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ABSTRACT
In retail, products are organized according to layout plans,
so-called planograms. Compliance to planograms is impor-
tant, since good product placement can significantly increase
sales. Currently, retailers are about to implement RFID
installations consisting of smart shelves and RFID-tagged
items to support in-store logistics and processes. In princi-
ple, they can also use these installations to implement plan-
ogram compliance verification: Each antenna is supposed
to detect all tagged items in one location of the planogram.
But due to physical constraints, RFID tags can be identified
by more than one RFID antenna. Thus, one cannot decide
if an item carrying such a tag complies with the planogram.
We propose a new method called RPCV which checks plan-
ogram compliance on large databases of items. It is based on
the observation that the number of times an antenna iden-
tifies each item of a certain product type roughly follows a
normal distribution. RPCV represents each item as a two-
dimensional vector containing the number of readings both
by the right antenna and by wrong ones according to the
planogram. It clusters this data, separately for each prod-
uct type. A cluster then is a set of correctly placed items
or of misplaced ones. RPCV produces one order of mag-
nitude less wrong predictions than current state of the art,
and it requires less data to yield good predictions. A study
with RFID-equipped goods and smart shelves shows that
our approach is effective in realistic scenarios.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications;
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Algorithms, Experimentation, Performance, Reliability

Keywords
RFID, Planogram Compliance, Data Quality, Data Cleaning
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Figure 1: The smart shelf used in field trials

1. INTRODUCTION
Planograms are carefully designed layout plans that define

the placement of products in a retail store. They specify
which product should be placed at which location on which
shelf in the store. Compliance with planograms is impor-
tant, since optimal product placement can increase profit by
up to 8.1% [5]. In principle, Radio Frequency Identification
(RFID) [11] can be used to implement planogram compli-
ance: The items in the retail store are equipped with RFID
tags, the shelves with RFID readers that write a stream of
RFID data into a database. One RFID reader controls many
RFID antennas. Each antenna corresponds to one location
defined in the planogram. Thus, one can verify planogram
compliance by querying the database for the antenna iden-
tifying a certain item. Figure 1 shows such a setup, a shelf
consisting of four shelf units. The antennas are the gray
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Figure 2: RFID data from field trials

boxes mounted on the bottom side of the shelf units. Each
shelf unit has two antennas, i.e., the planogram can differ-
entiate between the right and the left side of each shelf unit.

To ensure that all RFID tags are identified, retailers typi-
cally install many RFID antennas close to each other, result-
ing in dense RFID deployments with many RFID antennas
near to each other. In such installations, RFID tags are fre-
quently detected by more than one antenna. In this case,
the system cannot decide where on a shelf a certain item
is located. Furthermore, an RFID reader does not know
the reading field of an RFID antenna, i.e., the area where
it can detect RFID tags. This happens because objects in
the vicinity of the antenna can reflect or absorb magnetic
waves. These waves might cancel each other out, creating
blind spots, or be superimposed and thus reach farther than
expected [12]. This makes the integration of RFID data into
business processes difficult, because reliable data is a prereq-
uisite for many processes, like data mining of customer data
to improve planograms, etc.

In this paper, we present the RFID Planogram Com-
pliance Verification (RPCV) algorithm to check planogram
compliance on large databases of RFID data. Our algorithm
is motivated by the outcomes of field trials at a large German
retailer. Figure 2 shows data of five product types collected
during these field trials, which is representative. Each bar
represents one item. Because the planogram of this field
trial (not shown here) specifies a different number of items
to be displayed on the shelf for each product type, the fig-
ure shows different numbers of items/bars for each product
type. Subsequently, we refer to the antenna that should be
identifying an item according to the planogram as the right
antenna, to the other ones, e.g., antennas from neighboring
locations, as wrong antennas. The dark gray bars show the
number of times the right RFID antenna identifies an item.
The corresponding light gray bar shows the stacked number
of times an item was identified by wrong RFID antennas.
For our approach, it is now important that a normal dis-
tribution describes quite accurately the number of times an
antenna identifies each item of a certain product type. I.e.,
if x is ’the number of times the antenna identified an item’,
and f(x) is ’the number of items identified x times’, then
f(x) ∼ N(µ, σ2). We have observed this effect in the field
trials. It occurs because items of the same product type

have roughly the same physical characteristics. We refer to
the distribution of readings by the right antenna and the
one by wrong antennas as the reading pattern of the product
type. The data shows why it is difficult to decide which lo-
cation an item is placed on: Although none of the items was
misplaced or moved during the particular trial where we col-
lected this data, each item was identified by wrong antennas
at least once. Various items were identified more often by
the wrong antennas than by the right antenna (Product A).
Furthermore, the number of times an item is identified dur-
ing a certain time interval varies a lot (e.g., Product D),
because RFID antennas usually have “blind spots” where
RFID tags cannot be easily identified. Thus, it is difficult
to implement planogram compliance using RFID. Current
solutions [15, 25] rely on filters, e.g., they assign each item
to the antenna that has identified it more often. However,
as Product A shows, these approaches may produce many
wrong predictions with databases of real RFID readings.

RPCV defines a sliding window over the continuous data
streams of the RFID reader, i.e., it considers the items iden-
tified in a given time interval. For each item, our method
counts the numbers of readings in the sliding window. RPCV
represents each item as a two-dimensional vector, where the
first dimension is the count of the readings by the right an-
tenna. The other dimension is the number of readings by
wrong antennas. It then clusters this data, separately for
each product type. The clusters will correspond to correctly
placed items or to misplaced ones.

In general, the reading patterns of different product types
will be different. This is because several parameters influ-
ence the reading pattern, e.g., the total number of items read
by an RFID antenna and the proportion of misplaced items.
In order to analyze our algorithm, we have carried out an ex-
tensive evaluation with a real installation (i.e., RFID-tagged
items, smart shelves). To comply with the state of the art
regarding user experiments/experiments with customer in-
teractions, we let persons not involved in the design of our
algorithm carry out the interactions. Our evaluation shows
that RPCV is fast, scales up to large databases of items and
RFID readings, returns one order of magnitude less wrong
predictions and requires less data than current state of the
art to produce good predictions.

Summing up, this paper makes the following contribu-
tions:

• We describe typical problems when implementing plan-
ogram compliance in retail, and we show how these
problems can in principle be solved using RFID.

• We propose a new method called RPCV to determine if
items identified by more than one RFID antenna com-
ply with the planogram. RPCV transforms the data
so that one can apply a clustering algorithm to decide
on the location of RFID tags. To our knowledge, we
are first to look at this problem as a case for clustering.

• Having implemented RPCV as a Java extension of a
MaxDB database, we evaluate it by experiments with
an RFID installation. Furthermore, we validate RPCV
against various worst-case scenarios and perform scal-
ability tests with artificial data sets of up to 10,000,000
RFID readings to confirm the efficiency of our method.

Paper outline: The next section describes our retail sce-
nario and says how RFID can optimize planogram compli-
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ance. Section 3 covers related work, and Section 4 presents
our approach. We evaluate it in Section 5.

2. APPLICATION SCENARIO
In this section we describe the setting for planogram com-

pliance in retail, which we use to motivate our work and
to evaluate our method. With RFID-equipped items and
smart shelves that track the items present in real time, a re-
tailer can run applications like planogram compliance, i.e.,
ensuring that the placement of items in a retail store follows
a specific layout plan. The potential is huge, since fast and
accurate planogram compliance can increase profit by up to
8.1% [5]. E.g., applying such an increase to Walmart would
yield 1.1 billion US$ more profit.
Planograms: A planogram specifies the location of prod-
ucts on a shelf unit. For each product type, it states the
minimum number of items needed, e.g., ’The first row has
to be filled.’ It also specifies the arrangement of brands on
each shelf, e.g., first all items of Brand A, then the ones
of Brand B, as well as the arrangement of products, e.g.,
first Product 1 of Brand A, then the next one of this brand
etc. In this paper, we restrict our attention to planograms
specifying the number of items of a certain type per loca-
tion. Planograms are important, because they improve the
visual effect and the space productivity. They also opti-
mize shelf space usage and reduce out-of-stocks. Attractive
layouts increase impulse purchases, e.g., by placing comple-
mentary products like pasta and tomato sauce next to each
other. Furthermore, customers tend to only buy items that
are placed on the expected location, e.g., a customer would
probably not buy a single package of pasta placed in-between
cleaning materials.
Planogram Compliance: Planogram compliance is dif-
ficult to ensure. This is because planograms are complex
and change frequently, because of new marketing campaigns
or because of seasonal products. Frequently changing plan-
ograms make non-compliance difficult to detect. Another
reason why this detection may be difficult are shelf units
filled with items of other product types. For example, if 6
items have to be replenished, but 10 items are packaged in
one box, a clerk might be inclined to put the remaining 4
items just anywhere on the shelf.
RFID Characteristics: RFID can be used to check plan-
ogram compliance. One RFID reader controls many RFID
antennas (1:n relationship), i.e., the reader knows which an-
tennas are identifying which items. We can check if a smart
shelf holds the right items and if they are correctly placed on
the shelf. However, in dense RFID deployments with many
RFID antennas near to each other, many RFID antennas
can identify the same item, and they frequently do. This
occurs because of physical interference. In other words, the
problem is a general one, and future RFID technology will
not be able to avoid this effect. Thus, a system cannot de-
cide on the location of such tags. Note that, from a data
management perspective, there is no difference if an item
is identified by antennas from the same RFID reader, or
by antennas from different readers. In the context of plan-
ogram compliance, the following characteristics of RFID are
important:

C1: Varying number of readings Because of physical in-
terference, and because of items being sold and replen-
ished, there is a broad variation in the number of times
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Figure 3: Sketch of components in our scenario

items are identified within a certain time interval [26].

C2: Unpredictable reading field Because of physical ef-
fects like absorption and reflection, we cannot predict
the reading field of an RFID antenna, i.e., the area
where an antenna can identify RFID tags.

C3: Distinctive reading patterns The set of items of a
product type follows a certain distribution. A normal
distribution describes the number of readings of items
of a certain type by the right RFID antenna well. The
same holds for the number of readings by wrong an-
tennas (cf. Figure 2).

C4: Large data volume RFID applications in retail are
characterized by large numbers of items. This results
in huge databases and might challenge the runtime
performance of an estimator.

Planogram Compliance with RFID: We study the fol-
lowing general scenario:

• A retailer sells many items of different product types.
All items are tagged with unique RFID labels.

• All shelves in the store are equipped with RFID read-
ers, e.g., smart shelves [9]. Each RFID antenna is as-
signed to one location in the planogram, cf. Figure 3.

• Clerks replenish the shelves if they go empty, and they
re-arrange items when planogram compliance is not
given, or when the planogram changes.

Architecture of RPCV: Figure 3 is an overview of the
components described in this scenario. RPCV is imple-
mented as a database extension. I.e., one can query which
items comply with the planogram in SQL using a database
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procedure that implements RPCV. This makes integration
into business applications easy, since one can adapt existing
database queries to support RPCV without difficulty. Ex-
amples of business applications which might interact with
RPCV are Enterprise Resource Planning (ERP) systems and
Merchandise Information Systems (MIS).

3. RELATED WORK
While planogram compliance is well known to promote

sales [1, 5], there is relatively little research on planogram
compliance in smart shelves. Decker et al. [9] seem to be
first using RFID for planogram compliance. In order to
identify the correct location of an RFID tag on the shelf,
their approach requires multiple RFID antennas per item,
i.e., each smart shelf has many more antennas than items.
Since there are millions of items in large retail stores, the
approach is infeasible from an economic perspective. The
database community has developed a number of approaches
to predict the location of RFID tags identified by more than
one RFID antenna, which we will discuss in the following.
Rule-based filters: Solutions from this category propose
filtering data inside of a sliding window based on rules [2,
3, 7, 8, 13, 15, 20, 25], which can be directly applied to an
RFID data stream or after the RFID data has been per-
sisted. Examples of rules used are assigning the item to the
first antenna which has identified it [2, 20], to the last an-
tenna [25], i.e., assuming the most recent data is correct,
and assigning the item to the antenna with the most read-
ings [13, 15]. In the following, we call these methods FIRST,
LAST and MOST, respectively. The methods are fast, but
they can generate many wrong predictions, e.g., if we applied
the method MOST to the data of Product A in Figure 2,
three of the five items would be incorrectly classified as be-
ing misplaced, because wrong antennas identify these items
more often than the right antenna. Since several commercial
solutions implement such rules, e.g., IBM [20], SAP [7], and
Siemens [2, 25], we will compare their accuracy and their
performance to our method in Section 5.
Probabilistic filters: Methods based on probabilistic fil-
tering are proposed in [14, 17, 18, 29]. These methods as-
sign a certain probability of an RFID reading being correct
to each reading, depending on predefined constraints and on
statistical data. Examples of predefined constraints are that
an item cannot be located on two shelves at the same time,
and each shelf only stores a certain number of items. Sta-
tistical data consists of the probabilities of certain events,
which are devised from history data or from samples gath-
ered manually, like the probability that RFID fields of two
RFID antennas overlap. However, such data is often specific
to the position of the shelves in the store and to the items
placed in each shelf. This is because objects in the vicinity
of the RFID reader might reflect or absorb magnetic waves,
and because items of different product types and shelves
with different layouts have different physical characteristics.
Since RFID installations might be very large, and layouts
of shelves in retail change very frequently, it is often not
practical to take samples to compute such statistical data.
Thus, it is difficult to indeed deploy such methods in retail
scenarios. Note that such methods could profit from RPCV,
since our method could provide new statistical data as in-
put. It could provide the probability that a specific item is
misplaced or correctly placed, based on the reading pattern
of its product type.

Particle filters: [21, 22, 27] use particle filters to infer the
location of RFID tags. Particle filters represent a probability
distribution of events through generated samples (particles).
The samples are updated over time and are used to compute
estimations. Such methods yield good results when RFID
tags (or RFID readers) are in movement. This is because
samples are updated when an RFID tag moves past several
RFID antennas. In the retail scenario, duplicate readings
are not caused by moving items, but by overlapping RFID
reading fields. An item that is frequently identified by a
wrong RFID antenna nearby would generate many particles
at the wrong location. The particle filter would yield bad
results.
Other methods: [23, 24] have studied algorithms opti-
mized for RFID tags in movement. Different algorithms are
presented that assign an RFID tag to a certain location after
it has been identified many times or by more than one RFID
antenna along the supply chain. Again, we think that these
methods do not apply to our scenario. [6] proposes attach-
ing several RFID tags to each item in different orientations.
In such a setup, there is a very high probability that at least
one RFID tag does not lie inside a ”blind spot”. Therefore,
the variation in the number of readings (cf. Characteris-
tic C1) might be small. But this does not help verifying
planogram compliance, since an item with many RFID tags
will be identified by the same number of antennas or even
more than an item with only one tag.

Summing up, only the methods FIRST, LAST and MOST
can be directly used to verify planogram compliance. There-
fore, we will compare RPCV to these methods in Section 5.

4. RPCV ALGORITHM
We now present RPCV, a method to determine which

RFID tags identified by more than one RFID antenna com-
ply with the planogram. RPCV is fast, scalable, and it
returns one order of magnitude less wrong predictions than
related work. Furthermore, it requires less data than cur-
rent state of the art to produce good predictions, i.e., the
size of the sliding window needed until a certain accuracy is
reached is small.

RPCV is motivated by the following observation from the
field trials: The number of times an antenna identifies the
items of a certain product type roughly follows a normal
distribution (cf. RFID characteristic C3). In a nutshell,
RPCV works as follows: It first counts the number of read-
ings per RFID antenna for each item. As observed in the
field trials, RFID readers identify item sets at different rates
(cf. RFID characteristic C1), thus the number of readings
per item may vary broadly. To reduce this variation, RPCV
applies a low-pass filter. After that, it applies a clustering
algorithm to all items of a certain product type. Each item
is represented by a vector consisting of the number of read-
ings by the right RFID antenna and the number of readings
by wrong antennas. RPCV then decides for each cluster if
it is misplaced.

Note that RPCV can be easily extended to support prod-
uct types placed on more than one location, e.g., by model-
ing them as different logical product types, or by considering
a set of right antennas instead of just one.

4.1 RPCV Algorithm in Detail
To describe RPCV in more detail, we mention that it re-

quires two data structures:
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• RfidReads: a multiset with tuples (i, ant) of items
i and the RFID antennas ant identifying these items
within a pre-determined time interval (sliding window).

• Planogram: a map whose keys are product types t,
and the value corresponding to t is the RFID antenna
ant that should be identifying items of type t.

The sliding window determines the body of RFID data
available to RPCV. The scenario determines the size of the
sliding window, i.e., by means of the time intervals a retailer
rearranges misplaced items, and how often the RFID readers
are polled. We analyze the effect of the sliding window on
the quality and on the runtime of RPCV in Section 5.

1: input RfidReads, P lanogram
2: MisplacedItems = {}
3: for all (productType t ∈ Planogram.getKeys()) do
4: P = {}
5: ant = Planogram.get(t)
6: for all (item i in RfidReads) do
7: if (item i is of type t) then
8: readsR = |{(i, a) ∈ RfidReads : a = ant}|
9: readsW = |{(i, a) ∈ RfidReads : a 6= ant}|

10: P = P ∪ {(i, readsR, readsW )}
11: end if
12: end for
13: P ∗ = all pairs (readsR, readsW ) in P
14: P ∗ = lowpassF ilter(P ∗)
15: {P1, P2} = Cluster(P ∗, 2)
16: for all (cluster Pj) do
17: if avg(Pj .readsW ) > avg(Pj .readsR) then
18: insert the elements of P corresponding to the vec-

tors contained in Pj into MisplacedItems
19: end if
20: end for
21: end for
22: output MisplacedItems

Algorithm 1: RPCV Algorithm

Algorithm 1 describes RPCV. It iterates through all prod-
uct types (Line 3). First, it determines the RFID antenna
ant that should be identifying each product type according
to Planogram (Line 5). For each item, RPCV counts the
number of readings by the right antenna (readsR) and the
number of readings by other (wrong) antennas (readsW )
and adds this two-dimensional vector to a set P correspond-
ing to type t (Lines 6-10). In Line 13, RPCV removes at-
tribute i from P , since it is not used for clustering. RPCV
then applies a low-pass filter to reduce the variation of the
remaining values readsR and readsW (Line 14). Now it
applies a clustering algorithm to the values readsR and
readsW of each item, to create two clusters P1 and P2 for
each product type (Line 15). We will explain later why the
number of clusters to be identified is two. The first argu-
ment of function Cluster in Line 15 is the set of vectors to be
clustered, the second argument is the number of clusters to
be returned. Then RPCV decides if a cluster represents mis-
placed items. It does so by checking if on average the cluster
was identified more often by wrong antennas (Lines 16-20).
After RPCV has iterated through all product types, it re-
turns the set of misplaced items. The choice of the clustering
algorithm and the low-pass filter are explained in the follow-
ing subsections.

1 3 4

Antenna A Antenna B

2

y

5

x

6

Figure 4: Example scenario

Example 1 introduces a simple scenario for planogram
compliance. We will use this scenario in subsequent ex-
amples to illustrate RPCV and to illustrate the clustering
algorithm and the low-pass filter.

Example 1: Figure 4 shows two RFID antennas and items
of two different product types, located in a 2D-space. The
product types are represented as circles and squares. The
gray area in the figure shows the reading field of Antenna A.
We now want to decide if the Items 1 to 6, which are of
product type circle, comply with the planogram. Suppose
that the planogram requires these items to be placed under
Antenna B. Item 1 is identified very often by Antenna A.
Item 2 is identified often both by Antennas A and B, and
Items 3 to 6 are identified very often by Antenna B.

4.2 Clustering: Expectation Maximization
Items of the same product type have similar physical char-

acteristics, i.e., they tend to affect the magnetic waves of the
RFID reader in a similar way. Thus, items of the same type
might be read at wrong locations in the shelf with a similar
probability. RPCV takes advantage of this by incorporat-
ing a clustering algorithm. It is applied to the value pairs
readsR and readsW of each item.

In a set of preliminary experiments, we have evaluated dif-
ferent clustering algorithms [28]. We have integrated these
clustering algorithms into RPCV and have counted the num-
ber of false predictions with the data from the field trials.
Our results were as follows: density based clustering (11%
wrong predictions), farthest first traversal algorithm (10%
wrong predictions), k-means (9% wrong predictions), and
Expectation Maximization (1% wrong predictions). In other
words, the Expectation Maximization (EM) algorithm [10]
provides the best results for our use-case.

1: input tuples {(x, y)}, number of clusters k
2: {P1..., Pk} = initClusters({(x, y)}, k)
3: {θ1..., θk} = initDistributions({P1, ...Pk})
4: while (clusters change) ∧ (# of iterations < limit) do
5: for all (cluster Pj) do
6: Ej = estimateExpectedV alues(Pj , θj) // E-Step
7: θj = estimateParameters(Pj , Ej) // M-Step
8: Pj = updateCluster(Pj , θj)
9: end for

10: end while
11: output {P1, ..., Pk}

Algorithm 2: EM Algorithm

In the next section we experiment with setups where RPCV
works well, and setups where it does not. To understand the
experiments well, one should know how the EM algorithm
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works. This is why we list it in Algorithm 2. The EM algo-
rithm tries to fit k probability distributions to each dimen-
sion of the input data. The result will be k clusters, and
one probability distribution in each dimension describes a
cluster. Thus, since RPCV has two-dimensional input data,
two probability distributions will represent one cluster. The
algorithm starts with an initial set of clusters on the two-
dimensional data {(x, y)} (Line 2), which is gained by run-
ning a few iterations of the k-means algorithm. The EM
algorithm estimates the parameters of the distributions of
the initial clusters (Line 3) and improves them iteratively
(Lines 4-10). It iterates until the clusters do not change
any more, or until a limit of 100 iterations is reached. 100
iterations are in line with best practices described in liter-
ature [28]. For each cluster and in each iteration, it first
computes the expected values of the log likelihood with re-
spect to the current distributions (Expectation-Step, Line 6)
and then updates the parameters of the distributions using
the expected values computed in the E-step (Maximization-
Step, Line 7). At the end, the algorithm outputs k clusters.
As the probability distribution we use the normal one. It
correctly models the RFID data, and it can be computed
fast, since a closed form of the estimators exists [10]. Exam-
ple 2 illustrates how RPCV uses the clustering algorithm.

Example 2: In this example, which continues Example 1,
we look at the readings by Antenna B. Within the sliding
window, Antenna B identifies each item with the following
frequency: Item 1: 0 times, Item 2: 9 times, Items 3 to
5: 16 times, Item 6: 25 times. First, RPCV will group
these items by the number of readings, shown in Figure 5.
The bars show the number of occurrences of each number
of readings. The figure also shows the two normal dis-
tributions that the EM algorithm fits to the data. Each
curve represents one cluster. RPCV decides if a cluster
represents misplaced items by checking if on average the
items in the cluster were identified more often by wrong
antennas. Each bar is assigned to the most likely normal
distribution, i.e., to the curve with the highest value at the
x-position of the bar. The bars with the frequencies 0 and
9 belong to one cluster, which turns out to be a cluster of
misplaced items. The other two bars belong to the other
cluster, which turns out to be a cluster of correctly placed
items.

Internally, the EM algorithm uses probabilities to express
the membership of items in clusters. In our scenario, this

fuzzy boundary yields better results than fixed member-
ships: During the iterations of the clustering algorithm,
there is a higher chance that the assignment of items to
a certain cluster changes, thus reducing the chance of the
clustering algorithm getting stuck at local optima. For in-
stance, consider Figure 5 in Example 2: The item which was
identified 9 times has a high likelihood of belonging to the
misplaced cluster and a low likelihood of belonging to the
other one.

As mentioned, we configure the EM algorithm to find two
clusters, because there are two kinds of items we want to
separate: correctly placed and misplaced items. We have
experimented with different numbers of clusters, and two
clusters have lead to the best results. Looking at the raw
RFID readings, there are items that are definitely correctly
placed or misplaced, and there are items whose actual loca-
tion is difficult to predict, e.g., because two antennas identify
the item very often. With more than two clusters, each of
these items might form its own cluster. Then we cannot
decide on the location of these ”difficult” items. With two
clusters, we likely force the EM algorithm to assign such
items either to the cluster of correctly placed items or to the
one of misplaced items. Note that, in general, both clusters
can represent correctly placed or misplaced items, e.g., if
none of the items in the cluster or all of them are misplaced.
To cope with such situations, RPCV decides if a cluster rep-
resents misplaced items by checking if on average the cluster
was identified more often by wrong antennas.

4.3 Low-Pass Filter
Even though the number of times an antenna identifies

the items of a certain product type roughly follows a nor-
mal distribution, the absolute numbers of RFID readings of
individual items might differ a lot. This occurs due to blind
spots, due to customers buying items, and due to items be-
ing replenished (cf. RFID characteristic C1). This poses a
problem to clustering algorithms: As we have observed in
the field trials, there are items that are identified only once
in a certain time period, while others are identified hundreds
of times.

To overcome this problem, RPCV applies a low-pass fil-
ter to the RFID data. Low-pass filters let numbers with
small values pass through, and they reduce the value of large
numbers. A low-pass filter for our scenario must fulfill the
following requirements: (1) It must significantly reduce the
variation of the numbers of readings, and (2) it must sup-
port a large number of items (cf. Characteristic C4). Be-
cause of (2), only simple filters are applicable in our scenario.
Many mathematical functions can be computed quickly and
fulfill Requirement (1). As a first step, we have identified
such functions, e.g., roots, logarithms, and sigmoid func-
tions. Next, in another set of preliminary experiments, we
have evaluated these functions with different parameters and
have applied them to the data from the field trials, in com-
bination with the clustering algorithm. We did obtain the
best results using the square root as a filter, since it has pro-
duced the smallest number of false predictions. The square
root will reduce large values by much, i.e., from items with
a large number of readings. Further, it imposes little change
on small values, thus reducing the variation of the number
of readings. We show function lowpassF ilter in Equation 1.

lowpassF ilter({(x, y)}) = {(
√
x,
√
y)} (1)
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Figure 6: Distribution of filtered readings

Example 3 illustrates the low-pass filter. It shows the im-
pact of the filter on the clusters determined by the EM al-
gorithm.

Example 3: In Figure 5 there is a big difference between
the number of readings for each item, and the bars have
a similar distance to each other in the x-direction. The
EM algorithm has problems correctly classifying such data,
and the column at frequency 9 (Item 2) is incorrectly as-
signed to the cluster of misplaced items. Figure 6 shows
the results when we apply a low-pass filter to the number
of readings. Now the data is distributed over a smaller in-
terval, and large values lie closer to each other. The EM
algorithm classifies the filtered data correctly.

5. EVALUATION
In this section we evaluate RPCV. We want to (1) provide

an intuition of how RPCV works, (2) show that the accuracy
of RPCV is better than the one of related work, (3) show
that RPCV requires less data to produce good predictions,
(4) identify scenarios where RPCV does not function well,
and (5) show that RPCV is fast when predicting with a
large number of items and a large number of RFID readings.
We compare RPCV with the methods FIRST, LAST and
MOST, since they are the only methods from related work
that can be directly used to verify planogram compliance.
These methods assign each item to the first RFID antenna
identifying an item, to the last one, and to the one with the
most readings, respectively.

We have implemented our method as an extension of SQL
in the SAP MaxDB database management system. We ran
all experiments on a desktop PC (Windows, 2GB RAM,
2GHz dual core CPU, 1 SATA hard disk). We used the de-
fault configuration of MaxDB [4] and Java (version 1.6.0 12)
for the performance experiments.

5.1 Experimental Setup
We evaluate our approach with the scenario described in

Section 2. We have used real-world data obtained from the
smart shelf shown in Figure 1, and we also experiment with

synthetic data.

Real-World Data
We have equipped a retail shelf with two RFID readers (In-
termec IF5). The shelf comes from a large German retailer
and is identical to the one used in their stores. Its dimen-
sions are 166cm x 110cm x 65cm. The shelf consists of four
shelf units, and each shelf unit contains two RFID anten-
nas, c.f. Figure 1. The shelf contains items belonging to
5 different product types. For this experimental setup, we
identify the product type whose location prediction is most
difficult. This is the product type with the worst reading
pattern, i.e., the right RFID antennas cannot always iden-
tify items of this product type, and antennas from nearby
locations often generate readings of these items.

On average, a retailer has between 8 and 13 items of each
product type on one shelf [19]. For our experiments, we
choose a challenging scenario with many more items than
average. We used 30 items of the product type with the
worst reading patterns, and we did experiments in three
kinds of scenarios that occur in a retail store:

1. Static scenario: We arrange the items on the shelf in
different ways, with misplaced items ranging between
0% and 50%. After the items were rearranged, we start
recording the RFID data.

2. Sales scenario: We arrange the items on the shelf
in the same fashion as in the static scenario. After we
started recording the RFID data, different items which
were not misplaced are removed from the shelf one by
one.

3. Replenishment scenario: The experimental setup
is the same as in the sales scenario, but after all items
were removed, the shelf is replenished with new items.

In the static scenario there are no customer interactions
like sales or replenishment. To ensure that we do not bias
the customer interactions in the other two scenarios, we have
asked a person unfamiliar with RPCV to remove and re-
plenish items. This is in line with state-of-the-art user ex-
periments, i.e., the individuals who have designed the ex-
periment must not be part of it. The two scenarios with
customer interactions are challenging: In the sales scenario,
some items identified by the right antenna will have a large
variation in the number of readings. In the replenishment
scenario, all correctly placed items are replaced.

We poll the RFID readers three times per minute for 10
minutes. One polling corresponds to one RFID reading cy-
cle. Thus, our sliding window consists of 30 reading cycles.
Our smart shelf produced 34,851 RFID readings. In total,
we have predicted the location of items 299 times.

Synthetic Data
We also experiment with synthetic data. This allows us
to independently vary each parameter that might influence
RPCV, to repeat tests more often, and to test extreme pa-
rameter values.

There are many uncertain parameters influencing the num-
ber of RFID readings, and we cannot determine the num-
ber of readings analytically. Therefore we generate different
RFID reading patterns by means of a simulation. Our sim-
ulation is based on Monte Carlo Methods [16], and it works
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Figure 7: Replenishment scenario, 25% misplaced

as follows: We simulate a reading by each antenna in a time
interval, and we do so repeatedly: For each time interval, we
decide with a fixed probability p if the right antenna identi-
fies an item, and with a fixed probability q if a nearby an-
tenna does so. If an antenna identifies an item, we determine
the number of times the item was identified by drawing a
number from a normal distribution N(µ = 0.50;σ2 = 0.25),
multiplying it with 100 and converting it to an integer. This
simulation is fast, and it creates data very similar to the data
from the experiments with the smart shelf.

Based on observations from the real-world data, we sim-
ulate three kinds of RFID reading patterns: (1) correctly
placed items that are frequently identified by the right an-
tenna and rarely by wrong antennas, (2) correctly placed
items that are frequently identified by the right and by
wrong antennas, and (3) misplaced items that are frequently
identified by wrong antennas and rarely by the right an-
tenna. Note that our simulation draws the number of read-
ings from a probability distribution, therefore reading pat-
tern (2) will also contain correctly placed items which are
identified more often by wrong antennas than by the right
one.

5.2 Evaluation with Real-World Data

Intuition
In order to provide an intuition regarding RPCV, we have
conducted an experiment with real data where 25% of all
items are misplaced. Figure 7 shows the results. The x-axis
shows the number of RFID readings by the right RFID an-
tenna, and the y-axis the number of RFID readings by wrong
RFID antennas. The dark gray circles represent items cor-
rectly placed, and light gray circles represent actually mis-
placed items. The size of the circles represents the number
of items at that position in the figure, e.g., the light gray cir-
cle most to the right represents one item, and the light gray
circle most to the left represents two items. Items above the
diagonal were identified more often by wrong antennas than
by the right one. For instance, the light gray circle that is
most to the right represents one item that was identified 24
times by the right antenna and 36 times by wrong ones.

Table 1: Accuracy
Method Precision Recall F1 score
RPCV 98.2% 96.4% 97.3%
MOST 63.4% 100.0% 77.8%
FIRST 56.0% 100.0% 71.8%
LAST 38.5% 92.9% 54.5%

The items identified by the right antenna show a small
number of RFID readings, on average around 12 readings,
because of constantly changing items resulting from sales
and replenishment. The misplaced items are identified very
often, since they are not sold. On average they are identified
around 44 times at their actual location.

RPCV identifies one cluster of misplaced items. Items in
this cluster have an average of around 44 readings by wrong
antennas, and around 8 readings by the right antenna. Fur-
ther, RPCV identifies one cluster of correctly placed items
that show less than one reading by wrong antennas on av-
erage, and around 12 readings by the right antenna.

In this experiment, the data is clearly segregated, and
RPCV produces no wrong prediction. MOST in turn has
difficulties in this experiment: 8 correctly placed items were
identified equally or more often by wrong antennas. Thus,
MOST results in 8 wrong predictions. The methods FIRST
and LAST will produce 8 and 3 wrong predictions, respec-
tively.

Accuracy with Real-World Data
In this set of experiments we compare the accuracy of RPCV
to the one of related work on the data gathered with our
real-world installation.

We measure accuracy with the commonly used measures
precision, recall and the F1 score. They are calculated us-
ing the number of true positives (TP), false positives (FP)
and false negatives (FN). True positives are misplaced items
predicted as such, false positives are correctly placed items
with incorrect prediction, and false negatives are misplaced
items, but the prediction is that the placement is correct.
Precision is defined as TP

TP+FP
, recall is defined as TP

TP+FN
.

The F1 score is defined as 2·precision·recall
precision+recall

.
Table 1 lists the accuracies. From 299 predictions, RPCV

was wrong in only 3 cases. We will further examine these
wrong predictions in the next set of experiments. This re-
sults in an F1 score of 97%. The next best related work
– method MOST – produces 32 wrong predictions, i.e., an
F1 score of 78%. Thus, our method produces one order of
magnitude less wrong predictions than other approaches.

Incorrect Predictions with Real-World Data
Now we want to identify the situations when RPCV does
not perform well with real-world data. Figure 8 shows one
experiment from the static scenario, where 50% of the items
are misplaced. Predictions with data from this experiment
are difficult, since three correctly placed items (shown in
two circles) were frequently identified by wrong antennas.
Therefore, in the figure these two items are very close to the
items actually misplaced. When applying our algorithm, one
correctly placed item is predicted to be misplaced (false pos-
itive). In the figure, a dashed rectangle encloses this item.
MOST, by the way, will produce two false positives as well
in this specific setting. Figure 9 shows an experiment from
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Figure 8: Static scenario, 50% misplaced

the sales scenario, where 50% of the items are misplaced.
In this experiment, RPCV produces two false negatives. A
dashed rectangle encloses both items in the figure. MOST
will produce two false positives in this setting.

The wrong predictions in both scenarios have to do with
the way the EM algorithm works. It tries to fit two nor-
mal distributions to each dimension of the input data, and
one distribution of each dimension will represent one cluster.
We illustrate this with the distribution of readings by wrong
antennas, shown in Figure 10. The x-axis shows the num-
ber of readings by wrong antennas, and the y-axis shows the
respective number of occurrences. The bars show the distri-
bution of readings of the RFID data, i.e., the bar most to
the right is equivalent to the biggest circle on the top left of
Figure 9. Each curve shows the normal distribution for one
cluster. RPCV obtains these curves by fitting two normal
distributions to the data in the figure. The EM algorithm
assigns each item with a certain number of readings to the
most likely normal distribution, i.e., each bar is assigned
to the curve with the highest value directly above the bar.
Note that the curves are skewed because RPCV fits them
to the square root of the data, because of the low-pass fil-
ter. A dashed rectangle encloses the two wrong predictions
from Figure 9. The normal distribution of the cluster of
misplaced items has a higher mean value of the number of
readings by wrong antennas than the other normal distri-
bution. It has a very high mean value and a very small
standard deviation. The two wrong predictions do not lie
under this curve. The EM algorithm chooses the distribu-
tions with the highest likelihood, and this results in wrong
predictions.

We only encountered this kind of problem in the exper-
iments described in this section. Furthermore, we did not
find a correlation between this problem and the position of
the item on the shelf. In other words, this effect seems to
occur very rarely. Nevertheless, we plan to explore the issue
further in future work, e.g., by combining the results of the
EM algorithm with clustering algorithms that do not show
this behavior.
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Figure 9: Sales scenario, 50% misplaced
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Figure 10: Distribution of readings by wrong an-
tenna

5.3 Evaluation with Synthetic Data
We now want to study the influence of the various param-

eters of RPCV. We do so by means of simulations. They let
us vary parameters independently, repeat tests more often,
and test extreme parameter values. In particular, we vary
the number of RFID readings, the total number of items,
the number of items for each kind of reading pattern, and
the probabilities of items being identified by the right RFID
antenna and by wrong ones.

Size of Sliding Window
In this set of experiments, we want to analyze the effect of
the size of the sliding window on the accuracies of RPCV and
of related work. We set the parameters of our simulation to
mimic characteristics of the real-world data, as studied be-
fore. We simulate the static scenario with 30 items, with
half of the items correctly placed and identified very often
by the right antenna, one fourth of the items correctly placed
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Figure 11: F1 scores for different sizes of the sliding
window

and identified very often by the right and by wrong anten-
nas, and with one fourth of the items being misplaced and
identified very often by wrong antennas. We compute pre-
dictions after the first RFID reading cycle, after the second
one etc. until reaching 100 cycles. We compare the values of
the F1 scores.

We expect the F1 score to be constant with methods
FIRST and LAST, since we are simulating a static scenario.
The F1 score of RPCV and of MOST should stabilize, be-
cause the share of readings by each antenna should become
more stable as more RFID data is gathered.

We show the average results of 1,000 experiments in Fig-
ure 11. As expected, the F1 score of FIRST and LAST is
constant. The F1 score of RPCV and of MOST increases
slightly with the size of the sliding window. The F1 scores
with a sliding window of 30 are identical to the ones of our
real-world experiments. They are similar to the F1 scores
shown in Table 1. The dotted area in the figure plots the
standard deviation of RPCV. After 18 reading cycles, the
average result of our method plus the standard deviation
is still better than the second best method. The standard
deviations of the other methods are not plotted for better
readability. The standard deviation of MOST is nearly con-
stant at 7 percentage points. The one of FIRST is constant
around 11 percentage points, the one of LAST is constant
at around 6 percentage points.

These experiments show that RPCV produces good re-
sults with a small sliding window, and that the prediction
accuracy, i.e., the F1 score, quickly reaches 100%. Thus, our
method is applicable in scenarios that need to track plan-
ogram compliance in small time intervals.

Total Number of Items Present
We now want to find out how the total number of items
present influences our prediction, and if there is a minimum
number of RFID items that has to be present for RPCV to
work.

Our simulations have the same parameters as before. Re-
call that a retailer has between 8 and 13 items of each prod-
uct type on a shelf on average. We vary the total number of
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Figure 12: Standard deviation vs. number of items

items present between 4 and 1,000. A shelf in retail holds
less than 1,000 items – this number is a worst case. For each
number of items we run 1,000 tests for each sliding window
size from 1 to 100 reading cycles.

We expect the average results of RPCV to be independent
from the total number of items, and we expect the standard
deviation to increase as the total number of items decreases,
since RPCV will have less data to carry out its predictions.

Our expectation holds: The average results of RPCV do
not vary with the total number of items. To analyze the
standard deviation, we calculate the average deviation of all
tests for each total number of items. The results are shown
in Figure 12. The average standard deviation lies around
15% with 4 items, and it decreases as the total number of
items increases. The average standard deviation of RPCV
is lower than the ones of the related approaches. Since the
average results of RPCV do not vary with the total number
of items, it is applicable for product types with very few
items.

Worst-Case: Proportion of Misplaced Items and Prob-
abilities of Items Being Identified
In this set of experiments we vary the number of items for
each kind of reading pattern while keeping the total number
of items constant (100). Further, we vary the probabilities of
items being identified by each RFID antenna independently,
i.e., we vary the values of p and q between 0 and 1. We
want to find the setting which is most challenging for our
algorithm.

When varying the number of items for each reading pat-
tern we found the worst results when the number of items
identified frequently by the right antenna and by wrong ones
is very high. The overall probabilities of items being iden-
tified have little impact on the average quality of RPCV,
but they will increase the standard deviation. Reducing the
overall probabilities will result in less data, similarly to ex-
periments with a smaller sliding window.

Next, we vary the probabilities from different RFID an-
tennas independently, i.e., p and q. We found that the main
factor influencing RPCV is the difference between the proba-
bilities of items being identified by each antenna. The results
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Figure 13: F1 score for worst-case scenarios

are presented in Figure 13. The graph shows the average re-
sult of 1,000 tests with 100 items and 100 reading cycles.
The x-axis shows the number of items identified frequently
by the right antenna and by wrong ones, denoted as ”diffi-
cult items”. For these items, we fix the probability of an item
being identified by the right antenna to p = 50%, and we
vary the probability q of being identified by wrong antennas
(y-axis). The remaining number of items is equally divided
amongst items correctly placed and identified frequently by
the right antenna and misplaced items identified frequently
by wrong antennas.

In general, the F1 score of our method lies above 70%
when less than half of all items are identified very often by
the right antenna and by wrong ones, and when the proba-
bility q that items are identified by wrong antennas is half
of p, i.e., 25% in the graph. The thick lines in the graph
show this interval. Note that this interval covers the usual
reading characteristics of RFID readers. The parameters
under which our method does not function well correspond
to reading characteristics that are unrealistic.

Performance and Scalability
Now we evaluate the performance and scalability of RPCV.
We analyze the runtime of RPCV and compare it to the one
of related work. In this experiment we use several databases
with different sizes. Recall that a retailer has between 8
and 13 items of each product type on one shelf on average.
We evaluate the performance with 100 items. The number
of times each item is identified is varied between 10 and
100,000. Thus the largest database table in this experiment
has 10,000,000 rows. Figure 14 graphs the results. Each
number is the average of 20 runs. The runtime of RPCV lies
between 140ms and 160ms. Even though it is slower than
related work, it still is fast for a large number of items and a
huge number of RFID readings. Further, RPCV requires less
data to produce good predictions and generates one order of
magnitude less wrong predictions than current state of the
art.

In the next experiment we keep the total number of RFID
readings for each database constant at 10,000,000 readings
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Figure 14: Runtime in dependence of the # of read-
ings

and vary the number of items between 100 and 1,000 items.
Even though it is very unlikely for a retailer to have more
than 100 items of a product type on shelf, we still want to
evaluate how RPCV scales in extreme situations. See Fig-
ure 15. The runtimes of FIRST and LAST lie around 100ms,
and the growing number of items does not affect them. For
100 RFID readings, the runtime of MOST is 125ms, and it
grows nearly linearly to 182ms for 1,000 readings. RPCV
grows nearly linearly as well: 124ms for 100 readings, and
291ms for 1,000 readings. The fact that the growth is al-
most linear is backed by more data which is omitted from
the graph for readability.

6. CONCLUSIONS
RFID-based tagging to optimize commodity flows is im-

portant in all industry segments. However, not being able
to decide on the actual location of RFID tags identified by
more than one RFID antenna poses problems when inte-
grating RFID data with enterprise-backend systems. This
occurs because of physical interferences. This phenomenon
is principal in nature, and future RFID technology will face
it as well.

In this paper we have presented the RFID Planogram
Compliance Verification (RPCV) method to decide if RFID
tags identified by more than one RFID antenna comply with
the planogram. RPCV is motivated by the observation that
the number of times an antenna identifies each item of a
certain product type roughly follows a normal distribution.
It represents each item in the database as a two-dimensional
vector containing the number of readings both by the right
antenna and by wrong ones for a given time interval. RPCV
clusters this data, separately for each product type. It then
deems all items in a cluster correctly placed or misplaced.
RPCV requires less data to produce good predictions and
produces one order of magnitude less wrong predictions than
related work. It is fast and scalable. An analysis and exten-
sive experiments both with synthetic databases of items and
with a real RFID installation confirm the applicability of our
approach both in extreme settings and in realistic scenarios.
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