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ABSTRACT
There has been a substantial increase in the volume of (semi)
structured data on the Web. This opens new opportuni-
ties for exploring and querying these data that goes be-
yond the keyword-based queries traditionally used on the
Web. But supporting queries over a very large number
of apparently disconnected Web sources is challenging. In
this paper we propose index methods that capture both
the structure of the sources and connections between them.
The indexes are designed for data that is represented as
relations, such as HTML tables, and support queries with
predicates. We show how associations between overlapping
sources are discovered, captured in the indexes, and used
to derive query rewritings that join multiple sources. We
demonstrate, through an experimental evaluation, that our
approach scales to a large number of sources.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval|Search process

General Terms
Algorithms

Keywords
Dataspaces, Indexing, Search Engines

1. INTRODUCTION
There is a very large volume of (semi) structured data on

the Web. A recent study reports that there are over 144
million relations published as HTML tables in Google's in-
dex [3]. Other sources of structured information includeWeb
services and online databases. Whereas Web documents
have been traditionally modeled as bag of words and queried
through simple keyword-based interfaces, having structured
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information opens up new opportunities for exploring and
querying these data. By leveraging the structure, more pre-
cise queries can be posed which in turn lead to higher-quality
answers. Furthermore, answers to queries can correlate in-
formation from multiple sources, enabling on-the-
y integra-
tion at an unprecedented scale.
But supporting structured queries over a very large num-

ber of data sources creates new challenges [1]. A practical
solution must deal with the scale as well as with the dynamic
nature of the Web, where new data sources are constantly
added and existing data sources updated. In addition, the
metadata associated with the data sources is often scarce.
For example, for Web tables, usually, only the attribute
names can be automatically extracted|no information is
provided about attribute types or integrity constraints.
Dataspaces have been proposed as a new paradigm for

managing structured Web sources [9]. Dataspace systems
aim to support large networks of interconnected data sources
with (an implicit or explicit) structure. These systems must
address several problems, from supporting large volumes of
heterogeneous data (in di�erent formats) from autonomous
data sources, to providing an integrated means for searching
and querying the information.
In this paper, we focus on the problem of supporting struc-

tured queries in dataspaces. Our underlying model is based
on three interconnected entities: relations, attributes and
values. The relationships between these entities are cap-
tured in specialized indexes. In addition, the indexes cap-
ture relationships across relations, i.e., relations that share
attributes and values.
By treating each individual data source as a relation, we

propose a new querying mechanism which is scalable, i.e.,
able to handle a very large number of structuredWeb sources;
and that supports simple, yet expressive queries that exploit
the structure inherent in the data. Our goal is to let users
declare queries with attributes, and to optionally specify se-
lection predicates. Furthermore, if required, answers may
join information from multiple sources.
We have performed an experimental evaluation of our in-

dexes using a large set of HTML tables automatically gath-
ered from the Web. Our results show that using our ap-
proach, queries can be answered e�ciently. We also posi-
tion our work against related work, through a comparison
of di�erent features, specially considering memory cost.
The remainder of the paper is organized as follows. Re-

lated work is discussed in Section 2. In Section 3, we present
the basic concepts underlying our model and the problem
de�nition. Section 4 describes the indexing mechanism we
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have proposed. Section 5 gives a detailed description of the
search algorithms we use to �nd possible ways to answer
user queries. In Section 6 we present the experimental re-
sults. In Section 7, we present a real application based on
our solution, which allows interesting queries to be posed
against information gathered from multiple relations. Sec-
tion 8 presents our concluding remarks.
2. RELATEDWORK
The problem of providing seamless access to structure

data on the Web have already been addressed by a num-
ber of di�erent works. Salles et al. [18] classi�es these works
into two di�erent categories: schema �rst approach (SFA)
and no schema approach (NSA).
SFA assumes the sources of information are already in-

tegrated into a global schema. This integration is mate-
rialized as mappings between the source schemas and the
global schema. Classical solutions include global-as-view
(GAV[17]) and local-as-view(LAV[10]), whose main di�er-
ence is the direction of the mappings. Nevertheless, they all
serve the same purpose: support query rewriting, in which
a query posed to the global schema must be broken down
into queries that conform to the local schemas[5].
Creating mappings and maintaining them as sources evolve

and the global schema changes can be expensive and time
consuming. This e�ort is required and justi�ed for appli-
cations that are mostly static, cater to well-de�ned infor-
mation needs, and integrate a relatively small number of
sources. However, for exploring and integrating information
sources on the Web, expecting the existence of a pre-de�ned
global schema is not practical. To de�ne a global schema,
one �rst needs to know about which sources are available.
And on the Web, there are too many of them. Besides, a
single global schema is unlikely to be su�cient to ful�ll the
information needs of all users. Even if it is possible to model
a very large global schema that contains constructs for com-
prehensive set of concepts, the e�ort spend on de�ning the
mappings to the sources would become unfeasible, not to
mention that Web sources are too volatile, which would re-
quire the mappings to be constantly updated.
In the other direction, NSA assumes that a global schema

is not available. In such scenario, the goal is to match the
user desire, expressed in a query language, to the set of
sources available. To make matters worst, this process needs
to be done on the 
y.
In most NSA works, the user expresses queries as key-

words, given the simplicity of the language and its proven
success on search engines for unstructured data. Addition-
ally, at some extent, NSA approaches tend to look at the
sources as if they were collection of tuples (a.k.a. relations).
Following this direction, some works propose keyword search

over relational databases. Such approaches model the solu-
tion as graphs whose nodes are connected based on foreign
key relationships. Two possibilities emerge: instance-level
graph[14] and schema-level graph[2, 13]. In the instance-
level graph, the nodes are tuples of the database. Given a
query, keywords are mapped to nodes in the graph. Each
subset of the graph that links all of the selected tuples be-
come individual answers. Results are then presented as
nested information, according to the connections between
the tuples. In the schema-level graph, the nodes refer to
elements of the database schema. Like the instance level
counterpart, keywords of a query map to nodes in the graph.

Then, each subset of the graph that links all of the selected
nodes derives a query that contains some answers.
Originally designed to relational databases(in the close-

world-assumption sense), these approaches could be extended
to Web information. However, it is not clear if and how
they would be suitable to the large amount of information
available on the Web, specially considering that foreign key
relationships are unknown.
The structured universal relation (SUR) was also pro-

posed as a way to query multiple structured Web sources
using a simple keyword based interface [6]. Generally speak-
ing, a database is virtually 
attened as a single relation with
a large number of attributes, so the user is free from having
to provide join information. SUR requires an expert to spec-
ify compatibility constraints for relations as well as concept
hierarchies for attributes.
To support queries over Web tables, Cafarella et al. [3]

proposed an inverted list that links cells to the tables in
which they appear. The horizontal and vertical o�sets of the
cell inside the table are also mapped. Similarly to the pre-
viously presented works, queries are expressed by keywords.
The result of the search are pages whose inner tables contain
terms that appear as keywords in the query. In order to ef-
fectively �nd the most relevant information �rst, the results
are ranked according to a set of features. For instance, tables
whose keywords appear as part of the header are deemed
more relevant than tables whose keywords appear as part
of a record. As a drawback of this approach, structure is
not taken into account for the purpose of answering struc-
tured queries. As a consequence, selection predicates are not
allowed, and the results are limited to information encoun-
tered on single tables.
Dong and Halevy [7] take a step forward with a solution

that is able to perform queries with structure. The indexing
schema they propose is based on keywords that points to a
list of instances where they can be found. The index can
be enriched with hierarchical information (terms that can
substitute a keyword) and association labels, so that infor-
mation from multiple sources can be joined. This solution
is the �rst attempt to provide means for the user to express
queries with selection predicates, even though predicates are
restricted to the equality operator, unlike our approach that
supports more types of comparison operators.
There are also pay-as-you-go approaches that lie in-between

the SFA and the NSA. Works of this kind start with few
mapping information and evolve over time, taking user feed-
back into account. Madhavant et al [15] states some archi-
tectural issues that need to be addressed in such a scenario.
Salles et al. [18] provides a concrete framework that sup-
ports dataspace enhancing by adding relationships among
the data.
3. BACKGROUND
In order to query structured Web data, we envision struc-

tured search engines that support simple, yet expressive queries
which explore the underlying structure of the data.
Figure 1 shows a high-level overview of our architecture.

Relevant relations are extracted from the Web and fed into
the Indexer. Given a structured query, our goal is to �nd all
possible ways to answer this query using relations found in
the Index, i.e., all possible rewritings [10].
The Rewriter is composed by search algorithms that ac-

cess the indexes in order to derive rewritings for user queries.
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Each rewriting can then be individually processed (by re-
trieving the current version of the relations from the Web or
using cached relations), and its resulting tuples returned to
the user.
The indexes (along with the search algorithms) we pro-

pose in this paper are important building blocks for these
search engines, as they not only improve the performance
for �nding the rewritings, but also aid in the selection of
relevant relations.

Processor 

Rewriter 

Indexer 

Index 

Web 

query 

rewritings 

rewriting 

tuples 

Query 

Interface 

Figure 1: Architecture Overview

Data Model. We treat Web sources as relations. Relations
provide a natural model for a signi�cant number of struc-
tured Web sources, in particular, HTML Tables. We assume
that the schema (i.e., attribute names) and instances can be
automatically extracted from the Web sources [4].
Figure 2 shows excerpts of (real) HTML tables whose re-

lational structure was automatically extracted. Relation T1brings a list of movies starred by Leonardo DiCaprio, T2brings a ranked list of the best movies ever, T3 brings a
ranked list of movie scores and T4 brings a list of movies
from Martin Scorsese. These relations are used throughout
the paper in order to exemplify how the querying process
works.
Query Language. Our query language extends the tra-
ditional keyword-based interfaces with structural semantics.
A query is de�ned as a list of attributes, followed by a (op-
tional) list of selection predicates.
Example 1: Find the title and year of movies released

after 1990. Q1 ! title year [year > 1990]
The bold sentence in Example 1 shows how to express a

user request in the proposed query language. The attributes
involved in brackets are the (optional) selection predicates,
whereas the remaining attributes are projection predicates
(attributes that need to be returned as part of the answer).
The user needs not to specify the sources (i.e., the un-

derlying relations). Instead, a search algorithm selects the
relevant sources and derives queries that retrieve data from
these relations. If the speci�ed attributes span multiple re-
lations, queries are derived that join these relations.
Rewritings. In our work, a rewriting is a conjunctive query
where each subgoal refers to a relation. In traditional ap-
proaches for query rewriting[11], the answer to a query is
presented as a union of rewritings (maximally contained
rewriting). Instead of computing this union, we present to
the user each local rewriting in isolation. Several reasons
motivate this decision:

1. Depending on the size of the data set, the cost for
computing all answers becomes prohibitive. Besides,
the user would normally focus on the �rst results only.

2. It is easier to relate the resulting tuples to their respec-
tive sources. Knowing the provenance of the tuples

Figure 2: Source Relations

helps to identify the best sources of information.
3. It is possible to associate a speci�c rewriting to an-

swers understood as irrelevant by a user and ignore all
answers that come from this rewriting.

4. It is possible to conceive a feedback mechanism, where
the user is able to inform that the answers of a speci�c
rewriting are not correct. Based on this information,
the system could adapt the rewriting in order to en-
hance accuracy.

Figure 3 shows examples of queries/rewritings based on
the relations of Figure 2. Although in our implementation
rewritings are internally expressed in a simpli�ed version
of SQL, for clarity, here we show them using Datalog (at-
tributes are described in the abbreviated form).
Rewritings that extract data from a single relation are

called single-relation rewritings. An example of this kind of
rewriting is given in Rx1. Conversely, rewritings that extractdata from more than one relation are called multi-relation
rewritings. An example of this kind of rewriting is given in
Ry1. The relations of this rewriting are joined by the sharedvariable title.

Query Possible Rewriting
Qx title year Rx1(t,y) :- T1(t, g, y)Qy title genre oscar Ry1(t,g,o) :- T1(t,g,y1),T4(t,y2,n,o)

Figure 3: Example of Rewritings

4. INDEXING
Information from Web relations are kept into two index

structures: ATaVa and AVaTa.
ATaVa is a tree based index that allows navigation in the

following direction: attribute ! relations ! values. Fig-
ure 4 shows some of the relations from Figure 2, indexed
in the ATaVa (the remaining sources are not shown for the
sake of space). This index is implemented as a tree, and for
presentation reasons, they are visually presented as a table.
At the root level, the attributes are linked to their re-

spective relations. Additionally, each pair attribute/relation
(a; r) is associated with a data type and the list of values
of a that appear in tuples of the relation r. Each value is
enriched with the tuple ID that contains the value.
The data type of an attribute is normally not de�ned in

Web data, but it can be easily discovered through a template
based approach. For instance, FOCIH also has a library
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Figure 4: Examples of the ATaVa / AVaTA Indexes

of regular-expression recognizers for values in common for-
mats[8].
The goal of the ATaVa index is to provide the location of

the relations that contain the query attributes. Additionally,
the data type and the list of values are used to verify if a
relation satis�es the query predicates.
A simpli�ed version of this index is obtained by remov-

ing the values level. In this case we call it the ATa index.
While ATa reduces the storage requirements, it does not
support queries with predicates. The experiments of Sec-
tion 6.1 shows the behavior of these indexes on real Web
data.
Similarly to ATaVa, AVaTa is also a tree based index.

However, it allows navigation in the following direction: at-
tribute ! values ! relations. Figure 4 shows the relations
from Figure 2 indexed in the AVaTa. The structure resem-
bles the one used in the ATaVa, but the order between the
values and the relations is inverted, and no tuple ID is kept.
This index is populated only with attributes that appear

in more than one relation, and only when there is at least one
value in common as content of these attributes. Attributes
that appear in AVaTa are called join attributes. Join at-
tributes act as links between otherwise disconnected rela-
tions.
The goal of the AVaTa index is to provide the location

of the relations that contain complementary data, which is
useful for discovering multi-relation rewritings.
5. QUERY REWRITING
In what follows, we present a series of examples that illus-

trate the proposed rewriting algorithms. Special attention
is dedicated to the process of �nding multi-relation rewrit-
ings, where we start with a na��ve solution and continue with
more scalable approaches. It is also shown how the AVaTa
is able to reduce the search space required to �nd relations
that contain complementary data.
Example 2: Find the title and year of movies. Q2: titleyear
Algorithm 5.1 describes how the relations that provide an-

swers for Q2 are located. The ATaVa index is scanned for
each of the query attributes ai. The function locateRelations(ai)returns the corresponding relations of ai from the ATaVa
(the relations that contain a de�nition for ai).The list of relations from each attribute are intersected,
and the result of the intersection are the relations that can

provide tuples that cover all attributes. Each of these be-
come the single-relation rewritings r21(t,y):-T1(t,g,y) and
r22(t,y):-T4(t,y,n,o).

�ndCompleteRelations(Query Q) returns C
1: //list of relations that contain all query attributes.
2: C  fg //Initially empty
3: for every attribute ai of Q do
4: intersectRelations(ai,C)5: end for
intersectRelations(ai,C)
1: if (i == 0) then
2: C  locateRelations(ai)3: else
4: C  C \ locateRelations(ai)5: end if
Algorithm 5.1: The algorithm that �nds relations that
contain all query attributes

Example 3: Find movies released after 2005. Q3: title[year > 2005]
This case involves a query with a selection predicate ([year

> 2005]). Similarly to the previous example, the index is
scanned for each of the query attributes. However, if ai is aselection variable, the function locateRelations(ai) returnsonly the relations that satisfy the selection predicate.
The list of values of the ATaVa index are traversered in or-

der to �nd out if a relation satis�es a predicate or not. The
data type indicates the semantic of the comparison predi-
cates. For example, year is a numeric value in the index, so
it should be compared as such. Since the values are ordered
in alphabetic order, this operation can be done in logarith-
mic time.
The lookup for the year attribute in Q3 returns relation

T1 (this is the only relation that satis�es the predicate over
year). As a result, only a single rewriting is produced:
r31(t; y):-T1(t; g; y); y > 2005.
Example 4: Find romance movies released after 2000.

Q4: title [year > 2000] [genre = romance]
Example 4 is more restrictive than example 3, as the pred-

icates show. The only relation that covers all attributes of
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query Q4 is T1. However, in order for this relation to fully
satisfy the selection predicates of the query, both predicates
should be satis�ed for the same tuples. In this case, no tu-
ple of relation T1 satis�es predicates genre = Romance and
year> 2000 at the same time, since there is no overlap be-
tween the tuples that satisfy the �rst predicate (tuple one)
and the tuples that satisfy the second predicate (tuples two
and three).
Given the tuple ID of the ATaVa, it is possible to obtain,

for each table, the list of tuples that satisfy a speci�c se-
lection predicate. With these lists, it is possible to discover
whether a rewriting is able to return any answers at all.
Section 5.5 gives more details about how this veri�cation is
performed.
Example 5: Find the title, year and director of movies.

Q5: title year director
In this example, there is no source relation that covers all

attributes of the query. For instance, relation T1 covers onlytitle and year, and relation T2 covers only title. These
relations, called incomplete, produce incomplete rewritings,
where one or more attributes of the query are absent, such
as r51(t; y; d):-T1(t; g; y) and r52(t; g; y):-T2(r; t).Algorithm 5.2 shows how to �nd the list of incomplete re-
lations. This list contains relations that cover at least one
of the attributes (D), except those that cover all attributes
(C). Moreover, the selection attributes (if any) always need
to be covered (S). This last condition is required to prevent
the generation of answers that may not be contained in the
query. For instance, in Example 3, it is not possible to as-
sure that the rewriting r32(t; y):-T2(r; t) is contained in the
query Q3, because it is unknown whether all movies from T2were released after 2005.

�ndIncompleteRelations(Query Q) returns D
1: //relations that contain all query attributes.
2: C  fg //Initially empty
3: //relations that contain only some of the query at-

tributes.
4: D  fg //Initially empty
5: //relations that contain all of the selection attributes.
6: S  fg //Initially empty
7: for every attribute ai of Q do
8: intersectRelations(ai,C)9: D  D [ (locateRelations(ai))10: if (ai is a selection attribute) then
11: intersectRelations(ai,S)12: end if
13: end for
14: if (query contains selection predicates) then
15: D  (S � C)
16: else
17: D  (D � C)
18: end if
Algorithm 5.2: The algorithm that �nds relations that
contain all (C) and some (D) of the query attributes
Example 6: Find the title, director and genre of movies.

Q6: title director genre.
For this example only, consider the following data sources:
T5(t; g), T6(t; d), T7(t; g) and T8(t; g).

Again, every source relation is incomplete with respect
to the query. However, it is possible to �nd combinations
of these relations that cover all query attributes (and that
joined together may produce the query result).
The �rst step is to separate the incomplete relations into

join lists (JLs). A JL is a list that clusters together rela-
tions that cover the same join attribute. Recall that a join
attribute is an attribute that appear in the AVaTa index.
From the attributes of Q6, just title is a join attribute, so
there is a single JL.
Given a JL, the goal is to �nd all combinations of relations

that form valid multi-relation rewritings - i.e. rewritings
that are both complete and minimal.
A minimal rewriting is one that produces di�erent results

if any of its subgoals are removed (non minimal rewritings
are more time consuming since the number of relations that
need to be joined is larger). Thus, a combination cannot
form a multi-relation rewriting if one or more relations could
be removed from it and it still covers all attributes of the
query.
A complete rewriting is one that covers all query attributes.

It is semantically equivalent to the AND operator of tradi-
tional keyword-based query languages. Thus, a combination
cannot form a valid rewriting if its relations do not cover all
attributes of the query. This restriction simpli�es the pro-
cess of �nding the combinations. The support for incomplete
multi-relation rewriting is left for future work.
The JL created from query Q6 is composed by fT5[d],T6[g], T7[d], T8[d]g. The attributes inside the square brack-ets represent the complement of each relation (the attributes

of the query that are not covered by the relation). In the
running example, relations T5,T7 and T8 do not cover at-
tribute director and relation T6 does not cover attribute
genre.
In what follows we present di�erent strategies to scan the

relations in the JL in order to form the valid combinations.
5.1 Naïve Algorithm
The na��ve algorithm �nds valid combinations using a sim-

ple search strategy1. Algorithm 5.3 shows how this strategy
works. The entries of the JL are processed sequentially, and
every possible combination of entries is performed. For each
combination, the complements of the combined relations are
intersected. The complement of a relation ti is returned by
the function getComp(ti).Figure 5(a) shows all combinations viewed as a tree. It is
important to remark that this tree does not reside in mem-
ory, since the paths are built and consumed as the JL is
processed. The path from a leaf to the root forms a combi-
nation.
Paths that lead to a valid combination can be tested by

intersecting the complements of the nodes that belong to
the path. An empty intersection means that all attributes
of the query are covered.
In the example, three valid paths emerge(/T5/T6, /T6/T7,/T6/T8), which generate the following rewritings: r61(t,g,d):-T5(t,g), T6(t,d), r62(t,g,d):-T6(t,d), T7(t,g) and r63(t,g,d):-T6(t,d), T8(t,g). Note that the join attribute of the JL be-

comes the join attribute of the rewritings.
1The na��ve algorithm is introduced just to simplify the pre-sentation of the algorithms we are actually proposing.
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Figure 5: Trees of Possible Combinations. The trees presented in a) and b) show respectively the combinations
found when the Stream-Driven algorithm and the Template-Driven algorithms are used.

findV alidPaths1(JL)
1: for every relation ti of JL do
2: MA getComp(ti)3: findV alidPaths2(JL,i,MA)
4: end for
findV alidPaths2(JL,x, MA)
1: for every relation ti of JL, where i > x do
2: MAaux  MA \ getComp(ti)3: if (MAaux == fg) then4: this is a valid path
5: end if
6: findV alidPaths2(JL; i;MAaux)7: end for
Algorithm 5.3: The algorithm that �nds valid paths,
i.e. paths whose corresponding relations form valid multi-
relation rewritings

5.2 Stream-Driven Algorithm
The Na��ve Algorithm is based on a brute-force backtrack-

ing approach. As a consequence, is accesses branches of
the tree that cannot form valid combinations (e.g., the path
/T5/T7/T8 is not complete and the path /T5/T6/T7/T8 is
not minimal). The Stream-Driven Algorithm reduces the
number of node visits by removing some of the invalid paths
(see the cuts depicted in Figure 5A)), which prevents the
subtree underneath the removed path from being processed.
Given a path p = fn1::njg, a node nj+1 (nj+1 being a

node that succeeds nj in the JL) is not traversed if:
� the intersection of the complements of p is already
empty (e.g., the path /T5/T6). This means that the
path traversed so far is already a complete rewriting,
and it makes no sense to continue along this path.
� the intersection of n1 to nj+1 is the same as the inter-section of n1 to nj . In other words, the last node of
the path does not reduce the intersection. (e.g., the
path /T5/T7). This means that one of the nodes alongthe path leads to a non-minimal rewriting.

Algorithm 5.4 overrides the function findV alidPaths2 ofAlgorithm 5.3 by adding the cutting rules.
5.3 Template-Driven Algorithm
Observe from the previous example that some entries in

the JL have the same signature (their complements are equal).

findV alidPaths2(JL,x, MA)
1: for every relation ti of JL, where i > x do
2: MAaux  MA \ getComp(ti)3: if (MAaux == fg) then4: //valid path
5: else if (MA�MAaux == fg) then6: //path does not reduce intersection(not minimal)
7: else
8: //only in this case the sub-paths are processed
9: findV alidPaths2(JL; i;MAaux)10: end if
11: end for
Algorithm 5.4: The algorithm that �nds valid paths and
cuts the invalid ones

In order to �nd valid rewritings, entries with the same sig-
nature cannot be part of the same combination, since they
would lead to non-minimal rewritings.
In the template-driven algorithm, relations with the same

complement are grouped within a single entry. In other
words, there will be no more than one entry with the ex-
act same complement. In this case, the size of the JL tends
to be small, since it is no longer related to the number of
relations, but to the number of possible di�erent comple-
ments.
Equation 1 shows how to compute the number of possible

di�erent complements for a query with n+1 attributes. For
instance, having a query with �ve attributes (one attribute
that is �xed (the join attribute) and four other attributes),
in the worst case there would be 24 entries (combination of
one,two,three or four attributes).

Maximum # of complements =
nX

k=1
n!

k!(n� k)! (1)

After the JL is generated, a template tree is build. This
tree contains only paths that lead to valid combinations.
Algorithm 5.4 serves as a base to produce the template tree
from the JL (line 4 would have to be replace by a routine
that reads the selected path and adds it to the template
tree).
The template tree for example 6 is described in Figure 5(b).

The valid combinations are formed by traversing the tree in
a left-to-right, breath-�rst strategy, as described in Algo-
rithm 5.5. The path from the leaf to the root leads to a
group of combinations, where each combination comes from
the cartesian product of the list of relations that are part of
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each node.
Conversely to the previous algorithms, this tree is built in

memory. However, it is considerably smaller then the na��ve
/streamed tree, as the example shows. Another positive
aspect of the Template-Driven approach is that the number
of validity checks (check if complete and minimal) that need
to be performed can be greatly reduced, when dealing with
a large number of relations.
�ndCombinations(TREE)
1: for every root node ni of the template tree TREE do
2: for every relation t 2 ni do3: Taux  t
4: findCombinations(ni; Taux)5: end for
6: end for
�ndCombinations(node, T)
1: if (node is a leaf node) then
2: //T is a valid combination
3: end if
4: for every child node ni of node do5: for every relation t 2 ni do6: Taux  T [ t
7: findCombinations(ni; Taux)8: end for
9: end for
Algorithm 5.5: The algorithm that �nds valid combina-
tions from a template tree

5.4 Using the AVaTa Index
The AVaTa index is use to optimize the process of �nding

multi-relation rewritings. Instead of a single large JL for
each join attribute, several small JLs are created for the
same join attribute. These small JLs only contain relations
that share at least one value for the join attribute.
Example 7: Find the title, rank and year of movies. Q7:title rank year.
Example 7 is a case that would require relations to be

joined. Without the information from the AVaTa, and con-
sidering title as a join attribute, the JL would be (T1, T2,T3, T4). However, the AVaTa tells us that only (T1,T4) and(T1,T2) have overlapping movies. Thus, the large JL is split
into the smaller JLs (T1,T2) and (T1,T4). In the experiments,the bene�ts from using smaller JLs become more evident, in
cases where the number of relations is higher.
An indirect bene�t of this index is that it prunes rewrit-

ings that would not produce any valid answers. For in-
stance, without the AVaTa, one of the possible rewritings
of Q7 would be r71(t; r; y):-T2(r; t); T4(t; y; n; o). However,
this rewriting would bring no answers, since movies from
the involved relations do not overlap.

5.5 Emptiness Check
It is possible that some of the produced rewritings re-

turn empty sets as answers. These are called empty rewrit-
ings. These may happen when the relations involved do not
provide tuples that satisfy the selection and / or the join
predicates, specially when there is a multitude of relations
available.

To prevent empty rewritings from being presented to the
user, the emptiness check veri�es if a given tuple provides
the necessary information that is required by a user query.
Example 8: Find the title, genre and oscars of movies

released after 2000. Q8: title genre oscars [year>2000].
Since no source relation contains all attributes of the query

Q8, the rewritings would necessarily contain join predicates,as well a selection predicate for the year attribute.
Given the tuple ID of the ATaVa, it is possible to obtain,

for each relation of a rewriting, a list of the tuples that
satisfy a speci�c predicate that involves the relation. Given
a selection predicate over a relation r, the list would contain
the instances of r that satisfy this predicate. Likewise, each
join predicate generates two lists, one for each attribute of
the join. These lists contain the tuples that are able to
satisfy the join.
All lists of instances that refer to the same relation are

intersected. If the intersection is not empty, it means that
at least one tuple of the relation satis�es all predicates.
For consistency sake, the lists of the selection predicates

are intersected �rst. This measure prevents dangling tuples,
from instances that were joined before the selection predi-
cate had the chance to remove them.
Note that, in special cases, the predicates can be applied

sooner if the process of rewriting discovery, and the empti-
ness check becomes unnecessary. Two situations are pos-
sible: 1) when the rewriting contains a selection predicate,
and no join predicate. In this case, the relations �ltering
occurs inside the locateRel() function, before any rewriting
is produced. This veri�cation can be processed in this early
stage even if more than one selection predicate is provided,
as long as they refer to the same attribute (e.g. "year>1995
year<2000"). 2) when the rewriting contains join predicates
and no selection predicate. Under these circumstances, the
emptiness check is irrelevant, as long as the AVaTa is used
during query rewriting. This index assures that all involved
relations in a rewriting share at least one value for the join
attribute.
Interestingly, it is possible to answer a query using only

information from the indexes, without ever accessing the real
sources. This computation is rather similar as the one used
to perform the emptiness check. Given the tuple IDs that
satisfy the predicates, the values from the satisfying tuples
can be retrieved from the indexes.
6. EXPERIMENTAL EVALUATION
6.1 Combination Cost
In this section we discuss how variations of the search

strategies a�ect the cost to �nd multi-relation rewritings.
The data set used in this experiment contains 195 Web

Pages extracted fromWikipedia sites related to movies. From
these sources, we apply a template extraction to �nd HTML
tables that contain information about movies. A table matches
a template if it contains one of the following attributes:
film, movie and title. A total of 671 tables were indexed.
By manually analyzing 10% of the indexed tables, we esti-
mate that 95% of them are indeed part of the movie domain.
This data set is intended to show how our approach scales
for relations that are part of the same domain.
Four di�erent settings are compared, as Figure 6 shows.

First, the template-driven(TD) and the stream-driven(SD)
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AVaTa : AVaTa
Stream-Driven(SD) SD+ SD
Template-Driven(TD) TD+ TD

Figure 6: Settings Used to Measure Combination
Cost
algorithms are executed in isolation. Then, for each algo-
rithm, the AVaTa index is used to split the JL into smaller
lists.
Figure 7 shows the number of nodes visits required to

�nd valid combinations(a) and the time required to �nd
the combinations (b). The number of node visits indicates
the number of times a node of a JL had to be accessed in
order to �nd the rewritings. These results correspond to
the query title year director cast genre role. Other
queries showed similar results, so we omit them here.
Approaches that use the AVaTa index are clearly better|

they stand at the bottom part of the graph. The reason is
that only a small fraction of the rewritings are not empty,
and this index assures that only this small fraction is pro-
cessed.
Also note that there is a reduction in the number of visits

when the TD algorithm is used (a). This clearly shows that,
for practical cases, the template tree is indeed much more
compact than the streamed tree.
On the other hand, the time di�erence between TD and

SD is almost irrelevant (b), which indicates that the time
required to traverse the nodes is smaller than the time re-
quired to perform the other operations, such as the empti-
ness check.
Interestingly, the TD approach is worse than the SD ap-

proach when the AVaTa is used (b). The reason is that the
AVaTa creates small JLs (the size of the larger one was 13),
and the cost of computing template trees becomes the most
expensive operation when the JLs are too small. In the fu-
ture, we intend to investigate how to automatically choose
the best strategy for each case. One possible tuning would
be to use the template tree only when a JL is larger than a
pre-de�ned threshold.
6.2 Cost of the Emptiness Check
We also evaluated the bene�ts from having the emptiness

check performed by the search engine, as opposed to leaving
it up to the user to �nd it out by himself.
Figure 8 shows the query workload we have used. The �rst

three queries di�er in the number of attributes required. No
source relation covers all query attributes, so all rewritings
of these queries need to perform joins. The last two queries
show variations in the selection predicate for the attribute
year.

Query Type of Predicate

Q1: title year director cast genre notes Join Predicate
Q2: title genre director year cast Join Predicate
Q3: title cast role Join Predicate
Q4: title year [year = 2000] Selection Predicate
Q5: title year [year < 1995] Selection Predicate

Figure 8: Query Workload
Table 1 shows the results achieved. Column c1 refers to

the total number of rewritings found and column c2 refers
to the number of rewritings that are not empty.
The comparison between c1 and c2 shows that only a small

part of the total number of rewritings actually return some
information. Also, note that the number of rewritings is
very large for the �rst three queries.
Column c3 refers to the number of empty rewritings the

user would have to open until 10 non empty rewritings are
found (if no emptiness check is applied). This column indi-
cates the level of e�ort the user is submitted to when reading
the answers of a query. For instance, in the best case sce-
nario, only 2 empty rewritings would have to be opened (for
query Q5 and having a data set of 101 source relations).
However, in other cases, this number can grow to the order
or thousands (Q1 and Q2).
6.3 Comparison with Related Work
The work of Dong and Halevy [7] is pretty much similar

to ours in nature, in that the ultimate goal is to seamlessly
query a large corpus of structured information available on
the Web. In what follows we present a list of topics related to
this goal, in which we compare the main di�erences between
these two index mechanisms.
Memory Cost: In order to evaluate memory cost, we

collect data from the WT10G data set. This collection con-
tains over 1.5M web pages crawled from the Web (http://
ir.dcs.gla.ac.uk/test_collections/wt10g.html). From
these sources, we apply a more general template extraction
than the one used in the movie data set. A table matches
a template if it contains one of the following attributes:
artist, city, company, country, name, product and ti-
tle. In the end, a total of 3471 tables were indexed (out of
2845 pages).
From the work of Dong and Halevy [7], we have evaluated

two index variations: ATIL and AAIL. The ATIL is a list of
keywords, where each keyword corresponds to the concate-
nation of a value and a column. Each keyword contains a in-
verted list of tuple instances. For example, 2004//year:[T1-
2, T4-3] indicates that the column year contains the value
2004 in two di�erent tuples: T1-2, represents the second row
of table T1 and T4-3 represents the third row of table T3.
The AAIL is a variation of ATIL that supports associa-

tions. An association is a role between two related tuples.
Consider Figure 2 as an example. There is an association
between the second row of T1 (T1-2) and the third row of
T4 (T4-3), since they expose information about the same
movie.
Associations are bi-directional, and each direction is given

a role name. This name makes it possible to store the as-
sociations in the index. For instance, consider awarded is
the role name for the directional association T1-2 to T4-
3. This association is stored in the AAIL with a number
of keywords, one for each column of T4-3, where the value
of the column is the pre�x (e.g. The Aviator//awarded,
2004//awarded, 11//awarded and 5//awarded). Additional
keywords are needed to represent the other side of the rela-
tionship as well.
Our approach has no support to identifying associations

as proposed in [7]. Instead, we updated AAIL with the
associations we were able to �nd automatically, for tuple
instances that share the same column name and value. The
name of the association became the name of column pre�xed
with the word same. For instance, if the column name is
title, the name of the association becomes same title, in
both directions.
All indexes are represented as Java primitive data types.
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Figure 7: Cost for Finding Rewritings
#tables Q1 Q2 Q3 Q4 Q5

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
101 529 23 346 529 23 346 231 0 231 7 1 6 7 5 2
208 3780 40 1246 3780 40 1239 1755 14 570 28 8 20 28 19 5
313 6496 78 624 6496 78 628 3016 51 288 28 8 20 28 19 5
412 9212 102 1513 9212 102 1520 4277 74 719 28 8 20 28 19 5
501 12494 128 289 12006 130 269 5796 100 269 29 9 20 29 20 5
605 18469 161 829 17272 163 907 7620 116 832 34 10 24 34 22 5
679 23560 205 403 20340 207 391 9605 157 391 36 12 24 36 24 5

Table 1: Statistics about the Queries

Figure 9: Memory Consumption for the WT10G
Data Set

Plus, the required inverted lists are structured as primi-
tive arrays. The size of an index is computed as the to-
tal amount of bytes the index occupies. It is important to
remark that we care about optimizing memory consump-
tion, for all evaluated indexes. To accomplish this, we pre-
vent duplications of objets - unique objects are represented
only once. The data used in the experiments as well as the
source code that computes the memory cost are available at
http://www.inf.ufrgs.br/~heuser/atava.zip.
The size of all indexes grows linearly with respect to the

number of tables, as Figure 9 shows.
At the very low part of Figure 9 is the ATa index. Despite

its low memory consumption, it does not provide enough
information to perform the emptiness check. On the other
hand, the ATaVa can perform the emptiness check, but it

takes a considerably higher amount of memory.
ATaVa is slightly better than ATIL. These indexes are

analogous, in the sense they do not store associations but
allow queries with selection predicates.
We also compare the associations-aware indexes ATaVa +

AVaTa and AAIL.
The memory cost in ATaVa + AVaTa is lower that its

analogous AAIL. The reason is the overhead involved when
adding an association in AAIL. Adding an association to an
instance with n columns, implies in adding n new keywords
(except when the keyword already exists - in this case it is
represented only once).
Interestingly, adding the AVaTa to the ATaVa hardly in-

creases the memory consumption. Recall that the AVaTa
only keeps information about the join attributes. Naturally,
the size of this index varies according to the total number of
join attributes. However, we have found that only a small
part of the whole data set needs to be stored in this index,
even considering all existing attributes. Our statistics (con-
sidering both movie and wt10g data sets) indicate that 73%
of the table values are unique, 22% of them appear in dif-
ferent relations, but for attributes with di�erent names, and
only 5% appear in di�erent relations for attributes with the
same name.
Ability to answer queries without comparison pred-

icates: ATIL was designed with the purpose of answering
selection predicate queries, and not to merely de�ne the at-
tributes of interest. In order to �nd out which tuples con-
tain information about a speci�c attribute, a full scan in
the index is required, since the attribute part of the indexed
keywords is hidden behind the value part. One possible
overcome would be to index additional keywords, using only
attribute names. We did implemented a variation of the
ATIL that adds these new keywords. The results are posi-
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tive, and indicate that this variation does not have a severe
impact on the index.
In our approach, this type of query can be answered using

information from the ATaVa. In fact, the ATa index proves
to be enough, since the values level is not required.
Ability to answer queries with comparison predi-

cates: ATIL does not easily support queries with compari-
son predicates other than equality. The index would have to
be scanned considering only the value part of the keyword.
From the several keywords that may match the predicate,
only those that correspond to the correct attributes should
be considered. Furthermore, the index does not smoothly
accommodate data types, which are required in order to un-
derstand the semantics of a comparison predicate.
In the ATaVa, given a selection predicate, the correct col-

umn/data type is directly identi�ed. Additionally, since the
values in the ATaVa are stored in alphabetic order, selection
predicates can be answered e�ciently.
Index Distribution: The ATaVa/AVaTa indexes can

be distributed in several nodes, creating partitions at the
attribute level. Given a query, only a few nodes need to be
accessed (the ones that de�ne the query columns).
Partitions in the ATIL would have to be created at the

values level, since the keywords are pre�xed by the value.
Queries without comparison predicates, such as "find ti-
tle, year and director" would have to access all parti-
tions.
Ability to �nd associations among relations: AAIL

supports a general kind of association. An association is
a role between two tuples, and its not conditioned to the
equality of column names. However, automatically �nding
associations between tuples and de�ning their role names is
a complex process, and probably would have to be manually
consolidated. In [7], it is not clear how this information is
discovered.
Associations in our approach are restricted to tuples whose

information share the same column name and value. This
reduces the number of associations found, but it is a process
that can performed automatically. Of course, this comes
with a price of lower precision / recall rates, when false pos-
itive/negatives are identi�ed, specially when mixing infor-
mation from multiple domains into a single index.
Nevertheless, in the context of exploratory search, this

behavior is acceptable, and sometimes, can even produce
interesting answers. For instance, given the movie source
(title, director) and the book source (title, year),
the query title director year would return the title and
director of a movie, along with the year in which a homony-
mous book was released.
Despite the bene�ts, there is a caveat in our solution. In

order to �nd associations that provide answers to a query, it
is required that the query contains a join attribute (an at-
tribute that acts as a link between tuples). In the examples
demonstrated in this paper, all queries contained the join
attribute title, even when the title itself was not necessary
as part of the answer. If the provided columns of the query
are not good join attributes, the relevant associations may
not be found.
We intend to leverage this limitation by arti�cially adding

join attributes to the query. Given a query, we intend to use
schema-completion techniques [3] to discover which lacking
attributes best match the schema of the query, and try to
use these as join attributes.

# Query
1. city [state = UT]
2. city [zipcode > 53701]
3. zipcode [city = madison]
4. product [company = ibm]
5. restaurant telephone [city = malibu]
6. company location ticker
7. country country code monetary unit

Figure 10: Example of Arbitrary Queries

Ability to answer keyword queries: Keyword queries
(where no metadata information is provided) are easily an-
swered with the ATIL, since all indexed keywords are pre-
�xed by the value. In our approach, it would be too cum-
bersome to perform this type of query.

7. APPLICATION
In this section we create an application that demonstrates

how the search engine behaves on real data retrieved from
the Web. As data set, we used the tables extracted from the
WT10G collection. This data set is much larger than the
movie data set and the universe of discourse is much more
diverse.
Interestingly, from the seven join attributes used in the

extraction template, several di�erent domains could be re-
trieved, such as restaurants, industry and politics. There-
fore, this data set is particularly interesting for wide purpose
queries, such as the ones asked in a horizontal search engine.
Figure 10 shows a list of arbitrary queries posed to our

search engine. Queries from one to �ve are answered us-
ing single sources of information (a single Web table). The
emptiness check assures that only sources that satisfy the
predicates are selected. For instance, one of the rewritings
for the �rst query returns a list of 16 cities of Utah.
Queries six and seven are answered using multiple sources

of information, having company and country as join at-
tributes, respectively. Some of the results obtained for query
seven are shown in Figure 11.
It is important to notice that the number of relations from

the WT10G data set that belong to the same domain is very
small. Despite the size of the collection, there are only few
relations that contain the same or similar schema. We did
try to perform scalability experiments with this collection,
but the limited amount of information that overlaps did not
give us enough data to draw conclusions. However, we do ex-
pect that scalability results using larger overlapping schemas
would be similar to the ones provided for the movie data set.

8. CONCLUSIONS
We propose a new model for querying and correlating in-

formation from multiple structured Web data, where the
data sources are treated as relations. This model allows
users to pose keyword queries that contain attribute names
and predicates over these attributes.
So that these queries can be e�ectively and e�ciently

translated into queries over the underlying relations, we de-
signed an indexing mechanism and a set of algorithms. Be-
sides supporting predicate queries, these algorithms also en-
able the derivation of rewritings that join multiple data
sources that contain complementary data. Our experimen-
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Figure 11: Some Results for the Query "country
country code monetary unit"

tal results are promising and indicate that our approach is
both scalable and e�cient.
For future work, we intend to leverage the way associa-

tions between di�erent relations are discovered. Currently,
associations are created between relations that cover the
same attribute, which becomes the join attribute of the as-
sociation. However, such approach may lead to incorrect
associations, such as cases where an improbable attribute is
chosen as a join attribute(e.g.year). Additionally, schema
matching techniques will be investigated in order to allow
associations to be created between attributes whose names
are di�erent [12, 16].
Furthermore, there is a need to rank the rewriting so

that the most relevant results appears �rst. The number
of attributes covered and the estimated number of tuples re-
turned are possible features that may be used, and that are
easily extracted from the indexes.
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