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ABSTRACT

The growing availability of mobile devices produces an enor-
mous quantity of personal tracks which calls for advanced
analysis methods capable of extracting knowledge out of
massive trajectories datasets. In this paper we present an
experiment on a real world scenario that demonstrates the
strong analytical power of massive, raw trajectory data made
available as a by-product of telecom services, in unveiling
the complexity of urban mobility. The experiment has been
made possible by the GeoPKDD system, an integrated plat-
form for complex analysis of mobility data. The system com-
bines spatio-temporal querying capabilities with data min-
ing and semantic technologies, thus providing a full support
for the Mobility Knowledge Discovery process.

1. INTRODUCTION

Research on moving-object data analysis has been recently
fostered by the widespread diffusion of new techniques and
systems for monitoring, collecting and storing location-aware
data, generated by a wealth of technological infrastructures,
such as GPS positioning and wireless networks [6]. These
have made available massive repositories of spatio-temporal
data recording human mobile activities, such as location
data from mobile phones, GPS tracks from mobile devices,
etc.: is it possible to discover from these data useful and
timely knowledge about human mobility? This is a sce-
nario of great potential opportunities and risks: on one side,
mining this data can produce useful knowledge, support-
ing sustainable mobility and intelligent transportation sys-
tems; on the other side, individual privacy is at risk, as the
mobility data contain sensitive personal information. The
GeoPKDD project [1], since 2005, investigated this direc-
tion of research; the lesson learned is that the answer to
the question above is yes, but with a big caveat: there is a
long way to go from raw data of individual trajectories up to
high-level collective mobility knowledge, capable of support-
ing the decisions of mobility and transportation managers.
Such analysts reason about semantically rich concepts, such
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as systematic vs. occasional movement behavior, purpose
of a trip, home-work commuting patterns, etc.; accordingly,
the mainstream analytical tools of transportation engineer-
ing, such as origin/destination matrices, are based on se-
mantically rich data collected by means of field surveys and
interviews. Clearly, the price to pay for this richness is hard:
mass surveys are very expensive, so that their periodicity is
very broad — every 5 years is a standard in current prac-
tice — and obsolescence is rapid; poor data quality is also a
plague: people tend to respond elusively (especially about
their non-routine activity), inaccurately, or not to respond
at all. On the other extreme, automatically sensed mobility
data record individual trajectories at mass level, collected
on a continuous basis: real mobile activities, faithfully sam-
pled as they occur, in real time. Clearly, the price to pay
here is exactly the lack of semantics in raw data: How to
bridge this deficiency?

The system illustrated in this paper is capable, for the first
time, of demonstrating the striking analytical power of mas-
sive trajectory data in unveiling the complexity of urban mo-
bility. The GeoPKDD platform coherently integrates solid
analytical methods with a semantic-based query, mining and
reasoning system, capable of mastering the complexity in-
herent to what we call the geographic privacy-aware knowl-
edge discovery process. To our knowledge, no other inte-
grated analytical solution exists, capable of supporting the
whole knowledge discovery process in the context of mobility
data. GeoPKDD system offers traffic management function-
alities that are complementary to other existing commercial
traffic management tool, such as traffic simulators (e.g., [2]).

The novel contribution of this paper is to present the
GeoPKDD system as the proper integration of previously
developed tools for analysis of spatio-temporal data. The
system comes with a new query language capable of express-
ing, in a uniform way analysis, mining and reasoning queries.

2. THE GEOPKDD SYSTEM

A system able to master the complexity of the knowl-
edege discovery process over mobility data needs to support
at least four functionalities: (i) trajectory data need to be
created, stored and queried through spatio temporal primi-
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agement of trajectories to an existing MOD. Hermes [10] has
been selected as best candidate, particularly for being based
on an object-relational data model. The second choice was
adopting the idea (Weka-like) of having a library of algo-
rithms for trajectory mining that might grow during time.
The third idea was to design a query language that might al-
low the analyst to progressively combine mining and query-
ing; namely focusing on a spatio temporal area, selecting a
mining algorithm, using it for mining patterns on that area,
changing the area, doing again some mining, storing the pat-
terns, quering them, etc. The fourth choice was to require
that the ability to dress such data with domain knowledge
is tightly integrated with querying and mining.

Figure 1 illustrates the architecture of the GeoPKDD sys-
tem that assembles together four main components, namely
the Data Manager, the Data Mining Query Language Ex-
ecutor, the Library of Trajectory Mining algorithms and the
Semantic component.
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Figure 1: The GeoPKDD Integrated system

The central box of Figure 1 illustrates the main modules
of the Data Mining Query Language executor, which is the
kernel of the GeoPKDD system and supports the processing
of queries expressed with the data mining query language
(DMQL) [9]. The introduced query language is an extension
of a spatio-temporal SQL with mining calls statements. In
of the DMQL component.

The technological solution adopted for data storage of the
GeoPKDD Integrated platform is based on Oracle 11g ex-
tended with components for moving object data storage and
manipulation, spatial objects representation, mining models
storage and semantic technology. The moving object sup-
port is provided by Hermes [10], which defines a collection of
moving object data types, each accompanied with a palette
of specialized operations provided as an Oracle data car-
tridge. Hermes is, in turn, based on Oracle Spatial [8] thus
capable of natively representing spatial objects. Oracle 11g
has been also extended [9] with data types for representing
data mining patterns, thus supporting natively the mined
pattern storage and manipulation for all mining algorithms
actually available in the system. Furthermore, the Seman-
tic Technology component of Oracle 11g provides primitive
support for ontology storage and reasoning. Therefore, Or-
acle 11g with Hermes becomes the basic data storage of the
system for both the data mining and semantic components.

The library of trajectory mining algorithms is plugged into
the data mining query language through the Algorithms
Manager interface. Some of the plugged algorithms are:
Trajectory pattern (T-Pattern) [5], that extracts common
itineraries with detailed timings; the Trajectory Clustering
(T-Clustering) [11], that groups together similar trajecto-
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ries, based on a wide choice of different trajectory similar-
ity functions; the WhereNext location prediction algorithm
[7], that builds a T-Pattern-based predictive model able to
estimate the future location of a trajectory; and, finally,
Trajectory anonymization (T-Anonymization) [3], that pro-
duces an anonimized version of the input trajectory dataset,
following a variant of the standard k-anonimity notion.

The semantic component is derived from [4] and is aimed
at enriching both trajectories and mined patterns with do-
main information encoded in an ontology, thus making an
explicit representation of semantic patterns. The results of
running the semantic component on a set of trajectories or
patterns is that they are, possibly, classified into one or more
ontology defined classes, thus producing a kind of "semantic
tagging” of trajectories and patterns.

3. AREAL URBANMOBILITY SCENARIO

In the demo of the system we will show a set of exper-
iments performed on a real world case study, that demon-
strate the capabilities of the GeoPKDD platform and how
they can be exploited to extract useful knowledge from raw
mobility data.

The analysis capabilities of our system have been applied
onto a massive real life GPS dataset, obtained from 17,000
vehicles with on-board GPS receivers under a specific car
insurance contract, tracked during one week of ordinary mo-
bile activity in the urban area of the city of Milan, Italy; the
dataset contains more than 2 million observations. Using
the preprocessing algorithm integrated in the system, we
cleaned the GPS dataset and reconstruct the trajectories.
This last step yield more than 200,000 trajectories.

By applying our mobility data mining methods to this
dataset, we developed a set of novel analytical services for
mobility analysis and traffic management, designed and val-
idated in collaboration with Milan Mobility Agency. Three
representative examples are discussed below.

Origin-Destination Analysis. The automated construc-
tion of Origin/Destination (O/D) matrices from mobility
data in a timely, reliable and objective manner, overcom-
ing the limitations of the current survey-based approach.
The O/D matrix is a popular tool of transportation engi-
neering, describing users’ flows between any pairs of certain
geographic areas designated as possible origins and destina-
tions of users’ trips; the current practice for estimating O/D
flows is through data collected by periodic surveys (every 5
years in Milan, sometimes enriched with road sensor data),
with obvious limitations due to high costs of interviews, poor
data quality and rapid obsolescence.

Finding Itineraries. Providing insights about how the
flow between some given origin and/or destination is dis-
tributed along the paths over the road network; e.g., de-
scribing the main itineraries towards a specific destination,
such as a crucial parking lot.

Detecting Systematic Movements. The detailed anal-
ysis and discovery of systematic movement behaviors, i.e.,
the movements that repeat periodically during the week,
with particular emphasis to home-to-work and work-to-home
commuting patterns.

Due to the lack of space we briefly present two of the anal-
ysis performed with the platform. However, the full set of
analysis results will be available during the demonstration.



Figure 2: T-patterns to park n. 317

3.1 Findingltineraries

The analysis tools integrated in the GeoPKDD system
allow to analyse the traffic directed to a destination in de-
tail, taking into account the actual routes followed by all
vehicles to reach the destination. In particular, we selected
all trajectories that ended in one of the parking lots con-
sidered above — more precisely, the one close to the Linate
airport — and extracted a set of frequent T-Patterns that de-
scribe their most common routes with timings. We remind
that a T-Pattern describes a sequence of common visited
places (modeled through rectangular regions) together with
the typical transition times between each pair of consecutive

elements of the sequence.

As an example of the expressivity of the DQML adopted
by the system, the following mining query was used to obtain
the results described in this section:

CREATE MODEL mobility_tpattern AS MINE T-PATTERN
FROM (SELECT t.id, t.trajectory

FROM TrajectoryTable t, RegionTable r

WHERE r.id=317

AND t.trajectory.final().intersection(r.area))
WHERE T-PATTERN.support = 0.18 AND

T-PATTERN.side = 0.0045 AND T-PATTERN.time = 60

where TrajectoryTable and RegionTable contain, respec-
tively, input trajectories and parking lots, and support, side
and time are parameters of the T-Pattern mining tool.

Figure 2 shows an overall view of all the T-patterns ob-
tained with a minimum support threshold set to 18% and
time tolerance set to 1 minute. It is clear that the most fre-
quent routes to the parking lot follow the eastern side of the
tangenziale (the main ring road of the city). That is even
clearer on Figure 3, where four most significant patterns
are selected and shown in detail, together with the corre-
sponding timings. The starting region of each T-pattern
has a black border around it, and consecutive regions in
a T-pattern are connected through a line. Beside the vi-
sualization of each T-pattern is reported the list of typical
transition times between consecutive regions, in the format
“step_number min_time max_time”, times being expressed in
seconds. For instance, the left picture of Figure 3 describes
a T-pattern composed of four regions, and therefore three
transitions. The first block of transition times is composed
of interval [37.45,37.89] (around half a minute) for the first
transition (step_number equal to 0), [35.12, 55.67] (from half
to one minute) for the second one, and [125, 125.16] (around
two minutes) for the last one.
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Figure 3: Selected T-patterns to park n. 317

3.2 Detecting Systematic M ovements

The objective of this new analysis task is to compute and
analyse the systematic movements contained in the dataset.
A systematic movement has been defined by the Mobility
Agency as a frequent movement between two stops, in the
user’s history. In particular, we distinguished between stops
and regions of interests: the first represents the actual infor-
mation about the trajectory suspension of movement, iden-
tified by a timestamp and a location, whilst the latter rep-
resents the geographic location where the stop happens.

Given the systematic movements, we exploited the Se-
mantic Component to define a special kind of systematic
movements, the Home-Work behaviour. Home-work move-
ments have been defined by the domain expert as trajec-
tories starting with a systematic movement from a frequent
starting point (the home location) ending in a long stop (the
work place), possibly followed by other movements and end-
ing again at the home location. We indicate as home a loca-
tion from which a user frequently starts his/her trajectories,
as long stop a stop that lasts at least 3 hours and as frequent
move a move with frequency support at least 3. Since the
Home-work movement must finish in the home region, this
behavior captures the routine movements of people going to
work, possibly moving again for job reasons or for shopping,
and then finally going back home.

Figure 4 shows two examples where two vehicles were se-
lected, and all trajectories of each single vehicle are plotted
together with the regions that are recognized as its instances
of the Home and Work classes, respectively colored in blue
and green. We can observe that: (i) homes and work loca-
tions are usually connected to rather fixed routes; (ii) how-
ever, several variations can be spotted, as well exemplified
in Figure 4(bottom right), where apparently a few interme-
diate stops are performed in the route between home and
work; (iii) as naturally expected, there are also movements
that do not belong to the home-to-work, such as in the case
in Figure 4(top right), where some trajectories move towards
a destination (close to the center) not recognized as work.

The definition of systematic and Home-Work movements,
can be exploited to focus the analysis on the subset of tra-
jectories which belong to these two classes.

The hourly distribution of systematic movements is shown
in Figure 5. Here, we can notice two different emerging
behaviors: (i) the systematic movements (red curve) follow
the global trend (green curve) but during the central hours
of the days are relatively less frequent; (ii) the systematic
traffic during the weekend is extremely low. These results
provide a valuable insight that supports the hypothesis made
by the mobility agency about a possible underestimation of
the non-systematic traffic, so far manly based on personal
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Figure 5: Movement distribution by hour, focused on systematic movements
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Figure 4: Sample Home-Work locations and move-
ments

Figure 6: Population distribution between 5 and 6
a.m. compared against the distribution of homes

experience and indirect evidence.

Similarly, assuming that the distribution of the population
at very early hours of the day reflects that of their residences,
we can compare the homes distribution with the original
figure provided by Milan Agency relative to 5-6 a.m. period,
as shown in Figure 6. The two distributions match quite
closely, showing essentially the same dense spots on both
the figures. This seems to confirm both the value of GPS
mobility data for this kind of analysis, and the correctness of
the reasoning process followed to infer the location of homes.

Running times of queries depend on the task, and range
from a few seconds for simple selections to few hours for
complex (yet less frequent) operations such as pattern entail-
ment on massive data (measures obtained on a 8-processors
Xeon 2GHz, 8GB RAM Windows system).

4. CONCLUSIONSAND ROADMAP

The experiment illustrated in this paper demonstrates
the strong analytical power of massive, raw trajectory data,
made available as a by-product of telecom services, in unveil-
ing the complexity of urban mobility. The experiment has
been made possible by our querying, mining and reasoning
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system, which provided the analytical framework for mas-
tering this complexity and extracting meaningful mobility
knowledge.

We believe that the frontier of this line of research lies
primarily in the semantics of interactions — both with the
surrounding context and between mobile individuals them-
selves. On one hand, the increasing intelligence, connec-
tivity and context-sensitivity of mobile devices is producing
location data tagged with ever richer semantic information:
P2P and ubiquitous computing interactions, query logs, sen-
sor data — a whole new picture of social relations intertwined
with mobile behavior. On the other hand, these richer data
will enable deeper analytics, based either on known interac-
tion schemata studied in natural and social sciences, such as
encounters, convergence, leadership, or self-emerging inter-
action models, extracted by means of statistical and mining
approaches. Semantic-based mobility data mining will get
us closer to an archaeology of the present.
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