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ABSTRACT
Data mining is increasingly performed by people who are
not computer scientists or professional programmers. It is
often done as an iterative process involving multiple ad-hoc
tasks, as well as data pre- and post-processing, all of which
must be executed over large databases. In order to make
data mining more accessible, it is critical to provide a sim-
ple, easy-to-use language that allows the user to specify ad-
hoc data processing, model construction, and model manip-
ulation. Simultaneously, it is necessary for the underlying
system to scale up to large datasets. Unfortunately, while
each of these requirements can be satisfied, individually, by
existing systems, no system fully satisfies all criteria.

In this paper, we present a system called Splash to fill this
void. Splash supports an extended relational data model
and SQL query language, which allows for the natural in-
tegration of statistical modeling and ad-hoc data process-
ing. It also supports a novel representatives operator to
help explain models using a limited number of examples.
We have developed a prototype implementation of Splash.
Our experimental study indicates that it scales well to large
input datasets. Further, to demonstrate the simplicity of
the language, we conducted a case study using Splash to
perform a series of exploratory analyses using network log
data. Our study indicates that the query-based interface is
simpler than a common data mining software package, and
it often requires less programming effort to use.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
Data mining is increasingly performed by non-experts as

an iterative, exploratory process involving multiple ad-hoc

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

tasks, as well as data pre- and post-processing, all of which
must be executed over large databases. One specific example
of this, which we find particularly interesting, is the ad-hoc
exploratory analysis of logs for misuse detection.

While recent work has begun to consider exploratory min-
ing paradigms [19], most mining software still supports a
rigidly-defined API, or set of tasks (e.g., classification with
a fixed training set and class label). In contrast, relational
databases have been extremely successful in providing sim-
ple languages that allow lay users to specify ad-hoc queries
and data manipulations. Further, many years of research
have resulted in database systems that scale to large data.
The goal of this work is to develop a system that combines
the power of data mining (specifically, statistical modeling)
with the simple ad-hoc queries and scale of SQL and rela-
tional databases.

1.1 Motivating Example: Log Analysis
Maintaining audit logs is a fundamental component of a

comprehensive security [5] and privacy [15] infrastructure.
Logging is complementary to access control and other secu-
rity mechanisms, and it is particularly useful for recording
and detecting inappropriate access and misuse by insiders.

To illustrate the importance of audit logs, consider a health-
care organization, which must take precautions to safeguard
sensitive information, including patients’ medical records.
The organization has deployed a comprehensive security in-
frastructure, but due to the evolving nature of care (e.g.,
residents and nurses who change departments frequently),
it is often impossible to specify comprehensive access con-
trol policies. In fact, overly-restrictive policies interfere with
patient care. Instead, rather than preventing inappropriate
access, it is often necessary to take steps to detect such ac-
cess after the fact by keeping a record of what information
has been accessed, and by whom [14]. As a recent example,
Kaiser Permanente recently fired fifteen employees for inap-
propriately viewing the medical records of Nadya Suleman,
the highly-publicized mother of octuplets [18].

Legislation has begun requiring organizations in domains
such as healthcare to track their use of sensitive data [1],
but few tools have been developed to allow auditors to sys-
tematically and proactively analyze the resulting logs.

Anomaly detection is one common approach to log anal-
ysis and intrusion detection, which has been researched ex-
tensively for operating systems [26], networks [43], and more
recently for database systems [33]. At a high level, the idea
is to learn a model of “normal” behavior, and then detect
deviations from normal as potential misuse. Unfortunately,
even in domains such as operating systems and networks,
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where anomaly detection has been studied extensively, it is
known to have significant disadvantages, including the both-
ersome problem of false positives [43], and a notable lack of
flexibility. For example, an administrator must decide (a pri-
ori) the granularity at which to model behavior (e.g., user,
role, etc.), and the output of the system is limited to simple
boolean decisions (raise a warning or not).

While this leads us to consider a more flexible and con-
figurable system, it also suggests a practical problem: Our
target users (e.g., healthcare compliance officers) are often
not trained programmers, so a system that requires signifi-
cant programming effort is impractical.

1.2 System Requirements
Inspired by the log analysis problem, we set out to de-

sign a system that marries statistical modeling (following
the past successes of anomaly detection) with the ad-hoc
flexibility and simplicity of high-level query languages, and
the scalability of relational databases. Specifically, we iden-
tified three high-level requirements:

• High-Level Declarative Query Language: The sys-
tem should support a simple query language that allows
for the specification of ad-hoc queries, including data pre-
and post-processing, with minimal programming effort.

• Ad-Hoc Model Creation / Manipulation: The data
model and query language should provide a simple and
natural abstraction for ad-hoc creation and direct manip-
ulation of one or more statistical models.1

• Scalability: The system should be able to scale grace-
fully to large input databases, particular those that are
significantly larger than main memory.

Figure 1 provides a rough evaluation of related systems
according to these criteria. (A shaded circle indicates that
the system satisfies the requirement.)

While statistical software (e.g., Matlab [7], R [9], Stata
[12], SAS [11]) and data mining packages (e.g., Weka [13],
RapidMiner [39]) provide a great deal of functionality, to
the best of our knowledge they assume that the data to
be analyzed is small enough to fit in main memory. SAS
includes libraries for scalable data pre-processing [11], and
recent work has proposed techniques that allow R to scale to
larger datasets [53]. However, neither provides a high-level
declarative query language, which makes ad-hoc exploratory
analysis more difficult than in a typical SQL database.

For these reasons, several systems have proposed incorpo-
rating support for statistical and data mining models into
relational databases and SQL. However, the proposed ab-
stractions do not naturally lend themselves to ad-hoc model
creation and manipulation.

MauveDB [22] provides an abstraction called a model-
based view. The idea is to expose to the user data interpo-
lated from the model, as if this data were part of an ordinary
database view. While this is natural for data interpolation
(e.g., in the sensor domain), it suffers two main shortcom-
ings when it comes to ad-hoc analysis: (1) Each model must
be declared using syntax similar to SQL’s CREATE VIEW,
which leads to a tedious process if an analyst wants to create

1Wikipedia describes a statistical model as a “mathematical
description of the behavior of an object in terms of random
variables and associated probability distributions.” Statisti-
cal models can be used in a variety of mining tasks, including
classification, outlier detection, and others.
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Figure 1: Comparison of Existing Systems

many models (e.g., one per system user in the log analysis
domain), and (2) Aside from the interpolated views, models
are completely hidden from the user. This makes it difficult,
for example, to use a model-based view for the purpose of
detecting anomalies (records that deviate significantly from
a given model), or for comparing models.

Microsoft SQL Server’s DMX [2] and OleDB for DM [40]
expose classification and regression models through an ab-
straction known as a prediction-join. This abstraction pro-
vides a natural way of assigning class labels to data, but it
does not allow a user to compare a record to a model, or
to compare two models (e.g., for the purpose of detecting
anomalies). Also, like MauveDB, the user must specify each
model separately using extended SQL DDL, which can be
cumbersome. IBM’s Intelligent Miner [3] provides scalable
data mining operations, which can be applied to data resid-
ing in a relational database, but models must be specified
one-by-one, either using PMML (a markup language) or the
graphical interface.

1.3 Paper Overview
In response to these requirements, we have designed and

built a system called Splash. Splash supports a set of sim-
ple extensions to the relational data model and SQL query
language (Section 2). These extensions allow for the ad-hoc
creation and manipulation of models, and they also provide a
“workbench”that allows the user to leverage the full power of
SQL when creating and applying the models. To further as-
sist users in understanding and interacting with models, we
have also defined and implemented a novel representatives
operator, which is used to explain a model using a limited
number of examples (Section 3). Section 4 describes the de-
tails of our prototype, including performance optimizations.

An extensive experimental study (Section 5) evaluates
Splash with respect to our requirements. In particular, we
evaluated performance and scale. Also, we conducted a case
study using network attacks logs in order to evaluate the ef-
fectiveness of the proposed data model and query language.
We found that ad-hoc analyses are often more easily ex-
pressed using the query language of Splash than using a
common open-source data mining package.

2. DATA MODEL & QUERY LANGUAGE
The data model and query language for Splash are based

on simple extensions to the relational model and SQL, which
incorporate support for statistical models as a new data type
(like an integer or string). Ad-hoc model construction is nat-
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urally viewed in terms of a new aggregate function (similar
to SUM or AVG), and models are naturally manipulated
using a set of primitive similarity functions.

2.1 Basics
The basic extensions to the relational data model are gen-

erally quite simple, yet powerful. They are based on two
basic data types: the feature vector and the profile, as well
as a new profile aggregation operator.

• Feature Vectors: A feature space is defined by n vari-
ables X1, ..., Xn, which can alternately be viewed as defin-
ing an n-dimensional space. A feature vector is a point
〈x1, ..., xn〉 in this space. (For clarity, we will use capital
letters to denote feature / variable names, and lower-case
letters to denote instances, or feature values.)

• Profiles: A profile is an estimated joint probability den-
sity function (pdf) over a particular feature space.2 We
will denote a profile constructed over feature space 〈X1, ..., Xn〉
as bfX1,...,Xn(x1, ..., xn).

• Profile Aggregation Operator: A profile aggregation
operator, denoted profile(D) is an aggregate function that
takes a set of feature vectors D (drawn from the space
〈X1, ..., Xn〉) as input, and produces a profile. The op-
erator is also easily extended to first partition D based
on some other database attribute P , and construct one
profile per unique value p of P . (This is similar to a SQL
GROUP BY query.)

These basic building blocks are nicely integrated with
standard SQL, as illustrated by the following example:

Example 2.1. Consider the simple example shown in Fig-
ure 2. On the left is the relation AUDIT_LOG_FEATURES, which
contains four attributes. The final attribute contains salient
features describing the transaction. (For illustrative pur-
poses, we show two features: query type, and number of
records affected.) In practice, the feature vector can be con-
structed for each tuple by defining an application-specific
feature-extraction function (e.g., as a UDF). Much data pre-
processing is easily specified in SQL and existing extensions.

Taking AUDIT_LOG_FEATURES as input, it is easy to con-
struct profiles on an ad-hoc basis. For example, the following
query constructs one profile per User_ID value (as shown in
the figure):

SELECT User_ID, profile(Features)
FROM AUDIT_LOG_FEATURES
GROUP BY User_ID

2.2 Query Language
While the profile aggregation operator provides easy ad-

hoc model creation, we also want to provide primitives for
direct interaction with, and manipulation of, models. We
find that many manipulations can be expressed simply by
exposing two primitive similarity functions:

• Similarity between feature vector and profile: The
similarity between a feature vector and a profile, denoted
sim(〈x1, ..., xn〉, p), is a real number in [0, 1].

• Similarity between two profiles: The similarity be-
tween two profiles is denoted sim(p1, p2), and is also a
real number in [0, 1].

2In practice, we expect a combination of discrete and con-
tinuous features; the generalization is straightforward.

Example 2.2. Continuing with the running example, the
combination of profile aggregation and similarity allows us to
perform a variety of useful tasks. For example, we can easily
specify the query requesting anomalous log records, defined as
any log record such that the similarity between the record and
its user’s profile is less than a given threshold:

SELECT F.RID
FROM AUDIT_LOG_FEATURES F,

(SELECT profile(Features), User_ID
FROM AUDIT_LOG_FEATURES
GROUP BY User_ID) AS Profiles(P, User_ID)

WHERE F.User_ID = Profiles.User_ID
AND sim(F.Features, P) < threshold

Instead of profiling behavior at the level of individual users,
this query can be modified to construct profiles in another
way, for example using another attribute Role_ID. It is also
easy to alter the query to request a ranked list of potentially
anomalous records by removing the threshold and adding OR-

DER BY sim(Features,P) ASC to the query.

Example 2.3. Continuing with the log analysis example,
we can also construct a query to discover users whose behav-
ior has changed significantly since the previous month:

SELECT Profile1.User_ID
FROM (SELECT profile(Features), USER_ID

FROM AUDIT_LOG_FEATURES
WHERE MONTH = ’May’
GROUP BY User_ID) AS Profile1(P, User_ID),
(SELECT profile(Features), User_ID
FROM AUDIT_LOG_FEATURES
WHERE Month = ’June’
GROUP BY User_ID) AS Profile2(P, User_ID)

WHERE Profile1.User_ID = Profile2.User_ID
AND sim(Profile1.P, Profile2.P) < threshold

2.3 Sample Instantiation
The basic primitives outlined in Sections 2.1 and 2.2 are

very general, and they can be instantiated in countless ways.
Our main objective is to provide a clean abstraction for in-
tegrating SQL and probabilistic models, not to develop new
machine learning techniques. Nonetheless, we briefly de-
scribe a sample profile aggregation operator and similarity
functions, which we have implemented in our prototype.

2.3.1 Sample Profile Aggregation Operator
There are countless ways to estimate bfX1,...,Xn(x1, ..., xn)

from D. One profile aggregation operator uses the simpli-
fying assumption that X1, ..., Xn are independent (option-
ally conditioned on group-by attribute P ).3 That is, assume
that fX1,...,Xn(x1, ..., xn) =

Qn
i=1 fXi(xi), and estimate eachbfXi(x) separately.

When Xi is discrete-valued, fXi is a probability mass

function, and it is easy to estimate using counts: bfXi(x) =
|{d∈D:d.Xi=x}|

|D| . (To avoid the case where some counts are

zero, a simple adjustment adds one to the numerator and
denominator.) When Xi is continuous, we estimate the
probability density function using a Gaussian kernel den-
sity estimator. If h is a smoothing parameter and K(x) =

1√
2π
e−

1
2x

2
, then we define bfXi(x) = 1

|D|·h
P
d∈DK(x−d.Xi

h
).

3This is closely related to the Naive Bayes assumption.
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Figure 2: Profile Aggregation Example

2.3.2 Sample sim() Functions
• sim(〈x1, ..., xn〉, p): Suppose that profile p is defined by

estimated distribution bfX1,...,Xn . One approach is to let

sim(〈x1, ..., xn〉, p) = bfX1,...,Xn(x1, ..., xn). When one or
more of the features Xi is continuous, a simple adjustment
integrates fXi over an interval (±δ) surrounding xi.

• sim(p1, p2): Suppose that profiles p1 and p2 are defined,

respectively, by bfX1,...,Xn and bgX1,...,Xn . The KL-divergence
is a common information-theoretic way of measuring the
difference between two distributions:4

DKL( bfX1,...,Xn ||bgX1,...,Xn) =R∞
−∞ ...

R∞
−∞

bf(x1, ..., xn) log
bf(x1,...,xn)bg(x1,...,xn)

dx1...dxn

We can use this to construct a similarity function:

sim(p1, p2) =
1

1 +DKL( bfX1,...,Xn ||bgX1,...,Xn)

3. PROFILE EXPLANATION &
FINDING REPRESENTATIVES

Aggregation provides a natural way of creating profiles,
and the sim() functions allow basic interaction with profile
objects. However, the user may want to further understand
the meaning of certain profiles. For example, in log analy-
sis, a system administrator may have detected an abnormal
profile, which he would like to understand better.

As one means of explaining a profile, we propose an op-
erator that, given a profile p and dataset D, selects a small
subset of D to represent the profile distribution. (To keep
the operator as general as possible, we do not require that
D be a sample from the same distribution as p.) This re-
sults in the following optimization algorithm. While related
problems have been considered in the literature (see Sec-
tion 6), to the best of our knowledge, this problem has not
been addressed.

Definition 1 (Representative Set). Given a profile
p, a set of feature vectors D, and user-defined parameter k,
the optimal representative set, denoted rep(p,D, k), is the
set D′ ⊆ D such that |D′| ≤ k and sim(p, profile(D′)) is
maximized.

In the above, profile(D′) represents the pdf derived from
the points in D′ after applying kernel density estimation,
and sim(p1, p2) is the same similarity function described
earlier.

3.1 Algorithms
Due to the combinatorial nature of the problem, we have

developed several heuristics for selecting representative sets.

4Of course, KL-divergence is not symmetric, so a common
trick computes both values and takes the average.

In the following descriptions, D consists ofm feature vectors,
each of which is a point in n-dimensional space.

Sampling Algorithm (RAND-R): The simplest (naive) ap-
proach is to choose a simple random sample from D. While
sampling is widely used in statistics, there are two clear
problems to using this approach here. First, while profile(D′)
will converge to p (for large k) if D is drawn from the dis-
tribution p, RAND-R is only effective in this case. When
profile(D) 6= p, profile(D′) converges to profile(D) rather
than p. Second, even when RAND-R is guaranteed to converge
for large k, we would ideally like to choose a subset that is
as small as possible.

Histogram-Based Sampling (HIST-R): To overcome the
shortcomings of RAND-R, one approach is to actively allocate
the positions of representative points. This can be done by
partitioning the space into subregions, and allocating repre-
sentatives to each subregion based on the region’s probabil-
ity mass in p.5

To partition the space, we leverage the well-known multi-
dimensional histogram partition rule MHIST [44] and the
partition constraint V-optimal [32]. The partition algorithm
is recursive; it begins by dividing the whole space into two
regions, and then recursively partitions each of the result-
ing regions until a stopping criterion is met. Each iteration
proceeds as follows. (Suppose that we are working on sub-
region R, which contains m∗ points from D, and based on
probability mass, we need to select k∗ representative points
from this subregion).

1. Select a dimension to divide. (The dimension with
maximum variance in p is selected, following the MHIST
heuristic.)

2. Choose the point at which to divide the selected dimen-
sion. (We choose the point according to the V-optimal
criterion.)

3. Divide the m∗ points between the resulting subregions
R1 and R2, and set k∗1 and k∗2 (the number of rep-
resentatives that need to be chosen from R1 and R2)
according to the probability mass of p in R1 and R2.

The partitioning process continues recursively until m∗ =
k∗ or k∗ = 1, at which point we randomly select k∗ points
from those in D that fall in the subregion (R).

There are O(k) iterations. In each iteration, Step 1 takes
O(n) time, Step 2 takes O(c) time where c is the number of
distinct values in the chosen dimension, Step 3 takes O(m)
time. Therefore the running time for the algorithm is O((c+
n+m)k).

While this approach eliminates some of the problems of
RAND-R in that it can be used when D and p do not have
5Suppose that a space partitioning algorithm divides the
space into l subregions {R1, R2, ..., Rl}. For the region Ri
(1 ≤ i ≤ l), we need to pick k∗

R
Ri
p points as representatives

for that region.
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the same distribution, it is also dependent on the partition-
ing algorithm. In high-dimensional space, histograms are
known to deteriorate in quality. (This is confirmed by our
experiments.) Thus, we propose a third and final algorithm.

Greedy Algorithm (GREEDY-R): To overcome the limita-
tions of HIST-R, we propose a third algorithm called GREEDY-

R, which greedily selects the next most representative point.
Remember that a kernel density estimation based on k

points just sums up the k kernels, using a weight w = 1
k

for
each. The process of the greedy algorithm is to incremen-
tally add representative points into D′; for each new point
d, we incrementally maintain a partial profile p′ by adding
the kernel for d using weight w = 1

k
. (For |D′| < k, p′ is

not a true probability distribution.) The difference between
p and p′ at d is denoted δ(p, d) = p− p′.

The greedy algorithm works as follows: At each step, we
choose the point d from D−D′ that maximizes δ(p, d). This
process repeats until all k representative points are chosen.
The intuition behind the heuristic is that at each step we
always look for points that minimize the gap between the
profile p and the sum of the kernels p′. We demonstrate the
effectiveness of the algorithm in Section 5.

The greedy heuristic takes k steps. At each step it takes
O(mn) time to pick the best point as next representative
point and to update the partial distribution after a point is
picked. Therefore the running time for the greedy heuristic
is O(kmn).

4. IMPLEMENTATION
We have constructed a prototype of Splash using exten-

sions to PostgreSQL [8], an open-source DBMS that sup-
ports user-defined types, operators, functions, and aggre-
gates. It is noteworthy that all of the functionality can be
implemented without costly modifications to the database
engine. In addition, we have implemented several perfor-
mance optimizations based on materializing and compress-
ing profiles.

We defined new types to represent profiles and feature
vectors, and functions to support operations on profiles and
feature vectors. All of the extensions are implemented us-
ing C. The following is a list of the new types, functions,
aggregates, and operators:

• Feature is a new type representing a feature vector. (The
dimensionality of a Feature instance is the length of the
vector.) In the current implementation, we support fea-
ture entries of types integer, varchar, varbit, and real.
• Profile is another new type. In our prototype, we imple-

ment a profile using a collection of n hash tables, where
n is the total number of different features. The ith hash
table contains all distinct values of feature Xi (the keys)
and an integer count for each. Thus, the space required
to store a Profile instance is O(cn), where c is the av-
erage number of different values per feature. We use this
representation for both discrete and continuous features;
the differences in probability estimation (i.e., count-based
or kernel density estimation) are encapsulated by the two
similarity functions.
• profile(Feature) is a new aggregate function, which pro-

duces a Profile instance, given a set of Feature instances.
In PostgreSQL, user-defined aggregates are expressed in
terms of state values and state transition functions. For
this reason, we have defined the transition function pro-

file(Profile, Feature) to enable adding one Feature

instance to an existing Profile. Assuming that there are
m Feature vectors, each with dimensionality n, in this
implementation, the time complexity of adding one Fea-

ture value to a Profile is O(n), and the time complexity
of building a Profile from m Feature vectors is O(mn).

Of course, this approach assumes an implementation of
Profile that is incrementally updatable. This is clearly a
desirable characteristic of the profile model. For other pro-
file models, we might need to maintain additional state.
In addition, the query optimizer treats queries involving
profile aggregation just as it would treat any other aggre-
gate query. For the most part, this works reasonably well,
but there are some unexpected problems, as we discuss in
more detail in Section 5.

• sim(Feature, Profile) is a function that evaluates the
similarity between a Feature instance 〈x1, ..., xn〉 and a
Profile instance p, as described in Section 2. For dis-

crete feature Xi, we can compute bfXi|P=p(xi) in O(1)
time from the internal profile representation. For con-

tinuous feature Xi, we can compute
R xi+δ

xi−δ
bfXi|P=p(x), in

time O(c), where c is the number of distinct values for Xi.
Therefore, when all features are discrete, we can compute
this function in O(n) time; otherwise it takes O(cn).

• sim(Profile, Profile) is a function that evaluates the
similarity between two Profile instances using the KL-
divergence as described in Section 2. We observe that, due
to the conditional independence assumption, it is possible
to compute the KL-divergence for each feature indepen-
dently. That is, if we have two profiles defined by distribu-

tions f and g, and we assume bfX1,...,Xn = bfX1 ·...· bfXn andbgX1,...,Xn = bgX1 ·...·bgXn , thenDKL( bfX1,...,Xn ||bgX1,...,Xn) =

DKL( bfX1 ||bgX1) + ...+DKL( bfXn ||bgXn). 6

Thus, this function is straightforward for discrete features,
and can be computed in O(cn) time, where n is the di-
mensionality of the feature vector, and c is the number
of distinct values per feature. When one or more of the
features Xi is continuous, we handle that by discretizing
the range of Xi into r discrete ranges, and then estimate
the probability density within each range using the stored
counts and kernel density estimator. In this case, the time
complexity is O(rcn).

4.1 Materialization
Aggregate materialization is commonly used to improve

performance in OLAP-style data analysis. In much the same
way, it may be useful to materialize profiles to improve the
performance of certain workloads in Splash. For example,
each of the sample queries in Section 2.2 required computing
one profile per USER_ID. However, it is also likely that the
user would like to view profiles at different levels of granular-
ity (e.g., one profile per RBAC ROLE_ID). Just like OLAP,
it is convenient to think of these different granularities as
forming a partial order [28].

Of course, even for conventional aggregates (which are
typically integers or reals), fully-materializing an entire data
cube is space-consuming, and because profile objects are
larger than integers or reals, space is an even bigger issue
here. To select the best set of profiles, given limited space,
we implemented the heuristic proposed by Harinarayan et
al. [29] in a separate Planner module.

6The proof is straightforward, but is omitted for space.
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To answer queries involving a particular profile, when the
profile cube has been partially materialized, we first check
to see whether the desired profile has been materialized. If
it has, then it can be used directly. Otherwise, ideally, we
would like to compute the desired profile from a set of (ma-
terialized) constituent profiles at a finer level of granular-
ity. (For example, if a query requests profiles grouping-by
ROLE_ID, we would like to be able to compute these profiles
directly from the set of profiles grouping-by USER_ID, rather
than using the original data.) Like standard aggregate data
cubes, this is captured by the idea of distributive and al-
gebraic aggregates; an aggregate function is algebraic if it
can be computed from intermediate statistics at finer lev-
els of granularity [28]. Our internal profile representation is
algebraic; the internal counter representation can be com-
puted from profiles at finer granularities without accessing
the underlying data. More generally, recent work showed
that Naive Bayes classifiers and kernel density estimators
are algebraic aggregates [19].

4.2 Profile Compression
Materializing profiles can still be space-consuming, partic-

ularly if there are many distinct values for certain features.
Thus, it is beneficial to consider compressing materialized
profiles. One approach is to replace each of the n counter
vectors with a histogram. We apply V-Optimal histogram
[32] to each dimension to compress the vector of counts rep-
resentation. The effect of compression is demonstrated in
Section 5.3.

Practically-speaking, compression is incorporated into our
prototype via a function compress(Profile). We envision
applying compression to archived profiles constructed over
historical data (e.g., from past years or months) that is no
longer being updated.

5. EXPERIMENTAL EVALUATION
We conducted an extensive experimental study using the

Splash system, designed to measure the following:

• Performance and Scale: One of our guiding principles
was to develop a system that scales to large datasets. We
measured the performance and scalability of Splash, in-
cluding the effects of materialization and compression.

• Query Language and Profile Abstraction: To pro-
vide a greater understanding of the flexibility provided
by Splash, we performed a case study comparison. Us-
ing a well-known dataset from the network intrusion do-
main, and an interesting set of ad-hoc exploratory analysis
tasks, we compared the process of expressing these tasks
in Splash with the process of expressing these tasks in an
open-source data mining package called Weka [13].

• Generating Representatives: Finally, we evaluated
and compared the algorithms described in Section 3 for
generating representatives.

We ran our experiments on a machine with Pentium dual-
core 2GHz CPU and 2GB memory. We used the Ubuntu
8.04 operating system and PostgreSQL 8.3. The size of
shared-memory for PostgreSQL was set to 512MB.

5.1 Performance & Scale
Our first set of experiments were designed to measure the

performance and scalability of Splash when used for large
input datasets.

5.1.1 Data Generator
For these experiments, we used a simple synthetic data

generator, which produces data with the following schema:

SynData(yy, mm ,dd, featureVector)

yy, mm, and dd are hierarchical dimension attributes repre-
senting the date. featureVector is a 10-dimensional feature
vector. We generated the values of the features using Gaus-
sian distributions; however, since the synthetic data is used
only for testing performance and scale, the distribution is of
relatively little importance. Each resulting record is approx.
150 bytes.

For each distinct day, we generated 1000 records. (The
average profile size per day is 40KB.) In the experiments,
we vary the number of days (months, and years), in order
to vary the size of the dataset. The maximum data size is
100,000 days (roughly 100 million records), which consume
15GB of total space.

5.1.2 Scale-Up
To evaluate how Splash scales to large input datasets, we

varied the input data size from 100 days ( 15MB of data) to
100,000 days ( 15GB of data), and we issued the following
profile construction query:

SELECT profile(featureVector)
FROM SynData
GROUP BY yy,mm,dd

The size of the profiles resulting from this query ranges
from 4MB to 4GB. For the sake of comparison, we also
tested the built-in aggregate sum() on the same input. The
results of this experiment are shown in Figure 3(a-c).

In Figure 3(a), notice that when the data size is small, the
profile() aggregate works pretty well (using approximately
4 times as much time as sum()). However, as the data size
grows, the running time for profile() suffers significantly.
After analyzing the query plan, we discovered that the Post-
greSQL query optimizer always selected a hash-based aggre-
gation operation instead of a sort-based plan. However, the
total size of the resulting profiles grows much larger than
traditional aggregates, and when the hash table containing
these profiles can no longer fit in the shared buffer, the query
begins to thrash.7

On the other hand, if we force the system to use a sort-
based plan, we do not encounter this problem. To force
PostgreSQL to use a sort-based plan, we explicitly perform
the sort as part of the query:

SELECT profile(featureVector)
FROM (SELECT * FROM SynData ORDER BY yy,mm,dd)
GROUP BY yy,mm,dd

In Figure 3(a), when the data is small, the sorting-based
profile() is a bit slower than the hash-based profile() due to
the overhead of sorting. However, as the data size grows, and
the hash-based profile() begins to thrash (Figure 3(b)), the
sort-based operation is not significantly affected. As we keep
growing the total size of profiles to 4GB (Figure 3(c)), which
is larger than 512MB shared-buffer and 2GB memory, the
sort-based profile() still scales well.
7Interestingly, the current interface for user-defined aggre-
gation in PostgreSQL does not reflect the size of the aggre-
gation results (i.e., a large profile object as opposed to an
integer). However, we expect that a simple addition to the
interface would provide the optimizer with better informa-
tion, allowing it to choose hashing vs. sorting.
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Figure 3: Scalability of the aggregate profile()

5.1.3 Effects of Materialization
To demonstrate the effectiveness of materialization, we

vary the size of data from 1 year (50M data) to 10 years
(500MB data). Suppose that we have constructed (using
the synthetic data) a partial materialization including one
profile per day, as defined by the following view:

CREATE MATERIALIZED VIEW ByDay AS
SELECT yy, mm, dd, profile(featureVector)
FROM SynData
GROUP BY yy, mm, dd

The size of the materialized view varies from 13.3MB (for
1 year) to 133MB (for 10 years). Now, consider the following
three queries, each of which can be evaluated either using the
materialized table (ByDay) or using the base data (SynData).

1. SELECT sim(profile,featureVector)
FROM SynData F,
(SELECT yy,mm,dd, Profile(featureVector)
FROM SynData
GROUP BY yy,mm,dd) AS P(yy,mm,dd,profile)
WHERE P.yy=F.yy AND P.mm=F.mm AND P.dd=F.dd

2. SELECT sim(profile,featureVector)
FROM SynData F,
(SELECT yy,mm, Profile(featureVector)
FROM SynData
GROUP BY yy,mm) AS P(yy,mm,profile)
WHERE P.yy=F.yy AND P.mm=F.mm

3. SELECT sim(profile,featureVector)
FROM SynData F,
(SELECT yy Profile(featureVector)
FROM SynData
GROUP BY yy) AS P(yy,profile)
WHERE P.yy=F.yy

Figure 4 shows the performance of each query using the
materialized table (“Mat”) and using the base data. The
running time drops substantially when the materialized ta-
ble is used. For the two queries that use profiles grouping by
month and by year, although no materialized table can be
used directly (i.e., ByMonth or ByYear), calculating these
profiles from the materialized ByDay is still more efficient
than building them from scratch.

5.2 Application Case Study
Our next set of experiments evaluates the flexibility af-

forded by a high-level query language incorporating profiles.
For this purpose, we conducted a case study for network at-
tack logs. The idea is to consider a security administrator
and the ad-hoc exploratory tasks he or she would conduct
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to understand the logged information. We chose this partic-
ular domain because anomaly-based intrusion detection has
been well-studied for networks, and there exist established
benchmark data sets.

Existing data mining and statistical software packages
(e.g., Weka [13], Matlab [7], and R [9]) do not provide flexible
high-level query languages. This means that if a user wants
to make advanced use of statistical or mining primitives
(e.g., embedding in a larger analysis), then she must write
a custom procedural program each time. Further, query op-
timization strategies cannot be automatically incorporated
into these programs, so the user also needs to worry about
optimization each time she writes such a script.

For our case study, we developed a sequence of exploratory
tasks, and we compared the programming effort required to
express these tasks using Splash and using Weka 8 [13]. We
observed that it is relatively easy to express conventional
tasks (e.g., simple classification) in both systems, primarily
because Weka provides a custom API for these tasks. How-
ever, when the analysis task involves additional data pro-
cessing, or compound tasks, it is necessary to embed calls to
the Weka API in a larger (custom-coded) program, which
is inconvenient and time-consuming for ad-hoc analysis. In
contrast, compound tasks can usually be expressed quite
easily in Splash.

5.2.1 Network Attack Data
For the case study, we used the KDD Cup 1999 dataset[6],

which has been heavily studied, and is considered a bench-
mark for data mining techniques and intrusion detection.
The data set consists of a set of Internet connection records

8Of course, there are other software packages (e.g., [39], [7],
[9]). We selected Weka because it is popular, and represen-
tative of software packages that do not support declarative
languages.
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(a connection is a sequence of TCP packets), each with 41
pre-extracted features (including, for example, the protocol
type of the connection, network service type of the destina-
tion, and number of data bytes transferred from source to
destination).

The connections are divided into five main classes: nor-
mal connections (normal), probe attacks (probe), denial-of-
service attacks (dos), user-to-root attacks (u2r), and remote-
to-local attacks (r2l). In addition, the four main attack
classes can be further decomposed into sub-classes. For ex-
ample, the dos attack is decomposed into sub-classes that in-
clude dos.apache2, dos.mailbomb, and dos.updstorm. The
data set consists of 494,021 training records, and 311,029
testing records. We store these data sets (including ex-
tracted features) in two tables, where id uniquely identifies
each record, featureVector stores the 41 features associ-
ated with the connection, class stores the main class la-
bel associated with the connection, and subClass stores the
sub-class:

TrainingData(id, featureVector, class, subClass)
TestingData(id, featureVector, class, subClass)

The KDD Cup contest posed a classification task: Using
the training data, construct a model that accurately pre-
dicts the attack category (among the 5 main classes) for
each of the testing connections. Classification results were
evaluated by taking the average error across all classification
decisions (on the testing set), so a lower score implies better
results. The best reported score in the contest was 0.2331,
and results within the range [0.2331, 0.2684] were considered
good [10].

5.2.2 Case Study Tasks and Results
We performed a series of exploratory tasks (including, but

not limited to, simple classification) to help understand the
information contained in these logs. For each task, we com-
pared the process of performing the task using Splash with
the process of performing the task in Weka [13].

For this comparison, we found a meaningful quantitative
measure elusive. When we began the study, we started by
comparing the number of lines of code necessary to perform
each task in Splash vs. Weka. However, we found that
this did not fully convey the distinctions between the two
systems. (As one example, some of the tasks could be ac-
complished in Weka by modifying the engine with a small
amount of code, or by writing a larger amount of application
code, and it was not clear how to quantify the difference be-
tween these two solutions.) Thus, we deliberately chose to
provide a qualitative comparison, rather than quantitative
measurements.

1. Classification
Task: Classification is a common data mining technique

that can be used in network intrusion detection when train-
ing data is available describing both normal behavior and
attacks [43].

Splash: For simplicity, suppose that we begin by con-
structing one profile for each of the 5 main class labels:

CREATE VIEW Profiles(class, profile)
AS SELECT class, profile(featureVector)
FROM TrainingData
GROUP BY class

Classification of the testing records is performed by com-
paring each record with all of the profiles to find the profile

with maximum similarity. (For the sample profile construc-
tion and similarity functions described in Sectios 2.3, the
following trains a Naive Bayes classifier, and uses it to clas-
sify the testing records.)

CREATE VIEW MaxSim(id, maxsim) AS
SELECT T.id, max(sim(P.profile, T.featureVector))
FROM TestingData T, Profiles P
GROUP BY T.id

SELECT T.id, P.class
FROM TestingData T, Profiles P, MaxSim M
WHERE T.id = M.id
AND sim(P.profile, T.featureVector) = M.maxsim

We observe that this simple classifier produces a score of
0.258 for the KDD Cup Dataset, which is considered good
[10]. Of course, our goal is not to test the classification
algorithm itself (Naive Bayes), but this serves as a sanity
check, indicating that our sample model is reasonable for
the experiments.

Weka: Classification is one of the standard data mining
tasks for which Weka provides an explicit API. It is useful to
note that training and testing a classifier (e.g., a Naive Bayes
model) uses around ten lines of code, which is comparable
to the size of the query required by Splash.

2. Anomaly Detection
Task: In contrast to classification, anomaly detection is

practical when the only available training data describes nor-
mal behavior, rather than malicious or attack behavior. In-
tuitively, the goal is to construct a model describing normal
behavior, and then mark those records that are dissimilar to
the model as potential attacks [43].

Splash: We can express anomaly detection in Splash as
follows, where thres1 is a parameter provided by the secu-
rity administrator:

SELECT T.fid
FROM TestingData T, Profiles P
WHERE P.class = ’normal’
AND sim(P.profile, T.featureVector) < thres1

Weka: Weka does not provide an explicit API for anomaly
detection, which leaves the user with two options: (1) She
can modify the Weka engine (altering the API) in order
to add such functionality. (In doing this, she can re-use
some of the existing engine-level classification code.) (2) She
can write a custom application from scratch to implement
anomaly detection.

3. Anomaly Detection Leveraging Attack Data
Task: We observed that classification and anomaly de-

tection each have strengths and weaknesses. In particular,
classification cannot identify unknown attacks that do not
appear in the training data, but anomaly detection cannot
leverage training data for known attacks [24]. A logical new
task exploits both tools: An audit record is considered part
of an attack if it is classified as an attack by a classifier, or it
is marked as anomalous by an anomaly detector. (Related
ideas appear in [37, 48, 52].)

Splash: This task combines anomaly detection and clas-
sification, and is expressed using the following simple query:

SELECT T.id
FROM TestingData T, Profiles P, MaxSim M
WHERE P.class = ’normal’

AND (sim(P.profile,T.featureVector) < thres1
OR sim(P.profile,T.featureVector) != maxsim)
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Figure 5: Leveraging attack info. in
anomaly detection
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The effects of integrating anomaly detection and classi-
fication are shown in Figure 5. While our goal is not to
develop new machine learning tools, it is interesting to ob-
serve that the composite analysis outperforms both anomaly
detection and classification, which points to the importance
of supporting a flexible infrastructure.

Weka: While Splash provides a convenient set of declar-
ative query operators, in Weka we need to write custom
application code encapsulating the basic data mining op-
erations. In this case, the custom application consists of
four steps (provided that we have already written a new
anomaly-detection module for Weka): (1) Train the clas-
sifier; (2) Classify the testing data, and filter those records
with class labels other than “normal”; (3) Train the anomaly
detector; (4) Identify the anomalies in the remaining testing
data. This process consists of two training and two test-
ing phases, which are redundant compared to the Splash
query, which constructs a single set of profiles. This redun-
dancy is rooted in the rigid API design of Weka, which does
not capture the underlying relationship between statistical
anomaly detection and statistical classification. Further, it
is the security administrator’s responsibility to take care of
interleaving the four phases to make the code efficient.

4. Classification Using a Class Taxonomy
Task: We also observed that the KDD cup data actually

includes class labels that are expressed at multiple levels of
granularity. While each of the main categories (i.e., dos,
etc.) is present in the training data, the testing data con-
tains some new sub-categories that are not present in the
training data. Thus, we considered the classification prob-
lem of assigning the best class label (at any granularity) to
each testing record.

Splash: Splash is particularly well-suited to handle this
task. The following constructs a view which contains profiles
for all class and sub-classes in the training data:

CREATE VIEW Profiles(class, profile) AS
SELECT class, profile(featurevector)
FROM TrainingData
GROUP By class
UNION
SELECT subClass, profile(featurevector)
FROM TrainingData
GROUP BY subClass

Using this view, the same query as in the classification
task can be used to classify each testing record to the most
appropriate class (at any level of granularity). In order to
compare this to the original result, we mapped the results

back to the 5 main classes. Our goal, of course, is to demon-
strate that it is simple to express even complex tasks using
Splash. However, it is interesting to observe that this ap-
proach attains a score of 0.228 (better than any result re-
ported as part of the KDD Cup contest!), which points to
the importance of supporting complex tasks.

Weka: We see two ways of approaching this task using
Weka. The first option would extend one of Weka’s classi-
fiers (e.g., Naive Bayes) to make the classifier aware of the
hierarchical class labels present in the training data. This
requires modifications to the Weka engine and API.

The second option is done entirely at the application level.
Notice that the hierarchical relationships between class la-
bels can be handled without modifying the classifier by pro-
ducing additional training data. For example, if there ex-
ists a training record with label attack.dos.apache2, we can
generate three training records with labels attack, dos, and
apache2. However, this approach unnecessarily expands the
size of the training data by a factor of three.

5. Tuning Classification Recall
Task: While classification and anomaly detection tools

are powerful, they do not provide the built-in ability to tune
the results according to a security administrator’s specifica-
tion. For example, in the KDD Cup contest, even the win-
ning solution observed very low true positive rates for de-
tecting u2r and r2l attacks (13.2% and 8.4%, respectively).
Thus, when conducting an exploratory analysis, the security
administrator might consider examining more than one class
label per request, as a way of boosting the number of true
positives.

Splash: Using Splash, the classification recall can be ad-
justed simply by modifying thres2 in the following query:

SELECT T.id, P.class
FROM TestingData T, Profiles P, Maxsim M
WHERE T.id = M.id

AND sim(P.profile,T.featureVector)
>=M.maxsim-thres2

The effects of tuning thres2 are shown in Figure 6. Notice
that by returning an average of 1.4 class labels per testing
record, the security administrator can achieve 79.0% and
37.4% recall for the u2r and r2l attacks, which are 3.3 and
4.2 times better, respectively, than the recall rate when re-
turning just one class label per test record.

Weka: The problem of tuning classification recall should
be easy to handle in Weka. However, the Weka API is not
designed to accept the parameter thresh2, or to return mul-
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tiple class labels. Thus, to evaluate this task would require
some re-design and modifications to Weka.

6. Tuning False Positives for Anomaly Detection
Task: Finally, high false positive rates are a major con-

cern when adopting anomaly detection techniques [43], and
the security administrator may want to compromise some
true positives for a lower false positive rate. In either case,
the ability to tune the result set is critical for exploratory
analysis.

Splash: False positives are easily tuned using parameter
thres1 in the above anomaly detection query. Figure 7 shows
the tradeoff between true positives and false positives.

Of course, finding an appropriate thres1 is important in
anomaly detection. Given a set of training data, and the
maximum allowable false positive rate r, we can estimate the
parameter thres1 from the training data. In the following,
let n = r · |TrainingData|.

SELECT sim(P.profile,T.featureVector) as thres1
FROM TrainingData T, Profiles P
WHERE T.class = ’normal’ AND P.class = ’normal’
ORDER BY sim(P.profile,T.featureVector)
LIMIT 1 OFFSET n

This query orders the training records based on their sim-
ilarity to the profile of normal behavior, finds the nth most
similar training record, and uses its similarity to the normal
profile to set the threshold.

Weka: Weka does not currently support anomaly detec-
tion, but if we were to add this functionality, we would need
to incorporate thresh1 as a parameter in the API in order
to support this task.

5.3 Effects of Compression
While compression based on histograms, as described in

Section 4.2, is effective in reducing the size of profile objects,
it also removes some detail from the profiles. To measure
the effects of compression, we performed several experiments
using the KDD Cup data. In particular, we used four met-
rics to evaluate the loss of content resulting from histogram-
based compression: (1) Similarity between the compressed
profile and the original profile, (2) Accuracy of a classifier
constructed using the compressed profiles, (3) True positive
rate for anomaly detection, and (4) False positive rate for
anomaly detection. Figure 8 plots the similarity between
the compressed and original profiles. The other results are
omitted for space; however, we can reduce the profiles to
25% of their original size without substantially altering any
of the four evaluation metrics.

5.4 Generating Representatives
Our final set of experiments evaluated and compared algo-

rithms for finding representative sets. We tested the three
algorithms described in Section 3 – HIST-R, RAND-R, and
GREEDY-R – as well as an algorithm that selects the k maxi-
mum likelihood records. This last approach is equivalent to
the notion of typical tuples proposed in [31]; this work was
driven by a different problem formulation, and as will show,
the resulting algorithms do not suit our purposes.

The first experiments use an input data set D containing
10, 000 records. Profile p is taken to be an n-dimensional
Gaussian distribution, and D is generated according to the
same distribution. The results for d = 1, 2, 5 are shown in
Figure 9. GREEDY-R produces the best results; in addition,
we note that although HIST-R is more effective than RAND-R

in low dimensions, as the dimensionality increases, HIST-R
is not better than RAND-R. The maximum likelihood method
is clearly not suitable for this problem. We also observed
similar results for other distributions (zipf and uniform), but
the results are omitted for space.

We also test the case where D comes from a distribu-
tion other than profile distribution p. Figure 9(d) shows the
case where D comes from a 5-dimensional Zipf distribution,
but p is a 5-dimensional uniform distribution; Figure 9(e)
shows the case where D comes from a Gaussian distribu-
tion (σ = 20) and p is Gaussian (σ = 10). It is interesting
to observe that using GREEDY-R it is still possible to select
from D a limited number of tuples that represent a different
distribution p.

Finally, we compared the algorithms using five features
extracted from the KDD Cup data. The results (Figure 9(f))
are as expected; GREEDY-R works the best, but due to the
dimensionality, HIST-R and RAND-R do not perform as well.

6. RELATED WORK
Integrating Databases and Statistical Models: Splash
is built on the idea of simultaneously querying statistical
models and data. A body of related literature describes sev-
eral other abstractions and systems for incorporating data
mining and statistical models into standard or extended
SQL. Example systems include MauveDB [22], Microsoft
SQL Server’s DMX [2] and OleDB for DM [40], and IBM
DB2 Intelligent Miner [3]. However, for reasons outlined in
Section 1.2, none of these systems satisfied our requirements,
particularly ad-hoc model creation and manipulation.

Like Splash, the ATLaS system [50] used user-defined ag-
gregates to implement simple data mining operations (e.g.,
association rules and decision trees). While the idea is simi-
lar, ATLaS supported a lower-level language, which required
the user to code the details of the mining algorithm. In this
way, Splash and ATLaS complementary; an expert codes the
statistical inference algorithms using the user-defined aggre-
gate interface of Postgres (which is similar to that supported
by ATLaS), and then Splash provides a simpler high-level
query language for less-sophisticated users.

A significant amount of work has focused on implementing
specific data mining operations inside relational databases
[41, 45, 46], often obtaining good performance and scale.
There is also a lot of work trying to design scalable data
mining algorithms [16, 27]. However, none of these works
have focused on integration with ad-hoc query languages.

Recent work MAD [20] focused on designing statistical
algorithms feasible for running on parallel databases. How-
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Figure 9: Finding representative set from data set of various dimension

ever, the paper does not provide abstraction for statistical
model objects. Therefore it is difficult to write queries to
compare and analyze models.

Exploratory Data Mining: Recent work in exploratory
data mining has proposed to view data mining tasks in terms
of cube space. For example, Chen et al. proposed the idea of
a prediction cube, where classifiers are trained over various
data subsets in multidimensional cube space [19]. While
this approach is related to our view of statistical models as
aggregate functions, to the best of our knowledge, none of
the past work has considered integrating cube-based data
mining with a relational DBMS or query language.

Representative and Typical Tuples: As part of our sys-
tem, we also studied the problem of generating “representa-
tive” examples to help explain a profile (Section 3).

To the best of our knowledge, the problem of explain-
ing a statistical model using a small number of examples
has not previously been considered. However, related work
has considered various formulations of the following prob-
lem: Given a dataset D, produce a “representative” subset
thereof, where “representative” is defined in different ways.

Hua et al. considered finding the top-k most “typical”
(maximum likelihood) tuples [31]; however, as we showed in
Section 5.4, the typical tuples often fail our goal of clearly
describing the underlying distribution. Liu and Jagadish
present a problem formulation based on distance; that is,
minimize the distance between the points in D and their rep-
resentatives [38]. While this approach captures the diversity
of data records, it also does not convey the frequency distri-
bution in D. Finally, Pan et al. [42] developed an objective
function based on information theory, but it has a different
goal from ours in finding a subset from a transactional (item-
set) database that simultaneously has high coverage and low

redundancy.

Anomaly and Fraud Detection: One of our motivating
applications is ad-hoc log analysis. The idea of anomaly-
based intrusion detection goes back to the work of Denning
[21]. Typically, however, anomaly detection is viewed as a
binary decision (i.e., produce a warning or not), and false
positives are often cited as a shortcoming. This provides
strong motivation for an ad-hoc query tool in this domain.

Anomaly detection has been studied extensively in oper-
ating systems [26, 35, 36, 51], networks (e.g., see recent sur-
vey [43]), and for detecting fraud [17, 25]. It is distinct from
signature-based intrusion detection (e.g., [4]) which detects
pre-defined patterns of abnormal behavior.

Recent work has begun to consider applying anomaly de-
tection to databases. Kamra et al. [33] developed a simple
data mining approach, which selects features from the text
of SQL queries, and constructs a Naive Bayes classifier to
predict the most likely profile (in this case, the RBAC role)
for new queries. Other work includes [30, 34, 47, 49].

7. CONCLUSION & FUTURE WORK
In this paper, we presented Splash, a novel system sup-

porting ad-hoc querying of statistical models and relational
data. The fundamental new abstractions supported by Splash
are the view of statistical models as SQL aggregation oper-
ations, as well as operations for interacting with models,
including the generation of representative examples. We
provided an implementation of Splash, including several per-
formance optimizations. Further, an extensive experimental
study indicates both that the system scales well, and that
the novel abstractions provide a simple alternative to the
existing (more complex and rigid) APIs supported by data
mining software packages.

In the future, we would like to run Splash in a parallel
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database. Standard SQL aggregation functions have been
successfully implemented in parallel databases for many years
[23], and by analogy, we believe the abstractions supported
by Splash lend themselves to easy parallelization of certain
mining tasks.

Acknowledgements

We thank H. V. Jagadish for his invaluable comment on an
earlier version of this paper. This work was supported in
part by NSF grant CNS-0915782 and IIS-0438909.

8. REFERENCES
[1] http://www.hhs.gov/ocr/hipaa/.

[2] Data mining extensions (DMX) reference. SQL Server 2005
Books Online. http://technet.microsoft.com.

[3] Db2 intelligent miner.
http://www-01.ibm.com/software/data/iminer/.

[4] http://www.snort.org. Retrieved July 16, 2008.

[5] An introduction to computer security: The NIST
handbook. NIST Special Publication 800-12.

[6] Kdd cup 1999 dataset. http://archive.ics.uci.edu/ml/
databases/kddcup99/kddcup99.html.

[7] Matlab: The language of technical computing.
http://www.mathworks.com/products/matlab/.

[8] Postgresql. http://www.postgresql.org/.
[9] The r project for statistical computing.

http://www.r-project.org/.
[10] Result of kdd cup 1999 contest.

http://www-cse.ucsd.edu/ elkan/clresults.html.
[11] Sas: Business intelligence software. http://www.sas.com.

[12] Stata. http://www.stata.com.

[13] Weka 3: Data mining software in java.
http://www.cs.waikato.ac.nz/ml/weka/.

[14] University of Michigan Health System Compliance Office.
Personal communication, 2008.

[15] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In VLDB, 2002.

[16] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, 1994.

[17] F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedreschi. A
classification-based methodology for planning audit
strategies in fraud detection. In SIGKDD, 1999.

[18] J. Cart. Kaiser fires staffers who snooped into suleman’s
files. The Los Angeles Times, March 31 2009.

[19] B. Chen, L. Chen, Y. Lin, and R. Ramakrishnan.
Prediction cubes. In VLDB, 2005.

[20] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and
C. Welton. Mad skills: New analysis practices for big data.
In VLDB, 2009.

[21] D. Denning. An intrusion-detection model. In IEEE
Symposium on Security and Privacy, 1986.

[22] A. Deshpande and S. Madden. MauveDB: Supporting
model-based user views in database systems. In SIGMOD,
2006.

[23] D. DeWitt and J. Gray. Parallel database systems: The
future of high performance database systems.
Communications of the ACM, 35(6), 1992.

[24] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava,
and P. Tan. Data mining for network intrusion detection.
In Proceedings of NSF Workshop on Next Generation Data
Mining, 2002.

[25] T. Fawcett and F. Provost. Adaptive fraud detection. Data
Mining and Knowledge Discovery, 1, 1997.

[26] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A
sense of self for UNIX processes. In IEEE Symposium on
Security and Privacy, 1996.

[27] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a
framework for fast decision tree construction of large
dataset. In VLDB, 1998.

[28] J. Gray, S.Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1), 1996.

[29] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cube efficiently. In SIGMOD, 1996.

[30] Y. Hu and B. Panda. Identification of malicious
transactions in database systems. In IDEAS, 2003.

[31] M. Hua, J. Pei, A. Fu, X. Lin, and H. Leung. Efficiently
answering top-k typicality queries. In VLDB, 2007.

[32] Y. Ioannidis and Y. Poosala. Balancing histogram
optimality and practicality for query result size estimation.
In SIGMOD, 1995.

[33] A. Kamra, E. Terzi, and E. Bertino. Detecting anomalous
access patterns in relational databases. VLDB Journal,
2007.

[34] C. Kruegel and G. Vigna. Anomaly detection of web-based
attacks. In CCS, 2003.

[35] W. Lee and S. Stolfo. Learning patterns from unix process
execution traces for intrusion detection. In AAAI Workshop
on AI Methods in Fraud and Risk Management, 1997.

[36] W. Lee and S. Stolfo. Data mining approaches for intrusion
detection. In USENIX Security Symposium, 1998.

[37] W. Lee, S. Stolfo, and K. Mok. A data mining framework
for building intrusion detection models. In IEEE
Symposium on Security and Privacy, 1999.

[38] B. Liu and H. Jagadish. Using trees to depict a forest. In
VLDB, 2009.

[39] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data mining
tasks. In SIGKDD, 2006.

[40] A. Netz, S. Chaudhuri, U. Fayyad, and J. Bernhardt.
Integrating data mining with SQL databases: OLE DB for
data mining. In ICDE, 2001.

[41] C. Ordonez. Building statistical models and scoring with
udfs. In SIGMOD, 2007.

[42] F. Pan, W. Wang, A. Tung, and J. Yang. Finding
representative set from massive data. In ICDM, 2005.

[43] A. Patcha and J. Park. An overview of anomaly detection
techniques: Existing solutions and latest technological
trends. Computer Networks, 51:3448–3470, 2007.

[44] Y. Poosala and Y. Ioannidis. Selectivity estimation without
the attribute value independence assumption. In VLDB,
1997.

[45] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database systems:
Alternatives and implications. In SIGMOD, 1998.

[46] K. Sattler and O. Duneman. Sql database primitives for
decision tree classifiers. In CIKM, 2001.

[47] A. Spalka and J. Lehnhardt. A comprehensive approach to
anomaly detection in relational databases. In Proceedings of
the 19th IFIP WG 11.3 Working Conference on Data and
Applications Security, 2005.

[48] E. Tombini, H. Debar, L. Me, and M. Ducasse. A serial
combination of anomly and misuse idses applied to http
traffic. In ACSAC, 2004.

[49] F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of SQL attacks. In International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2003.

[50] H. Wang and C. Zaniolo. Atlas: A native extension of sql
for data mining. In SIAM Data Mining, 2003.

[51] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In
IEEE Symposium on Security and Privacy, 1999.

[52] J. Zhang and M. Zulkernine. A hybrid network intrusion
detection technique using random forests. In Conference on
Availability, Reliability and Security, 2006.

[53] Y. Zhang, H. Herodotou, and J. Yang. Riot: I/o-efficient
numerical computing without sql. In CIDR, 2009.

286




