reg-

ular table in the database, we define a corresponding shadow
table.

For example, if a regular table is of schema T : 〈a1, a2〉,
then the shadow table of T is Tsh : 〈a1, a2, begin, end〉. The
attributes begin and end are foreign keys referring to the
attribute ID in the provenance log. The attribute begin
stores an ID whose corresponding entry in the provenance
log records the operation that generates this tuple. The
attribute end stores an ID whose corresponding entry in
the provenance log records the operation that removes this
tuple.

The attributes begin and end are to specify the time pe-
riod when the historical tuple was current. We choose to use
the IDs of log entries instead of the actual times to avoid am-
biguity: two committed operations can have the same time
of commit but can not have the same log entry ID.

Recall Example 1.1. After the update Up, the table Price
is like the one shown in Figure 7; and its shadow table
Pricesh is shown in Figure 6.

ISBN Price begin end
0553380168 10 0 2

Figure 6: Shadow Table Pricesh After Up

ISBN Price since

0007208642 9 0
0002310198 12 0
0553380168 11 2
0742627098 25 0

Figure 7: Table Price After Up

3.3 Annotation Attribute
Current tuples are stored in regular tables. An extra anno-

tation attribute called since is added to each regular table,
which is a foreign key referring to the attribute ID in the
provenance log. The attribute since stores an ID whose cor-
respondent entry in the provenance log stores the operation
that generates this tuple.

This extra annotation attribute is not visible to the users
of the database, and thus it can not be manipulated by the
users. The provenance capture and retrieval are the only
procedures that can set its value or query it.

It is desirable that this annotation attribute is included
in the schema during the database design and before the
database population. If a database is already populated with
a schema without this attribute, the alteration of adding
this attribute to each table is not very welcome. Therefore,
an alternative approach will be creating a separate table
that links each tuple in the database, via some unique tuple
ID, to this attribute. In this paper, we assume that this
annotation attribute since is already included in each table
in the database schema.

3.4 Populating Auxiliary Data Structures
All the auxiliary data structures are populated whenever

a database operation takes place.

1. When a database operation is committed, a new entry
is created in the provenance log and a unique ID is as-

313

signed to this new entry. When multiple operations are
committed together as in a single transaction, each of
them will have a log entry in the provenance log upon
the time of commitment. The order of these entries
is the execution order of the corresponding operations.
Any operation that is not committed will not have an
entry in the provenance log.

2. When a tuple is inserted into a table due to this database
operation, the value of its since attribute is set with
the ID of the newly created entry in the provenance
log.

3. When a tuple is removed from a table due to this
database operation, either by a delete or by an update,
the removed tuple is inserted into the corresponding
shadow table. As for this new tuple in the shadow
table, the value of the begin attribute is set with the
value of the since attribute in the removed tuple; the
value of the end attribute is set with the value of the
ID of the newly created entry in the provenance log.

This populating of auxiliary data structures is in fact our
provenance capture procedure. As we will see in the next
section, all the provenance information we need is recorded
in these auxiliary structures.

4. PROVENANCE RETRIEVAL
In this section, we show how to build the extended trac-

ing queries to retrieve provenance using both the current
database and the historical data for a given derived tuple.

The tracing query introduced in [7] is able to retrieve the
provenance defined in Definition 2.1, if the provenance is cur-
rent in the database. Those tracing queries are constructed
based on the original query Q and the derived tuple t, and
they use only the current database. When the provenance
is not current, they need to be extended to make use of
historical data.

We divide our discussion of the extended tracing queries
into three parts. First, we revisit the tracing query intro-
duced in [7]. Then, we extend the tracing queries such that
they can find the (current or historical) provenance by utiliz-
ing the current database, the provenance log and the shadow
tables. Finally, we analyze the time and space costs of prove-
nance capture and retrieval.

4.1 Tracing Query Revisited
In [7], the tracing queries and the original queries are ex-

pressed in a relational algebra extended with aggregations.
In this paper, we use Tuple Relational Calculus (TRC) in-
stead, which can be extended with aggregations as well [14].
Moreover, this extended TRC is equivalent to the extended
relational algebra [14].

Recall the example query Qbb shown in Figure 4. The
SQL statement of Qbb can be expressed in TRC as follows:

n
t : 〈T itle, Price〉 |
∃s1 : 〈ISBN, T itle〉, s2 : 〈ISBN, Price〉`
Book(s1) ∧ Price(s2)
∧s1.ISBN = s2.ISBN ∧ s2.P rice <= 10

∧t.T itle = s1.T itle ∧ t.Price = s2.P rice
´ o

In the above TRC query, t, s1, s2 are tuple variables. t.T itle,
s1.ISBN , etc. are attribute qualified tuple variables. Book(s1)
and Price(s2) are atomic formulas. Book(s1) (Price(s2))
evaluates to true, if s1 (s2) is a tuple from the table Book
(Price). s1.ISBN = s2.ISBN , s2.P rice <= 10, etc. are
also atomic formulas. Judging from its form, the above
query is a safe conjunctive query (SPJ query).

The answer to a TRC query is a set of tuples. Each of
these tuples, when assigned to the tuple variable in the an-
swer part of the query, can make the formula part evaluate
to true. Since the answer to a TRC query is a set of tuples,
it can been seen as a relation or a table.

When the original query Qbb is expressed in TRC, its trac-
ing query can be expressed in TRC as well. The tuple 〈“A
Brief History of Time”, 10〉 is an answer tuple to Qbb. To
retrieve its provenance in the table Book, we can use the
following tracing query:

n
s1 : 〈ISBN, T itle〉 |
∃s2 : 〈ISBN, Price〉, t : 〈T itle, Price〉`
Book(s1) ∧ Price(s2)
∧s1.ISBN = s2.ISBN ∧ s2.P rice <= 10
∧t.T itle = s1.T itle ∧ t.Price = s2.P rice

∧t.T itle = “A Brief History of Time′′ ∧ t.Price = 10
´ o

The tracing query is like a“re-organization”of the original
query, as shown in the above example with underlines.

1. The tuple variables s1 and t are switched such that the
source tuple variable s1 is now in the answer part and
t is now in the formula part.

2. More conditions are added to the formula part, i.e.,
the value of each attribute of the derived tuple t is
specified, e.g., the last line of the above tracing query.

In general, given a query Q asn
t : 〈A1, ..., An, G AS agg(An+1)〉 |
∃s1, ..., sm`
T1(s1) ∧ ... ∧ Tm(sm) ∧ f(s1, ..., sm, t)

´ o (1)

and given a tuple t = 〈a1, ..., an, g〉 in the query result, the
tracing query to find its provenance in the table Tk is, as-
suming Tk has a schema B1, ..., Bl,n

sk : 〈B1, ..., Bl〉 |
∃t, s1, ..., sk−1, sk+1, ..., sm`
T1(s1) ∧ ... ∧ Tm(sm) ∧ f(s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an

´ o (2)

We show in Appendix A that this tracing query can re-
trieve the provenance defined in Definition 2.1.

4.2 Extended Tracing Query Aware of Histor-
ical Data

Given a derived tuple t, if its provenance is not current
in the database, we can retrieve its provenance with our
extended tracing queries. Compared to the classic tracing
query as in Equation 2, the extended tracing query need an
extra piece of information, i.e., the ID of the provenance log
entry that records the original query.

314

Recall our discussion in Section 3.2. The IDs of prove-
nance log entries can be used as timestamps to indicate time
points or periods of time, e.g., storing these IDs in the at-
tributes begin, end and since. We have also argued that
these IDs are even better than real timestamps since they
incur no ambiguity.

Similarly, the ID of the provenance log entry that records
the original query represents the derivation time, i.e., the
time when the original query was executed. Therefore, with
this ID, our extended tracing query is able to decide which
historical data is proper to retrieve provenance from, i.e.,
the data that was current in the database at the derivation
time is proper.

Recall the book example, for the tuple 〈“A Brief History of
Time”, 10〉 generated by the query Qbb, an extended tracing
query that can retrieve the provenance of it in the table
Price is

n
s2 : 〈ISBN, Price〉 |
∃s1 : 〈ISBN, T itle〉, t : 〈T itle, Price〉`
BookH(s1) ∧ PriceH(s2)

∧s1.ISBN = s2.ISBN ∧ s2.P rice <= 10
∧s1.ISBN = t.ISBN ∧ s2.P rice = t.Price

∧t.T itle = “A Brief History of Time′′ ∧ t.Price = 10
o

Compared to the classic tracing query, the difference is
that the Book and Price predicates are changed into BookH

and PriceH respectively. BookH (PriceH) is the historical
version of the table Book(Price) when Qbb took place.

In the book example, there are no updates on the table
Book. Therefore, BookH is the same as Book. However,
PriceH and Price are different due to the update Up. To
construct PriceH , we should remove any tuple that enters
the table Price after the execution of Qbb; and add any
tuple that leaves the table Price after the execution of Qbb.
Therefore, PriceH can be constructed as a view using the
following query:

n
s : 〈ISBN, Price〉 |`
Price(s) ∧ s.since < 1

´
∨

∃sh

`
Pricesh(sh) ∧ sh.begin < 1 ∧ sh.end >= 1

∧s.ISBN = sh.ISBN ∧ s.Price = sh.P rice
´ o

In this example of extended tracing query, the query for-
mula consists of two formulas connected by a union. The
first formula selects source tuples from the current table
Price. In order for a current Price tuple to be possible
provenance, it should have been current before Qbb hap-
pened. In this example, Qbb is logged in the provenance log
with an entry ID 1. Therefore, the first formula has a condi-
tion s.since < 1. This condition is to make sure the source
tuple is already in the database when Qbb took place.

The second formula selects source tuples not currently in
the table Price. These historical tuples are stored in the
shadow table of Price, i.e., Pricesh. Similar to the case of
current tuples, in order for a historical tuple to be possible
provenance, it should be current when Qbb took place. This
requirement is checked through the conditions sh.since < 1∧
sh.end >= 1.

From the above example, we can see that, in order to build
an extended tracing query, we need the ID of the provenance

log entry that records the original derivation query. Thus,
the construction of an extended tracing query needs three
pieces of information:

1. the derived tuple

2. the original query

3. the ID of the provenance log entry recording the orig-
inal query

In general, if given a tuple t, whose derivation query Q is
logged in a provenance log entry with ID being id, assuming
Q is of the form as shown in Equation 1, then the extended
tracing query to retrieve provenance in the table Tk is

n
sk : 〈B1, ..., Bl〉 |
∃t, s1, ..., sk−1, sk+1, ..., sm`
T H

1 (s1) ∧ ... ∧ T H
m (sm) ∧ f(s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an

´ o (3)

where T H
k , assuming the shadow table of Tk is Tk sh, isn

sk : 〈B1, ..., Bl〉 |`
Tk(sk) ∧ sk.since < id

´
∨

∃s′k
`
Tk sh(s′k) ∧ s′k.begin < id ∧ s′k.end >= id

∧s′k.B1 = sk.B1 ∧ ... ∧ s′k.Bl = sk.Bl

´ o
(4)

Notice that, although the original derivation query is a
conjunctive query with possible aggregations, the extended
tracing query is not a conjunctive query, because of the
union connective used in Equation 4.

4.3 Analysis of Efficiency of Extended Trac-
ing Queries

We now analyze the space and time efficiency of our ap-
proach.

4.3.1 Space Cost
The archiving of historical data can be done at different

granularities. For example, if one attribute in one tuple in a
table in a database is updated, to store the historical data,
before the update, we can back up (i) the whole database,
(ii) the updated table, (iii) the updated tuple, or (iv) just
the updated attribute in the tuple.

The size of the storage of historical data obviously de-
pends on the granularity used in archiving. In the above
example, each way of archiving can enable the recovering of
the database before update, however, the last one incurs the
minimum amount of storage.

In our approach, we archive the historical data at the gran-
ularity level of tuples, i.e., we archive a tuple in a proper
shadow table when one or multiple attributes in this tuple
are updated. Assume the average size of a tuple is sizet, and
the number of tuples affected by an operation is n. Thus, af-
ter this operation, the size of the shadow tables is increased
by (sizet + C) × n, where C is a constant being the size of
the two attributes begin and end.

Notice that the decreasing in the space cost also means
the increasing in the time cost of reconstructing previous
versions using historical data. For example, if the whole
database is archived, the reconstruction of any table in the
database at a previous time involves no complex queries

315

but almost merely selecting. Comparatively, since we only
archive the updated tuple when one or more attributes in it
are changed, the reconstruction of the involved table needs
to run a query as shown in Equation 4.

Besides the archive of historical data, i.e., the shadow ta-
bles, our approach also incurs extra space cost due to the
provenance log and the annotation attribute since. The size
of the provenance log is linear to the number of entries in it
if we assume a fixed size of each entry, which is possible if
a maximum length of SQL statements is assumed. The size
of the attribute since is the same as that of begin or end,
since they all refer to a provenance log entry ID. The total
cost of this attribute across the entire database will be the
number of tuples in the entire database times the size of this
attribute.

4.3.2 Time Cost
There are two types of time cost: the time cost of prove-

nance capture and the time cost of provenance retrieval.
The time cost of provenance capture is relatively smaller
and more straightforward than that of provenance retrieval.

Provenance capture for every database operation is a two-
step procedure: computing one new provenance log entry
and/or new shadow table tuples; and inserting them into
the provenance log and/or shadow tables.

The computation time is negligible, since the computation
of either the log entry or the shadow table tuples is fairly
simple. The insertion time of the log entry is constant, since
there is always one log entry with a fixed size. The inser-
tion time of shadow table tuples depends on the number of
shadow table tuples generated by this operation. Assume n
tuples are updated during an operation, and insert timet is
the average time of inserting one shadow table tuple. Then
the time of inserting into shadow tables for this operation
will be insert timet × n.

The time cost of our provenance retrieval primarily con-
sists of constructing an extended tracing query and execut-
ing it. The construction of an extended tracing query takes
roughly a constant amount of time. On the other hand, the
time of executing it varies with the reconstructed historical
versions.

The historical version of a table consists of tuples from
current table and shadow tables. The executing time of
the extended tracing query is affected by both the number
of tuples in the historical version and the location of these
tuples. The former is easier to understand, since retrieving
from a table/view with more tuples takes more time than
retrieving from a table/view with less tuples. However, the
second relationship is not so obvious.

In fact, if the reconstructed historical version has n tu-
ples, and m of them comes from the shadow table, then the
executing time is roughly proportional to m/n. This is later
shown by an experiment in Section 5. The cause of this may
be the specific physical plan of the union operations used in
reconstruction. In the physical plan, the union operation is
implemented as (i) two index seeks on the two tables, (ii) a
concatenation of the outputs of the index seeks, and finally
(iii) a sort of the output of concatenation. If most of the tu-
ples in the output of concatenation are from the same table,
the sort may be faster than in the case where tuples come
evenly from the two tables.

5. EVALUATION

In this section, we evaluate, through experiments, the sizes
of the provenance log and shadow tables, and the time of
provenance retrieval.

In each experiment, we start with a set of tables; execute a
workload consisting of queries, inserts, updates and deletes;
then retrieve provenance for selected tuples in the result sets
of the executed queries. The workload is specially made up
such that some of the derived tuples in the result sets do
have provenance that is not current in the database.

Our experimental tables and workloads are based on the
database and transactions specified in TPC-E benchmark [12]
with some simplifications and modifications. The reason we
use TPC-E benchmark is that it has quite a few transactions
that contain updates and deletes.

5.1 Tables And Workloads
The TPC-E benchmark simulates the activity of a broker-

age company. The brokerage company interacts with cus-
tomers and the financial market. A customer can have more
than one account with the broker company. The customer
can place trade orders through any of her accounts. The
brokerage company buys or sells securities on the market
according to the customers’ trade orders. In the TPC-E
specification, there are 33 tables and 13 transactions. In our
experiments, we use 4 transactions out of 13 and these four
transactions use 9 tables out of 33.

The transactions we used are customer position (c-p), trade order
(t-o), trade result (t-r) and market feed (m-f). The tables
we used are CUSTOMER (C), CUSTOMER ACCOUNT
(CA), HOLDING SUMMARY (HS), TRADE (T), LAST TRADE
(LT), TRADE HISTORY (TH), STATUS TYPE (ST), SET-
TLEMENT (S), CASH TRANSACTION (CT). Each of those
9 tables is read and/or written by some of these four trans-
actions.

5.1.1 Table Generation
We generate the tables specified in TPC-E through EGen

package. The sizes of the tables can be scaled through sev-
eral parameters: the number of customers (NoC), the scaling
factor (SF), the initial trade days (ITD). For example, the
size of the table TRADE is ((ITD * 8 * 3600)/SF) * NoC.
We set the number of customers to be 5000, the scaling fac-
tor to be 4500 and the initial trade days to be 30. Notice
that the scaling factor is the number of customer rows per
single Transaction-Per-Second-E(tpsE), and the scaling fac-
tor for nominal throughput is 500 [12]. Therefore, the scal-
ing factor we choose is too big for a nominal output. Since
we do not intend to report the database performance under
TPC-E but to make use of the table settings and workloads,
we use this big scaling factor in order to keep the database
small. Given the parameters we choose, we have 33 tables
of a total size being 3.4G bytes.

5.1.2 Transaction Generation
In the four transactions we use in our experiments, cus-

tomer position is a read-only transaction, and the other
three transactions are read-write transactions. Each trans-
action can have more than one read and/or write. All the
reads are queries. The writes can be inserts or updates or
deletes. Some of the writes modify the tables that are read
by customer position. All these reads and writes are called
database operations.

Although we execute every database operation (read or

316

write) in these four transaction, we do not capture every
database operation in the provenance log. When a read
only reads tables that are not used by any write, we do not
capture provenance for it. This is because the result tuples
of this type of read always have provenance in the current
database, thus we are not interested in experimenting with
them. When a write only writes tables that are not used by
any read, we do not capture the provenance for it. This is
because writes of this type do not have affect on the prove-
nance of result tuples of reads, thus, we are not interested
in these writes. All the other reads and writes are captured
in the provenance log when they take place.

In Figure 8, we label the database operations, i.e., reads or
writes, in the four transactions that the provenance capture
is aware of. We also show the tables used in each of them.
The database operation denoted as R is a read and the one
denoted as W is a write.

Each of the 5 tables, shown in Figure 8, has a correspond-
ing shadow table.

CA HS T LT TH

c-p
Rc-p

CA,HS,LT r r r

Rc-p
ST,T,TH r r

t-o

Wt-o
T w

Wt-o
TH w

t-r

Wt-r
HS w

Wt-r,1
T w

Wt-r,2
T w

Wt-r
TH w

Wt-r
CA w

m-k
Wm-f

LT w

Wm-f
T w

Wm-f
TH w

Figure 8: Reads and Writes of Tables in Transac-
tions

5.1.3 Workload Generation
The central task we wish to evaluate is that of retrieving

provenance by reconstructing the source tuples that are not
in the current database. Therefore, in the workloads we use
for the experiments, we want some updates that come after
some queries and change (some of) the source tuples used
by those queries. We generate two types of workload, both
fulfilling this specific purpose.

The first type of workloads has a workload pattern that
is the recurring sequence of the 4 transactions in the or-
der of customer position, trade order, trade result and mar-
ket feed. The order of trade result and market feed may be
switched depending on if the order is a market order or a
limit order. In particular, in such a workload, the tuples
used in customer position as source tuples are later modified
by the following trade order, trade result and market feed.
The workloads of this type all have roughly the same ratio
of read to write.

The second type of workloads always has a single
customer position at the beginning of the workload, and
then has many recurring sequences of 3 transactions, i.e.,
trade order, trade result and market feed. Unlike the work-
loads of the first type, the workloads of this type can have

different ratios of read to write. With this type of workloads,
we can manage to achieve different percentages of historical
tuples in the reconstructed historical view, as will be ex-
plained in the discussion of the second experiment on time
cost (Figure 13).

These two types of workload are both obtained by modify-
ing the workloads generated by the CEE class in EGen pack-
age, since the original workloads generated by CEE contain
transactions other than the four we use in this experimental
evaluation.

1. we take a workload generated by the CEE class in
EGen package;

2. keep only the transactions of trade order;

3. for each trade order, we generate a trade result and a
market feed after it, and

(a) for the first type of workload, a customer position
is generated before it

(b) for the second type of workload, a customer position
is generated before it only when this trade order
is the first transaction in the workload.

5.1.4 Metrics
We have two metrics of primary interest: space and time.

In space, we are primarily concerned with the space require-
ments of the auxiliary data structures that we require, to re-
tain sufficient historical provenance information. We would
like to measure this overhead. In time, we are concerned
with the time required to reconstruct at least enough history
to complete provenance explanation for a data item derived
from updated sources. Obviously, we would like to minimize
this time. We report measurements for both metrics in turn
below.

5.1.5 Baseline for Comparison
The most important question to address is whether the

space and time costs are acceptable, in an absolute sense.
Is the overhead affordable to obtain the benefits of histori-
cal provenance? Of course, this question is addressed in the
experimental results reported below. But there is also an
additional question of interest: how much did our cleverness
buy us? How do the techniques we developed in this pa-
per compare against the state of the art before our work.
How much better are we than a baseline? Of course, this
begs the question of defining a suitable baseline. Since most
provenance techniques are not capable of handling updat-
able sources, we really cannot use them directly for effective
comparison. In fact, we already know, even without per-
forming any experiments, that our techniques reduce to the
method of tracing queries if there happen to be no updates
performed to the source data.

Since the primary barrier to the use of classic provenance
techniques in our problem scenario is the need for histori-
cal source data, a baseline approach will be leveraging the
transaction-time temporal databases to query some previ-
ous state of the database and apply the existing provenance
techniques to that previous state. However, it has two disad-
vantages. First, temporal databases are either queried via an
extended language to SQL, e.g., introducing a new keyword
“AS OF” [15]; or queried via XQuery, e.g., [17]. The former
needs an extended query language standard, while the lat-
ter enforces the retrieval of provenance by several queries.

317

Second, it is a challenging problem in temporal databases
to acquire transaction timestamps that are consistent with
the transaction serialization order [13]. However, as long as
the provenance retrieval is concerned, the sole usage of the
serialization order is sufficient to reconstruct necessary his-
torical data, as demonstrated by the usage of log entry IDs
in our approach. Thus, there is no need of introducing trans-
action timestamping to cause unnecessary complexity. As a
comparison, our approach exclusively uses SQL, and only
depends on the commit order of transactions to achieve the
reconstruction of previous states.

5.2 Experiments
We implement all our experiments in Java. We run the

code using the JRE 6 update 14 from Sun, installed on a ma-
chine of 3.06GHz Celeron CPU with 1.96GB RAM memory
running Microsoft Windows XP Professional 2002 SP 3.

5.2.1 Space Cost
The size of provenance log grows with the number of com-

mitted database operations. The size of a shadow table
grows with the number of tuples updated or removed from
the corresponding regular table.

We have 5 workloads of the first type with increasing
amounts of transactions shown in Figure 9. In these 5 work-
loads, the ratios of read to write are roughly the same. The
space cost of each of these 5 workloads is shown in Fig-
ure 10. The size of provenance log is close to linear with
the number of committed operations, which can be queries,
inserts, updates or deletes. In this particular experiment,
the size of a single log entry, i.e., the provenance log cost
per committed operation, is around 150 bytes. The size of
shadow tables for each workload, shown in Figure 10, is the
sum of 5 shadow tables, i.e., the shadow tables for TRADE,
TRADE HISTORY, CUSTOMER ACCOUNT,
HOLDING SUMMARY and LAST TRADE respectively. This
total size of shadow tables is roughly linear with the number
of updates in the workload. In this particular experiment,
the space cost of shadow tables is around one third of the
cost of the provenance log. In this experiment, the number
of writes is a little more than double the number of reads. If
the writes are less frequent, the space cost of shadow tables
can be further reduced.

Workload
1 2 3 4 5

Rc-p
CA,HS,LT 58 563 1123 1678 2248

Rc-p
ST,T,TH

Wt-o
T 58 563 1123 1678 2248

Wt-o
TH

Wt-r
HS 58 563 1123 1678 2248

Wt-r
TH

Wt-r
CA 57 519 1031 1529 2070

Wt-r,1
T 13 100 190 316 423

Wt-r,2
T 58 563 1123 1678 2248

Wm-f
LT 58 563 1123 1678 2248

Wm-f
T 14 214 447 626 875

Wm-f
TH

Total 562 5551 11099 16521 22227

Figure 9: Workloads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5

Si
ze

 (
K

B
)

Workloads

Sizes of the Provenance Log and Shadow Tables

Provenance Log Shadow Tables

Figure 10: Sizes of the Provenance Log and Shadow
Tables

5.2.2 Time Cost
We have two experiments showing respectively the abso-

lute time cost of provenance retrieval and the relationship
between the time cost and the ratio of historical tuples in
the reconstructed historical views.

To show the absolute time cost of retrieving provenance
using extended tracing queries, we experiment with the first
workload as shown in Figure 9. In this workload, the query
Rc-p

CA,HS,LT is executed 58 times, and generates 322 tuples in
total. Among these 58 executions, a later execution uses a
different version of the database than an earlier execution,
since we have padded updates between any two consecutive
executions of the query. Therefore, the reconstructed his-
torical versions of these 322 tuples are different.

The retrieval times of these tuples are shown in Figure 11.
The vertical axis is the time of retrieval. The horizontal axis
is the total size of all the reconstructed views in one tracing
query. The size is measured with the number of tuples.
Every point in the plot is the retrieval of provenance for one
derived tuple.

0

50

100

150

200

250

300

350

400

450

224004 224006 224008 224010 224012 224014

Ti
m

e
(m

s)

Total Size of All the Reconstructed Views

Time of Retrieving Provenance
For One Derived Tuple

Figure 11: Time of Provenance Retrieval For a De-
rived Tuple

We can see from Figure 11 that the absolute time of re-
trieval falls in a range from 200ms to 300ms when the total
number of tuples in all the reconstructed views is around
224000. Also, we notice in Figure 11 that for a fixed size
of reconstructed views, the retrieval time varies. That is
because of the different ratios of historical tuples in the re-
constructed views.

318

To show the relationship between the retrieval time and
the ratio of historical tuples in the reconstructed views, we
execute the four workloads of the second type shown in Fig-
ure 12.

Workload
6 7 8 9

Rc-p
CA,HS,LT 1 1 1 1

Rc-p
ST,T,TH

Wt-o
T 58 563 1817 2840

Wt-o
TH

Wt-r
HS 58 563 1799 2816

Wt-r
TH

Wt-r
CA 57 519 1648 2577

Wt-r,1
T 13 100 309 499

Wt-r,2
T 58 563 1799 2816

Wm-f
LT 58 563 1799 2816

Wm-f
T 14 214 698 1197

Wm-f
TH

Total 448 4427 14185 22416

Figure 12: Workloads (Continued)

In each of these four workloads, the query Rc-p
CA,HS,LT is

executed only once and is executed at the beginning of the
workload. Since it is executed at the beginning and the
initial databases for these four workloads are the same, the
reconstructed view of each involved table is the same across
these four workloads. In particular, the total number of
tuples in the reconstructed views of all the involved tables
is 224007.

When retrieving the provenance for a derived tuple by
Rc-p

CA,HS,LT, the more writes following this query, the more
historical tuples in the reconstructed views. Therefore, the
ninth workload has the highest ratio of historical tuples to
the size of the reconstructed views.

The provenance retrieval time for a tuple derived by the
query Rc-p

CA,HS,LT in each of these four workloads is shown in
Figure 13. As can be seen from this figure, the executing
time of the extended tracing query grows when the ratio of
historical tuples increases.

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e
(m

s)

Percentage of Historical Tuples In Reconstructed
Views (%)

Time of Retrieving Provenance
For One Derived Tuple

Figure 13: Time Cost of Examining a Provenance
Log Entry With Fixed Reconstructed Views

6. RELATED WORK

Provenance provides information about the origin of data.
This information can be used in many different ways. For
example, in a scientific computing workflow, the origin of
data can help to find the cause of errors in the data. Also,
the origin of each form on a secure web page can help prevent
leaking private information to malicious hackers.

Due to the usefulness of provenance, it has attracted more
and more attention. There are quite a few studies on prove-
nance and in particular in database applications [1–6,8–11].

In general, the provenance of a data item in a database in-
cludes the source data items used to derive it and the deriva-
tion process. The approaches to the retrieval of these source
items can be classified into three categories: inversion based,
annotation based, and log based. In an inversion based ap-
proach [8], the source data items are located by executing
tracing queries, which are constructed based on the original
queries and the derived data item. In an annotation based
approach [2, 5, 9–11], the source data items are located by
referring the annotation of the derived data items, which
contains either the identifiers of the source data items or
the source data items. In a log based approach [1], every
database operation is logged and the source data items or
the referring to them are directly recorded in the log.

The inversion based approach is the computation-on-request
type, i.e., the provenance is computed only when the user
asks for it. It particularly addresses the derivation that is
done through SQL queries. On the other hand, it does not
provide provenance for a derived data item that is gener-
ated through copy-paste operations. The annotation based
approach can apply whether the derivation is through SQL
type operations or copy-paste type operations. It requires
that the annotations be propagated during the execution of
derivation operations. This annotation propagation mech-
anism is not yet a widely supported feature of commercial
systems. The log based approach suits the curated databases
best. The provenance stored is like a log of operations, and
the storage cost can be achieved by removing entries that
could be inferred from the other entries as illustrated in [1].

Although much work has been done on database prove-
nance, the effect of in-place update on provenance has not
been paid attention until recently [2, 3, 6].

[3] proposed an update language that implicitly propa-
gates color annotations of the objects where the color an-
notations are a type of provenance representation. These
provenance-aware updates propagate the color annotation in
a“kind-preserving”way, which means that if a value appears
in the output with a given color, then the corresponding
value in the input must have the same type (atom, record,
or set); furthermore, if the value is an atom, then the cor-
responding value in the input must be the same atom [2].
For example, if a cell of a tuple is updated by a provenance-
aware update operation, the color annotation of the tuple
and other cells stay the same while the color annotation of
this cell changes. However, kind-preserving is a very weak
condition [2]. For example, if the value of every cell in a
tuple is replaced by some random value, the tuple still keeps
its color. It is not clear that this is a desirable property.
Moreover, [3] does not provide for the retrieval of previous
values.

Another area of related work to this paper is the work on
temporal databases. In a temporal database, the tuple get-
ting replaced is not gone but still stored somewhere, and thus

319

becomes a historical tuple. Each historical tuple has trans-
action times associated with it indicating the time period
during which the tuple was present in the database. Other
ways of archiving historical tuples have been explored too.
For example, recent works [16, 17] proposed efficient ways
of storing all the previous values and/or previous schemas
by archiving the information of previous versions into XML
files. In contrast to the focus of provenance approach, tem-
poral databases do not address the derivation relationship
that may exist between these historical data items and other
data items that are derived from these historical values.

7. CONCLUSION
In this paper, we introduced an approach to the retrieval

of provenance (source data items used in a derivation) that
is not current in the database. In order to retrieve it, the
provenance capture and provenance retrieval process should
be aware of the database operations that overwrite exist-
ing values in the database. We developed techniques that
would maintain the least amount of historical information
necessary to reconstruct provenance accurately. We demon-
strated experimentally that our techniques result in reason-
able costs both in terms of storage overhead and in terms of
provenance reconstruction time.

8. REFERENCES
[1] P. Buneman, A. Chapman, and J. Cheney. Provenance

management in curated databases. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 539–550,
New York, NY, USA, 2006. ACM.

[2] P. Buneman, J. Cheney, W.-C. Tan, and
S. Vansummeren. Curated databases. In PODS ’08:
Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–12, New York, NY, USA,
2008. ACM.

[3] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and
update languages. In In ICDT 2007, number 4353 in
Lecture Notes in Computer Science, pages 209–223.
Springer, 2007.

[4] A. Chapman and H. V. Jagadish. Why not? In
SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data,
pages 523–534, New York, NY, USA, 2009. ACM.

[5] A. P. Chapman, H. V. Jagadish, and P. Ramanan.
Efficient provenance storage. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 993–1006,
New York, NY, USA, 2008. ACM.

[6] J. Cheney, U. A. Acar, and A. Ahmed. Provenance
traces. CoRR, abs/0812.0564, 2008.

[7] Y. Cui. Lineage Tracing In Data Warehouses. PhD
thesis, Stanford University, Dec. 2001.

[8] Y. Cui and J. Widom. Practical lineage tracing in
data warehouses. In In ICDE, pages 367–378, 1999.

[9] J. N. Foster, T. J. Green, and V. Tannen. Annotated
xml: queries and provenance. In M. Lenzerini and
D. Lembo, editors, PODS, pages 271–280. ACM, 2008.

[10] B. Glavic and G. Alonso. Provenance for nested
subqueries. In EDBT ’09: Proceedings of the 12th

International Conference on Extending Database
Technology, pages 982–993, New York, NY, USA,
2009. ACM.

[11] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS ’07: Proceedings of
the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
31–40, New York, NY, USA, 2007. ACM.

[12] http://www.tpc.org/tpce/default.asp. TPC
BenchmarkTM E (TPC-E).

[13] C. S. Jensen and D. B. Lomet. Transaction
timestamping in (temporal) databases. In In
Proceedings of the 27th VLDB Conference, pages
441–450, 2001.

[14] A. Klug. Equivalence of relational algebra and
relational calculus query languages having aggregate
functions. J. ACM, 29(3):699–717, 1982.

[15] D. Lomet, R. Barga, and R. Wang. Transaction time
support inside a database engine. In In Proceedings of
the 22nd ICDE Conference, 2006.

[16] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou,
and C. Zaniolo. Managing and querying
transaction-time databases under schema evolution.
Proc. VLDB Endow., 1(1):882–895, 2008.

[17] F. Wang, C. Zaniolo, and X. Zhou. Archis: an
xml-based approach to transaction-time temporal
database systems. The VLDB Journal,
17(6):1445–1463, 2008.

APPENDIX
A. TRACING QUERIES AND PROVENANCE

In this appendix, we are going to show that the provenance
retrieved by the tracing query as shown in Equation 2 is
actually the provenance defined in Definition 2.1. If this
is shown to be true, then the extended tracing query as
shown in Equation 3 can retrieve the provenance defined in
Definition 2.1 as well, since the the extended tracing query
is essentially a tracing query with the source tables used in
the query being some reconstructed historical versions of the
source tables.

We first show that the argument is true for the case where
there is no aggregation in the original derivation query, and
then show the argument is also true where there are aggre-
gations in the target list of the original query.

For clarity, we state our argument using a specific case
where there are exactly two source tables. Other cases are
similar.

Given the original derivation query being Q as {t : 〈A1, ..., Am〉 |
∃s1, s2 T1(s1) ∧ T2(s2) ∧ f(s1, s2, t)}.

Then the tracing query TQ1 to find provenance in table
T1 for a given tuple t̄ is {s1 : 〈B1, ..., Bn〉 | ∃s2, t T1(s1) ∧
T2(s2) ∧ f(s1, s2, t) ∧ t = t̄}. The tracing query TQ2 for
provenance in table T2 is similar.

Notice that in this appendix, we use s (s′) and t (t′) to
denote tuple variables; use s̄ (s̄′) and t̄ (t̄′) to denote tuple
constants.

Assume that T ′11 and T ′2 are the provenance retrieved by
the tracing query. In order to show that they are exactly
the defined provenance by Definition 2.1, we only need to
show

1. T ′k ⊂ Tk (k = 1, 2)

320

2. t̄ ∈ Q(T ′1, T
′
2)

3. ∀s′k ∈ T ′k : Q(T ′1, ..., {s′k}, ..., T ′2) 6= ∅

4. T ′1, T
′
2 are the maximal subset of their kinds respectively

First, we show T ′k ⊆ Tk. We only show here T ′1 ⊆ T1. The
other case is similar. To show this, we only need to show
∀s′1 ∈ T ′1 : s′1 ∈ T1.

Since s′1 ∈ T ′1, s′1 is an answer tuple to the the tracing
query TQ1. Therefore, the formula in TQ1 evaluates to
true with the assignment of s′1 to s1. That is, ∃s2, t T1(s′1)∧
T2(s2) ∧ f(s′1, s2, t) ∧ t = t̄ evaluates to true. That is to
say, T1(s′1) evaluates to true. Since T1(s′1) evaluates to true,
s′1 ∈ T1. Therefore, ∀s1 ∈ T ′1 : s1 ∈ T1. Thus, T ′1 ⊂ T1.

Second, we show t̄ ∈ Q(T ′1, T
′
2).

Since t̄ ∈ Q(T1, T2), then the formula in Q evaluates to
true with the assignment of t̄ to t. That is, ∃s1, s2 T1(s1) ∧
T2(s2)∧f(s1, s2, t̄) evaluates to true. Therefore, there exists
tuples s̄1 and s̄2 such that T1(s̄1)∧ T2(s̄2)∧ f(s̄1, s̄2, t̄) eval-
uates to true. This further means, ∃s2, t T1(s̄1) ∧ T2(s2) ∧
f(s̄1, s2, t) ∧ t = t̄ evaluates to true. Since this is just the
formula in TQ1 with s̄1 assigned to s1, therefore, s̄1 ∈
T ′1. Similarly, s̄2 ∈ T ′2. Therefore, the formula T ′1(s̄1) ∧
T ′2(s̄2)∧ f(s̄1, s̄2, t)∧ t = t̄ evaluates to true. That is to say,
∃s1, s2 T ′1(s1)∧T ′2(s2)∧ f(s1, s2, t)∧ t = t̄ evaluates to true.
This means, we have found an assignment of t̄ to t, which
makes the formula ∃s1, s2 T ′1(s1) ∧ T ′2(s2) ∧ f(s1, s2, t) eval-
uate to true. Since this is just the formula of Q executed on
T ′1 and T ′2. Thus, t̄ ∈ Q(T ′1, T

′
2).

Third, we show ∀s′1 ∈ T ′1 : t̄ ∈ Q({s′1}, T ′2). The other
case is similar.

Since s′1 ∈ T ′1, therefore s′1 is an answer tuple to TQ1.
That is to say, the formula in TQ1 evaluates to true with
the assignment of s′1 to s1. Thus, ∃s2, t T ′1(s′1) ∧ T ′2(s2) ∧
f(s′1, s2, t) ∧ t = t̄ evaluates to true. This further means,
the formula ∃s2, t T ′2(s2) ∧ f(s′1, s2, t) ∧ t = t̄ evaluates to
true. Therefore, the formula ∃s1, s2, t s1 ∈ {s′1} ∧ T ′2(s2) ∧
f(s1, s2, t)∧ t = t̄ evaluates to true. This is just the formula
of Q if executed on {s′1}, T ′2. Therefore, t̄ ∈ Q({s′1}, T ′2).
Thus, Q({s′1}, T ′2) 6= ∅.

Fourth, we show T ′1 is the maximal subset that satisfies
the three conditions above. The other case is similar. We
show that by contradiction.

Suppose T ′′1 and T ′′2 are the provenance of t̄ as defined in
Definition 2.1, and T ′′1 is not a subset of T ′1. This means,
there exists a tuple s̄1 that is in T ′′1 but not in T ′1. According
to the third condition and since T ′′1 is the provenance, the
formula ∃s1, s2, t s1 ∈ {s̄1} ∧ T ′′2 (s2) ∧ f(s1, s2, t) evaluates
to true with the assignment of t̄ to t. That is to say, the
formula ∃s2, t T ′′2 (s2) ∧ f(s̄1, s2, t) ∧ t = t̄ evaluates to true.
Furthermore, since s̄1 ∈ T1 due to the first condition, the
formula ∃s2, t T1(s̄1) ∧ T ′′2 (s2) ∧ f(s̄1, s2, t) ∧ t = t̄ evaluates
to true. Since T ′′2 ⊆ T2, the formula ∃s2, t T1(s̄1) ∧ T2(s2) ∧
f(s̄1, s2, t)∧ t = t̄ evaluates to true. This formula is just the
formula in TQ1 with the assignment of s̄1 to s1. Therefore,
s̄1 ∈ T ′1. This contradicts with the assumption that s̄1 is not
in T ′1. Therefore, T ′1 is the maximal subset that satisfies the
three above conditions.

So far, we have show that the tracing queries retrieve
the defined provenance when there is no aggregations in
the original derivation queries. Now assume there is an
aggregate attribute in the target list. Then Q is like {t :
〈A1, ..., Am, G AS aggr(Am+1)〉 | ∃s1, s2 T1(s1) ∧ T2(s2) ∧
f(s1, s2, t.A)}, where G is an aggregate attribute, aggr is an

aggregate function and t.A is a short hand for t.A1, ..., t.Am.
Suppose we have another query Q′, which is {t : 〈A1, ..., Am〉 |
∃s1, s2 T1(s1) ∧ T2(s2) ∧ f(s1, s2, t.A)}. The only difference
between Q and Q′ is that Q′ does not have the aggregate
attribute G in the target list.

An observation on Q and Q′ is that they have the same
tracing queries, e.g., both have a TQ1 being {s1 : 〈B1, ..., Bn〉 |
∃s2, t T1(s1) ∧ T2(s2) ∧ f(s1, s1, t) ∧ t.A = t̄.A}.

Given two tuples, tagg : 〈a1, ..., am, g〉 from Q and t :
〈a1, ..., am〉 from Q′, if we can show that

1. these two tuples have the same provenance according
to Definition 2.1,

2. and they also have the same provenance retrieved by
the tracing query in Equation 2,

3. and the provenance of t retrieved by the tracing query
matches the provenance of t defined by Definition 2.1,

then we can say that the provenance of tagg retrieved by
the tracing query matches the provenance of tagg defined by
Definition 2.1.

The third of the above is obvious since Q′ is an aggregate-
free query. In the case of aggregate-free queries, we have
shown that the provenance retrieved by the tracing query is
exactly the provenance defined by Definition 2.1.

The second of the above is also obvious since Q and Q′

have the same tracing queries.
Thus, we only need to show that the provenance of tagg is

the same as that of t according to Definition 2.1. For tagg :
〈a1, ..., am, g〉, there exists a group of tuples 〈a1, ..., am, g1〉,
..., 〈a1, ..., am, gk〉 such that g is aggr(g1, ..., gk). Since the
formula parts of Q and Q′ are the same, this same group
of tuples are projected into t if Q′ is executed. Therefore,
according to the transitivity of the defined provenance, the
provenance of tagg and t are both the provenance of these
group of tuples. Thus, the defined provenance of tagg and t
are the same.

Therefore, the provenance retrieved by the tracing query
in Equation 2 is the provenance defined in Definition 2.1.

B. AGGREGATIONS IN FORMULA
We only allow aggregate functions/attributes in the tar-

get list. In Section 2, we claim that if an aggregate func-
tion/attribute appears in the formula part of a query, this
query can decomposed into two formulas such that none of
them has aggregations in the formula.

We give a simple example first. Assume we have a ta-
ble T that has two attributes A1 and A2. We group on
A1, then compute the average of values in A2, and finally
select the value of A1 and the average of the group if the
average is bigger than 2. Thus, the query is of the form
{t : 〈A1, G AS aggr(A2)〉 | ∃s T (s)∧aggr(s.A2) > 2∧s = t}.

This query can be decomposed into two queries. The first
query is the original one except for the atomic formula in-
volving aggregations. The second uses the output of the first
query and applies the atomic formula that is left out in the
first query.

Thus, the first query is {t : 〈A1, G AS aggr(A2)〉 | ∃s T (s)∧
s = t}. Assume the result is stored in table T ′. Then the
second query is {t : 〈A1, G〉 | ∃s T ′(s) ∧ s.G > 2 ∧ s = t}.
Thus, there are no more aggregate functions in the formulas.

In general, assume a query that has an aggregate function
in the formula is of the form {t : 〈A1, ..., Am〉 | ∃s1, ..., sn T1(s1)∧

321

...∧Tn(sn)∧f(s1, ..., sn, t)∧f ′(aggr(Am+1))}, where f ′(aggr(Am+1))
is an atomic formula specifying a condition on the aggregate
value resulting from the application of the aggregate func-
tion aggr to the attribute Am+1.

Then this query can be decomposed into two queries.The
first is {t : 〈A1, ..., Am, G AS aggr(Am+1)〉 | ∃s1, ..., sn T1(s1)∧
... ∧ Tn(sn) ∧ f(s1, ..., sn, t)}. Assume the result is stored in
S. The second is {t : 〈A1, ..., Am〉 | ∃s S(s)∧f ′(s.G)∧s = t}.

More complex cases, such as multiple aggregate functions
in the formula, can be treated similarly. We do not detail
on them here.

322

