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ABSTRACT
Compressed bitmap indexes are increasingly used for efficiently
querying very large and complex databases. The Word Aligned
Hybrid (WAH) bitmap compression scheme is commonly recog-
nized as the most efficient compression scheme in terms of CPU
efficiency. However, WAH compressed bitmaps use a lot of stor-
age space. This paper presents the Position List Word Aligned
Hybrid (PLWAH) compression scheme that improves significantly
over WAH compression by better utilizing the available bits and
new CPU instructions. For typical bit distributions, PLWAH com-
pressed bitmaps are often half the size of WAH bitmaps and, at the
same time, offer an even better CPU efficiency. The results are ver-
ified by theoretical estimates and extensive experiments on large
amounts of both synthetic and real-world data.

1. INTRODUCTION
Compressed bitmap indexes are increasingly used to support ef-

ficient querying of large and complex databases. Example appli-
cations areas include very large scientific databases and multime-
dia applications, where the datasets typically consist of feature sets
with high dimensionality. The present work was motivated by the
need to perform (one- or multi-dimensional) range queries in large
multimedia databases for music (Music Warehouses). Here, music
snippets are analyzed on various cultural, acoustical, editorial, and
physical aspects, and the extracted features are high-dimensional,
and range over very wide intervals. However, the exact same char-
acteristics apply to a wide range of applications within multime-
dia and scientific databases. While bitmap indexes are commonly
accepted as an efficient solution for performing search on low-
cardinality attributes, their sizes increase dramatically for high-
cardinality attributes. Therefore, the central challenge is to develop
an efficient compression technique for sparse bitmaps and that has
a low overhead for low-cardinality attributes.

The first use of a bitmap index in a DBMS dates back to 1987 [10].
The index was made from uncompressed bitmaps and suffered from
tremendous storage requirements proportional to the cardinality of
the indexed attribute, causing it to become too large to fit in mem-
ory and leading to a deterioration of the performance [18]. Since
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then, various approaches have been studied to improve bitmap in-
dexes for high-cardinality attributes. A deeper review of bitmap
index extensions, compression techniques, and technologies used
in commercial DBMSes is presented in [15].

The binning technique partitions the values of the index attributes
into ranges [13, 17]. Each bitmap captures a range of values rather
than a single value. Binning techniques prove to be useful when
the attribute values can be partitioned into sets. In [8], a binning
technique using partitioning based on query patterns, their frequen-
cies, and the data distribution is presented and further improves the
index performance. Bit-slicing techniques rely on an ordered list
of bitmaps [11]. If every value of an attribute can be represented
using n bits, then the indexed attribute is represented with an or-
dered list of n bitmaps, where for example, the first bitmap repre-
sents the first bits of the values of the indexed attribute. Dedicated
arithmetic has been developed to operate directly on the bitmaps in
order to, for example, perform ranges queries [12]. The Attribute-
Value-Decomposition (AVD) is another bit-slicing technique de-
signed to encode both range-encoded and equality-encoded bitmap
indexes [5]. Both lossy and lossless bitmap compression schemes
have been applied to bitmap indexes. The Approximate Encoding,
(AE), is an example of lossy bitmap compression scheme [4]. An
AE compressed bitmap index returns false-positives but is guar-
antied not to return false-negatives. The accuracy of an AE com-
pressed bitmap index ranges from 90% to 100%.

The Byte-aligned Bitmap Compression (BBC) [3] and the Word
Aligned Hybrid (WAH) [16] are both lossless compression schemes
based on run-length encoding. In run-length encoding, continuous
sequences of bits are represented by one bit of the same value and
the length of the sequence. The WAH compression scheme is cur-
rently regarded the most CPU efficient scheme, and is faster than,
e.g., BBC. The performance gain is due to the enforced alignment
with the CPU word size. This yields more CPU friendly bitwise
operations between bitmaps. However, WAH suffers from a signif-
icant storage overhead, an average of 60% storage overhead over
BBC was reported [16]. More recently, for attributes with cardinal-
ities up to 10,000, hybrid techniques based on combined Huffman
run-length encoding have shown their superiority from a size point
of view [14]. However, both storage and performance of such com-
pressed bitmap indexes decrease for bigger cardinalities and per-
forming bitwise operations (OR/AND) on such bitmaps is very ex-
pensive since the bitmaps must first be de-compressed and later re-
compressed. General-purpose data compression algorithms, such
as PFOR and PFOR-DELTA [19], often offer very efficient decom-
pression but are not well-suited for bitmap compression as they
necessitate a preliminary decompression to operate on the values.

This paper improves upon existing work by offering a lossless
bitmap compression technique that outperforms WAH, currently
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seen as the leading bitmap compression scheme for high-cardinality
attributes, from both a storage and a performance perspective. Other
extensions to the bitmap index (bit-slicing, etc.) will thus also ben-
efit from the proposed compression scheme to represent their un-
derlying bitmaps.

Specifically, the paper presents Position List Word Aligned Hy-
brid (PLWAH), a new bitmap compression scheme. PLWAH is
based on the observation that many of the bits used for the run-
length counter in the WAH compression scheme are in fact never
used, since runs never become long enough to need all the bits. In-
stead, these bits are used to hold a “position list” of the set/unset
bits that follow a 0/1 run. This enables a significantly more efficient
storage use than WAH. In fact, PLWAH compressed bitmaps are
often only half the size of WAH compressed ones, and at the same
time, PLWAH is faster than WAH, thus PLWAH provides “the best
of both worlds.” PLWAH guarantees a maximum bitmap size in
words that is at most the number of set bits. Furthermore, PLWAH
has a very low overhead on non-compressible bitmaps (1/64 or 1/32
depending on word length).

Additional contributions include the removal of the active word
and bitmap length that significantly reduce the size of compressed
bitmap indexes composed of very short compressed bitmaps, the re-
duction of the conditional branches required to decompress a word,
and the creation of an adaptive counter that allows extremely sparse
bitmaps to be compressed efficiently without necessitating longer
words that increase the size of the bitmaps.

This paper shows that for uniformly distributed bitmaps, the hard-
est bitmaps to compress for compression schemes based on run
length encoding, PLWAH uses half the space of WAH. On clustered
bitmaps, PLWAH also uses less storage than WAH. These results
are shown in a detailed theoretical analysis of the two schemes. The
paper also presents algorithms that perform efficient bitwise opera-
tions on PLWAH compressed bitmaps and analyzes their complex-
ity. Again, the analysis shows PLWAH to be faster than WAH.
The theoretical results are verified by extensive experimentation on
both synthetic and real-world (music) data. The experiments con-
firm that PLWAH uses significantly less storage than WAH, while
also outperforming WAH in terms of query speed. While devel-
oped in the specific context of Music Warehouses, the presented
compression scheme is applicable to any kind of bitmaps indexes,
thus making the contribution generally applicable.

The paper is structured as follows. Section 2 describes PLWAH
compression scheme. In Section 3, we establish the upper and
lower bounds of the compression ratio, provide size estimates for
both uniformly distributed and clustered bitmaps, and discuss the
impact of the size of the position list. The algorithms for perform-
ing bitwise operations on the compressed bitmaps are presented in
Section 4, along with an analysis of the time complexity of the
presented procedures. In Section 5, the theoretical size and time
complexity estimates are verified through extensive experiments on
both synthetic and real data sets. Finally, in Section 6, we conclude
and present future research directions.

2. PLWAH COMPRESSION
The PLWAH compression is composed of four steps; they are

explained with an example to ensure clarity. Assume an uncom-
pressed bitmap composed of 175 bits and a 32-bit CPU architec-
ture. The PLWAH compression steps are detailed below and are
illustrated in Figure 1.
Step 1. The uncompressed bitmap is divided into groups of equal
size, corresponding to the word length of the CPU architecture mi-
nus one. In our example, the first four groups have a size of 31 bits.
The last group is appended with 11 zeros to reach a size of 31 bits.

Uncompressed bitmap organized 

in groups of 31 bits:

0000000000 0000000000 0000000000 0

0000000000 0000000001 0000000000 0

0000000000 0000000000 0000000000 0

0000000000 0000000000 0000000000 0

0000000100 0000000000 0000000000 0

0000000000 0000000100 0000000000 0
31 bits

11 bits

000 … 000 1 000 … 000 1 000 … 000 1 00

Uncompressed bitmap:

50 x 0 80 x 0 40 x 0 2 x 0

Merging consecutive homogenous groups:

2 groups 

merged

0000000000 0000000000 0000000000 0

0000000000 0000000001 0000000000 0

0000000000 0000000000 0000000000 0

0000000000 0000000000 0000000000 0

0000000100 0000000000 0000000000 0

0000000000 0000000100 0000000000 0

Encoding sparse 32 bits literal words:

1 0 1010000000 0000000000 0000000001 

1 0 0100000000 0000000000 0000000010 

0 0000000000 0000000100 0000000000 0

0 Fill word, cnt = 1, pos = 20

0 Fill word, cnt = 2, pos = 8

Literal word

Encoding 32 bits fill words:

0 Fill word, counter = 11 0 0000000000 0000000000 0000000001 

0 0000000000 0000000001 0000000000 0

1 0 0000000000 0000000000 0000000010 

0 0000000100 0000000000 0000000000 0

0 0000000000 0000000100 0000000000 0

0 Fill word, counter = 2

Literal word

Literal word

Literal word

Figure 1: Example of PLWAH32 compression

We thus have six 31 bit long groups.
Step 2. Identical adjacent homogeneous groups, i.e., groups com-
posed of either 31 set bits or 31 unset bits, are marked as candi-
dates for a merge. In our example, the first group is a candidate
for a merge since it is exclusively composed of homogeneous bits.
Similarly, in the third and fourth groups, all bits are unset, so the
two groups are candidates for a merge. The second, fifth, and sixth
groups are not homogeneous and therefore are not candidates.
Step 3. An additional bit is appended to the groups at the position of
their Most Significant bit (MSB). A set bit represents a group com-
posed of homogeneous bits. Those 32 bit long words starting with
their MSB set are referred to as fill words. Fill words can be of two
types, zero fill words and one fill words; they are distinguished by
their second MSB. Candidate groups for a merge are transformed
into fill words. The last 25 Least Significant Bits (LSBs) are used
to represent the number of merged groups each fill word contains.
In our example, the first group becomes a fill word. Similarly, the
third and fourth groups become a fill word with its counter is set
to two; this corresponds to the number of merged groups. An ex-
tra unset bit is added as MSB to heterogeneous groups. Encoded
words having their MSB unset are referred to as literal words. In
our example, the second, the fifth, and the sixth word are trans-
formed into literal words; each starts with an unset bit. The first
and second words are fill words, their MSBs are set.
Step 4. Literal words immediately following and “nearly identi-
cal”1 to a fill word are identified. The positions of the heteroge-
neous bits are calculated and are placed in the preceding fill word.
The unused bits located between the fill word type bit and the
counter bits are used for this purpose. In our example, 25 bits are

1The maximum number of bits differing between a literal word
and a fill word to be considered as “nearly identical” will later be
defined by a threshold parameter.
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total length w bits

bitmap of w-1 bits

counter

Fill word

Literal word

position s ... position 1

bits 1log 2 −w

Figure 2: Structure of PLWAH literal and fill words

used for the counter, and 2 bits are used for the representing the
word type. We thus have 5 bits remaining, namely the 3rd to the
7th MSB. A heterogeneous bit requires 5 bits to ensure all the pos-
sible bit positions in a literal word can be captured. In the example,
the second and fourth words are literal words with only one bit dif-
ferent from their preceding fill word; they can be piggybacked. The
position of the heterogeneous bit is placed in the position list of the
fill word and the literal word is removed from the bitmap. The
last word is treated as any other word; in the example, it cannot be
piggybacked into its predecessor and is left as it is.

As mentioned above, the PLWAH compressed words are of two
kinds: fill words and literal words; their structures are presented in
Figure 2. A literal word is identified by an unset MSB, followed
by an uncompressed group. Fill words are identified by a set MSB,
followed by a type bit to distinguish zero fills from one fills. The
remaining bits are used for the optional storage of the list of posi-
tions of the heterogeneous bits in the tailing group, and for storing
a counter that captures the total number of groups the current fill
word represents.

The position list can be empty in three cases: first, if the follow-
ing word is a fill word of a different type; second, if the following
word is a literal but is not “nearly identical” to the current fill word;
and third, if the multiple fill words have to be repeated because the
counter has reached its maximum value. An “empty” element in the
position list is represented with all its value set to zero. The empty
position list is represented with all position values set to zero.

3. PLWAH SIZE ESTIMATES
In this section, we compare the space complexity of the WAH

and PLWAH compression schemes.
Let w be the number of bits in the CPU word, so that w = 32 on

a 32-bit CPU and w = 64 on a 64-bit CPU. Given an uncompressed
bitmap as input, we described in Section 2 that the PLWAH com-
pression scheme divides the uncompressed bitmap into groups of
(w−1) bits, referred to as literal groups. For a bitmap with N bits,
there are bN/(w − 1)c such groups plus an optional incomplete
word of size Nmod(w−1). Unset bits are appended to the incom-
plete word so that the bitmap is divided into M = dN/(w − 1)e
groups each containing (w − 1) bits. The total length in bits of the
uncompressed bitmap with its tailing unset bits is L = M(w− 1).
A literal word is created by prepending an unset bit to a group.
When all groups of a bitmap are represented with literal words, the
bitmap is said to be in its uncompressed form.

3.1 Compression upper and lower bounds
The maximum compression is obtained when all words are fill

words. This happens when all groups but the last are homogeneous
and identical, and the last group can be represented using the list
of positions of the preceding fill word. The upper bound is thus
determined by the maximum number of groups a fill word can con-
tain, plus one for the last literal group. Let s be the maximum
number of heterogeneous bits a fill word can store in its list of po-
sitions. The size of the list is s log2 w and the size of the counter
is w − 2 − s log2 w. A single fill word can thus represent up to(
2w−2−s log2 w + 1

)
groups of length w−1. A very sparse bitmap

composed of a long sequence of unset bits and ending with a set bit,
00000000...00001, is an example of a bitmap were the maximum
compression can be reached. Such bitmap can be represented with
only one fill

All compression schemes have an overhead when representing
incompressible bitmaps. For WAH and PLWAH, this overhead is
one bit per word, so the compression ratio is w/(w− 1). A bitmap
containing no homogeneous groups will not have any fill words and
will be incompressible. The bitmap 01010101010101...0101010
is an example of an incompressible bitmap for both the WAH and
PLWAH compression schemes.

The upper and lower bounds of the PLWAH compression ratio
are respectively: (2w−2−s log2 w + 1)(w − 1)/w and (w − 1)/w.
As long as the upper bound is not reached, the worst PLWAH com-
pression ratio is bounded by the WAH compression ratio.

The WAH and PLWAH compression ratio for different bitmap
distributions that fall within the compression limits are described
in Sections 3.2, 3.3, and 3.5. The (rare) bitmap distributions not
within these boundaries, e.g., bitmaps that would cause counter
overflows, are discussed in Section 3.6.

3.2 Compression of sparse and uniformly dis-
tributed bitmaps

In a uniformly distributed bitmaps, the probability of having a
set bit is independent from the bit position. Such bitmaps can be
characterized by their bit density d. The bit density is the frac-
tion of bits that are set compared to the total number of bits. On a
uniformly distributed bitmap of density d, the probability of hav-
ing exactly k or less bit set in a sequence of w bits is given by
the binomial distribution Pu(k,w, d) = Cw

k dk(1− d)w−k, where
Cw

k = w!
k!(w−k)!

is the binomial coefficient and represents the total
number of combinations, that k bits can be picked out of a set of
w bits. The probability of having no bit set in a w − 1 bit long
word is Pu(0, w − 1, d) = (1 − d)w−1. The probability of hav-
ing all bits set is: Pu(w − 1, w − 1, d) = dw−1. The probability
of having two successive w − 1 bit long words filled with unset
bits is: Pu(0, 2w − 2, d) = Pu(0, w − 1, d)Pu(0, w − 1, d) =

(1 − d)2(w−1). Similarly, the probability of having two w − 1 bit
long words filled with set bits is: d2(w−1).

The number of words W in a compressed bitmap is W = M −
G, where M is the total number of groups, and G is the number of
pairs of blocks that can be collapsed [16]. For the WAH scheme,
GWAH is the number of pairs of adjacent blocks containing only un-
set bits plus the number of adjacent blocks containing only set bits.
The total number of adjacent blocks is M − 1, and the expected
value of GWAH is GWAH = (M − 1)Pcol, where Pcol is the proba-
bility of collapsing two adjacent blocks. The expected total number
of words using WAH is:

WWAH = M −GWAH

= M − (M − 1)
[
Pu

(
0, 2(w − 1), d

)
+ Pu

(
2(w − 1), 2(w − 1), d

)]
= M

[
1− (1− d)2(w−1) − d2(w−1)

]
+ (1− d)2(w−1) + d2(w−1)

(1)

Let L be the total length in bits of the uncompressed bitmap as
defined in Section 3.1. On a sparse bitmap, i.e., d→ 0, by applying
a binomial decomposition, we have 1−(1−d)2(w−1)−d2(w−1) →
2(w−1)d. As explained in [16], considering large values of L (and
thereby M ) and small values of d, the expected number of words
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can be approximated as follows:

WWAH ≈M
[
1− (1− 2(w − 1)d)

]
= 2Ld = 2h (2)

where h denotes the number of set bits. Using the definition of bit
density, h = dL, the number of words in a sparse bitmap can be
expressed in terms of set bits as shown in Equation 2. In such a
sparse bitmap, all literal words contain only a single bit that is set,
and each literal word is separated from the next by a fill word of
zeros. On the average, two words are thus used for each bit that is
set.

We now calculate the expected total number of words using the
PLWAH compression scheme. The probability of having 0 to s set
bits in a w − 1 bit long group is:

∑s
k=0 Pu(k,w − 1, d). The

probability of having a w − 1 bit long group with w − 1 unset
bits followed by a w − 1 bit long group with 0 to s set bits is:
Pu(0, w − 1, d)

∑s
k=0 Pu(k,w − 1, d). Similarly, the probability

of having a w − 1 bit long group with all its bits set followed by a
group with 0 to s unset bits is: Pu(w−1, w−1, d)

∑s
k=0 Pu(w−

1− k,w − 1, d). The expected total number of words is:

W PLWAH

= M − (M − 1)
[
Pu(0, w − 1, d)

s∑
k=0

Pu(k,w − 1, d)

+ Pu(w − 1, w − 1, d)

s∑
k=0

Pu(w − 1− k,w − 1, d)
]

= M − (M − 1)
[
(1− d)w−1

s∑
k=0

Cw−1
k dk(1− d)w−1−k

+ dw−1
s∑

k=0

Cw−1
k dw−1−k(1− d)k

]

(3)

For small values of d and large values of M , we can use a bino-
mial decomposition. The expected number of words can then be
approximated as follows.

W PLWAH ≈M
[
1− (1− d)2(w−1) − (w − 1)d(1− d)2w−3

]
≈M(w − 1)

[
2d− d(1− (2w − 3)d)

]
≈ Ld = h

(4)
Looking at the expected number of words relative to the expected

number of set bits, we have:

WWAH

h
≈ 2 and

W PLWAH

h
≈ 1 (5)

The compressed size of a sparse bitmap is thus directly propor-
tional to the number of bits set. In such a sparse bitmap, all words
are fill words of unset bits with one position set in the position list
of the fill word. The compression ratio of PLWAH is asymptoti-
cally, within the limits of compressibility detailed in Section 3.1,
twice the compression ratio of WAH for a uniformly distributed
bitmap as the bit density goes to zero.

Figure 3 shows the expected number of words per set bit for
WAH and PLWAH depending on the bit density. The behavior of
the curves for low densities is explained by the previous approxima-
tions detailed in Equation 5. The error due to the approximation in
Equation 5 is less than a 1% for bit densities d < 0.001. For higher
densities, the number of words per set bit drops linearly to the bit
density: if the density is too high to have fill words, the bitmaps
are filled with literal words, they have become incompressible and
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Figure 3: Word count estimates on uniformly distributed bitmaps

have reached their maximum size as explained by the lower bound
of the compression ratio established in Section 3.1.

3.3 Compression of clustered bitmaps
We now study the compression of a bitmap constructed by a ran-

dom walk modeled by the following Markov process. A bit has
a probability p to be set if its preceding bit is unset, and a prob-
ability q to be unset if its preceding bit is set. The bit density is:
d = (1 − d)p + d(1 − q) = p/(p + q). The clustered bitmap
can thus be fully described by the density d and its clustering factor
f = 1/q.

Let Pc(k,w, d, f |b0) denote the probability of having k set bits
in a block of w bits when the bit preceding the block is b0, the
clustering factor is f and the bit density is d. It is straightforward
to calculate Pc(0, w, d, f |0) = (1 − p)w = (1 − d/f(1 − d))w.
Thus, the probability to have two consecutive groups exclusively
composed of set bits or unset bits is respectively d(1− q)2(w−1)−1

and (1− d)(1− p)2(w−1)−1. The expected number of compressed
words in a WAH bitmap can thus be expressed as follows.

WWAH = M − (M − 1)
[
(1− d)Pc(0, 2w − 3, d, f |0)

+ dPc(2w − 3, 2w − 3, d, f |1)
]

= M
[
1− (1− d)(1− p)2w−3 − d(1− q)2w−3

]
+ (1− d)(1− p)2w−3 + d(1− q)2w−3

(6)

For sparse bitmaps with d << 1, an upper bound for the number of
words per set bit is to consider that almost all homogeneous groups
are composed of unset bits. Furthermore, for p = dq/(1− d)→ 0
we can use a binomial decomposition; this is always true for d <<
1 as q <= 1. Therefore, as stated in [16], for large values of M ,
the expected number of compressed words is as follows.

WWAH ≈M
[
1− (1− d)

(
1− dq/(1− d)

)2w−3
]

≈M
[
1− (1− d)

(
1− (2w − 3)dq/(1− d)

)]
=

Ld

w − 1

[
1 + (2w − 3)q

] (7)

For bitmaps with a moderate clustering factor, f < 5, we have
WWAH ≈ 2h/f . Similarly, the expected number of words on a
PLWAH bitmap is as follows.

W PLWAH

= M − (M − 1)

×
[
(1− d)(1− p)w−2

s∑
k=0

Pc(k,w − 1, d, f |0)

+ d(1− q)w−2
s∑

k=0

Pc(w − 1− k,w − 1, d, f |1)
]

(8)
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Unlike when k = 0, for 1 < k < w − 1, a recursive calcu-
lation is needed to calculate Pc(k,w, d, f |0). Nonetheless, on a
clustered bitmap, a lower bound for Pc(k,w, d, f |0) is the proba-
bility to have k set bits forming an uninterrupted sequence of set
bits. The probability of having a group full of unset bits followed
by a group with k set bits in sequence is: (1− d)p(1− q)k−1(1−
p)2w−4−k

[
(w − k − 1)q + (1 − p)

]
. Therefore, an upper bound

for the expected number of words in an PLWAH bitmap is to con-
sider only uninterrupted sequences of set bits. The upper bound for
d << 1 can be expressed as follows.

dW PLWAHe
= M − (M − 1)

×
[
(1− d)(1− p)2w−3 + d(1− q)2w−3

+

s∑
k=1

(
(1− d)p(1− q)k−1(1− p)2w−4−k

×
[
(w − k − 1)q + (1− p)

])
+

s∑
k=1

(
dq(1− p)k−1(1− q)2w−4−k

×
[
(w − k − 1)p+ (1− q)

])]

(9)

Furthermore, we can make the same assumption used in Equa-
tion 7; on a sparse bitmap with d << 1, almost all homogeneous
groups are composed of unset bits. For s = 1, the expected number
of words a PLWAH bitmap can be approximated as follows.

WPLWAH
s=1
≈ M

[
1− (1− d)(1− p)2w−3

− (1− d)p(1− p)2w−5((w − 2)q + (1− p)
)]

f<5
≈ Ld(2q − q2) =

(
2− 1

f

)
h

f
(10)

Equation 10 represents the size in words of a PLWAH bitmap where
the maximum number of sparse bit positions a fill word can con-
tain is constrained to one. The number of sparse bits that can be
“piggybacked” into a fill word depends on w and the length of the
counter as explained in Section 3.1.

Figure 4 presents the average number of compressed words per
set bit required by the WAH and PLWAH depending on the bit den-
sity for different values of the clustering factor. As established in
Equation 10, the number of words in a PLWAH bitmap decreases
as q decreases, i.e., as the clustering factor increases. We also ob-
serve that PLWAH compression always requires less words per set
bit than WAH compression. In Figure 4(a), the ratio between the
number of words in a sparse WAH bitmap and the corresponding
PLWAH bitmap ranges from 1.32 to 1.13 for clustering factors
varying from 2 to 4. The compression ratio on 32 bit and 64 bit
word are identical. At higher bit densities, the bitmaps become in-
compressible and adopt a linear behavior. Finally, for very sparse
bitmaps, the word length has little impact on the number of WAH
and PLWAH words per set bit as shown by comparing the graphs
from Figures 4(a) and 4(b). However, as the bitmaps get denser,
they become incompressible and the number of words per set bit
is thus inversely proportional to the word length. As the density
approaches 1, the number of words becomes proportional to the
number of unset bits, while the number of words per set bit tends to
0. For example, an uncompressed bitmaps of 1,000,000 bits with
all bits set would be compressed to one word. Therefore, the ratio
of words / bit set is: 1 / 1,000,000, which is close to 0.
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Figure 4: Word count estimates on clustered bitmaps

3.4 The size of the position list in fill words
The size of the position list depends on the number of bits avail-

able in a fill word. A fill word contains two bits, a position list,
and a counter. Increasing the size of the position list causes the
total number of bits assigned to the counter to decrease. There is
therefore a trade-off between the maximum number of groups that
can be represented in a fill word, and the maximum number of het-
erogeneous bits in group that can be stored within its preceding fill
word.

Each heterogeneous bit requires dlog2 we bits to be stored in
the position list. Let l be the number of bits taken by the posi-
tion list and r the number of bits taken by the counter. The total
number of bits in a fill word is : w = 2 + l + r. The maximum
number of heterogeneous bits that can be stored in a fill word is:
s = b l

dlog2 wec = b
w−2−r
dlog2 wec.

In Equation 3, the cumulative distribution increases for increas-

ing s. Similarly, all the terms in the
s∑

in Equation 9 are positive.
Thus, for both uniformly distributed and clustered bitmaps, WPLWAH

decreases when increasing s. Therefore, maximizing s minimizes
WPLWAH.

Figure 5 shows the effect of varying s for uniformly distributed
and clustered bitmaps. There is very little benefit of increasing s
on sparse uniformly distributed bitmaps as the probability of hav-
ing multiple heterogeneous bits in a single group drops for low bit
densities. However, bitmaps whose bit density is between the two
linear zones contain fill words and literal words with a few set bits.
For those bitmaps, increasing the value of s increases the probabil-
ity of a fill word to be able to carry its following literal word. Thus,
as s increases, the number of words per set bit decreases.

On a clustered bitmap, however, increasing s increases the com-
pression ratio, such that WPLWAH = 0.5∗WWAH, i.e., all literal words
with heterogeneous bits can be stored in their preceding fill word.

The length of an uncompressed bitmap in a bitmap index corre-
sponds to the number of indexed elements. For s = 1, on a 32-bit
CPU, PLWAH can represent 31 ∗ 225 > 1, 000, 000, 000 elements
in a single fill word. For s = 5, on a 64-bit CPU, PLWAH can
represent 63 ∗ 232 > 270, 000, 000, 000 elements in a single fill
word. Almost any imaginable database application will thus only
require a single fill word to capture homogeneous bit sequences.
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Figure 5: Word count estimates on clustered bitmaps

3.5 Compression of high-cardinality attributes
In this section, we discuss the compression of a attribute whose

random value follows a uniform distribution, and the compression
of a clustered attribute whose probabilities to change from one
value to another depends on a Markov process as described in Sec-
tion 3.3.

Let c be the cardinality of the random attribute. The attribute
can thus be represented with c bitmaps. Since all the values have
an equal probability of appearing, each bitmap is uniformly dis-
tributed with bit density: d = 1/c. For indexing attributes with
high-cardinality the total estimated size in bits of the c WAH com-
pressed bitmaps can be approximated as follows.

sizeWAH ≈ Lwc/(w − 1)

×
[
1−

(
1− 1/c

)2(w−1) − 1/c2(w−1)
] (11)

Similarly, the total estimated size in bits of the c PLWAH com-
pressed bitmap is approximated as follows.

sizePLWAH

≈ Lwc/(w − 1)

×
[
1−

(
1− 1/c

)2(w−1) − (w − 1)
1

c

(
1− 1/c

)2w−3
] (12)

When c is large, (1/c)2w−2 → 0 and (1 − 1/c)2w−2 → (1 −
(2w − 2)/c). The total size of the c WAH compressed bitmaps
that compose the bitmap index for a uniformly distributed random
attribute has the following asymptotic formula.

sizeWAH = 2Lw bits = 2L words (13)

Similarly, the total estimated size of the c PLWAH compressed
bitmaps is as follows.

sizePLWAH = Lw bits = L words (14)

The same reasoning holds for a clustered attribute where the
probabilities are allowed to depend on another value. One such ex-
ample is a simple uniform c-state Markov process: from any state,
the Markov process has the same transition probability q to other
states, and it selects one of the c− 1 states with an equal probabil-
ity. The total expected size in bits of the WAH compressed bitmaps

necessary to index a clustered attribute is given by rewriting Equa-
tion 7 as follows.

sizeWAH

≈ Lwc

w − 1

(
1− (1− 1/c)

(
1− q/c(1− 1/c)

)2w−3
)

f<5
≈ 2h

f
words

(15)

Using Equation 9, the total expected size of a corresponding bitmap
index compressed with PLWAH is as follows.

sizePLWAH
s=1,f<5
≈ L(2q − q2) =

(
2− 1

f

)
hw

f
words (16)

The bit density in each bitmap of a bitmap index of a uniformly
distributed attribute is inversely proportional to the attribute cardi-
nality. Thus, for high-cardinality attributes, the bit density is low
for each bitmap of the bitmap index. The total size is proportional
to the number of set bits. Similarly, for a high-cardinality attribute
following a clustered distribution, the bitmaps of the bitmap in-
dex are sparse. The total size is proportional to the number of set
bits divided by the clustering factor, i.e., a clustered attribute take
less storage space. For example, an attribute following a distri-
bution with a clustering factor f = 2 takes half the storage of a
uniformly distributed bitmap when compressed with PLWAH on
64 bit long words and a position list of size 5. Additionally, equa-
tions 13, 14, 15, and 16 show that for both WAH and PLWAH, and
for all attribute distributions, the total size of the bitmap is propor-
tional to the size of the alignment, i.e., the CPU word length. For
example, a bitmap index of a uniformly distributed attribute com-
pressed using PLWAH with 32 bit alignment takes half the space
of a WAH compressed one with 32 bit alignment, which in turn is
the same size as a PLWAH compressed one with 64 bit alignment,
which again is half the size of PAWAH compressed one with 64 bit
alignment.

3.6 Adaptive Counter
A potential problem with the PLWAH compression technique for

32 bit words occurs when the number of elements significantly ex-
ceeds 109. In this case, the very long runs cannot be represented
with a single fill word, as not enough bits are available to repre-
sent the counter value. Instead, for a run with a length of 1011, a
chain of approximately 100 fill words is needed. This issue could
be resolved by using 64 bit words, but this would double the size of
each word in the index (and the total index size), in order to solve
a problem that only occurs very infrequently.

Instead, in such scenario, we propose to use an adaptive counter
that basically uses 32 bit words when this is enough, and then
adapts to 64 bit words when necessary, meaning that the longer
words are only used for very long runs. This is achieved without
changing the basic encoding scheme. A very long run is encoded
with an empty position list in the (first) 32 bit (fill) word. The next
word is also a fill word, and the total length of the run (using a
50 bit counter) will be encoded in two parts: the 25 LSBs of the
length are put into the first word’s counter part, while the 25 MSBs
of the length are put into the second word’s counter part. For the
(extremely rare) case of 0-run followed immediately by a 1-run (or
vice versa), a literal word is inserted in the middle.

Figure 6 proposes an example of PLWAH bitmap using the adap-
tive counter. The counter value is 224−1 + 217−1+25 = 223 + 231

and the position of the set bit in the following word is 4. In its
uncompressed form, the bitmap is thus composed of (223 + 231) ∗
32 + 3 unset bits followed by a set bit.
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Position List 25 LSB of counter
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Figure 6: Example of PLWAH adaptive counter

4. BITWISE OPERATIONS
Logical bitwise operations are crucial operations for swiftly car-

rying out range queries and queries with multiple predicates using
bitmap indexes. For this reason, we next examine the complexity
of performing bitwise logical operations on PLWAH compressed
bitmaps. In this section, we show that the time for completing an ar-
bitrary logical operation between two PLWAH compressed bitmaps
is proportional to the total size of the two compressed bitmaps,
while when the two operands are in their uncompressed form and
assuming all the bitmaps have the same size, the time required is
constant. Finally, we show that the time to perform a logical oper-
ation between a decompressed bitmap and a PLWAH compressed
one is proportional to the size of the compressed bitmap.

4.1 Operations on 2 compressed bitmaps
A bitwise operation on two compressed bitmaps is performed

by sequentially scanning each input bitmap, compressed word by
compressed word. The complexity of bitwise AND/OR operations
are quite similar, but ANDs are somewhat faster since the result-
ing bitmap has less set bits than the operands (as opposed to ORs,
where the opposite is true). Thus, for simplicity, we focus on the
logical OR operation on two compressed bitmaps (the hardest of
the two). However, the methods are very easily adapted to logi-
cal ANDs. Details on the OR implementation are found in Algo-
rithm 4. Additionally, three auxiliary procedures are shown: Read-
Word, AppendFill, and AppendLit.

The ReadWord procedure (Algorithm 1) is called each time a
compressed word has to be decompressed. The decompression re-
quires very few CPU cycles and has only one branch2. If the word is
a fill word, it loads the corresponding fill group, adjusts the counter,
and transforms the position list into a bitmap. Both the load of the
data corresponding to the fill word type and the transformation from
a position list to a bitmap are done by multiplication and bit shift
operations and do not require any branching. If the word is a literal
word, the data is loaded by masking out the word’s MSB.

Algorithm 1: Reads a compressed word and updates the run

ReadWord ( Compressed word W )
1: if W is a fill word then
2: data← ((W >> 62)&1) ∗ all_ones
3: nWords←W&counter_mask
4: isF ill← true
5: isSparse← (W&position_mask)! = 0
6: sparse← bitmap constructed from the position list
7: else
8: data←W&first_bit_unset . MSB of W is unset
9: nWords← 1

10: isF ill← false
11: isSparse← false

The AppendFill procedure (Algorithm 2) generates a fill word
corresponding to the provided fill word type and counter. It has one
conditional branch.

Finally, the AppendLit procedure (Algorithm 3) transforms a lit-
eral group into a PLWAH encoded word. It has up to 4 conditional
2Reducing branching is important for keeping the CPU instruction
cache full and avoiding stalls.

Algorithm 2: Appends a fill word to a compressed bitmap

AppendFill(bitmap C, word fill, int count)
last is the last word of the bitmap

1: if last is same type as fill and last position list is empty then
2: count is added to the counter of last
3: else
4: Append fill to bitmap

Algorithm 3: Appends a literal word to a compressed bitmap

AppendLit(Compressed bitmap C, literal word L)
last is the last word of C

1: if L = 0 then
2: AppendFill(C, 0, 1)
3: else if last is counter and has empty position list then
4: if last is a zero fill then
5: if L is sparse then . popcount CPU
6: Generate position list for a zero fill . bitscan CPU
7: Place position list into last
8: else
9: Append L to C

10: else if L is sparse then . popcount CPU
11: Generate position list for a one fill . bitscan CPU
12: Place position list into last
13: else
14: Append L to C
15: else
16: Append L to C

branches. It performs two interesting operations, namely the count
of the number of set bits and the transformation of a bitmap into a
position list. Both operations can be efficiently performed using the
new instructions at hand on recent CPU architectures. Counting the
number of set bits can be performed directly using the population
count instruction, part of the SSE4a instruction set available, for
example, on the AMD “10h” [1] and the Intel “Core i7” [7] proces-
sor families. For older architectures, the most efficient alternative
is probably to count the number of times the LSB of the bitmap
can be removed before obtaining a bitmap with all bits unset. In
practice, one can limit the count to a threshold corresponding to
the maximum size the position list can reach. Generating the list
of the positions of the set bits in a bitmap is performed by locating
the position of the LSB, removing the LSB, and repeating the pro-
cess until all bits are unset. Many techniques to find the position of
the LSB in a word exist in the literature [9]. However, the bit scan
forward instruction, available for 32 and 64-bit words on modern
CPU architectures, e.g., “Pentium 4”, “AMD K8”, and above, is by
far the fastest approach of tackling the task.

The CCOR, procedure (Algorithm 4) performs a bitwise OR on
two compressed bitmaps. Its total execution time is dominated by
the number of iterations through the main loop. Each loop itera-
tion consumes a fill word or a literal word from either one or both
bitmap operands. Let Wx and Wy , respectively, be the number
of words of each operand, and let Mx and My denote the number
of words in their decompressed form, i.e., the number of groups. If
each iteration consumes a word from both operands, min(Wx;Wy)
iterations will be required. If each iteration consumes only one
word from either operand, Wx + Wy iterations may be required.
Since each iteration produces at least one group and the result con-
tains at most min(Mx,My) groups, the main loop requires at most
min(Mx,My) iterations3. The number of iterations through the

3Our implementation allows to perform bitwise operations using
bitmaps of different uncompressed sizes. In the case of an OR, the
remaining part of the longest bitmap is appended to the result.

234



Algorithm 4: Performs a bitwise OR on 2 compressed bitmaps

CCOR(Compressed bitmap X , Compressed bitmap Y )
xrun holds the current run of X
yrun holds the current run of Y
Z is the resulting compressed bitmap

1: Allocate memory for Z
2: while xrun.it < size(X) and yrun.it < size(Y ) do
3: if xrun.nWords = 0 then Readword(X,xrun.it)

4: if yrun.nWords = 0 then Readword(Y, yrun.it)

5: if xrun.isF ill and yrun.isF ill then
6: nWords← min(xrun.nWords, yrun.nWords)
7: AppendFill(Z, xrun.data|yrun.data, nWords)
8: decrease xrun.nWords by nWords
9: decrease yrun.nWords by nWords

10: else
11: AppendLit(Z, xrun.data|yrun.data)

. If bitmaps position lists are empty, ignore the remaining
12: if (xrun.nWords = 0 and xrun.isSparse) or

(yrun.nWords = 0 and yrun.isSparse) then
13: if xrun.nWords = 0 and xrun.isSparse then
14: Load xrun sparse data
15: if yrun.nWords = 0 and yrun.isSparse then
16: Load yrun sparse data
17: if xrun.nWords > 0 and yrun.nWords > 0 then
18: AppendLit(Z, xrun.data|yrun.data)
19: Decrement xrun.nWord
20: Decrement yrun.nWord
21: if xrun.nWords = 0 and xrun.isSparse then
22: Load xrun sparse data
23: else if yrun.nWords = 0 and yrun.isSparse

then
24: Load yrun sparse data
25: if xrun.nWords = 0 then Increment xrun.it
26: if yrun.nWords = 0 then Increment yrun.it
27: Append the remaining of the longest bitmap to Z
28: Return Z

loop I satisfies the following conditions:

min(Wx;Wy) < I < min ((Wx +Wy),min(Mx,My)) (17)

When the operands are two sparse bitmaps, each word is a fill word
with a non-empty position list. In that case, each operation only
consumes one word from one of the operands. Therefore, it takes
Wx + Wy iterations to complete the bitwise OR, as each loop it-
eration executes AppendFill and AppendLit once. Compared to a
WAH bitmap where each set bit requires on average two words,
half the number of loop iterations are thus required. In the case
of WAH bitmaps, every two iterations, the AppendFill procedure
is called followed by, in the next iteration, a call to the AppendLit
procedure. Thus, the total number of calls to the AppendFill and
AppendLit procedures to perform an OR operation on two PLWAH
bitmaps and two WAH bitmaps are equal.

The time complexity for performing a logical OR on two com-
pressed bitmaps, TCC , mainly depends on four terms: the time to
perform one memory allocation Ta, the time to perform I decom-
pressions Td, the time to perform I AppendFill Tf , and the time to
perform I AppendLit Tl. Let Cd, Cf , and Cl respectively be the
time to invoke each of these operations. As established in Equa-
tion 17, (Wx +Wy) is an upper bound for I . In common memory
management libraries, the time for memory allocation and initial-
ization is less than proportional to the size of the memory allo-
cated [6]. Let Ca be the time to allocate one word, we thus have
Ta < Ca(Wx+Wy). An upper bound for the total time complexity

is as follows.

TCC = Ta + Tl + Tf + Td

< (Ca + Cl + Cf + Cd) (Wx +Wy)
(18)

The complexity of performing an OR operation on two compressed
bitmap is O(Wx +Wy).

4.2 In-place operations
The most time expensive operations to perform a logical OR be-

tween two compressed bitmaps are in decreasing order: the mem-
ory allocation, the addition of a literal word, the addition of a fill
word, and the decompression of a word. If an OR operation is exe-
cuted on many bitmaps, the memory management dominates the to-
tal execution time. However, logical bitmap operations such as OR
or AND are frequently used on a large number of sparse bitmaps
in order, for example, to answer range queries or combine pred-
icates. A common approach to reduce the memory management
cost is to use an “in-place” operator that recycles the memory al-
located for one of the operands to store the result, thus eliminating
expensive memory allocation. For example, instead of allocating
memory for z, and performing z = x OR y, the “in-place OR”
does x = x OR y.

The PLWAH in-place OR takes one uncompressed and a com-
pressed bitmap as operand. Using an uncompressed operand en-
sures that there is never more input than output words, so that no
result word is overwriting a future input word. The uncompressed
bitmap can thus be used both as input and output. In addition to
avoiding repeated allocation of new memory for the intermediate
results, it also removes the need to compress temporary results. The
time complexity is thus mainly dependent on the time for initially
allocating memory for the storage of the uncompressed bitmap and
to perform I decompressions. The in-place OR operation is per-
formed by the UCOR function whose details are supplied in Algo-
rithm 5. UCOR is composed of a main loop that iterates through
each word of the compressed operand.

Algorithm 5: Performs a bitwise OR on an uncompressed bitmap
and a compressed bitmap

UCOR(Uncompressed bitmap U , Compressed bitmap C)
1: for all words in C do
2: if run.data = 0 then
3: move forward of run.nWords words in U
4: else
5: while nWords do
6: nWords← nWords− 1
7: Next word in U ← |run.data . “|” is a bitwise

OR
8: if run.isSparse then
9: Next word in U ← |run.sparse . “|” is a bitwise OR

Let x and y, respectively, be the uncompressed and compressed
operand bitmaps. The number of words in x is Mx, the number
of compressed words in y is Wy . Let I be the number of iteration
in the main loop, each iteration of the loop treats one compressed
word, therefore there are I = Wy iterations. The time to allocate
memory for storing x, Tx, is at least proportional to Mx. Thus,
Ta < CaMx. Let Ci be the time to process one iteration, the time
to process the whole loop is proportional to CiI . An upper bound
for the total time spent to perform an in-place OR TUC , is therefore:

TUC = CaMx + CiWy (19)

The UCOR has three conditional branches including one condi-
tional branch for decompressing a word. In comparison, the in-
place OR algorithm has a total of two conditional branches per
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compressed word, but the number of compressed words in a WAH
bitmap is always higher than the number of words found in the cor-
responding PLWAH bitmap. As explained in Section 3, the number
of words in a PLWAH bitmap tends to be half the number of words
in a WAH bitmap. Executing the UCOR thus represents a net per-
formance gain for sparse bitmaps.

Equations 18 and 19 show that the fastest procedure depends
on the size of the uncompressed bitmap and the size of the com-
pressed bitmap, i.e., the compression ratio. Let r be the number of
logical bitwise OR operations performed to answer a range query.
The total time to perform the logical OR operations on compressed
bitmaps to answer a range query is as follows.

TCC,r ≈ r (Ca + Cl + Cf + Cd) (Wx +Wy)

TUC,r ≈ CaMx + r(CiWy)
(20)

The in-place benefits from a lower number of iterations in its main
loop. In addition, the complexity of the main loop is significantly
reduced compared to the OR operation on two compressed bitmaps.
However, the in-place OR procedure suffers from a higher startup
cost due to the initial memory allocation corresponding to the size
of an uncompressed bitmap. Since, in a bitmap index, the size of
the uncompressed bitmap is proportional to the size of the dataset,
the fastest procedure to perform a range query depends on the size
of the dataset and the range of the query.

5. EXPERIMENTS
In this section, we present the timing results from a Dell Di-

mension 9300 equipped with a Intel “Core 2 6700 2.66GHz” CPU
running FreeBSD 7.1 64-bit OS which relies on the “jemalloc” [6]
memory allocation library. All the presented experiments are per-
formed within a PostgreSQL 8.3 DBMS. The implementation is in
C and runs as a loadable module for PostgreSQL, thus making the
code usable by a wide audience.

The experiments are conducted on both synthetic and real data
sets. The generated data is composed of a set of (key, attribute)
pairs. The attribute follows either a uniform distribution, or a clus-
tered distribution as presented in Section 3.5. For each, a com-
parative study of the influence of the distribution parameters on
the size and performance of the WAH and PLWAH indexes is con-
ducted. The present study shows that PLWAH compression is su-
perior to WAH compression. Furthermore, PLWAH performs “in-
place OR” operations faster than WAH. For long range queries,
the speedup is up to 20%. As the performance-wise superiority of
WAH over BBC is already shown in previous work [16], we only
compare PLWAH with WAH. The indexes are implicitly cached in
memory by Postgresql as previous research has demonstrated that
compressed bitmap indexes were CPU bounded [16].

Finally, experiments are conducted on a real data set composed
of 15,000,000 music segments. Each music segment is described
using 15 attributes, each with a granularity of 100,000. The index
keys are composed of the attribute identifier and the attribute value
and are in turn indexed using the B-tree index available in Post-
greSQL. The index thus has 15× 100, 000 entries and compressed
bitmaps. Each compressed bitmap is less than 2KB in size and
thus fits in L1 cache and benefits from CPU optimizations related
to cache locality.

5.1 Bitmap index size
The sizes of the bitmap indexes for the various data distributions

discussed earlier are presented in Figure 7. Figure 7(a) confirms
that for uniformly distributed high-cardinality attributes, the size of
PLWAH tends to be half the size of WAH for a given word length,
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Figure 7: Size comparison between WAH and PLWAH bitmap indexes
(indexed elements: 10,000,000)

in accordance with the estimates in Equations 13 and 14. Hence,
the curves of PLWAH64 and WAH32 overlap (the WAH32 curve is
actually hidden below the PLWAH64 curve).

The size of bitmap indexes on clustered attributes are shown
for different clustering factors in Figures 7(b) and 7(c). Again,
PLWAH outperforms WAH on compression ratio. PLWAH64 pro-
vides significant benefits due to its longer position list. For short
position lists, a higher clustering factor decreases the probability
for PLWAH to “piggyback” the next literal word in the current fill
word.

The histograms of the music data set vary greatly from value to
value. Low values tend to be very frequent, e.g., 30% of the ele-
ments have 0 as value for the first extracted feature. For frequent
values, the four compression schemes converge; the bitmaps are
too dense to be compressed and the bitmaps are mainly composed
of literal words. For less frequent values, the bitmaps can be com-
pressed. As illustrated in Figures 8(a) and 8(b), PLWAH32 tends
to be half the size of WAH32, PLWAH64 half the size of WAH64
and very similar to the size of WAH32. A comparison of the total
index size between each compression scheme for the reviewed data
distribution is presented in Table 1. All the bitmap indexes have a
size proportional to the number of values.

Finally, evidences of the influence of the position list size are
uncovered in Figures 9(a) and 9(b). For uniformly distributed at-
tributes, the probabilities of having multiple set bits in a single lit-
eral word are very low and the position list tends to contain only
one set bit position. The gain of increasing the size of the posi-
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Figure 8: Bitmap sizes of the first music feature attribute

tion list is thus marginal. The position list size proves to have an
important impact on the compression ratio for clustered attributes.
Indeed, for clustered attributes, the probability of having more than
one set bit in a literal word increase with the clustering factor. Ex-
tending the position list allows more literal words to be encoded
within their preceding fill word.

5.2 Performance study
In the following, we study the performance of the OR operator

for answering range queries. A similar study can be conducted us-
ing other bitwise operators, however, (1) OR operations are more
complicated to handle for the compression scheme as the bitmaps
become denser, this is not always the case, e.g., with the AND oper-
ator; (2) long series of OR operations are often required to perform
range queries, while the number of AND operations, for example
required to treat a multi-dimensional range query, tends to be much
smaller. Range queries are generated by choosing a range of a given
size randomly within the interval [0; 100, 000].

The total CPU time of performing range queries depending on
the range is presented next. In the following experiments, the bitmaps
are aggregated sequentially since this is the most revealing for the
basic performance difference between the compression schemas.
Other aggregation schemes are of course possible, for example, the
aggregation could be performed by arranging the operation as a
balanced tree. However, such schemes require more intermediate
memory allocation, etc., something which blurs the basic perfor-
mance difference between compression schemes. For a balanced
tree-based scheme, there would be log r operations of complex-
ity O(r), thus leading to an overall O(r log r) complexity. Even in
more complex scenarios, involving series of different logical opera-
tion on the bitmaps, the optimal ordering of the operations involved

Data set PLWAH64 WAH64 PLWAH32 WAH32
Uniform 86 MB 177 MB 43 MB 86 MB
Clustered, f = 2 48 MB 88 MB 36 MB 46 MB
Clustered, f = 3 37 MB 60 MB 28 MB 33 MB
Clustered, f = 4 31 MB 47 MB 24 MB 27 MB
15 music att. 926 MB 1617 MB 565 MB 926 MB

Table 1: The size of the bitmap indexes for a common attribute cardinality
of 100,000
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Figure 9: Size comparison between PLWAH bitmap indexes with different
position list sizes (indexed elements: 10,000,000)

in the aggregation can be easily calculated, as discussed in [2]. The
complexity of performing a single operation and the aggregation
scheme are thus orthogonal, so our choice of sequential aggrega-
tion does not distort the results.

The performance of range queries on short random intervals com-
prised of 10 values is shown in Figures 10(a) and 10(b). Here, since
the number of operation is small, the aggregation scheme has little
influence on the query performance. When the attribute cardinal-
ity increases, i.e., the density decreases, the compression ratio in-
creases, and the number of words per bitmap decreases. Hence,
the CPU time required to process a constant number of bitmaps
decreases. For both algorithms, the query time is very similar
for PLWAH32 versus WAH32, and for PLWAH64 versus WAH64.
However, for the UCOR algorithm, the 64 bit compression schemes
perform up to 20% faster than their 32 bit counterparts.

The query performance for different range lengths using a se-
quential aggregation scheme is studied in the following. In a bitmap
index, each possible value of the indexed attribute is represented
with a bitmap; exactly one bit is set at any given position across
all the bitmaps. Thus, when performing an OR operation, the num-
ber of set bits in the resulting bitmap is the total number of set
bits in each operand bitmap. On a uniformly distributed attribute,
the bit density per bitmap is constant and since all bitmaps have
the same uncompressed length, the expected number of set bits in
each bitmap h is constant. Each OR operation thus increases the
number of set bits approximately by h. After i OR operations,
the result has ih set bits. Therefore, as explained by Equations 13
and 14, on very sparse bitmaps the length of the resulting WAH
and PLWAH bitmaps after i OR operations are, respectively, 2ih
and ih words long. Since, on sparse PLWAH bitmaps, each loop
iteration produces one fill word with a non-empty position list, the
total number of iteration to produce the ith result is ih. Similarly,
on WAH bitmaps, each loop iteration produces one word, thus,
in total, 2ih iterations are required to produce the ith result. To
answer a range query, r − 1 OR operations are performed, thus∑r

i ih = hr(r − 1)/2 and
∑r

i ih = hr(r − 1) loop iterations
are run. The complexity of performing a range query using the
CCOR procedures on two compressed bitmaps is thus quadratic in
the range while aggregating the bitmaps in a sequential fashion.
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Figure 10: Performance impact of the attribute cardinality (10,000,000
elements, uniformly distributed attribute)

However, as discussed earlier, this simple aggregation scheme al-
lows a straightforward comparison the WAH and PLWAH.

The CCOR procedure offers good response time for queries on
short ranges as show in Figure 11(a). Experiments show no signif-
icant performance drop for ranges covering less than 20 attribute
values. In fact, PLWAH32 and WAH32 performance are so similar
that their performance curves overlap. For larger ranges, the per-
formance of both WAH and PLWAH drops. For those large ranges,
the WAH performance tends to be slightly better than the PLWAH
due to the more complex AppendLit procedure present in PLWAH.
However, these observations for larger range queries are not rele-
vant, as for both algorithms, the “in-place OR” procedures prove to
be much faster.

As illustrated in Figure 11(b), large range queries are very well
handled by the UCOR procedure whose time complexity is linear in
the size of the range. However, the UCOR procedure suffers from a
high start-up cost mainly due to the initial memory allocation. For
short range queries, the CCOR procedure is thus preferred. The
maximum size of the position list does not change the complex-
ity of the decompression or the management of a sparse literal; for
clarity purposes, Figure 11(b) only shows PLWAH64 with a posi-
tion list of size 5, and PLWAH32 with a position list of size 1. Both
the WAH and PLWAH complexities depend on the size of the com-
pressed operand bitmap. The small additional complexity of the
decompression and the accounting of sparse literal words do not
handicap the performance of PLWAH. On the contrary, PLWAH is
more efficient for executing the UCOR procedure as only half the
number of loop iterations are required. As shown in Figure 11(c),
the ratios between the CPU time of WAH and PLWAH increase up
to 20% as the range increases. The chaotic start is due to the high
influence of the initial memory allocation. Better memory manage-
ment, planned as future work, would further improve the ratio.

Figures 12(a) and 12(b) show similar results on the music data
set. The noteworthy higher starting cost of the in-place OR op-
erator on the music data set is due to the larger number of ele-
ments: the uncompressed bitmaps are 50% longer due to the 50%
increase in the number of elements. However, the flatter slope after
the startup overhead is due to the smaller size of the compressed
bitmaps; bitmaps of uniformly distributed attributes are the hardest
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Figure 11: Performance on uniformly distributed attribute (elements:
10,000,000, cardinality: 100,000)

to compress, hence better compression ratios are obtained on the
music data. For the same reason, a flatter slope is also noticeable
for the OR on compressed bitmaps.

Finally, the impact of the position list size on the performance of
the CCOR operator is shown in Figure 13. The computation of the
position list is directly proportional to its size. As the size of the
position list increases, a small overhead can be observed for long
range queries for which better performance is achieved using the
UCOR algorithm. For short range queries, no significant overhead
is observed. The decompression time is independent of the size of
the position list. Hence, the performance of the UCOR operation is
not directly influenced by of the size of the position list.

In summary, the experiments confirm the analytical estimates in
Equations 13 and 14: a uniformly distributed attribute indexed with
PLWAH bitmaps takes half the size it would require using WAH.
Furthermore, we have measured the performance impact of three
factors, namely the attribute cardinality, the range, and the size of
the position list. For long range queries PLWAH shows a significant
performance improvement. For short range queries, PLWAH and
WAH efficiencies are equivalent.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present PLWAH, a bitmap compression scheme

that compresses sparse bitmaps better and answers queries on long
ranges faster than WAH, which was so far recognized as the most
efficient bitmap compression scheme for high-cardinality attributes.
The results are verified through detailed analytical and experimen-
tal approaches. The storage gain essentially varies depending on
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the following parameters: the size of the data set, the attribute dis-
tribution, the attribute cardinality, and the word length.

For uniformly distributed high-cardinality attributes, we both prove
and observe that the compression ratio is twice as good as for WAH.
For real data, the size of PLWAH compressed bitmaps varies be-
tween 57% and 61% of the size of WAH compressed bitmaps. In
terms of performance, PLWAH and WAH are comparable for short
range queries. However, for long range queries, PLWAH is up 20%
faster than WAH, depending on the data distribution.

Future work encompasses studying the performance impact of
PLWAH used with complementary bitmap indexing strategies, and
collecting empirical storage and performance results from differ-
ent data sets and CPU instruction sets. Furthermore, the current
implementation would benefit from making use of multi-core CPU
architecture and dividing long bitmaps into chunks to ensure they
fit into the L1 cache. Additionally, new techniques, e.g., posting
list and batched updates, need to be developed in order to improve
the update performance of the index. Promising research directions
include the development of a dedicated bitmap materialization en-
gine that would build aggregated bitmaps based on query patterns
and frequencies, and data distribution. The index would then be
able to select the most efficient aggregation path, the required bit-
wise operations, and the type of bitwise algorithm to use.
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