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ABSTRACT
Recently, there has been growing interest in random sampling from
online hidden databases. These databases reside behind form-like
web interfaces which allow users to execute search queries by spec-
ifying the desired values for certain attributes, and the system re-
sponds by returning a few (e.g., top-k) tuples that satisfy the se-
lection conditions, sorted by a suitable scoring function. In this
paper, we consider the problem of uniform random sampling over
such hidden databases. A key challenge is to eliminate the skew
of samples incurred by the selective return of highly ranked tuples.
To address this challenge, all state-of-the-art samplers share a com-
mon approach: they do not use overflowing queries. This is done
in order to avoid favoring highly ranked tuples and thus incurring
high skew in the retrieved samples. However, not considering over-
flowing queries substantially impacts sampling efficiency.

In this paper, we propose novel sampling techniques which do
leverage overflowing queries. As a result, we are able to signif-
icantly improve sampling efficiency over the state-of-the-art sam-
plers, while at the same time substantially reduce the skew of gen-
erated samples. We conduct extensive experiments over synthetic
and real-world databases to illustrate the superiority of our tech-
niques over the existing ones.

1. INTRODUCTION
In this paper we consider the problem of random sampling over

online hidden databases. A hidden database, such as Google Base
[16] and Yahoo! Auto [22], allows external users to access its con-
tents via a restricted form-like web interface. This restricted query
interface primarily allows users to execute search queries by select-
ing the desired values for one or more attributes, e.g.,
SELECT * FROM D WHERE a1 = v1 AND a3 = v3

and the system responds by returning a few (e.g., top-k where k
is a small constant such as 20 or 50) tuples that satisfy the selec-
tion conditions, sorted by a suitable scoring function. Along with
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these returned tuples, the interface also usually alerts the user if
there was an “overflow”, i.e., if there are other tuples besides the
top-k ones that also satisfy the query but cannot be returned. The
scoring function may be simple (e.g., based on a single attribute)
or complex (e.g., computed from multiple attributes), static (i.e.,
independent of the search query) or dynamic, and may be known
or unknown to the users.

Recently, there has been growing interest by third-party appli-
cations in obtaining random samples of the data in online hidden
databases [12–14]. Such samples can be of great benefit to third-
party applications, because various analytical tools can be enabled
from the sample. For example, statistical information about the
data can be derived, such as useful aggregates [12, 13]. A variety
of sampling methods can be employed to produce the random sam-
ples - e.g., simple random sampling, stratified sampling, etc. For
the purpose of this paper, we focus on simple random sampling
which selects each tuple with equal probability. A justification for
this choice is provided in Section 5. In the latter part of this pa-
per, unless otherwise specified, our usage of term “sampling” refers
specifically to simple (uniform) random sampling.

Our previous work [13] shows that, for hidden databases which
provide the actual COUNT information (i.e., the total number of
tuples that satisfy the given query) along with the top-k returned tu-
ples, uniform random sampling can be done very efficiently. While
a lot of hidden databases provide such COUNT information, nu-
merous others do not or provide notoriously inaccurate COUNT in-
formation (e.g., Google). For these COUNT-less hidden databases,
it has been challenging to develop effective sampling algorithms,
primarily because complete and unrestricted access to the data is
disallowed. We focus on the uniform random sampling of COUNT-
less hidden databases in this paper, and summarize below the cur-
rent state-of-the-art of such samplers.

1.1 Current State-of-the-Art Samplers
There are two main objectives that a sampling algorithm should

seek to achieve:

• Efficiency: The efficiency of the sampling process is mea-
sured by the number of queries that need to be executed via
the web interface in order to collect a sample of a desired
size. The task is to design an efficient sampling procedure
that executes as few queries as possible.

• Minimizing Skew: Due to the restricted nature of the inter-
face, it is challenging to produce samples that are truly uni-
form random samples. Consequently, the task is to produce
samples that have small skew, i.e., the probability for each
tuple to be selected should deviate as little as possible from
the uniform distribution.
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A state-of-the-art sampler for hidden databases is the HIDDEN-
DB-SAMPLER, proposed in [12]. This approach is based on a
random drill-down process of queries executable via the form-like
interface - it starts with an extremely broad (therefore overflowing)
query, and iteratively narrowing it down by adding random predi-
cates, until a non-overflowing query is reached. If such a query an-
swer is not empty, one of the returned tuples is randomly picked for
inclusion into the sample (subject to a probabilistic rejection test to
reduce skew). Otherwise, the drill-down process restarts from the
extremely broad query. This process can be repeated to get samples
of any desired size.

However, HIDDEN-DB-SAMPLER and all other existing hid-
den database samplers (i.e., COUNT-DECISION-TREE [13] and
HYBRID-SAMPLER [13]) have a main deficiency in that they ig-
nore all overflowing queries. In the design of these samplers, tu-
ples returned as the result of an overflowing query are assumed
to be useless for assembling into a random sample because they
have been selected not by a random procedure, but preferentially
based on the pre-determined scoring function. Thus, overflowing
queries are ignored in order to avoid favoring highly ranked tuples
and thereby incurring high skew in the retrieved sample. While not
using overflowing queries is a simple solution to eliminate the ef-
fect of scoring function on skew, it also significantly increases the
number of queries required for sampling, thus adversely impacting
efficiency. For example, during the random drill-down process, ex-
isting hidden database samplers have to execute a large number of
overflowing queries before they encounter a non-overflowing one.

1.2 Main Technical Contributions
In this paper, one of our main contributions is to propose novel

techniques that leverage overflowing queries to turbo-charge the ef-
ficiency of samplers. Thus, overflowing queries that were ignored
by prior samplers can now be properly utilized during the sam-
pling process. In particular, we develop TURBO-DB-SAMPLER,
a sampler for hidden databases that is an order of magnitude (10
times in our experiments) more efficient than the existing HIDDEN-
DB-SAMPLER. The main idea behind our approaches is the novel
concept of a designated query that maps each tuple in the database
to a unique query (whether overflowing or not) executable via the
form-like interface, and a designation test procedure that efficiently
determines whether a query is designated for a tuple.

We also find that, for hidden databases with static scoring func-
tions (i.e., which are independent of the search queries), a sim-
pler designation test is available which enables the sampling ef-
ficiency to be further improved by a novel scheme called level-by-
level sampling. This scheme skips queries in the drill-down process
whose results are not picked for inclusion into the sample. With
this scheme, we develop TURBO-DB-STATIC, an algorithm that
achieves an additional speedup factor of 2 for databases with static
scoring functions.

The second main contribution of our paper is that our algorithms
also significantly reduces sampling skew. In particular, we pro-
pose a novel scheme of concatenating sampling with crawling to
reduce sampling skew. The basic idea is to switch to crawling from
the random drill-down process if we encounter a query which re-
mains overflow after adding a large number of predicates (i.e., a
long overflowing query). The premise here is that a long over-
flowing query is an indication of a dense cluster of data tuples -
over which the random drill-down technique produces an extremely
high skew. The usage of crawling over such dense clusters signif-
icantly reduces the sampling skew while maintaining a low query
cost because the number of queries needed for the crawling of such
a cluster is linearly bounded by the number of tuples matching the

long overflowing query, which is usually small. While this concate-
nated scheme is not able to completely remove skew, we show that
TURBO-DB-SAMPLER incurs orders of magnitude smaller skew
than HIDDEN-DB-SAMPLER and other state-of-the-art samplers.

The contributions of this paper may be summarized as follows:

• We develop a novel technique of using designated queries
and designation tests to leverage overflowing queries and
thereby dramatically improve the efficiency of sampling.

• We develop a novel technique of concatenating sampling
with crawling to significantly reduce sampling skew.

• For hidden databases with static scoring functions, we de-
velop a novel technique of level-by-level sampling to further
improve sampling efficiency substantially.

• For hidden databases with arbitrary scoring functions, we
put together the first two techniques to develop a generic
TURBO-DB-SAMPLER which achieves a speedup factor
of more than 5 over HIDDEN-DB-SAMPLER [12].

• For hidden databases with static scoring functions, we put to-
gether all three techniques to develop TURBO-DB-STATIC
which further improves sampling efficiency by a speedup
factor of 2.

• We run extensive experiments to demonstrate the effective-
ness of our proposed sampling algorithms. In particular, we
tested our results on both synthetic datasets and a real-world
dataset crawled from Yahoo! Auto [22]. The experimen-
tal results demonstrate the superiority of our sampling algo-
rithms over the previous efforts.

The rest of this paper is organized as follows: We define the prob-
lem and briefly review the existing samplers in Section 2. In Sec-
tions 3, we introduce TURBO-DB-SAMPLER, our major sam-
pling algorithm, and its two main ideas: leveraging overflowing
queries with designation tests, and reducing skew by concatenating
sampling with crawling. In Section 4, we introduce TURBO-DB-
STATIC, a sampling algorithm which leverages the static scoring
function to enable a more efficient designation test and a level-by-
level sampling scheme that further improves efficiency. We present
related discussions in Section 5. Section 6 shows the experimental
results. Related work is reviewed in Section 7, followed by final
remarks in Section 8.

2. PRELIMINARIES
In this section, we introduce a model of hidden databases, define

the performance measures for sampling over hidden databases, and
review the state-of-the-art HIDDEN-DB-SAMPLER.

2.1 Model of Hidden Databases
Hidden databases on the web receive queries from users through

web forms. To form a query, users are generally provided with drop
down boxes, check boxes, text boxes or other common HTML form
elements. After a query is selected by the user, a request is submit-
ted and the hidden database system return tuples matching the user
query. Large databases generally restrict users access to top-k tu-
ples which may be presented on one pages or over multiple pages
(accessed by page turns or clicking next at the bottom of the results
page). Below, we provide a simple formalization of this model.
Consider a hidden database table T with n tuples t1, . . . , tn and m
attributes a1, . . . , am which have respective domains ofD1, . . . , Dm.
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We restrict our discussion in the most part of this paper to categor-
ical data, and discuss the extension to numerical databases in Sec-
tion 5.2. We point out that a large number of hidden database sys-
tems can be transformed into categorical data by applying simple
transformations. As an example, consider a price-range attribute
which provides upper and lower bounds. This can be used as a
combination of discrete intervals with an upper and lower bound.
Table 1 shows an example with n = 4, m = 3 and Di = {0, 1}
(i ∈ [1, 3]). Suppose k = 1 and the four tuples ranked by score
from high to low are t1, . . . , t4. This table will be used throughout
the paper as a running example.

Table 1: A Running Example for Hidden Databases

a1 a2 a3

t1 0 0 0
t2 0 0 1
t3 1 0 0
t4 1 1 0

2.1.1 Model of Query Input and Output
The hidden database table is only accessible to users through a

web-based search interface which allows users to query the database
by specifying values for a subset of attributes. Thus a user query
QS is of the form: SELECT ∗ FROM T WHERE ai1 = vi1& . . .
&ais = vis , where {ai1 , . . . , ais} ⊆ [0,m − 1] and vij ∈ Dij .
For the running example, a user may specify a query SELECT ∗
FROM T WHERE a1 = 0 AND a2 = 0.

The query interface is restricted to only return k tuples, where k
is a pre-determined small constant (such as 20 or 50). Thus, the tu-
ples that match a queryQS , Sel(QS), will be entirely returned only
if |Sel(QS)| ≤ k. If the query is too broad (i.e., |Sel(QS)| > k),
only the top-k tuples in Sel(QS) (according to a scoring function)
will be returned as the query result. The interface will also notify
the user that there is an overflow, i.e., that not all documents match-
ing QS can be returned. For example, if k = 1, a query in the
running example, QS: SELECT ∗ FROM T WHERE a1 = 0
cannot be entirely returned because Sel(QS) = {t1, t2} contains
more than k tuples. As a result, t1, t2 have to be evaluated against
the scoring function, and the one with the higher score will be re-
turned along with an overflow notification.

At the other extreme, if the query is too specific and matches no
tuple, we say that an underflow occurs. In the running example,
QS: SELECT ∗ FROM T WHERE a1 = 1 AND a3 = 1
underflows. If there is neither overflow nor underflow, we have
a valid query result. An example of valid query is QS:SELECT ∗
FROM T WHERE a1 = 0 AND a3 = 1 in the running example.
In this paper, we assume the query answering system to be deter-
ministic, i.e., the same query executed again will produce the same
set of results.

For the purpose of this paper, we assume that a restrictive inter-
face does not allow the users to “scroll through” the complete an-
swer Sel(QS) when an overflow occurs for QS . Instead, the user
must pose a new query by reformulating the search conditions. We
argue that this is a reasonable assumption because many real-world
top-k interfaces (e.g., Google Base [16], Yahoo Auto [22]) only
allow “page turns” for limited (100) times.

Since the tuples returned by a query may not include tuples that
match the query, for the purpose of clarification, we distinguish the
meaning of three verbs: match, return, and draw, which are exten-
sively used in the paper. We say a tuple matches a query iff the tuple
is in the hidden database and satisfies the selection condition of the

query. The number of tuples that match a query may be greater than
k. We say a tuple is returned by a query iff the tuple is one of those
that are actually displayed on the query output interface as the re-
sponse to that query. The number of tuples that a query can return
is always smaller than or equal to k. While a tuple returned by a
query always matches the query, the reverse is not always true. We
say a tuple is drawn from a query during the sampling process iff
the sampler selects the tuple from the returned answer of the query,
and then uses that tuple as a sample tuple. A sample tuple drawn
from a query must be returned by the query and therefore matches
the query. Again, the reverse is not always true.

2.1.2 Model of Scoring Function
There are two types of scoring functions for a hidden database:

One is static in that each tuple’s score is a function of the tu-
ple value, and does not change with different user-issued search
queries. For example, a real estate database may score each tuple
(i.e., house) by its price (i.e., an attribute value), and only display
the k cheapest houses. The scoring function we use for the run-
ning example is also static. The other type of scoring function is
query-dependent and is a function of both the tuple value and the
search query. For example, the real estate database may score each
tuple by price if price is not included in the search conditions, or by
the number of bedrooms if price is included. In this paper, unless
otherwise specified (e.g., in Section 4 which focuses on static rank-
ing functions), we consider generic ranking functions which may
be static or query-dependent.

2.2 Performance Measures
Recall from the introduction that our objective is to generate a

uniform random sample over the hidden web database. Such a sam-
pling algorithm should be measured in terms of efficiency and skew
which we formally define as follows.

• Efficiency: For a given (desired) sample size s, we measure
the efficiency of a sampler by the expected number of queries
it issues to the form-like web interface in order to obtain s
sample tuples.

• Skew: We define the level of skew as the standard deviation
of the probability for a tuple to be sampled. i.e.,

γ =

vuut 1

n
·
nX
i=1

„
Pr{ti is chosen as the sample} − 1

n

«2

(1)

We observe later that the above measures tradeoff against each
other. The parameter of our system enables the user to strike the
right balance according to their specific needs.

2.3 HIDDEN-DB-SAMPLER

valid

overflowing

underflowing

t1 t4t3t2

a1

a2

a3

0 1

Figure 1: HIDDEN-DB-SAMPLER for the Running Example
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We now review HIDDEN-DB-SAMPLER, the sampling algo-
rithm presented in our earlier work [12] for obtaining random sam-
ples from hidden databases. Consider a tree constructed from an
arbitrary order of all attributes, say a1, . . . , am. Let the root be the
Level 1. All internal nodes of the tree at the ith level are labeled
by attribute ai. Each internal node ai has exactly |Di| edges lead-
ing out of it, labeled with values fromDi. Thus, each path from the
root to a leaf represents a specific assignment of values to attributes,
with the leaves representing possible database tuples. Figure 1 de-
picts such a query tree for a Boolean database. This tree will be
used as a running example throughout the paper. Note that since
some domain values may not lead to actual database tuples, only
some of the leaves representing actual database tuples are marked
solid, while the remaining leaves are marked underflowing.

HIDDEN-DB-SAMPLER issues queries from the tree to obtain
a random sample tuple. To simplify the discussion, assume k =
1. Suppose we have reached the i-th level (suppose that the root
level is Level-0) and the path thus far represents the query a1 =
v1& . . .&ai = vi.. The algorithm selects one of the domain values
of ai+1 uniformly at random, say vi+1, adds the condition ai+1 =
vi+1 to the query, and executes it. If the outcome is an underflow
(i.e., leads to an empty leaf), we can immediately abort the random
walk. If the outcome is a single valid tuple, we can select that tuple
into that sample. And only if the outcome is an overflow do we
proceed further down the tree.

This random walk may be repeated a number of times to obtain
a sample (with replacement) of any desired size. One important
point to note is that this method of sampling introduces skew into
the sample, as not all tuples are reached with the same probabil-
ity. Techniques such as acceptance/rejection sampling are further
employed for reducing skew (see [12] for further details).

3. TURBO-DB-SAMPLER
In this section, we describe TURBO-DB-SAMPLER, our algo-

rithm for sampling a hidden database. TURBO-DB-SAMPLER
features two main ideas: it leverages overflowing queries to signif-
icantly improve the efficiency of sampling; and concatenate sam-
pling with crawling to substantially reduce the skew of samples.
In the following, we first develop two samplers: OVERFLOW-
SAMPLER and CONCATENATE-SAMPLER with the two respec-
tively, and then combine them together to construct TURBO-DB-
SAMPLER.

3.1 Improve Efficiency: Leverage Overflows

3.1.1 Basic Idea
We leverage overflowing queries by ignoring the overflowing

flag and treating an overflowing query in the same way as a valid
query that returns k tuples. However, doing so makes a tuple with
a higher score to be returned by more queries, and to have a higher
probability of being selected into the sample. To eliminate such
score-related skew, we place a restriction on the selection of a tuple
into the sample. In particular, we define one designated query (in
the set of all interface-executable queries) for each tuple in the hid-
den database, and require each selected sample tuple to go through
a designation test - i.e., we enforce a rule that a tuple can be se-
lected into the sample only if it is retrieved from the result of its
designated query. Note that the designated query for a tuple can be
either valid or overflowing.

To understand the effect of this change on hidden database sam-
pling, let us first investigate a simple application of it to the random
drill-down process of HIDDEN-DB-SAMPLER. At this moment,
let us assume that the designation test can be done without issuing

any additional query to the web interface. We will discuss details
about the cost of designation test in the next step. There are two
possible outcomes of this change for the generation of one sample
tuple:

• First, the random drill-down process might select a sample
tuple from an overflowing query, leading to an earlier termi-
nation of the random drill-down process. This reduces the
number of queries that need to be issued.

• However, depending on the definition of designated query,
there might be a second outcome where the sampler has to
drill deeper down the tree than HIDDEN-DB-SAMPLER if,
according to the designated query definition, none of the over-
flowing and valid queries issued on upper levels are the des-
ignated queries for the tuples they return.

One can see from the two outcomes that the impact of this change
on the efficiency of sampling is determined by the definition of
designated queries. Indeed, if the designated query of a tuple is
defined to be the highest-level valid query that returns the tuple,
then HIDDEN-DB-SAMPLER remains the same after applying the
change because no overflowing query will serve as the designated
query for a tuple anyway.

To improve sampling efficiency, we define the designated query
of a tuple as follows:

DEFINITION 3.1. For a given query tree, the designated query
of a tuple t is the highest-level query (valid or overflowing) that
returns t. We denote the designated query by q(t).

valid

overflowing

underflowing

t1

designated query for t1

t4
designated query for t4

designated query for t3

t3t2
designated query for t2

0 1a1

a2

a3

Figure 2: Designated Queries in the Running Example

Figure 2 shows the designated queries of all four tuples for the
running example in Table 1 (recall that k = 1 in the example).
One can see from the figure that, compared with HIDDEN-DB-
SAMPLER, t1 and t3 may be retrieved by higher-level overflowing
queries. There are two important observations from this definition
of designated queries:

• First, note that for a given tuple t, at any given level, there is
at most one query which returns t. Thus, the definition guar-
antees each tuple to have one and only one designated query.
This observations ensures that a tuple with higher score will
not be selected with higher probability after leveraging over-
flowing queries.

• Second, if the drill-down process is used, the designation test
can be done without issuing any additional queries. To un-
derstand why, consider the designation test for a queryQ and
a tuple t which is selected from the result of Q. When the
drill-down process reaches Q, it must have issued all queries
on the path between the root node and Q, which include all
possible higher-level queries that may return t. Thus, the
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sampler can just look up the answers of these queries from
the historic log, and then pass the designation test iff t was
never returned in these queries.

3.1.2 Algorithm OVERFLOW-SAMPLER
We now describe OVERFLOW-SAMPLER, the sampling algo-

rithm which uses our definition of designated queries. Similar to
HIDDEN-DB-SAMPLER, OVERFLOW-SAMPLER uses C to be
the cut-off level for balancing between efficiency and skew. Since
most overflowing queries occur on higher levels of the tree, for the
purpose of this subsection, we focus on the sampling of such tuples
on or above Level-C, and defer the discussion of sampling tuples
below Level-C to the next subsection which specifically addresses
this issue. Therefore, we assume that no tuple is hidden below
Level-C - i.e., all Level-C queries are valid or underflowing.

OVERFLOW-SAMPLER again uses a random drill-down pro-
cess starting from the root level of a given query tree. However,
before drilling down the tree, the sampler first determines whether
the sample tuple can be drawn from the root query. In particular,
it randomly chooses a tuple from those returned by the root query,
and selects it as a sample with probability of

p0 =
|d(Q0)|
k · π(C)

, (2)

where |d(Q0)| is the number of tuples that have the root query as
their designated query, and function π(·) is defined as

π(i) =

iY
j=1

|Dj | (3)

which is the product of the domain size of attributes a1 to ai. Let
π(0) = 1. For example, the root query in our running example
returns t1 with probability of 1/23. Note that according to our def-
inition of the designated query, a tuple has the root as its designated
query iff it is returned by the root query. As such, d(Q0) = |Q0|,
the number of tuples returned by Q0. Therefore, OVERFLOW-
SAMPLER selects each tuple returned by the root with probability
of

1

|Q0|
· p0 =

1

|Q0|
· |Q0|
k · π(C)

=
1

k · π(C)
. (4)

If a sample tuple is not selected from the root and the root is
overflowing, then OVERFLOW-SAMPLER starts the random drill-
down process. Note that if the root is valid or underflowing, then no
query with additional predicates can serve as the designated query
for any tuple. Thus, the sampling process has to restart in this case.

Different from HIDDEN-DB-SAMPLER, in the drill-down pro-
cess, OVERFLOW-SAMPLER follows each outgoing branch with
different probability. The purpose of doing so is to address the fact
that tuples returned from upper levels of the tree may also satisfy
the outgoing branches, but will not be returned by any lower level
queries. Therefore, these tuples must be excluded from consider-
ation in the computation of outgoing probabilities. In particular,
OVERFLOW-SAMPLER follows an outgoing branch ai = vi (of
a Level-(i− 1) node Qi−1) with probability of

βi(vi) =
π(i− 1)

π(i)
· k · π(C)− |f(Qi−1, v)| · π(i)

k · π(C)− |f(Qi−1)| · π(i− 1)
, (5)

where f(Qi−1) is the set of tuples returned byQ0, . . . , Qi−1 which
satisfy Qi−1, and f(Qi−1, vi) is the subset of f(Qi−1) which fur-
ther satisfies ai = vi. In the running example, we have β0(0) =
(1/2)·(23−2)/(23−1) = 3/7 and β0(1) = (1/2)·23/(23−1) =
4/7. Thus, the sampler follows the left and right branches of the

root node with probability of 3/7 and 4/7, respectively. This is
consistent with the intuition that, since the tuple returned by the
root “belongs to” the left branch, the drill-down process should turn
to the left with lower probability.

During the drill down process, after issuing each query, the sam-
pler again needs to determine whether the sample tuple can be
drawn from the results. Consider such a process for a Level-i query
Qi. Let the list of queries issued so far by the drill down process be
Q0, . . . , Qi−1, at levels 0 to i − 1, respectively. The sampler first
computes d(Qi) as

d(Qi) = Qi\(Q0 ∪ · · · ∪Qi−1). (6)

For instance, in the running example, query with predicates (a1 =
0)&(a2 = 0) has d(Q) = t1\t1 = ∅. If d(Qi) is not empty,
the sampler randomly draws a tuple from d(Qi) and selects it as a
sample with probability of

pi =
|d(Qi)|

k · π(C) · (
Qi−1
j=1 βj(vj)) ·

Qi−1
j=1(1− pj)

. (7)

We can derive the value of pi from this iterative formula and the
value of p0 in (2):

pi =
|d(Qi)| · π(i)

k · π(C)− |f(Qi−1, vi)| · π(i)
. (8)

In the running example, when query (a1 = 1) is issued, the sampler
has probability of 21/(23 − 0) = 1/4 to select t3 as the sample.
Note that there is always pi ≤ 1. To understand why, note that pi
increases monotonically with i. When i = C, we have

pC =
|d(QC)|

k − |f(QC−1, vC)| , (9)

Since d(QC) and f(QC−1, vC) are mutually exclusive sets of tu-
ples that satisfy QC , according to our assumption for all Level-
C queries to be valid or underflowing, there must be |d(QC)| +
|f(QC−1, vC)| ≤ k. Therefore, pC ≤ 1.

From the definition of pi, one can derive that the probability for
a tuple with designated query Qi to be selected as a sample is 

iY
j=1

βj(vj)

!
·

 
i−1Y
j=0

(1− pj)

!
· 1

|d(Qj)|
· pi =

1

k · π(C)

(10)

which is constant across all levels. Again, if no sample is drawn
and Qi overflows, the drill down process continues to deeper lev-
els. Otherwise, the sampler either terminates (if enough sample has
been collected) or restarts from the root.

Algorithm 1 depicts the pseudocode for OVERFLOW-SAMPLER.
For setting the value of the parameter C, we follow the heuris-
tic rule in [12] that C be set as the average depth of a random
walk. In the running example, this leads to an assignment of C =
(0+1+2+3)/4 = 1.5. Note that in practice, a sampler has no prior
knowledge of the average depth. Nonetheless, as discussed in [12],
the value of C can be determined adaptively during the sampling
process because the average depth can be learned as more and more
random walks are accomplished.

3.1.3 Analysis of Improvement on Efficiency
We now discuss the efficiency comparison between OVERFLOW-

SAMPLER and HIDDEN-DB-SAMPLER. First, one can observe
that, to achieve the same level of skew, the number of queries re-
quired by OVERFLOW-SAMPLER never exceeds that of HIDDEN-
DB-SAMPLER. To understand why, consider the execution of both
samplers with the same value of C over the same hidden database.
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Algorithm 1 OVERFLOW-SAMPLER for Levels 1 to C
Require: C, a pre-determined cut-off level
1: Q← SELECT * FROM D, prod← 1, i← 0.
2: Issue query Q, Compute d(Q).
3: p← |d(Q)| · π(i)/(k · π(C) · prod).
4: Randomly generate r ∈ (0, 1) according to uniform distribu-

tion.
5: if r ≤ p then
6: Randomly choose a tuple from d(Q) as sample. exit.
7: end if
8: if Q overflows then
9: prod← prod · (1− p). i← i+ 1.

10: Randomly generate v ∈ Di. Add predicate ai = v to Q.
11: Goto 2
12: else
13: Goto 1
14: end if

As we have shown, for both algorithms, a random drill-down pro-
cess draws each tuple on or above Level-C with probability of
1/(k · π(C)). However, for any tuple, the number of queries (i.e.,
levels to step down) required by OVERFLOW-SAMPLER to draw
the tuple is always smaller than or equal to that of HIDDEN-DB-
SAMPLER. Thus, OVERFLOW-SAMPLER can only improve the
efficiency of sampling for a given level of skew.

In the following, we quantitatively analyze the efficiency im-
provement provided by OVERFLOW-SAMPLER. Since OVERFLOW-
SAMPLER is only used for sampling tuples on or above Level-C,
the ratio of improvement depends on the value of C. As previously
discussed, we set the value of C to be the average depth of a ran-
dom walk for both algorithms. Similar theorems can be derived for
other settings of C.

THEOREM 3.1. For a given query tree with uO overflowing nodes,
n tuples, and a top-k interface, the ratio between the query cost of
HIDDEN-DB-SAMPLER and OVERFLOW-SAMPLER on obtain-
ing one sample tuple is

E(cost of HIDDEN-DB-SAMPLER)

E(cost of OVERFLOW-SAMPLER)
≥ 2k·uO/n. (11)

We omit the proof due to space limitation. The theorem fol-
lows directly from the following observation: If a tuple appears in
d overflowing queries, then the random walk to reach this tuple in
HIDDEN-DB-SAMPLER is d levels longer than in OVERFLOW-
SAMPLER. Thus, on average the length of a random walk that
draws a sample tuple in OVERFLOW-SAMPLER is k·uO/n shorter
than that in HIDDEN-DB-SAMPLER. In the running example, such
average length is (0 + 1 + 2 + 3)/4 = 1.5 for OVERFLOW-
SAMPLER and (2 + 2 + 3 + 3)/4 = 2.5 for HIDDEN-DB-
SAMPLER, leading to a difference of exactly k ·uO/n = 1 ·4/4 =

1. Since each attribute has at least two values, 2k·uO/n serves as a
lower bound for the improvement ratio.

The theorem indicates that OVERFLOW-SAMPLER can achieve
a significant improvement ratio in practice. For example, consider
a 50-attribute, 10, 000-tuple, Boolean i.i.d dataset with probability
of 1 being 0.1 for each attribute and k = 1. There are an expected
number of 31, 176.95 overflowing queries in the query tree. Ac-
cording to the theorem, by leveraging overflowing queries one can
reduce the expected query cost by a factor of at least 8.68.

3.2 Reduce skew: Concatenate with Crawling

3.2.1 Basic Idea
As we mentioned in the previous subsection, both HIDDEN-

DB-SAMPLER and OVERFLOW-SAMPLER can produce unbi-
ased samples if all Level-C queries are valid. Thus, sampling skew
is caused by the different selection probability of tuples with des-
ignated queries below the cutoff Level-C. For example, if a tu-
ple is only returned by a leaf-level query but not higher-level ones
(e.g., due to the tuple’s low score), then HIDDEN-DB-SAMPLER
selects this tuple with probability only π(C)/π(m) ≤ 1/2m−C

times of that for a tuple returned on or above Level-C.
To reduce the skew for sampling these low-level tuples, our main

idea is to concatenate sampling with crawling on levels below Level-
C. In particular, the sampling of tuples below Level-C starts when
OVERFLOW-SAMPLER reaches an overflowing queryQ at Level-
C but could not select a sample from it (due to rejection sampling
in Line 5 of Algorithm 1). Instead of further conducting the random
walk to drill below Level-C, we switch to the crawling of the sub-
tree of Q, and compute Ω(Q), the set of all tuples in the database
that match Q. Then, we randomly choose a tuple from Ω(Q) and
return it as a sample after a rejection sampling step which will be
discussed in detail later. The crawling process can be performed as
a depth-first search of the subtree with root being Q. The depth-
first search backtracks from a node if the node is already valid or
underflowing.

The concatenation of sampling with crawling has two main im-
plications on the performance of sampling:

• The concatenated process substantially reduces the skew of
selection probability for tuples below Level-C. Unlike in
HIDDEN-DB-SAMPLER where a tuple’s selection proba-
bility decreases exponentially with its level index below Level-
C, the concatenation idea ensures equal selection probability
for all (lower-level) tuples in the subtree of an overflowing
Level-C node. As we shall show at the end of this subsec-
tion, the difference between the selection probability of dif-
ferent tuples is substantially reduced with the concatenated
process.

• The effect of crawling on sampling efficiency is insignificant
for practical databases. The crawling of a subtree in which
nT tuples have designated queries below Level C requires
O(nT) queries. In the theoretical worst case, the subtree may
contain as many as nT = max(n − k, k · π(m)/π(C) −
k) tuples which leads to an unacceptably large query cost.
Nonetheless, we argue that this case is extremely unlikely to
occur in practice because it indicates that attributes a1, . . . , aC
(in the upper levels) are incapable of distinguishing tuples,
and should be excluded from the form-like web interface.
For real-world datasets, when C is reasonably large (e.g.,
k · π(C) ≈ n), the number of tuples in each subtree should
be fairly small.

3.2.2 Algorithm CONCATENATE-SAMPLER
We now describe the detailed design of CONCATENATE-SAMPLER,

our algorithm for sampling tuples with designated queries below
Level-C by concatenating sampling with crawling.

Recall from the above subsection that, when all Level-C queries
are valid or underflowing, a random drill-down process of OVERFLOW-
SAMPLER selects each tuple with probability ζ = 1/(k · π(C)).
When there exists tuples below Level-C (i.e., there exists Level-C
overflowing queries), however, it is no longer possible to always
select each tuple with probability of 1/(k · π(C)). To understand
why, consider an extreme case where all Level-C queries overflow.
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In this case, the number of tuples n > k · π(C), making it impos-
sible to select each tuple with probability of 1/(k · π(C)).

Thus, in order to support the sampling of tuples below Level-C,
we have to decrease the value of ζ. In particular, we consider a new
(target) selection probability

ζI =
1

(k + n0) · π(C)
, (12)

where n0 is the maximum number of tuples that match a Level-C
overflowing query. Although the sampler has no prior knowledge
of n0, it can learn it adaptively when more Level-C subtrees are
crawled. The adaption of OVERFLOW-SAMPLER to this new se-
lection probability can be easily done by replacing k in Algorithm 1
with k + n0. Thus, in the following, we focus on the sampling of
tuples with designated queries below Level-C with selection prob-
ability as close to ζI as possible (i.e., to achieve minimum skew).

Algorithm 2 CONCATENATE-SAMPLER for Levels C + 1 to m
1: Crawl the subtree of Q. Suppose that nT tuples with desig-

nated queries below Level C are collected.
2: With probability of nT/n0, return a tuple randomly chosen

from the nT tuples.
3: Update the value of n0 if necessary.

LetQC be a Level-C overflowing query. After adapting OVERFLOW-
SAMPLER to the new ζI, a tuple randomly drawn from the re-
turned result of QC is selected as a sample with probability of
pC = |d(Qi)|/(k + n0 − |f(QC−1, vC)|). If it is not selected as
a sample, our CONCATENATE-SAMPLER will be invoked with
probability of n0/(k + n0 − |f(QC)|). This way, given QC , the
overall probability for a random-drill down process to switch to the
crawling of the subtree of QC is n0/((k + n0) · π(C)).

Once the CONCATENATE-SAMPLER is invoked, we crawl the
subtree ofQC and randomly draw from the crawling result a tuple t
with designated query below Level C. Suppose that the subtree in-
cludes nT such tuples. Then, with probability of max(nT, n0)/n0,
we select t as a sample tuple. Otherwise, CONCATENATE-SAMPLER
is aborted and OVERFLOW-SAMPLER restarts from the root level.

Algorithm 2 depicts pseudocode of CONCATENATE-SAMPLER.

3.2.3 Analysis of Reduction on Skew
We now discuss the skew comparison between CONCATENATE-

SAMPLER and HIDDEN-DB-SAMPLER. One can observe that
CONCATENATE-SAMPLER can still be skewed - if an overflow-
ing query at Level C has a subtree with size more than (the cur-
rent value of) n0, then tuples with designated queries in this tree
will be sampled with lower probability than the others. In particu-
lar, a tuple in a nT-tuple subtree will be selected with probability
min(1, n0/nT) times of that for a tuple on or above Level C.

However, as we argued in the beginning of this subsection, with
a reasonable value of C (e.g., π(C) ≈ n), we expect nT ≤ n0 to
hold true for most subtrees. Even when nT > n0, the ratio between
the highest and lowest selection probability for different tuples is
at most n/n0, which in many cases is still much smaller than the
π(m)/π(C) ratio for HIDDEN-DB-SAMPLER, because for most
hidden databases the size of the database n is orders of magnitude
smaller than the space of all possible tuple values (π(m)).

The following theorem further investigates the skew comparison
for an i.i.d. Boolean dataset with probability of 1 being 0.5 and
k = 1.

THEOREM 3.2. When 2C � n and m is sufficiently large, the
level of skew of HIDDEN-DB-SAMPLER γH and that of TURBO-

DB-SAMPLER γT satisfies

γT

γH
< 2C/2+1 ·

„
n− 1

2C

«n0/2

(13)

which is much smaller than 1 given a reasonably large n0.

We omit the proof due to space limitation. One can see from the
theorem that the sample skew is significantly smaller in CONCATENATE-
SAMPLER than HIDDEN-DB-SAMPLER. For example, given a
Boolean database with 10, 000 tuples, 100 attributes, and C = 20,
when n0 = 5, CONCATENATE-SAMPLER has a skew of 0.018
times that of TURBO-DB-SAMPLER. The skew ratio will further
reduce for a larger value of n0.

Since the adoption of CONCATENATE-SAMPLER also incurs
query cost on the crawling of low-level tuples, we analyze the ex-
pected query cost incurred by CONCATENATE-SAMPLER. In par-
ticular, we integrate the lower-level sampling of CONCATENATE-
SAMPLER with the higher-level sampling of HIDDEN-DB-SAMPLER,
and then compare it with a pure HIDDEN-DB-SAMPLER which
uses the random walk theme throughout all levels. The comparison
is analyzed in the following theorem.

THEOREM 3.3. If n andm are sufficiently large, when a Level-
C subtree contains at most n0 tuples, to achieve the same level of
skew, the ratio between the query cost of HIDDEN-DB-SAMPLER
and CONCATENATE-SAMPLER on obtaining one sample is

E(cost of HIDDEN-DB-SAMPLER)

E(cost of CONCATENATE-SAMPLER)

≥ n0 · π(C) · k
(k + n0) · π(C) + n0 · n/2

(14)

Again, we omit the proof due to space limitation. One can see
from the theorem that despite of requiring the crawling of a sub-
tree, CONCATENATE-SAMPLER actually requires substantially
fewer queries than HIDDEN-DB-SAMPLER to achieve the same
level of skew. In the above Boolean database example with n =
10, 000,m = 100, and C = 20, when n0 = 5, the theorem in-
dicates that the cost of HIDDEN-DB-SAMPLER is at least 16.60
times that of CONCATENATE-SAMPLER.

3.3 Algorithm TURBO-DB-SAMPLER
Algorithm 3 depicts the pseudocode for TURBO-DB-SAMPLER.

4. TURBO-CHARGING SAMPLERS
FOR STATIC SCORING FUNCTIONS

In this section, we describe TURBO-DB-STATIC, our algorithm
for sampling a hidden database with a static scoring function. TURBO-
DB-STATIC integrates the two ideas we discussed for TURBO-
DB-SAMPLER (i.e., leveraging overflows and concatenating sam-
pling with crawling), as well as a third idea of level-by-level sam-
pling which is enabled by a unique property of static scoring func-
tions and is capable of further improving the efficiency of sampling.
We discuss this idea in this section.

4.1 Improve Efficiency: Level-by-Level Sam-
pling

4.1.1 Basic Idea
We first describe the basic idea of level-by-level sampling, and

then explain why it only applies to hidden databases with static
scoring functions.
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Algorithm 3 TURBO-DB-SAMPLER
Require: Parameters C and n0 set adaptively during sampling
1: Q← SELECT * FROM D, prod← 1, i← 0.
2: Issue query Q, Compute d(Q).
3: p← |d(Q)| · π(i)/((k + n0) · π(C) · prod).
4: Randomly generate r ∈ (0, 1).
5: if r ≤ p then
6: Randomly choose a tuple from d(Q) as sample. exit.
7: end if
8: if Q overflows then
9: prod← prod · (1− p). i← i+ 1.

10: Randomly generate v ∈ Di. Add predicate ai = v to Q.
11: Goto 2 if i ≤ C, Goto 15 otherwise.
12: else
13: Goto 1
14: end if
15: Crawl the subtree of Q. Suppose that nT tuples with desig-

nated queries below Level C are collected.
16: With probability of nT/n0, return a tuple randomly chosen

from the nT tuples.

Similar to OVERFLOW-SAMPLER, the objective of level-by-
level sampling is to further improve the efficiency for sampling tu-
ples with designated queries on or above the cutoff level C. For
sampling these tuples, both OVERFLOW-SAMPLER and HIDDEN-
DB-SAMPLER perform random walks and terminates a random
walk when (1) one of the tuples the current query returns is se-
lected as a sample, and/or (2) the random walk reaches a valid or
underflowing query. However, such a technique has the following
efficiency problem: Almost all top-level queries will be issued be-
cause every random walk initiates from there. Although the num-
ber of these queries is small in comparison with the total number
of possible queries and/or the size of the database, the cost of is-
suing them may be significant for drawing a small number of sam-
ples. Nonetheless, we argue that issuing these top-level queries are
hardly useful for sampling due to the following two reasons:

• Tuples with top-level designated queries form only a very
small fraction of the database. Thus, these top-level queries
have slim chances of actually contributing a sample tuple
drawn from their returned answers.

• The role of top-level queries on the “early termination” of a
random walk is also doubtful: Unless a database is extremely
skewed, it is unlikely that these high-level queries can be un-
derflowing or valid.

To address this problem, the main idea of level-by-level sam-
pling is to perform the sampling successively for each level of the
query tree, with the order downward from the root, and to issue a
growing number of queries per level during the step-down process.
If a query Q is not underflowing, we perform designation tests to
find the set of tuples with designated queries being Q, and then
randomly choose a tuple t from these tuples. We select t as a sam-
ple after subjecting it to a rejection sampling test. The sampling
process terminates when a sample tuple is selected. If no tuple
is chosen on or above Level C, we randomly choose an overflow-
ing query from Level-C and execute CONCATENATE-SAMPLER
over it. If CONCATENATE-SAMPLER cannot select a sample
(i.e., due to rejection sampling based on the subtree size), we again
randomly choose a Level-C overflowing query and repeatedly exe-
cute CONCATENATE-SAMPLER until a sample tuple is selected.

As we shall show in the detailed algorithm, level-by-level sam-
pling has two main features that contribute to the improvement of
sampling efficiency:

• Level-by-level sampling issues top-level queries with extremely
small probability due to their unlikeliness of being selected
to contribute a sample tuple.

• Unlike the random walk process which often aborts without
returning a sample, level-by-level sampling always return a
sample from each step-down process.

Finally, note that level-by-level sampling only applies to static
scoring functions due to the requirement of designation test. Unlike
OVERFLOW-SAMPLER, level-by-level sampling does not have a
drill-down process. Therefore, when a query Q is issued, queries
on the path between the root and Q may not have been issued be-
fore. As a result, the designation test cannot be performed based on
the historic query answers as in OVERFLOW-SAMPLER. A sim-
ple method to perform this test is to actually issue every query on
the path. However, doing so leads to significant query cost and is
contradictory to our idea of avoid issuing top-level queries.

On the other hand, it is possible to perform the designation test
efficiently when the hidden database has a static scoring function.
In this case, only a single query needs to be issued for designation
test: To check whether a given query Q is the designated query of
a tuple t that it returns, we only need to check whether the parent
of Q returns t. If it does not, then Q is the designated query of
t, and vice versa. In the running example, to determine whether
(a1 = 1)&(a2 = 1) is the designated query for t4, we only need
to judge whether query a1 = 1 returns t4, and do not need to issue
the root query. In general, the reason is that if t is not returned
by the parent query, it certainly cannot be returned by upper-level
queries due to the static nature of the scoring function. Therefore,
t must have Q as its designated query.

4.1.2 Algorithm LEVEL-SAMPLER
Algorithm 4 depicts LEVEL-SAMPLER, our baseline algorithm

for level-by-level sampling. The following discussion consists of
two parts: First, we make a few remarks on applying LEVEL-
SAMPLER in practice. Then, we show that it samples each tuple
with designated queries on or above LevelC with equal probability.

One can see from Algorithm 4 that LEVEL-SAMPLER requires
the knowledge of n, the number of tuples in the database. We ar-
gue that such knowledge is usually available in practice, as many
hidden database providers publicize their database size as an ad-
vertisement for usability. If the knowledge of n is not available, an
upper-bound estimate of it can be used. In this case, all tuples with
designated query on or above Level C will still be sampled with
equal probability, but the probability will be different from those
tuples below Level C. Nonetheless, we shall demonstrate in the
experimental results that the skew is extremely small even with an
inaccurate estimation of n, and much smaller than the skew of the
existing algorithms.

Another note of caution from Algorithm 4 is that the cutoff level
C must be chosen such that k · π(C) ≤ n. Since we would like
to sample as many tuples by LEVEL-SAMPLER as possible, to
avoid the skew of CONCATENATE-SAMPLER, a natural choice
is to set C to be the maximum value that satisfies k · π(C) ≤ n.
In Section 4.2, we shall show how the value of C can be further
increased by pruning the query tree.

We now show that LEVEL-SAMPLER is equivalent with OVER-
FLOW-SAMPLER (for static scoring functions) by proving that it
generates unbiased samples when all Level-C queries are valid or
underflowing.
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Algorithm 4 LEVEL-SAMPLER for Levels 1 to C
1: h = 0.
2: With probability of (1− k · π(h)/n), Goto 8. Otherwise, ran-

domly choose a query Q from Level-h.
3: Goto 10 ifQ is empty. Otherwise randomly pick a tuple t from

the result of Q.
4: Generate r ∈ (0, 1) uniformly at random.
5: if r ≤ |Q|/k and Q is the designated query for t then
6: return t as sample and exit.
7: else if r ≤ |Q|/k and Q is not the designated query for t then
8: With probability of k · π(h)/n, Goto 2.
9: end if

10: if h ≤ C − 1 then
11: Set h = h+ 1, goto 2
12: else exit
13: end if

THEOREM 4.1. LEVEL-SAMPLER returns each tuple with des-
ignated query on or above Level C with probability of 1/n.

PROOF. We prove the unskewedness of LEVEL-SAMPLER in
two steps: First, we show that once LEVEL-SAMPLER reaches
Level h (h ∈ [1, C]), each tuple with designated query at Level h
has probability of 1/(n−nh−1) to be returned as a example, where
nh−1 is the number of nonempty (i.e., valid and overflowing) nodes
at Level h − 1 (for h = 0, we assume that n−1 = 0). Then, we
show that the overall probability for each tuple to be returned is
1/n.

Note from Algorithm 4 that once LEVEL-SAMPLER reaches
Level h, the probability for LEVEL-SAMPLER to not return a tu-
ple from Level h is

p(h) = 1− k · π(h)

n
+
k · π(h)

n
·
„
k · π(h)− nh
k · π(h)

+
nh−1

k · π(h)
·„

1− k · π(h)

n

«
+

nh−1

k · π(h)
· k · π(h)

n
·
„
k · π(h)− nh
k · π(h)

+
nh−1

k · π(h)
·
„

1− k · π(h)

n

««
+

„
nh−1

k · π(h)
· k · π(h)

n

«2

·

(15)

„
k · π(h)− nh
k · π(h)
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nh−1
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·
„
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n

««
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·
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n

(16)

= 1− k · π(h)

n
+
k · π(h)

n
− nh − nh−1

n− nh−1
(17)

=
n− nh
n− nh−1

(18)

When the algorithm does return a tuple from Level h, it is easy to
verify that all tuples with designated query at Level h are returned
with equal probability. Note that since k = 1, the number of tuples
with designated query at Level h is nh−nh−1. Thus, once LEVEL-
SAMPLER reaches Level h, the probability for each tuple at Level
h to be returned is (1− p(h))/(nh − nh−1) = 1/(n− nh−1).

Since LEVEL-SAMPLER reaches Level h iff it cannot retrieve
the sample from Levels 0 to h−1, for a given tuple with designated
query at Level h, the probability for LEVEL-SAMPLER to select

the tuple as a sample is 
h−1Y
i=1

„
1− xi

n− ni−1

«!
· 1

n− nh−1
=

1

n
(19)

The derivation is due to the fact that n − ni = n − ni−1 − xi.
Thus, the algorithm generates unskewed simple random samples
from tuples with designated queries at Levels 1 to C.

4.1.3 Analysis of Improvement on Efficiency
Let π−1(i) be the maximum value of x that satisfies pi(x) ≤ i.

The following theorem shows that LEVEL-SAMPLER is signifi-
cantly more efficient than HIDDEN-DB-SAMPLER and OVERFLOW-
SAMPLER on sampling tuples with designated queries on or above
Level C.

THEOREM 4.2. The expected number of queries issued by LEVEL-
SAMPLER to sample each Level-C-retrievable tuple with probabil-
ity of 1/n is

E(Cost of LEVEL-SAMPLER) ≤
hX
i=0

2i+1

n
≤ 4 (20)

Such expected number for HIDDEN-DB-SAMPLER and OVERFLOW-
SAMPLER is at least π−1(n/k)− 1.

We omit the proof due to space limitation. Note that the upper
bound derived for LEVEL-SAMPLER holds on arbitrary distribu-
tion of tuples.

4.2 Algorithm TURBO-DB-STATIC
Algorithm 5 depicts TURBO-DB-STATIC, an integration of all

three ideas - leveraging overflowing queries, concatenating sam-
pling with sampling, and level-by=level sampling. In the algorithm,

ρ(j, i) = k ·
i−1Y
b=j

|Db| (21)

where |Db| is the domain size of Attribute ab. For a Boolean
database, ρ(j, i) = k · 2i−j . Recall from Section 2 that a0, . . . ,
am−1 are the attributes. card(q) is the number of tuples returned
by q. Root is Level 0. n0 is the pre-determined threshold for crawl-
ing. One can see that the algorithm utilizes the two efficiency-
improving strategies, query-tree pruning and breath-first sampling:
Query-Tree Pruning: The simplest way to obtain the answer to a
query is to issue the query (through the web interface), as is done
in Algorithm 5. TURBO-DB-SAMPLER improves sampling effi-
ciency by sending a query to the hidden database only if the query
cannot be inferred from the historic query answers. For example,
if a historic query returns valid or underflow, then no successor of
the query needs to be issued, because its answer can be readily in-
ferred from the historic query answer (by matching the returned
tuples with the new query’s search conditions). This strategy can
be considered as pruning the query tree based on historic queries
- the subtree of any issued underflowing and valid queries can be
removed from the tree because the corresponding queries need not
to be issued in the future.
Breath-First Sampling: TURBO-DB-SAMPLER also improves
efficiency by performing breath-first search for the s samples to be
collected i.e., for each given level h, execute LEVEL-SAMPLER
for all of the s samples which have not been returned from higher
levels. The premise of this idea is that one would prefer issuing
higher-level queries first, in order to prune the search space for
lower-level queries and to increase the cutoff level C.
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Algorithm 5 TURBO-DB-STATIC
1: Set h = 0. Λ(i) = ρ(0, i) for i ∈ [0,m − 1]. W [i] = ∅ for
i ∈ [1, s].

2: for all i ∈ [1, s] with W [i] = ∅ do
3: With probability of 1−Λ(h)/n, Goto 16 for the next loop.
4: Randomly choose a query q from Level h. With probability

of card(q)/k, randomly pick a tuple from the result of q as t.
5: if a valid or underflowing ancestor of q was issued then
6: Goto 4 if t = ∅.
7: else if q is valid or underflowing then
8: for i = h+1 tom do Λ(i) = Λ(i)−ρ(h, i)+card(q)
9: end if

10: if t 6= ∅ then
11: Issue query P (q), the parent of q.
12: if t ∈ P (q) then with probability of Λ(h)/n, Goto 4.
13: else Set W [i] = t.
14: end if
15: end if
16: end for
17: if Λ(h+ 1) ≤ n then
18: Set h = h+ 1, Goto 2
19: end if //below switch to CONCATENATE-SAMPLER
20: Randomly select an overflowing query q from Level h.
21: Crawl the subtree of q with nT tuples below Level h.
22: With probability of nT/n0, return a tuple chosen uniformly

at random from the nT tuples, otherwise Goto 20.

5. DISCUSSIONS

5.1 Uniform Random Sampling vs Weighted
and Stratified Sampling

As we mentioned in the introduction, traditional database sam-
pling can be done in a variety of ways besides uniform random sam-
pling. Two popular techniques are stratified sampling and weighted
sampling. In this subsection, we discuss our choice of uniform ran-
dom sampling for hidden databases.

A unique challenge to hidden database sampling is the lack of
access to the population being sampled. This presents a significant
obstacle to stratified sampling, because it has to (1) select an ap-
propriate stratification variable which partitions all tuples into rela-
tively homogeneous subgroups, and (2) determine the size of each
subgroup. While these two tasks can be easily done for a traditional
database [10], it is not immediately clear how they can be accom-
plished for a hidden database without incurring significant query
cost.

Another possible way to sampling hidden database is weighted
sampling. Such a scheme has been proposed for sampling search
engines [3] to estimate aggregate query answers. Adapted to hid-
den database sampling, it works as follows: instead of perform-
ing rejection sampling on a tuple before selecting it as a sample,
this scheme always selects such a tuple while associating it with a
weight computed from the probability that such a tuple is selected.
For example, consider a hidden database with k = 1000 and two
attributes a1, a2. There are 1000 tuples with a1 = 0 and 1 with
a1 = 1. If we adapt HIDDEN-DB-SAMPLER to the weighted
sampling scheme, the tuples with a1 = 0 will be assigned a weight
of w0 = 2000/1001 while the tuple with a1 = 1 has weight of
w1 = 2/1001. This way, ∀i ∈ {0, 1},

Pr{a tuple with a = i is selected} · w0 =
1

1001
. (22)

A main problem of this weighted sampling scheme is that its ac-

curacy on answering an aggregate query depends on whether the
selection probability distribution of all tuples is aligned with the
aggregate query. To understand why, consider the above example
and an aggregate query SELECT AVG(a2) FROM D. To esti-
mate the answer to this query, the weighted sampling scheme com-
putes the mean of t[a2] · w(t) for all sample tuples, where t[a2]
and w(t) are the value of a2 and the weight for a sample tuple t,
respectively. If a2 = 1.001 and 1001 for all tuples with a1 = 0
and 1, respectively, then the weighted sampling performs perfectly
with zero standard error because 1.001 · w0 = 1001 · w1 = 2.

However, if a2 = 1001 and 1.001 for tuples with a1 = 0 and
1, respectively, the weighted sampling scheme performs signifi-
cantly worse than uniform random sampling. Note that in this case,
t[a2] · w(t) = 2000 and 0.002, respectively. The variance of it is
((2000 − 1000.001)2 + (0.002 − 1000.001)2)/2 = 999998. In
comparison, the variance of t[a2] for a sample tuple t generated by
uniform random sampling is (1000/1001) · (1001−1000.001)2 +
(1/1001) · (1.001− 1000.001)2 = 998.001. Note that when issu-
ing the same number of queries, the weighted sampling scheme
generates 1/(1/2 + 1/2000) = 1.998 times as many samples
as the original HIDDEN-DB-SAMPLER. Thus, given the same
query cost, the standard error produced by weighted sampling isp

999998/(998.001 · 1.998) = 22.394 times that of uniform ran-
dom sampling.

Since we do not assume knowledge of the aggregate query to be
estimated in this paper, we choose uniform random sampling as our
objective. We shall investigate the design of sampling techniques
with knowledge of the target aggregate queries in the future work.

5.2 Extensions for Numerical Databases
For numerical databases, a sampler can first discretize the numer-

ical data to resemble categorical data before applying the sampling
algorithms discussed in this paper. However, different discretiza-
tion techniques have different impact on the performance of sam-
pling. Given our preference of minimizing n0 to reduce the quest
cost, a equal-size discretization might be preferred. Nonetheless,
how to determine the optimal number of intervals and choose an
optimal discretization scheme is left as an open problem.

6. EXPERIMENTAL RESULTS
In this section, we describe our experimental setup and compare

our TURBO-DB-SAMPLER and TURBO-DB-STATIC with the
exiting HIDDEN-DB-SAMPLER [12] and HYBRID-SAMPLER
algorithms [13].

6.1 Experimental Setup
Hardware: All experiments were on a machine with Intel Xeon
2GHz CPU with 4GB RAM and Windows XP operating system.
The sampling algorithms were implemented using C# and Matlab.
Yahoo! Auto Dataset: The Yahoo! Auto dataset consists of data
crawled from a real-world hidden database at http://autos.yahoo.com/.
In particular, it contains 200,000 used cars for sale in the Dallas-
Fort Worth metropolitan area. There are 32 Boolean attributes,
such as A/C, Power Locks, etc, and 6 categorical attributes, such as
Make, Model, Color, etc. The domain size of categorical attributes
ranges from 5 to 447.
System Implementation: We set k = 100. Since the database
query processing technique is relatively deterministic, we imple-
mented our own in-memory database engine using Matlab. All tu-
ples are ranked lexicographically.
Parameter Settings: The experiments involve four algorithms:
HIDDEN-DB-SAMPLER [12], HYBRID-SAMPLER [13], as well
as TURBO-DB-SAMPLER and TURBO-DB-STATIC introduced
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in this paper. TURBO-DB-SAMPLER and TURBO-DB-STATIC
require one parameter: the cutoff level C for switching from sam-
pling to crawling. We conducted experiments with various values
of C ranging from 5 to 15. HIDDEN-DB-SAMPLER also requires
the cut-off levelC as a parameter to balance between efficiency and
skew. Following the heuristic in [12], we set C for HIDDEN-DB-
SAMPLER to be the average length of random walks that reach
a valid query. HYBRID-SAMPLER requires two parameters: the
number of pilot samples s1 and the switching count threshold cS.
We set s1 = 20 and cS = 5.
Performance Measures: For each algorithm, there are two per-
formance measures: efficiency and skew. Efficiency of a sampling
algorithm was measured by counting the number of unique queries
that were executed to reach a certain desired sample size. For mea-
suring the skew of collected samples, there has not been a widely
accepted measure. Thus, we follow the same measure as [12] which
compares the marginal frequencies of attribute values in the origi-
nal dataset and in the sample:

skew =

vuutPv∈V

“
1− pS(v)

pD(v)

”2

|V | . (23)

Here V is a set of values with each attribute contributing one rep-
resentative value, and pS(v) (resp. pD(v)) is the relative frequency
of value v in the sample (resp. dataset). Again, even unskewed
samples may have small but possibly non-zero value of the mea-
sure.
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Figure 3: A sample line graph using colors which contrast well
both on screen and on a black-and-white hardcopy

6.2 Comparison with State-of-The-Art Sam-
plers

We tested TURBO-DB-SAMPLER and TURBO-DB-STATIC on
the Yahoo! Auto dataset and compared them against HIDDEN-
DB-SAMPLER and HYBRID-SAMPLER in terms of the trade-
off between efficiency and skew. Figure 3 depicts the results. For
TURBO-DB-SAMPLER, we set C to be the average length from
the root to the designated query of a tuple. For TURBO-DB-STATIC,
we set C to be the maximum value that satisfies the requirement of
k · π(C) ≤ n. The different points in the figure are generated by
varying the number of sample tuples to be collected between 1 and
500. One can see from the figure that the samplers we proposed in
this paper provides significant improvement over the existing algo-
rithms on the tradeoff between efficiency and skew.

Figure 4 and Figure 5 depicts the change of query cost and skew

during the process of collecting 100 samples, respectively. Note
that only TURBO-DB-SAMPLER, HIDDEN-DB-SAMPLER, and
HYBRID-SAMPLER are shown in these figures due to the breath-
first sampling scheme we used for TURBO-DB-STATIC - i.e., it
collects all samples for one level before going to the next. One
can see from the figures that TURBO-DB-SAMPLER significantly
outperforms the existing algorithms in terms of both efficiency and
skew.

6.3 Evaluation of Parameter Settings
We now investigate the change of efficiency and skew of our

algorithms with the cut-off level parameter C. Figure 6 depicts
the change of query cost and skew for TURBO-DB-SAMPLER to
collect 100 samples when C varies between 7 and 15. One can see
that while the skew is reduced when C increases, the number of
queries remain roughly constant for different values of C. This is
because with a larger C, while the OVERFLOW-SAMPLER part
of TURBO-DB-SAMPLER needs to issue more queries due to the
reduced acceptance probability, the CONCATENATE-SAMPLER
part, however, requires fewer queries because the subtree that needs
to be crawled becomes smaller.

Figure 7 depicts the change of query cost and skew for TURBO-
DB-STATIC to collect 100 samples when C varies between 5 and
10 (the maximum value allowed by the algorithm requirement of
k · π(C) ≤ n). One can see that unlike TURBO-DB-SAMPLER,
a larger value of C reduces both skew and query cost for TURBO-
DB-STATIC. This is because whenC is too small (e.g., 5 or 6 in our
dataset), the query cost is dominated by crawling, the cost of which
can be significantly reduced with a larger C. The value assignment
of C we suggested in the paper is 10 for this dataset which, as one
can see from the figure, achieves a fairly good tradeoff between
efficiency and skew.

7. RELATED WORK
Crawling and Sampling from Hidden Databases: There has been
prior work on crawling as well as sampling hidden databases us-
ing their public search interfaces. [1, 19, 21] deal with extracting
data from structured hidden databases. [8] and [20] use query based
sampling methods to generate content summaries with relative and
absolute frequencies while [17,18] uses two phase sampling method
on text based interfaces. On a related front [7, 9] discuss top-
k processing which considers sampling or distribution estimation
over hidden sources. A closely related area of sampling from a
search engines index using a public interface has been addressed
in [6] and more recently [2, 5]. In [12] and [13] the authors have
developed techniques for random sampling from structured hid-
den databases leading to the HIDDEN-DB-SAMPLER, COUNT-
BASED-SAMPLER, and HYBRID-SAMPLER algorithms.
Approximate Query Processing and Database Sampling: Ap-
proximate query processing (AQP) for decision support, especially
sampling-based approaches for relational databases, has been the
subject of extensive recent research; e.g., see tutorials by Das [11]
and Garofalakis et al [15], as well as [4] and the references therein.

8. CONCLUSION
In this paper, we investigated techniques which leverage over-

flowing queries to efficiently sample a hidden database. In particu-
lar, we proposed TURBO-DB-SAMPLER which significantly im-
proves sampling efficiency while allowing much smaller skew than
state-of-the-art samplers. We also proposed TURBO-DB-STATIC,
an algorithm that achieves additional speedup for databases with
static scoring functions. Our thorough experimental study demon-
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Figure 4: Number of Queries vs. Number of Samples
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Figure 5: Level of Skew vs. Number of Samples
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strates the superiority of our sampling algorithms over the existing
algorithms.
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