
Querying Spatial Patterns

Vishwakarma Singh
Dept. of Computer Science,

University of California, Santa
Barbara,

CA 93106, USA.
vsingh@cs.ucsb.edu

Arnab Bhattacharya
Dept. of Computer Science

and Engineering,
Indian Institute of Technology,

Kanpur,
Kanpur 208016, India.
arnabb@iitk.ac.in

Ambuj K. Singh
Dept. of Computer Science,

University of California, Santa
Barbara,

CA 93106, USA.
ambuj@cs.ucsb.edu

ABSTRACT
Spatial data are common in many scientific and commercial do-
mains such as geographical information systems and gene/protein
expression profiles. Querying for distribution patterns on such data
can discover underlying spatial relationships and suggest avenues
for further scientific exploration. Supporting such pattern retrieval
requires not only the formulation of an appropriate scoring function
for defining relevant connected subregions, but also the design of
new access methods that can scale to large databases. In this paper,
we propose a solution to this problem of querying significant sub-
regions on spatial data provided as raster images. We design a scor-
ing scheme to measure the similarity of subregions. All the raster
images are tiled and each alignment of the query and a database
image produces a tile score matrix. We show that the problem of
finding the best connected subregion from this matrix is NP-hard
and develop a dynamic programming heuristic. With this heuristic,
we develop two index-based scalable search strategies, TARS and
SPARS, to query patterns in large data repositories. Experimental
results on real image datasets show that TARS offers an 87% im-
provement for small queries, and SPARS a 52% improvement in
runtime for large queries, as compared to linear search. Qualitative
tests on real datasets achieve precision of more than 80%.

1. MOTIVATION
Spatial data arise in various domains such as geographical infor-

mation systems, biology, environmental management, and IC fabri-
cation. Often, the distribution of a spatial attribute of interest (e.g.,
population density, contamination rate, vegetation growth, protein
expression, etc.) is captured using a raster image [27, 34, 33]. Such
an example is shown in Figure 1 which displays the population
density map of Afghanistan1. The color of each pixel is associated
with a particular value of the population density. In biological and
medical images, pixel intensity represents the distribution of tis-
sues, gene, or proteins. Figure 2 shows the fluorescent microscopy
image of a cross section of a feline retina [9]. The intensity of a
pixel reveals the distribution of peanut-agglutinin, a lectin found in
the retina.
1http://sedac.ciesin.columbia.edu/gpw/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

Gridded Population of the World
Persons per km2

0

1 - 4

5 - 24

25 - 249

250 - 999

1,000 +

: Population Density, 2000 GPW [v3]Afghanistan

Lambert Azimuthal Equal Area Projection
Based on 2.5 arc-minute resolution data

0 200km

TURKMENISTAN

UZBEKISTAN

TAJIKISTAN

INDIA

PAKISTAN

CHINA

IRAN

Copyright 2005. The Trustees of Columbia University in the City of New York.
Source: Center for International Earth Science Information Network (CIESIN),
Columbia University; and Centro Internacional de Agricultura Tropical (CIAT),
Gridded Population of the World (GPW), Version 3. Palisades, NY: CIESIN,
Columbia University. Available at: http://sedac.ciesin.columbia.edu/gpw.
NOTE: National boundaries are derived from the population grids and thus
may appear coarse.

Figure 1: Population density map of Afghanistan (best viewed
in color).

Figure 2: Example of a biologically interesting spatial pattern
(best viewed in color). The marked pattern highlights a fold
of the retinal tissue labeled with peanut-agglutinin conjugated
to a fluorescent probe. Yellow dots are the point of interests
detected using affine covariant region technique [25] of com-
puting local descriptor.

Ever since John Snow’s analysis of cholera outbreaks that re-
sulted in finding a contaminated water pump in London in 1854 [38],
the analysis of spatial data distributions has been a popular avenue
of scientific inquiry. Revelation of similarity in demographic pat-
terns helps us correlate and understand various geographic factors
affecting population growth. Similarity in vegetation pattern dis-

418

covered by querying aerial images can help relate climate cycle
and land formation at various places on Earth. In retinal images,
the similarity in spatial patterns may offer new insights into biolog-
ical processes.

In this paper, we propose to search for a specified pattern in a
database of spatial distributions represented as raster images. A
query pattern can be described either by specifying a local distri-
bution or by marking a rectangular region of interest on a given
image as shown in Figure 2. The database may consist of popu-
lation density maps, biological images, remote sensing images, or
raster images of any other domain. The task is to find sub-regions
of images in the database that are similar to the specified query
pattern and are meaningful.

Our problem statement is close to sub-image search for natu-
ral images [32]. The methods developed in this domain use local
descriptors [26] that are computed around few key points of inter-
est as shown by yellow circles in Figure 2. These descriptors are
obtained from a small number of neighborhood pixels around de-
tected points of interest and are designed to provide robustness for
photometric, scale, viewpoint and affine changes for natural image
matching. State-of-the-art SIFT descriptors [21] are histograms of
the gradients of the sampled points around the key point. Sampled
points are divided into 4×4 grids. Gradients of the sampled points
in each grid are summarized using 8 bin orientation histograms.
Histograms of all the grids are concatenated to yield a SIFT de-
scriptor of size 128 for the key point. Local descriptors till now
have had only limited success (around 66% precision [32]) because
of the difficulty of coping with all the image variations. Raster im-
ages do not have challenges of photometric, viewpoint and affine
changes. For spatial distributions in raster images, the resolution
is known, and this permits easy normalization. Points of interest
in natural images are computed using pixel intensity gradient and,
therefore, may be absent in a large portion of an image as seen in
Figure 2 making it impossible to carry out sub-image search for
those regions. These points are also less than sufficient to summa-
rize all the useful information in an image. Instead of just focus-
ing on key points as for natural images, a solution to the proposed
problem needs to capture the information over the entire useful part
of an image (foreground), e.g., summarize each pixel representing
population density in Figure 1 using a histogram.

Our method tiles the query image and database images into atomic
units. Then, a domain-based scoring function is used to score an
alignment of two atomic units. Finally, the score is aggregated over
a connected region to find the best match. The idea of a match is
illustrated in Figure 3. A query is aligned with each image in the
database under all possible translations. Each alignment generates
a matrix of scores, both positive and negative, between correspond-
ing tiles. Positive scores denote foreground matches while a neg-
ative score means that a background tile of the query is matched
to a database tile. A connected subregion over the matrix iden-
tifies a meaningful matching subregion. Scores over all possible
connected subregions can be used to define answers to range and
nearest-neighbor queries. The generality of the solution and the
identification of best connected subregions are the unique aspects
of our design.

Once we adopt the score and subregion based idea for retrieval
of high-quality answers, the next challenge is one of scalability.
How to identify the best subregions over millions of alignments?
Clearly, a region-by-region search design will not work. So, how
to develop access methods and index structures that can find the
best subregions without examining all of them? Our solution to
the scalability problem is two-fold: (i) development of an index
structure that works with our definition of score, and (ii) design

���
���
���
���

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

q

t

Overlap

−4 −5

3

7 5

−1

6

2−1

Tiled query 4x4

Tiled database image

Score matrix from

overlapping tiles
pairwise scores of

7 6 5

−1

32

dynamic programming
Subregion obtained by

Figure 3: A 4× 4 query is overlapped with a database map.
For each tile in the 3× 3 overlapped region, a score for the
match is computed. Dynamic programming is run on the score
matrix to obtain the maximal scoring connected subregion.

of two new algorithms that use the index structure to find the best
subregions in an efficient manner.

The idea of finding the best connected subregion in a matrix that
maximizes the sum of piecemeal scores is itself of theoretical and
practical interest. We show that this problem is NP-hard. This ne-
cessitates appropriate heuristics that examine not all but a subset of
connected subregions. We develop a dynamic programming based
solution and characterize the class of subregions that is examined
by this heuristic. Our access methods are unaffected by how the
best connected subregions in an alignment are identified; they work
correctly with any such heuristic.

In a nutshell, our contributions in this paper are as follows:

• We develop a score-based framework for identifying the best
connected sub-regions for a given query region with tile-
based decomposition (Section 3).

• We develop index structure based access methods to query
the best matching subregions efficiently. The first method,
TARS, is instance optimal but traverses the index multiple
times and, therefore, performs better for small queries. The
second method, SPARS, makes a single pass through the in-
dex and is suited for large queries (Section 4).

• We study the computational complexity of finding the high-
est scoring subregion. We show that this problem is NP-hard
by reduction from the Thumbnail Rectilinear Steiner Tree
problem [10]. We develop an efficient dynamic program-
ming heuristic and characterize the class of subregions ex-
plored by this heuristic (Section 3).

• We empirically show scalability (Section 5) and quality (Sec-
tion 5.4) of our methods on two real datasets.

2. RELATED WORK
Query by example for images, called Content-Based Image Re-

trieval (CBIR), has been extensively studied. Region-Based Im-
age Retrieval (RBIR) systems extend CBIR by making the search
sensitive to different regions of an image. A survey on the recent
methods of CBIR and RBIR can be found in [5]. Most of the RBIR
systems use automatic or manual region segmentation in order to
characterize regions and then compute a one-to-one or many-to-one
mapping to match query regions to those in the database [1, 4, 28,
39, 40]. Weakness of the segmentation based methods lies is their
incapability to handle region queries that partially extend across
various segments or regions of an image. Malki et al. [22] avoided
segmentation by using a multi-resolution quadtree [8] to organize
images. Their method had no constraint of connected pattern and
had equal weight for foreground and background. Sub-image re-
trieval using local descriptors [26] has been addressed recently for

419

natural images [18, 32] but cannot be extended for querying pat-
terns in raster images as discussed in Section 1.

Tiling is the most common way of storing raster data [37] in spa-
tial DBMS. Image tiling at varying scales was used by Svetlana
et al. [19] for recognizing natural scene categories using full im-
age matching. Tiles were also used by [3] to partition images into
clusters in the color space.

Methods for querying similar images based on full image match-
ing has also been developed for aerial [23, 35] and biomedical [31,
6] images separately. Baumann et al. [2] proposed a web-enabled
service over a multidimensional DBMS, used as storage, for inter-
active navigation and SQL based querying on raster images. Their
system does not support pattern querying. Vinhas et al. [37] also
proposed DBMS system for handling raster image in spatial databases.
OLAP techniques were exploited by [13] to speed up aggregate
query processing in raster image databases. New geo-raster opera-
tions with array algebra is proposed in [14]. Zhang et al. [42] devel-
oped index structure for spatio-temporal aggregation over stream-
ing raster images for a given query region. They first split the im-
ages into tiles and then computed aggregate for each tiles. Gertz
et al. [12] proposed a data and query model by extending Image
Algebra to formulate and answer queries over geospatial image
data. Pajarola et al. [29] provides a compression technique for large
raster images and designs methods to support spatial range queries
directly over compressed images. Hadjieleftheriou et al. [16] ad-
dress the problem of querying a user defined movement patterns in
space and time from a large collection of spatiotemporal trajecto-
ries. Yankov et al. [41] develop best-match searching algorithm for
two-dimensional shapes.

Our work is the first to support pattern querying on geographic
maps like demography, pollution, etc. The technique is generic
enough to be extended to raster images of other domains like bi-
ology, medicine, etc. It differs from image retrieval techniques by
supporting pattern querying without image segmentation into re-
gions or objects, developing score based similarity measure, find-
ing the best connected match, and discriminating between fore-
ground and background to discover meaningful patterns.

3. SUB-REGION SIMILARITY
In this section, we discuss feature extraction from images, define

similarity measure between a pair of image tiles, and then extend
the idea of similarity between tiles to regions. Then, we show that
the computation of the optimal score between two sub-regions is
NP-hard. Finally, we develop a dynamic programming heuristic to
compute a good alignment.

Each raster image in the database is split into tiles [37]. All the
pixel values in a tile is summarized as a histogram. Dimension
of the histogram equals the number of discrete levels of pixel val-
ues which is later reduced by a dimensionality reduction technique
(PCA [30]) for efficiency. Finally, our database DB consists of the
feature vectors of these tiles. We also tile the query image Q and
obtain feature vectors similar to a database image tile. We search
for similar regions for a given query image in a feature vector space.
We use L1 norm as the measure of distance between a pair of his-
tograms. Raster images can be of varying resolution or scale. In
this paper, we assume that a given database consists of raster im-
ages of the same scale. If the images are of varying resolution, they
can be preprocessed and normalized to the same resolution as scale
is known.

3.1 Scoring Function
We measure similarity between a pair of tiles using a scoring

function. Our scoring function is a monotonically decreasing func-

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���
��
��
��
��

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

q

q

t

Tiled 6x6 Database Image I

1

2

3

Overlapping Regions

Tiled 3x3 Query Image Q

Figure 4: Overlapping regions found by translation of a query
image Q on a database image I at 3 alignments.

tion of the distance between the feature vectors of a query tile q and
an image tile t. Scoring function is defined as

score(q, t) = f(q)− g(d(q, t))− c (1)

where f is a function based on domain knowledge, g is a monoton-
ically increasing function, d is the distance between tiles and c is a
constant. The score can be positive or negative. The intent of the
scoring function is to discriminate between foreground (region of
interest) and background. A query tile with little or no information
forms the background and, therefore, should get a negative or low
score no matter how good the match is. A tile with more pattern in-
formation is a part of region of interest (ROI) and should get a high
score when matched with a similar database image tile. The func-
tion f(q) measures whether the tile q is in a ROI. Singh et al. [36]
design an instance of such scoring function called Discriminator
scoring function. It computes the score between a query tile q and
an image tile t using

score(q, t) = d(q, b)− λ d(q, t)− c (2)

where λ and c are independent constants. d(q, b) is the distance
of the query tile q from the background tile b which is determined
using domain knowledge. Comparing Eq. (2) with Eq. (1), we see
that f(q) = d(q, b) and g(d(q, t)) = λ d(q, t).

3.2 Score of an Overlapping Region
Once we have a model to measure the similarity between a pair

of tiles, we next consider how to measure similarity between two
regions. The alignment or the overlap of a query image Q with a
database image produces a score matrix of pairwise aligned tiles,
as depicted in Figure 3. The score of the alignment is defined as the
score of a connected subregion that has the maximal possible cumu-
lative score. We are interested in the alignment of a single pattern
and, hence, the justification for finding a single connected region.
The maximal scoring subregion may include negative scores and
may not be rectangular in shape, as shown in Figure 3.

The best match in a database of images is found by considering
all possible alignments, i.e., translations of the query image over
each database image. This is illustrated in Figure 4 where three
alignments are shown.

3.3 NP-Completeness Proof
We next prove that the problem of finding the maximal scoring

subregion in a score matrix is NP-hard. We prove this by showing
that the corresponding decision problem is NP-complete. We first
define the “graph” analog of the matrix problem as follows: Given

420

a graph representation G = (V,E) of a matrix, with weight w(v)
on each vertex v ∈ V corresponding to the entry in the matrix,
is there a connected subgraph of weight ≥ W? We denote this
problem by MAXIMAL WEIGHTED CONNECTED SUBGRAPH or
MWCS.

THEOREM 1. MAXIMAL WEIGHTED CONNECTED SUBGRAPH
(MWCS) is NP-complete, for a matrix graph of degree at most 4.

PROOF. MWCS is in NP since the weight of a connected sub-
graph can be computed in polynomial time.

For reduction, we use the RECTILINEAR STEINER TREE (RST)
problem that is known to be NP-complete [11]. The RST problem
asks: Given a set of n terminal points that are embedded in an
integer grid in a plane, is there a spanning tree of total length at
most l such that the vertices of the spanning tree are the input points
of the set and the grid points, where the length of an edge is the L1

distance between the corresponding vertices?
There is a special case of the RST problem known as the THUMB-

NAIL RECTILINEAR STEINER TREE (TRST) problem [10]. The
TRST problem restricts the terminal points to an m×m grid. The
TRST problem remains NP-complete even when m is bounded by
a polynomial of n [11].

Given an instance of the TRST, we construct an instance of the
MWCS as follows: We first find the bounding box of the points of
the TRST, i.e., the m × m grid. Then, we replace each terminal
point by a vertex of weight w � l. At each grid point that is
not already occupied by the n terminal points, we place a vertex
with weight 0. Between a pair of consecutive vertices on the same
grid line (e.g., on the half-grid positions), we place a vertex with
weight −1. Each vertex is connected to only to its horizontal and
vertical neighbors, thus producing a matrix graph. Figure 5 shows
an example of the construction. The original points are shown by
double circles. The construction takes time polynomial in m, and
hence polynomial in n, and the graph G thus constructed is planar
with degree at most 4.

We claim that the original TRST on n points has a rectilinear
Steiner tree of length ≤ l if and only if the MWCS graph has a
connected subgraph of weight ≥W = n.w − l.

Only if: Assume that there is a Steiner tree of length at most
l. By definition, it spans all the terminal points and is connected.
Note that for a length l path between two points, there are exactly l
vertices of weight−1. The vertices corresponding to the n terminal
points have a weight of w each. Therefore, the weight of this tree
is at least n.w− l. Figure 5 shows such a Steiner tree in solid lines.

If: Any connected subgraph of weight at least n.w − l in G
must include all the n vertices of weight w and at most l vertices
of weight −1. There is no way to connect two vertices of weight
≥ 0 without passing through a vertex of weight −1. Therefore,
the length of this path is at most l, since otherwise, the connected
subgraph would have included more than l vertices of weight −1.
Also, if the subgraph has the maximal weight, it is a tree, since,
if it is not, at least one pair of vertices has more than one path
between them. Removing that path increases the weight of the tree
by the absolute weight of the negatively-weighted vertices in the
path. Therefore, this subgraph defines a Steiner tree for the original
n points. An example of such a subgraph is shown in Figure 5 in
solid lines.

3.4 Dynamic Programming Heuristic
Now, we design a dynamic programming (DP) heuristic as an al-

ternative to examining all possible subregions for finding the maxi-
mal score. Assume that the score in cell C(i, j) of the score matrix

w

−1

0 −1

−1

0 −1 w

−1

−1 0

−1

w−1

−1 0

−1

0

−1

w

−1

Figure 5: Construction from Thumbnail Rectilinear Steiner
Tree instance to Maximal Weighted Connected Subgraph
(MWCS) instance. The double lined vertices are the original
terminal points. The solid lines represent the optimal solution
of both the problems.

is denoted by s(i, j). The DP starts from one of the corner cells of
the score matrix. For discussion purposes, assume that it starts at
cell C(0, 0) in Figure 6. Next, it proceeds by first moving towards
the right (→) and calculates a subregion corresponding to each cell
in 0th row. Then it goes to 1st row 0th cell C(1, 0) by moving in
the top (↑) direction in the score matrix (akin to a row-scan order).
DP completes this iteration when it reaches the top-most and right-
most cell in the matrix. In Figure 6, this cell is C(2, 2).

Suppose, R(i, j) is a maximal scoring sub-region that has its
top-right corner at the cell C(i, j). Also, suppose s(i, j) denotes
the score of C(i, j) and S(i, j) denotes the maximal score for the
subregion R(i, j). DP examines 4 possibilities to find the maximal
score of R(i, j): (i) the score of the cell itself, (ii) the score of the
cell plus the maximal score for the bottom subregion, (iii) the score
of the cell plus the maximal score for the left subregion, and (iv) the
score of the cell plus the maximal scores for the bottom and the left
subregions. Since the bottom and the left subregions can intersect,
the score of the intersecting region should be subtracted from the
cumulative scores of the two subregions so that it is not counted
twice.

The DP algorithm computes the following recurrence relation to
find all the subregions in the score matrix and their scores:

S(i, j) = max

s(i, j)
s(i, j) + S(i, j − 1)
s(i, j) + S(i− 1, j)
s(i, j) + S(i, j − 1) + S(i− 1, j)
−S
(
R(i, j − 1) ∩R(i− 1, j)

) (3)

The corresponding subregions maintained for the 4 cases are, re-
spectively:

R(i, j) =

C(i, j)
C(i, j) ∪R(i, j − 1)
C(i, j) ∪R(i− 1, j)
C(i, j) ∪R(i, j − 1) ∪R(i− 1, j)

(4)

To improve the overall score, DP executes the above logic start-
ing from all the 4 corner cells with the following combinations of
moves: (i) Starting at bottom-left cell and moving in ↑ and→ di-
rection, (ii) Starting at bottom-right cell and moving in ↑ and ←
direction, (iii) Starting at top-left cell and moving in ↓ and → di-
rection, (iv) Starting at top-right cell and moving in ↓ and ← di-
rection. It returns the subregion having the maximum score of all
these 4 possibilities. Such a subregion explored by DP on a score
matrix is illustrated by Figure 3.

421

2

1

0

0 1 2

i
R(i−1,j)

R(i,j−1) R(i,j)

Cell(i,j)

Bottom

Left

j

C(0,0)

C(2,2)

Figure 6: DP forms sub-region R(i, j) by looking at scores of
C(i, j), R(i− 1, j) and R(i, j − 1).

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

(−1)

 3,1 3,2

(−1)

3,3
(40)

3,4

(−90)

2,1

(−1)
2,2

(10)

2,3

(1)

2,4

(35)

1,1

(−1)

1,2 1,3 1,4
(−1) (10) (−1)

Figure 7: Example of a shape not captured by DP. The scores
are shown in brackets. The optimal solution consists of the cells
(3, 3), (2, 2), (2, 3), (2, 4) and (1, 3) having scores 40, 10, 1, 35
and 10 respectively.

Running Time: For a score matrix of size m × n, for each cell,
the DP computes the maximal score for the subregion ending at
that cell. Calculating the scores for each cell requires finding an
intersection of the largest scoring subregions on its bottom and left.
This requires a running time of O(mn) in the worst case. Thus,
the total running time of the DP algorithm is O(m2n2). For a par-
ticular score matrix, the DP needs to be run from all the 4 corners,
which is constant. Thus, the worst case running time for the DP is
quadratic in the size of the score matrix.

Class of Subregions Examined: The DP algorithm does not (and
cannot!) investigate all the possible connected subregions; it chooses
the maximal scoring connected subregion from only a certain class
of shapes. Next, we analyze the class of such shapes. Consider
only right (→) and top (↑) moves starting at left-bottom corner.
The maximal scoring subregion R(i, j) for cell C(i, j) will in-
clude another cell C(i′, j′) only if C(i′, j′) is included in either
R(i, j − 1) or R(i − 1, j). Similarly, the subregions R(i, j − 1)
and R(i − 1, j) contain only those cells that are towards the left
and bottom of them. Therefore, by induction, if cell C(i′, j′) is
included in R(i, j), then C(i′, j′) must be at the left and bottom of
C(i, j). No cell which is towards the right or top of C(i, j) will be
included in R(i, j). As an example, consider the cell (2, 4) in Fig-
ure 7. It can consider only the cells (i, j) where i ≤ 2 and j ≤ 4,
i.e., all cells to its left and bottom. It cannot consider any other cell
(e.g., cell (3, 3) in the figure). The DP ends at the top-right corner.
However, the maximal scoring subregion may end at any cell, and
not necessarily at the top-right corner cell. Thus, for example, if
the maximal scoring sub-region ends at (3, 3), then the nature of
DP forbids it to consider cells (1, 4), (2, 4) and (3, 4) (Figure 7).
Hence, even though the optimal solution for the example in Fig-
ure 7 consists of all the five shaded cells, this DP will find only
the region consisting of cells (1, 3), (2, 2), (2, 3) and (3, 3) as the
answer. The shaded region given in Figure 7 cannot be obtained by
DP starting from any corner.

Since the DP is run from the four corners in four sets of moves,
the subregions captured are of four types: containing cells (i) to-

Figure 9: Index structure. Image I1 maintains pointers to leaf
nodes of its tiles. Leaf nodes maintain pointer to I1.

wards bottom and left, (ii) towards bottom and right, (iii) towards
top and left, and (iv) towards top and right.

Formally, the shapes for the class of such subregions can be char-
acterized in the following way. For a particular shape P , a cell
C(i, j) sinks another cell C(i′, j′), denoted by C(i, j) / C(i′, j′),
if C(i, j) can be reached from C(i′, j′) in P by taking one of the
four combinations of moves described earlier. For example, in Fig-
ure 7, cell (3, 3) sinks cell (2, 3) for right and top moves since it
can be reached from (2, 3) by this move combination. For the same
move combination, it does not sink cell (2, 4) as it cannot reached
from (2, 4) using only right and top moves. A cell C(i, j) sinks a
shape P , denoted byC(i, j)/P , if and only if for all cellsC(i′, j′)
belonging to P , C(i, j) sinks C(i′, j′), i.e.,

C(i, j) / P ⇐⇒ ∀C(i′, j′) ∈ P, C(i, j) / C(i′, j′) (5)

A particular shape P can be captured by DP if and only if there
exists a cell C(i, j) ∈ P that sinks P . Combining all the 4 sets
of moves as mentioned earlier characterizes the entire set of shapes
captured by DP. Examples of shapes captured are: u,�, etc. Shapes
that cannot be captured include +,×. We also present few exam-
ples of the count of the shapes captured by DP for varying number
of grids. DP captures all the possible 14 shapes for a 2 × 4 grid.
DP captures 31 of the 38 possible shapes for a 3× 3 grid.

Advantages of Score Based Similarity: We performed quality
experiments to compare our score based similarity measure with
distance based measures. We used the Discriminator scoring func-
tion [36] to measure the similarity between a pair of tiles. We com-
pared the first result retrieved by our similarity measure to the sum
of L1 distance measured between corresponding histogram of tiles
of the overlapping region. One such result over biological images
is shown in Figure 8. We can see that a simple distance measure
fails to discriminate between foreground and background and hence
generates more false matches. Our similarity measure maximizes
the score of the best matching subregion and performs better.

4. QUERY ALGORITHMS
In this section, we discuss linear search and two new query al-

gorithms to find the top-k similar regions from a database. These
strategies are general enough to work with other scoring schemes
and heuristics. The first algorithm is a naïve linear search through
the database. The other two algorithms use a multi-dimensional
index structure to prune the search space to achieve efficiency and
scalability. In the ensuing discussion, the size of a query image Q

422

(a) Query pattern (b) Result with distance-based scheme (c) Result with scoring-based scheme
on entire region and sub-region finding

Figure 8: (a) Example of a biologically interesting pattern. The marked pattern highlights a fold of the retinal tissue labeled with
peanut-agglutinin conjugated to a fluorescent probe. (b) Retrieved result for distance-based matching on entire region. (c) Retrieved
result for score-based matching on subregions.

Algorithm 1 TARS
Input: T : tree root, Q: list of query tiles
Input: k: number of top results
Output: RQ: priority queue of top-k matches
1: RQ← [(−,−∞)]
2: T← +∞
3: BS ← φ : bit-vector for explored overlap region
4: while T > GetHead(RQ).s do
5: for all qi ∈ Q do
6: nnTile[i]← GetNextNN(qi)
7: end for
8: for all qi ∈ Q do
9: org← FindOverlapRegion(nnTile[i],qi)

10: if org not flagged in BS then
11: sm← GetScoreMatrix(Q,org)
12: e(rg,s)← DP(sm)
13: flag org in BS
14: Insert(RQ, e(rg,s))
15: end if
16: sm← score matrix of overlapping Q with nnTile
17: T← score of DP(sm)
18: end for
19: end while

and a database image I is defined in terms of the number of con-
stituent tiles. We take the size of Q to be n.

The Linear Search algorithm searches through all the possible
overlaps to find the top-k matching regions. It translates the query
image over all the database images and computes a score for each
of them. It maintains a priority queue of the results to find the
k highest scoring regions. Since the number of possible overlaps
increases linearly with increase in image and database size, this
method does not scale and is impractical for large queries and database
sizes.

To make the search scalable and efficient, we next propose two
algorithms TARS and SPARS. Both algorithms use an index on the
feature vectors of the image tiles to query nearest neighbors for
a given tile. We can use any R-tree [15] (data-partitioning) like
index structure for this. We choose bulk loadable STR-Tree [20]
as the index because of its simplicity and availability. Each leaf
node of the index is an entry of the form lmbr(t, I) where t is the
feature vector of an image tile and I is a pointer to its parent image.
Each non-leaf node has a list containing an entry per child of type
(MBR, child-pointer) where MBR is the minimum bounding box
and child-pointer is the pointer to the child node respectively. Each
database image I is a two-dimensional array of pointers to the lmbrs
containing its tiles as shown in Figure 9. This structure allows for

q1 q2
(t3,I2,10) (t1,I1,9)
(t2,I1,8) (t2,I1,7)
(t1,I1,2) (t3,I2,6)

Table 1: Sorted access of tiles for a given query (q1, q2) in
TARS.

full access from a tile to its parent image and vice versa. We can
easily find the row and column position of a tile from the image
array to find an overlap.

4.1 TARS (Threshold Algorithm for Region-
based Search)

The algorithm TARS formulates the region retrieval query as a
top-k aggregate query. It views the given query image as a multi-
component object where each of its tile qi ∈ Q, ∀i = 1, . . . , n
constitutes its independent components. Similarly, it views DB as
a list of multi-component objects. Each DB object is a set of con-
nected tiles from a DB image. It uses sub-region similarity function
as aggregate function. Query image (query object) is overlapped
with a connected set of tiles from an image (DB object), a score
matrix is obtained by computing pairwise tile similarity, and then
maximum similarity score is computed using DP on the score ma-
trix. The goal in this setting now is to retrieve the top-k maximum
scoring DB objects.

Algorithm TARS adopts a strategy similar to the Threshold Al-
gorithm (TA) [7] to solve this aggregate query. For each qi, TARS
views that all the database tiles are ranked in a decreasing order
of their scores with qi. Overlapping regions are determined by
the tiles from the ranked lists. Table 1 shows a sorted view of
the database for a query image consisting of two tiles. Maximum
similarity score computed using DP is monotonic. For two score
matrices a and b obtained by overlapping a query object with two
different DB objects, if a has tile-wise larger scores than b, then the
score of DP on a will be larger than b. This monotonic property is
used to terminate TARS.

TARS performs incremental nearest-neighbor searches for each
qi on the index structure to get sorted access to the database tiles. It
starts by accessing the first nearest neighbor ti1 for each qi (steps 5-
7 of Algorithm 1). Then, for each qi, it finds the overlapping region
of Q with a database image I (ti1 ∈ I) such that qi aligns with ti1
in the overlap. Figure 10 shows how Q having 4 tiles overlaps with
an image I also having 4 tiles such that q1 aligns with t1.

The algorithm then uses DP to find the maximum scoring subre-
gion rg and its score s for each such overlap org (steps 11-12). It
inserts all the results e(rg,s) in a priority queue RQ of size at most
k. The entries in RQ are sorted based on their scores. Once RQ

423

Figure 10: Overlap of query image Q with database image I
such that q1 aligns with t1.

q1

dmin

dmin

q3

dmin

q2

q4

dmin

MBR1

MBR3

MBR2

Figure 11: MBR and its nearest query tile. q1 is nearest to
MBR2 with distance dmin.

has k regions, a result is inserted only if its score is more than the
kth current region with the least score. In order to prevent multiple
processing of the same database region, TARS flags the explored
overlapping regions in a bit-vector BS.

At the end of the first iteration, TARS builds a score matrix by
aligning each qi with ti1 . The DP score on this score matrix is
the threshold score T. The threshold score is an upper bound on
the scores of all the regions that have not yet been explored; this
is because all the tiles to be accessed in the next iteration by each
qi have scores lower or at best equal to the current ti’s and the DP
score is monotonic. This threshold score is updated after every iter-
ation of the algorithm. The algorithm proceeds to the next iteration
only if T is greater than the least score in RQ. As TARS proceeds,
T decreases and the algorithm terminates with optimal results.

The performance of algorithm TARS worsens with increase in
query size. It is instance optimal but it traverses the index structure
separately for each qi ∈ Q to access the database tiles in sorted
order. The cost of this multiple nearest-neighbor traversal grows
quickly with increasing query size. To avoid this scalability prob-
lem, we next propose a technique SPARS that finds the top-k re-
gions by performing a single traversal through the index structure
and has better performance than TARS for large queries.

4.2 SPARS (Single Pass Region-based Search)
Algorithm SPARS is a novel top-k aggregate query algorithm

which makes a single traversal through the index tree. It finds the
top scoring regions by performing a best-first search [17]. It main-
tains a priority queue BQ to find the next best node to process.
When the algorithm encounters a leaf node, it explores an actual
region in the database corresponding to its image tile. Similar to
TARS, it maintains a priority queue RQ of the top-k regions.

The search for top-k regions starts at the root node of the index,
which is the first entry in BQ with +∞ score. The algorithm next
processes each of its children. If the child is a non-leaf index node
mbr, then it computes a score for it as follows (outlined in steps 8-
12 of Algorithm 2). It determines the minimum distance between
any query tile and the node dmin = mini d(qi,mbr), as shown
in Figure 11. Then, it computes a score matrix by aligning each
qi ∈ Q with virtual image tiles having a distance dmin from qi

as shown in Figure 12. The score s of the node is the score of the
maximum scoring subregion found using DP on this score matrix.

Algorithm 2 SPARS
Input: T : tree root, Q: list of query tiles
Input: k: number of top results
Output: RQ: priority queue of top-k matches
1: n← size(Q)
2: RQ← [(−,−∞)]
3: BQ: queue of intermediate entities← [(T,+∞)]
4: e(mbr,s)← GetHead(BQ)
5: while e.s ≥ GetHead(RQ).s do
6: if e is of type (mbr,s) then
7: for all child node cn in e.mbr do
8: if cn is mbr then
9: dmin← GetMinDistance(Q,mbr)

10: sm← GetScoreMatrix(Q,[dmin])
11: e(rg,s)← DP(sm)
12: Insert(BQ,e(mbr,s))
13: else
14: /*if cn is a lmbr*/
15: qj ← query tile nearest to lmbr
16: e(rg,s)← GetMaxSubRg(lmbr,qj ,Q)
17: RQ.Insert(e(rg,s))
18: for all qi in Q and i 6= j do
19: dmin← GetMinDistance(qi,lmbr)
20: sm← GetScoreMatrix(Q,[dmin])
21: e(lmbr,qi,s)← DP(sm)
22: Insert(BQ,e(lmbr,qi,s))
23: end for
24: end if
25: end for
26: else
27: /*if e is of type (qj ,lmbr,s)*/
28: e(rg,s)← GetMaxSubRg(lmbr,q,Q)
29: Insert(RQ,e(rg,s))
30: end if
31: e(mbr,s)← GetHead(BQ)
32: end while
33: return RQ

Figure 12: Overlap of query image Q with virtual tiles
(vt1, vt2, . . .) at distance dmin.

SPARS inserts the mbr along with the score s as an element e(mbr,s)
in BQ. It inserts e into BQ only if RQ has less than k elements or s
is greater than the minimum score in RQ.

If the child is a leaf node lmbr, then the algorithm finds the
nearest query tile qi to tile t of lmbr and computes the minimum
distance dmin = mini d(qi, lmbr). It explores the actual image
region for the (qi,t) alignment using Algorithm 3 as illustrated in
steps 15-17 of Algorithm 2. Algorithm GetMaxSubRg finds the
overlap of query Q with image I pointed by lmbr by aligning qi with
t. Since the same overlapping region can be encountered later for
a query and image tile pair, GetMaxSubRg maintains a bit-vector
BS to flag the explored regions; this prevents multiple processing

424

Algorithm 3 GetMaxSubRg (SPARS)
Input: lmbr: leaf node, qi: query tile, Q: query tiles list
Output: e: entity of maxsubregion and score
1: BS: bit-vector for explored overlap region
2: org← FindOverlapRegion(lmbr,qi)
3: if org not flagged in BS then
4: dm← GetDistanceMatrix(org)
5: sm← GetScoreMatrix(Q,dm)
6: e(rg,s)← DP(sm)
7: flag org in BS
8: end if
9: return e(rg,s)

dmin

dmin

dmin

q3
q4

q1
t1 t4

dmin

q2
t2

t3

Figure 13: Tiles of the overlapping region for q1 aligning with
t1 lie at distances greater than dmin.

of the same database region. Algorithm GetMaxSubRg returns the
maximum scoring subregion rg of the overlap and the correspond-
ing score s using DP. The result e(rg,s) is inserted into RQ only if
RQ has less than k elements or s is greater than the minimum score
in RQ.

After processing the alignment of qi with t, we still need to pro-
cess the other alignments corresponding to other query tiles and t.
The SPARS algorithm delays exploring these alignments in order to
save computation cost. It calculates a score s of the lmbr for each
qj , j 6= i using the same method discussed for a mbr (outlined by
the steps 18-23 of Algorithm 2). It finds the minimum distance dj

between qj and tile t in lmbr. It overlaps the query image with a
virtual image such that the distance between each aligned pair of
tiles is dj . DP is run on this score matrix to compute score s of
the maximum scoring subregion for the overlap. SPARS inserts el-
ements e(lmbr,qj ,s) in BQ for each qj only if RQ has less than k
elements or s is greater than the minimum score in RQ. The algo-
rithm explores these regions during the access of the elements from
BQ as outlined by steps 28-29 of Algorithm 2.

SPARS proceeds by accessing the current highest scoring el-
ement from BQ and terminates when the lowest score in RQ is
greater than the highest score in BQ.

Pruning Strategy: The scoring function s(q, t) is a monotoni-
cally decreasing function of d(q, t), as discussed in Section 3.1.
The aggregate score of an overlap is also monotonic with respect
to individual scores of the score matrix of an overlap. With this
monotonicity property, the following lemma holds. SPARS uses
this lemma to prune the search space.

LEMMA 1. The score S(Q, I) of the overlap of a query image
Q with an image I with d(qi, ti) = r, ∀i, is an upper bound on the
score S(Q, I ′) of all possible overlaps ofQ with image I ′ provided
d(qi, t

′
i) ≥ r, ∀i.

From this lemma, we see that the score s of a node (mbr or lmbr)
at a minimum distance dmin from the query tiles is an upper bound
on the score of all nodes whose minimum distance is greater than
dmin. We visualize such an example in Figure 11 where MBR2

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

T
im

e(
s)

Query Size

Retinal Dataset

DBSize=112045
Dimension=6

SPARS
TARS
Linear

Figure 14: Effect of query size on the performance of the algo-
rithms for retinal images.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

T
im

e(
s)

Query Size

Aerial Dataset

DBSize =82282
Dimension=6

SPARS
TARS
Linear

Figure 15: Effect of query size on the performance of the algo-
rithms for aerial images.

is at a distance of dmin but MBR3 is at a greater (minimum) dis-
tance from all the query tiles. Therefore, score of MBR3 will be
less than MBR2. The score s is also an upper bound on the score
of an actual overlapping region if the distance between the corre-
sponding tiles of Q and I have distance greater than dmin. We have
such a scenario in Figure 13 in which tile t1 finds q1 as its nearest
neighbor. All the tiles of the corresponding overlap as shown in
Figure 10 lie at a distance greater than dmin. Therefore, the score
of this overlap is less than the score s of a node. These facts jus-
tify that the score of an element in BQ is an upper bound on all
the nodes and regions that have not been explored and are ranked
lower in BQ. At any point during the search, SPARS has already
explored a hypersphere of radius dmin centered at each query tile
if the next candidate from BQ has a minimum distance dmin from
all the query tiles.

SPARS processes the nodes in decreasing order of their scores.
It explores all nodes having score greater than the least score in
RQ since they are potential candidates to yield regions with higher
score. It terminates the search once the minimum score in RQ be-
comes more than the highest score in BQ. Thus, this pruning strat-
egy ensures an optimal result for SPARS.

5. EXPERIMENTAL STUDIES
In this section, we first empirically analyze the performance and

efficiency of our access methods. Then, we present detailed quality
analysis of our new similarity measure with visual results. We used
Java 5.2 as our implementation language. We performed experi-
ments on a 3.2 GHz, 4 GB memory PC running Debian Linux 4.0.

5.1 Dataset Preparation
We used two large real image datasets belonging to raster im-

425

Reduced Energy retained
dimension Retinal dataset Aerial dataset

3 85.73% 81.21%
6 96.14% 93.38%

13 98.94% 97.55%

Table 2: Percentage energy remaining after PCA.

Retinal dataset Aerial dataset
Image count Region count Image count Region count

112,045 10,004,850 82,282 10,625,200
56,241 5,000,050 37,037 5,000,000
33,762 3,000,000 21,744 3,000,000
11,112 1,000,100 5,560 1,000,000

Table 3: Database sizes of retinal and aerial images.

Figure 16: Percentage split of NN and DP time for varying
query sizes for TARS and SPARS for aerial images.

age family to empirically analyze the efficiency and scalability of
our algorithms. The first dataset consists of 112,045 gray-scale
images of various tissues and layers of retina [9] from different ex-
perimental conditions. Multiple molecular probes such as lectins
and antibodies were used to examine the localizations of specific
protein expression in retinal cells and the expression patterns of
these proteins in different layers of retina. The fluorescence tagged
probes were imaged by immunohistochemistry using confocal mi-
croscopes. We used the magnification of these images to scale them
to a standard magnification using the CubicFilter from Graphics-
Magick2. Our second dataset consists of 82,282 gray-scale aerial
images from the Alexandria Digital Library3. These are satellite
images and air photos of different regions of California. The size
of the images in both datasets varied from 320 × 160 pixels to
640× 480 pixels.

We split the images into non-overlapping tiles of size 32 × 32
pixels and compute feature vector for each tile. The feature vector
of each tile is a histogram of its pixel values similar to CSD fea-
ture vector [24]. To enhance efficiency, we performed PCA [30] on
these feature vectors to reduce the dimensionality. The number of
principal components retained and the corresponding energy pre-
served is shown in Table 2. The index structure was built on this
transformed data. We used the Discriminator scoring function [36]
to measure the similarity between a pair of tiles. We discuss the
choice of parameters for the scoring function later in Section 5.4.

The parameters that are crucial to the performance of the access
methods are: (i) Query size, n (ii) Database size, N , and (iii) Di-
mensionality of the feature vector, dim. Query size n is defined
as the number of constituent tiles in the query image. Database

2http://www.graphicsmagick.org/
3http://www.alexandria.ucsb.edu/

 5

 10

 15

 20

 25

 30

 20000 40000 60000 80000 100000

C
om

pu
ta

tio
n

T
im

e(
s)

Database Size

Retinal Dataset

Query Size=10
Dimension=6

SPARS
TARS
Linear

Figure 17: Performance of algorithms for varying database
sizes of retinal images for query size 10.

 10

 20

 30

 40

 50

 60

 70

 80

 20000 40000 60000 80000 100000
C

om
pu

ta
tio

n
T

im
e(

s)
Database Size

Retinal Dataset

Query Size=30
Dimension=6

SPARS
TARS
Linear

Figure 18: Performance of algorithms for varying database
sizes of retinal images for query size 30.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 15000 20000 25000 30000 35000 40000 45000 50000 55000

C
om

pu
ta

tio
n

T
im

e(
s)

Database Size

Query Size = 30
Retinal DatasetDimension=3

Dimension=6
Dimension=13

Figure 19: Effect of database size and dimension on the perfor-
mance of SPARS on retinal images.

size N is defined as the number of images. The number of images
and possible overlapping regions obtained by translation for vary-
ing N is described in Table 3 for both retinal and aerial datasets.
For each experiment, we used 100 randomly picked queries from
the dataset. All the reported time measurements are averaged over
these 100 queries for top-10 results.

5.2 Performance Comparison of the Algorithms
We experimented with varying query sizes to compare the per-

formance of the algorithms. We use the largest datasets of size
N = 112, 045 for retinal images and N = 82, 282 for aerial im-
ages with dim = 6 for this experiment. Our results show that both
TARS and SPARS outperformed linear search on both the datasets,
as shown by Figures 14 and 15. Comparing TARS with SPARS on
the aerial dataset, we found TARS to be 3 times faster for query

426

 5

 10

 15

 20

 25

 30

 35

 10000 15000 20000 25000 30000 35000

C
om

pu
ta

tio
n

T
im

e(
s)

Database Size

Aerial Dataset

Query Size = 30Dimension=3
Dimension=6

Dimension=13

Figure 20: Effect of database size and dimension on the perfor-
mance of SPARS on aerial images.

 10

 20

 30

 40

 50

 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

T
im

e(
s)

Query Size

Retinal DB Size = 56241
Aerial DB Size = 37037

Retinal Dimension=3
Retinal Dimension=6

Retinal Dimension=13
Aerial Dimension=3
Aerial Dimension=6

Aerial Dimension=13

Figure 21: Effect of query size and dimension on the perfor-
mance of SPARS on retinal and aerial images.

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

T
im

e(
s)

Query Size

Dimension = 6Retinal DB Size = 11112
Retinal DB Size = 33762
Retinal DB Size = 56241

Aerial DB Size = 5560
Aerial DB Size = 21744
Aerial DB Size = 37037

Figure 22: Performance of SPARS for varying query sizes and
database sizes of retinal and aerial images.

size 10 but slower by 2 times for query size of 40 than SPARS
(Figure 15). The same behavior was noticed for the retinal dataset
where TARS was faster by 3.6 times for n = 10 but slower by 1.4
times for n = 40 than SPARS (Figure 14).

SPARS performs better than TARS for query sizes of more than
20. We attribute this change in performance of TARS to its multiple
traversal through the index structure, as discussed in Section 4.1.
We measured the average of total nearest-neighbor search cost NN
and dynamic programming DP cost for varying query sizes for
both the algorithms TARS and SPARS. We present the percent-
age of time spent by each algorithm on NN and DP in Figure 16.
We observe that the NN cost increases faster in TARS compared
to SPARS as query size increases. TARS is instance optimal [7]
and, therefore, it performs better than linear search and SPARS for

Dataset Images Queries λ c Precision
PA Retinal 80 18 1 23000 80.3%
NF Retinal 37 8 1 23000 82.5%

Aerial 550 7 1 115000 88%

Table 4: Datasets used for quality analysis, corresponding pa-
rameter values for scoring function, and precision measures.

smaller query sizes when the cost of this multiple traversal is not
high. As this cost increases with increase in query size, its perfor-
mance is poorer as compared to SPARS.

We next experimented with varying database sizes for the reti-
nal dataset to confirm the above behavior of the algorithms. For
a query size of n = 10 and dim = 6, we found TARS to be
more than 2.7 times faster than SPARS across the database sizes
as shown Figure 17. SPARS is more than 1.5 times faster than lin-
ear search. The performance difference increases with increase in
database size. Our other experiment with n = 30 and dim = 6
found SPARS to be 1.3 time better than TARS and more than 1.3
times better than linear search (Figure 18).

We see from the results discussed above that TARS is a better
algorithm than the other two for n ≤ 20 whereas SPARS is better
for n > 20. TARS saves more than 87% of the query time for
n = 10 on both the datasets for the largest size. SPARS has a
saving of 34% on retinal and 52% on aerial for n = 40 on the
largest datasets. The average query time of TARS is approximately
4 s on a database of sizeN = 112, 045 and a query size of n = 10.
The average query time for SPARS on the same database is 70 s for
query size of 40.

5.3 Performance Analysis of SPARS
We next performed detailed analysis of the behavior of the al-

gorithm SPARS for varying n (query size), N (database size) and
dim (dimension) on both the datasets. The performance results
of SPARS on both datasets for varying N and dim are shown in
Figures 19 and 20. The dataset size is 56,241 for retinal images
and 37,037 for aerial images. SPARS scales linearly for a given
query size across varying database sizes and dimensions. The per-
formance of SPARS on both datasets for varying n and dim is
shown in Figure 21. SPARS exhibited linear scalability for a given
database size across varying query sizes and dimensions. Experi-
ments with varying N and n for dim = 6 on both datasets also
revealed a linear scalability performance as shown in Figure 22.

The exhaustive set of empirical results discussed above confirms
a sub-linear scalability for SPARS across varying query size and
database size compared to a linear scan of the database. Its scala-
bility is also sub-linear for low dimensions compared to linear scan.
This establishes the scalability and efficiency of our algorithm.

5.4 Quality Analysis
In this section we analyze the quality of our similarity measure

and describe the datasets used for experiments.

Dataset Preparation: We used 3 different datasets to verify the
quality of our new similarity measure. From each dataset, we chose
interesting regions for querying. For each query, regions in im-
ages were manually tagged as a true or a false match. Since the
process is manually intensive, we used small datasets as shown
in Table 4. PA and NF datasets are confocal microscopic images
of cross-sections of feline retina labeled with the lectin peanut-
agglutinin and anti-neurofilament antibody respectively. Aerial data-

427

set consists of satellite images of Beverly Hills in California.

Parameter Learning and Precision: Here, we discuss the choice
of parameters for the Discriminator scoring function [36]. We use
pure black as background for retinal images which is true for the
most of the real microscopic images. We use pure black for aerial
images also for the purpose of simplicity, though, it can have other
backgrounds. Background for other domains need to be determined
from knowledge and training. We take the sum of all the pixels in
a tile as its distance from background. Distance between tiles is
measured using L1 norm.

We learn the parameter λ and c using manual training with an
approach similar to Walrus [28]. For each query, we measured top-
k precision where k = 5 and precision is the ratio of true matches
to total matches. We trained the PA dataset on 10 queries. High-
est precision (82.0%) was achieved for λ = 1 and c = 23000.
These parameters gave an accuracy of 78.6% for 8 other queries
over PA dataset. For the same parameter values, 8 queries on NF
dataset gave precision of 82.5%. Training and testing on 7 aerial
image queries had a precision of 88% for λ = 1 and c = 115000.
We summarize the results in Table 4. The same parameter val-
ues were used for scalability and efficiency measurements in Sec-
tion 5.2. Our size of the training set was limited by the manually
intensive nature of the task.

Finally, we present results for a set of queries from these three
datasets in Figure 23. All the match for retinal images have been
validated by domain scientists and found to be significantly inter-
esting. As shown in the first row of Figure 23 , query and the re-
sults are examples of biologically interesting fold of retinal tissues
labeled with peanut-agglutinin.

6. CONCLUSIONS
In this paper, we addressed the problem of querying significant

subregions in raster images. We designed a generic scoring scheme
to measure similarity between a query image and an image region.
We tiled the images to represent a region as a collection of tiles,
and each overlap between a query and a database image as a matrix
of scores. We proved that the problem of finding a connected sub-
region of maximal score in a score matrix is NP-hard and then de-
veloped a dynamic programming heuristic to score an overlapping
region. With this similarity measure, we proposed two index-based
scalable search strategies TARS and SPARS for querying in a large
repository. These strategies are general enough to work with any
scoring scheme and heuristic. We empirically analyzed the perfor-
mance of these algorithms on datasets of 112,045 retinal images
and 82,282 aerial images. We save more than 87% search time
on small queries using TARS and up to 52% search time on large
queries with SPARS on these datasets as compared to linear search.
It should be noted that our heuristic for finding the best connected
subregions and our access methods for top-k queries (TARS and
SPARS) are independent of each other. We demonstrate the quality
of our similarity measure (more than 80% precision) with analysis
over two real datasets. The ability to extract significant subregions
(connected regions with highest score) can have a significant im-
pact on analyzing raster images. Future work includes the formu-
lation of other heuristics for finding similar subregions that have
bounded approximation errors on quality and the formulation of
other domain-specific scoring functions.

7. ACKNOWLEDGMENTS
This work was partially supported by ITR grant #0331697 from

the National Science Foundation, USA. We like to thank Steven

K. Fisher, Geoffrey P. Lewis, and Chris Banna for providing their
domain expertise in validating the significance of the top-k results
of the retinal images.

8. REFERENCES
[1] I. Bartolini, P. Ciaccia, and M. Patella. A Sound Algorithm

for Region-Based Image Retrieval Using an Index. In DEXA
Workshop, pages 930–934, 2000.

[2] P. Baumann. Web-enabled raster gis services for large image
and map databases. In DEXA, page 870, 2001.

[3] S. Berretti, A. D. Bimbo, and E. Vicario. Spatial
Arrangement of Color in Retrieval by Visual Similarity.
Pattern Recognition, 35(8):1661–1674, 2002.

[4] C. Carson, S. Belongie, H. Greenspan, and J. Malik.
Blobworld: Image Segmentation Using
Expectation-Maximization and Its Application to Image
Querying. PAMI, 24(8):1026–1038, 2002.

[5] R. Datta, J. Li, and J. Z. Wang. Content-Based Image
Retrieval: Approaches and Trends of the New Age. In MIR
’05: Int. Workshop on Multimedia Information Retrieval,
pages 253–262, 2005.

[6] T. L. Department, M. Güld, C. Thies, and T. M. Lehmann.
Content-based image retrieval in medical applications. In
Procs. Int. Society for Optical Engineering (SPIE, pages
312–320, 2000.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In PODS, pages 102–113, 2001.

[8] R. Finkel and J. L. Bentley. Quad Trees: A Data Structure for
Retrieval on Composite Keys. Acta Informatica, 4(1):1–9,
1974.

[9] S. K. Fisher, G. P. Lewis, K. A. Linberg, and M. R. Verardo.
Cellular Remodeling in Mammalian Retina: Results from
Studies of Experimental Retinal Detachment. Progress in
Retinal and Eye Research, 24(3):395–431, 2005.

[10] J. L. Ganley and J. P. Cohoon. The Rectilinear Steiner Tree
on a Checkerboard. ACM Trans. Design Automation of
Electronic Systems, 1(4):512–522, 1996.

[11] M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree
Problem is NP -Complete. SIAM J. on Applied Mathematics,
32(4):826–834, 1977.

[12] M. Gertz, Q. Hart, C. Rueda, S. Singhal, and J. Zhang. A
data and query model for streaming geospatial image data. In
EDBT Workshops, pages 687–699, 2006.

[13] A. G. Gutierrez. Applying OLAP pre-aggregation techniques
to speed up query response times in raster image databases.
In ICSOFT (ISDM/EHST/DC), pages 259–266, 2007.

[14] A. G. Gutierrez and P. Baumann. Modeling fundamental
geo-raster operations with array algebra. In ICDM
Workshops, page 607, 2007.

[15] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, pages 47–57, 1984.

[16] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras.
Complex spatio-temporal pattern queries. In VLDB, 2005.

[17] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial
Databases. ACM Trans. Database Syst., 24:265–318, 1999.

[18] Y. Ke, R. Sukthankar, and L. Huston. An efficient
parts-based near-duplicate and sub-image retrieval system. In
MM, pages 869–876, 2004.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, pages 2169–2178, 2006.

428

PA Retinal Query Top-1 Result NF Retinal Query Top-1 Result

Aerial Query 1 Top-1 Result Aerial Query 2 Top-1 Result

Figure 23: Top-1 result for various queries from three real datasets.

[20] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR:
A simple and efficient algorithm for R-tree packing.
Technical report, Institute for Computer Applications in
Science and Engineering (ICASE), 1997.

[21] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60:91–110, 2004.

[22] J. Malki, N. Boujemaa, C. Nastar, and A. Winter. Region
Queries without Segmentation for Image Retrieval by
Content. In Visual Information and Information Systems
(VISUAL), pages 115–122, 1999.

[23] B. S. Manjunath and W. Y. Ma. Browsing large satellite and
aerial photographs. In ICIP, pages 765–768, 1996.

[24] B. S. Manjunath, P. Salembier, and T. Sikora. Introduction to
MPEG-7: Multimedia Content Description Interface. Wiley,
2002.

[25] K. Mikolajczyk and C. Schmid. Scale and affine invariant
interest point detectors. IJCV, 60(1):63–86, 2004.

[26] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. PAMI, 27(10), 2005.

[27] S. Morain and S. L. Baros. Raster Imagery in Geographic
Information Systems. ONWARD press, 1996.

[28] A. Natsev, R. Rastogi, and K. Shim. WALRUS: A Similarity
Retrieval Algorithm for Image Databases. TKDE,
16:301–316, 2004.

[29] R. Pajarola and P. Widmayer. Spatial indexing into
compressed raster images: How to answer range queries
without decompression. In IW-MMDBMS, page 94, 1996.

[30] K. Pearson. On lines and planes of closest fit to systems of
points in space. Philosophical Magazine, 2(6):559–572,
1901.

[31] E. G. M. Petrakis and C. Faloutsos. Similarity searching in
medical image databases. TKDE, 9(3):435–447, 1997.

[32] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial
matching. In CVPR, pages 1–8, 2007.

[33] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases:
With Application to GIS. Morgan Kaufmann, 2001.

[34] S. Shekhar and S. Chawla. Spatial Databases: A Tour.
Prentice Hall, 2003.

[35] M. Silva, G. Camara, R. Souza, D. Valeriano, and M. Escada.
Mining patterns of change in remote sensing image

databases. In ICDM, 2005.
[36] V. Singh, A. Bhattacharya, and A. K. Singh. Finding

significant subregions in large image databases. In
arXiv:0906.3585v1, 2009.

[37] L. Vinhas, R. C. M. de Souza, and G. Câmara. Image data
handling in spatial databases. In GeoInfo, 2003.

[38] P. Vinten-Johansen, H. Brody, N. Paneth, S. Rachman,
M. Rip, and D. Zuck. Cholera, Chloroform, and the Science
of Medicine: A Life of John Snow. Oxford University Press,
2003.

[39] J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity:
Semantics-Sensitive Integrated Matching for Picture
LIbraries. PAMI, pages 947–963, 2001.

[40] R. Weber and M. Milvoncic. Efficient Region-Based Image
Retrieval. In CIKM, pages 69–76, 2003.

[41] D. Yankov, E. Keogh, L. Wei, X. Xi, and W. Hodges. Fast
best-match shape searching in rotation-invariant metric
spaces. IEEE Transactions on Multimedia, 10(2):230–239,
2008.

[42] J. Zhang, M. Gertz, and D. Aksoy. Spatio-temporal
aggregates over raster image data. In GIS, pages 39–46,
2004.

429

