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ABSTRACT
The wide availability of commodity multi-core systems
presents an opportunity to address the latency issues that
have plaqued XML query processing. However, simply ex-
ecuting multiple XML queries over multiple cores merely
addresses the throughput issue: intra-query parallelization
is needed to exploit multiple processing cores for better la-
tency. Toward this effort, this paper investigates the par-
allelization of individual XPath queries over shared-address
space multi-core processors. Much previous work on par-
allelizing XPath in a distributed setting failed to exploit
the shared memory parallelism of multi-core systems. We
propose a novel, end-to-end parallelization framework that
determines the optimal way of parallelizing an XML query.
This decision is based on a statistics-based approach that
relies both on the query specifics and the data statistics. At
each stage of the parallelization process, we evaluate three
alternative approaches, namely, data-, query-, and hybrid-
partitioning. For a given XPath query, our parallelization
algorithm uses XML statistics to estimate the relative effi-
ciencies of these different alternatives and find an optimal
parallel XPath processing plan. Our experiments using well-
known XML documents validate our parallel cost model and
optimization framework, and demonstrate that it is possible
to accelerate XPath processing using commodity multi-core
systems.

1. INTRODUCTION
For a number of years, chipmakers like Intel and AMD

have focused on increasing the processor speeds of single-
core microprocessors to keep up with Moore’s law [13]. How-
ever, the physical limits of power and transitor density on
a chip severely limits further increases with that approach.
This led chipmakers to consider alternative architectures in
which multiple processing cores are used to execute instruc-
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tions in parallel. So, whereas the trend before was to increase
processor speeds between microprocessor generations, in the
last few years a new trend has emerged where the differ-
ence between microprocessor generations is in the number
of cores. Nowadays, it is not uncommon to find four cores,
even in commodity hardware.

To take advantage of these multiple cores, software sys-
tems needs to be parallelized. Indeed, there has been a lot
of interest in systems research, including database systems
research [21], on how to harness the processing power of
these new parallel processing architectures. Automatic par-
allelization of software is well-known to be a hard problem;
hence, automatic parallelization at the operating systems
level is unlikely to provide a satisfactory solution. In this
paper, we pick the domain of XML query processing to in-
vestigate the problem of parallel evaluation of XPath [8]
queries over a shared-address space multi-core system. The
XML domain is particularly pertinent to parallel processing.
XML is the de facto data representation format used nowa-
days, and XPath queries are commonly used (or as part of
XQuery expressions) to query XML data in the industry.
Moreover, query latency is a problem frequently encoun-
tered by XML-based systems in the industry. While query
throughput can be addressed by evaluating multiple queries
over multiple processing cores, query latency requires intra-
query parallelization. Parallel query evaluation in this set-
ting is as important, and not unlike, the early works on
parallel evaluation of SQL queries over relational data [15].
In spite of sharing motivation however, the commonalities
between the relational/SQL and XML/XPath settings are
few and techniques from the former setting do not carry
to the latter. Parallelization of relational join processing,
for example, does not apply readily to XPath processing,
because (1) the XML data model is tree-based unlike the
table-based relational model, and (2) relational joins are
commutative, whereas XPath navigation is inherently or-
dered. Hence, parallelization of XPath queries brings new
fundamental challenges.

Consider the sample XML document tree in Figure 1 (con-
forming to XMark [25]). Assume that we want to evaluate
the XPath query /site/regions/* to retrieve the names of
all regions from our document (where * denotes the wildcard
and can match any element). Should we parallelize the eval-
uation of the query or not? Clearly, this decision depends
both on the query itself and on the characteristics of the doc-
ument. In XMark, there is usually only a limited number
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(a) XML Data Tree

/site/open_auctions/open_auction[annotation/author and annota-

tion/description and bidder/date and privacy]

(b) XPath Query

Figure 1: Sample XMark tree fragment and XPath
query.

of region nodes, each corresponding to a continent. There-
fore, our query will access only a small number of nodes.
Given that any form of parallelism is expected to also incur
some cost in the evaluation, it seems that in this particular
setting any benefits from parallelism are either insignificant
or are alleviated by the cost of parallelism. Therefore, a
serial execution seems preferable. However, what if a re-
gion node exists for each, say, county in the United States?
Then, with approximately 3,000 possible region nodes, for
the same query it seems reasonable to try to parallelize the
evaluation of the query by considering, in parallel, all the
regions, say, by state. In general, given a document and a
query, our first challenge here will be to decide whether or
not to parallelize the evaluation of the query.

For the simple example query, once the decision is made
to parallelize, it is rather straightforward to decide how the
query is parallelized: each core evaluates the initial query
over a subset of the regions (i.e., document), which is an ex-
ample of what we call a data partitioning [4] parallelization
strategy (more on this later). In reality however, there will
be multiple ways to parallelize a query, each of which might
use a different strategy. To see this, consider for example the
query in Figure 1(b). Assuming that there is a large num-
ber of open_auction nodes in the document, we might decide
to parallelize on the third step of the query (hereafter also
referred to as a partitioning point). Data partitioning here
dictates that we evaluate the first three steps of the query
sequentially and then each core evaluates the predicate over
a subset of the open_auction nodes retrieved by the serial
evaluation. However, another parallelization strategy is also
possible here. Using the query partitioning [4] paralleliza-
tion strategy, we rewrite the initial query into three new
queries, with each of the three predicates of the initial query
appearing in only one of the resulting queries. For exam-
ple, /site/open_auctions/open_auction[annotation/author]

is one of the three queries. Then, each rewritten query is
evaluated by a different core and the final result is computed
by the intersection of results in all the cores.

Given the two alternative strategies, how can we choose
which one to use to parallelize our query? Even if it is clear
that one of the two strategies is the most promising, how can
we be certain that parallelizing our initial query at a differ-
ent step, say, in annotation might not give better response

times. In general, for an XPath query with a total of n

steps (including steps within predicates), each step could be
a candidate partitioning point for parallelization. A parallel
query processing plan might contain a subset of the parti-
tioning points. Hence the number of possible parallel query
plan is O(2n). For a given subset of partitioning points,
the parallelization strategy at each point, and the order of
the partitioning points may further result in different par-
allelization plans. Coming up with a way to systematically
search and find good parallel query processing plans in this
huge search space is the second challenge we address in this
paper. Unlike the work by [4] which builds such plans in an
ad hoc manner, our objective here is to provide a solution
that uses a statistics-based approach to find a good, if not
the best, parallel query processing plan. Coming up with an
appropriate statistics-based model for the parallelization of
XPath queries is our third challenge.

The contributions of this paper are summarized as follows:

• We introduce and address the problem of parallelizing
XPath queries on shared memory, multi-core proces-
sors. To the best of our knowledge this is the first
work that offers a systematic way to address the chal-
lenges in this domain.

• We investigate what statistics are needed to model the
running time of parallel XPath processing plans. We
use a minimal set of known XPath statistics which we
adapt and show how they can be used to find good
parallel processing strategies.

• We propose a parallelization algorithm that uses the
statistics together with several heuristics to find and
select parallelization points in an XPath query. Once
the parallelization points are selected, parallel query
plans are generated and executed.

• We implement our parallelization algorithm in a proto-
type end-to-end XPath processing system and provide
experimental results that validate the effectiveness of
our parallelization algorithm on realistic XML work-
loads.

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 introduces as background
the three strategies for parallel execution of XPath queries:
data, query, and hybrid partitioning. Section 4 describes the
statistics-based models used to estimate the running time of
different parallel execution strategies. Section 5 presents the
statistics-based parallelization algorithm. Section 6 presents
experimental evaluation of our algorithm using queries from
realistic XML workloads. Finally, we conclude in Section 7
with a summary of our results and a discussion on future
work.

2. RELATED WORK
Orthogonal to our work, and thus not the focus of this

paper, the problems of XML cardinality and selectivity es-
timation have been extensively studied [1, 6, 23, 24, 16, 10,
29, 28, 17, 2, 27]. Our work adapts and uses many of the
estimation models (e.g., the Markov model) proposed in the
literature.

Cost-based query optimization in XML databases, al-
though not as well covered in the literature as selectivity
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estimation, has been employed successfully in commercial
databases like IBM DB2 pureXML [2, 3]. Balmin et al. [2,
3] outlines some of the cost models and optimization heuris-
tics used in DB2 pureXML. Hidaka et al. [12] outlines a cost
model for XQuery. Zhang et al. also proposed a statistical
learning-based approach [30] for modelling the cost of XPath
queries. These cost-based query optimization approaches
deal solely with sequential execution plans. Our work ad-
dresses cost-based optimization issues associated with par-
allelization. We adapt some of the existing cost models for
sequential portions of our parallel execution plans, but the
cost models that we developed for evaluating parallelization
decisions have not been addressed in previous literature.

Parallelization of SQL queries has been extensively stud-
ied in the context of both distributed and centralized repos-
itories [14, 15, 18]. Most commercial database systems sup-
port parallel query processing in either shared-nothing or
shared-everything architectures. Parallelization has been
extremely effective in practice, for both OLTP, OLAP/data
warehousing, and web applications. Parallelization of SQL
queries differs from the XPath parallelization as follows: (1)
The SQL workload supports in-place updates, while XPath
processing is read-only; (2) The relational data has a regu-
lar 2-dimensional structure that is suitable for partitioning
either along rows or columns. The rooted hierarchical struc-
ture of XML is not inherently suited for balanced data parti-
tioning; (3) Using hash-partitioning, it is easier to physically
distribute relational data across multiple storage nodes while
maintaining data affinity. For XML documents, it is very dif-
ficult to effectively physically cluster related items; and (4)
Unlike relational data, XML can be accessed and stored in
many different ways, e.g., in-memory, streaming, relational
or native storage. XPath parallelization algorithms need to
be tuned to match the XML storage and access characteris-
tics.

Past studies have evaluated XML processing either in dis-
tributed or concurrent scenarios. Most existing XML pro-
cessing engines are thread-safe and allow multiple threads to
issue concurrent XPath queries againts an XML document.
Distributed XML processing is discussed in [5, 7]. The work
in [5] considers initially Boolean XML queries expressed in
a language containing forward axes, labels, text and the
Boolean operators and, or and not. The algorithms are in-
spired by partial evaluation. In essence, the whole query and
all its sub-queries are evaluated in each distributed fragment.
During query evaluation, data unknown at some fragment is
replaced by Boolean variables. Therefore, the computation
at a fragment may result in a Boolean expression in terms of
these variables, hence the relationship to partial evaluation.
When all fragments complete computing, the final Boolean
result may be resolved. The main advantage of the scheme
is that computation at various fragments proceeds in paral-
lel and incurs a computational overall cost similar to that
of a centralized mechanism. The work in [7] extends the
ideas from Boolean to node-returning queries. The idea is
to normalize queries, and to treat separately the qualifiers in
a query and the selection (main skeleton) part of the query.
The various qualifiers are treated using the techniques of [5].
The evaluation of the selection path also uses partial eval-
uation ideas to ”transmit” information between fragments.
The overall scheme of [5, 7] is elegant and theoretically effi-
cient. However, one of its limitations is that these fragments
need be constructed statically. Issues of load balancing and

performing the partition optimally or dynamically have not
been addressed.

The work of [26] treats distributed query evaluation on
semistructured data and is applicable to XML query pro-
cessing as well. It treats three overlapping querying frame-
works. The first is essentially regular expressions. The sec-
ond is based on an algebra, C, and is aimed at restructuring.
An algebraic approach based on query decomposition is pro-
vided for solving C queries. Here a query is rewritten into
subqueries implied by the distribution. These queries are
evaluated at the distributed fragments to produce partial
results which are later assembled into a final result. The
third is select-where queries, declarative queries combining
patterns, regular expressions and some restructuring. Here,
processing is done in two stages where the first is evaluating
a related query that is expressible in C, and hence paral-
lelizable, which produces partial results that are then used
to form the final result at the client. The focus is on com-
munication steps.

One may approach the problem of parallelizing XML
query processing within the general framework of efficiently
programming and coordinating multiprocessor computa-
tions (see [11] for a comprehensive treatment). This is the
approach taken in [20, 22]. Execution of various XML pro-
cessing tasks (not including query processing) appears in
[20] in the context of multicore systems. The idea is to have
a crew of processes each taking tasks out of its own work
queue. Once tasks are exhausted, a process may steal tasks
off queues of other processes. Tasks are ordered so that pro-
cessing is done at the top whereas stealing is done at the
bottom. This creates less contention. A scheme is presented
for constructing the final result. The paper presents the
idea of region-based task partitioning to increase task gran-
ularity. Parallel XML DOM parsing is presented in [19, 22].
The first paper uses a dynamic scheme for load-balancing
among cores. The idea in the second paper is to statically
load-balance the work among the cores. This latter work
is targeted at large shallow files containing arrays and does
not scale to many cores (beyond six).

3. PRELIMINARIES
XPath queries. We briefly review the class Q of XPath

queries considered in the paper which are of the form:

Q ::= ǫ | t | ∗ | Q/Q | Q[p],
p ::= Q | Q/text() = ‘c’ | Q/label() = l | Q/pos() op i |

Q ∧ Q | Q ∨ Q

where ǫ is the empty path (self), t is a tag, ∗ is a wildcard
(matches any tag), and ‘/’ is the child-axis; [p] is referred to
as a predicate, in which Q is an expression, c and l are string
constants, op is any one of ≤,≥, <, >, =, i is an integer, and
∧,∨ are the Boolean conjunction and disjunction, respec-
tively. Notice that in the paper we are currently considering
only queries with downward modalities, since these are the
most commonly used in practice. Parallelizing such queries
is already challenging, as the following sections illustrate.
For these queries, we do support complex nested predicates,
which include boolean combinations of sub-predicates, and
tests on label names, contents and positions.

In the next sections, we often distinguish the processing
of a query Q from that of its predicates at the various query
steps.
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Figure 2: Data partitioning, query partitioning and hybrid partitioning strategies

Partitioning Strategies. Ad hoc parallelization of indi-
vidual XPath queries was first explored in [4]. The authors
presented three strategies for parallelizing individual XPath
queries over an abstract XML data model: (1) Data parti-
tioning; (2) Query partitioning; and (3) Hybrid partitioning.
Since our parallelization algorithm assumes these three par-
allelization strategies, we briefly review them.

In the data partitioning strategy, the same XPath
(sub-)query is evaluated on multiple distinct partitions of
the XML data. In practice, an XPath query is often split
into two sub-queries: the prefix sub-query and the suf-
fix sub-query. The prefix sub-query is executed serially
on a single processor (i.e., single core) to obtain a node
set. The node set is then partitioned and the suffix sub-
query is then executed in parallel over the distinct parti-
tions. As an example, the query in Figure 1(b) can be
executed using data partitioning strategy as illustrated in
Figure 2(a). The original query is split into the prefix,
/site/open_auctions/open_auction, and the suffix, ./[anno..
and ..]. The prefix is executed by a single processor core
and the resulting node set of open_auction nodes is par-
titioned and distributed over the participating processor
cores. Each processor core then executes the suffix on its
assigned nodes. The result of the original query can then be
computed by merging local results from participating pro-
cessor cores.

In the query partitioning strategy, the input query is
‘partitioned’ into multiple sub-queries that are evaluated on
the same XML data tree. Each processor core executes an
assigned sub-query on the entire XML document and the
final result of the query is computed as the union or in-
tersection of the per-processor node sets. Unlike the data
partitioning approach, this approach achieves parallelism via
exploiting potentially non-overlapping navigational patterns
of the queries. Figure 2(b) illustrate the execution of the
XPath query in Figure 1(b) using the query partitioning ap-
proach. The original query is re-written into two distinct
predicated sub-queries, each executing a part of the original
predicate. Each new query is executed by a separate pro-

cessor core over the same XML document. The final result
is computed by intersecting two local result sets.

In the hybrid partitioning strategy, both data and
query partitioning are applied onto a single XPath query.
Figure 2(c) and Figure 2(d) illustrate two possible imple-
mentation of the XPath query using the hybrid partitioning
approach. In Figure 2(c), the input query is first re-written
using the query partitioning approach assuming a set of vir-
tual processor cores for the entire XML document. Each vir-
tual processor core is a set of physical processor cores and
it executes its assigned query using the data partitioning
approach. Specifically, if the virtual processor core consists
of two physical processor cores, one of the processor cores
will first execute the prefix portion of the assigned query
and then the two processor cores will concurrently execute
the parallel portion of the suffix sub-query using their al-
located context nodes. Alternatively, Figure 2(d) illustrates
first using the data partitioning strategy over a set of virtual
processor cores and then using query partitioning strategy
over the physical processor cores within a virtual processor
core. The hybrid partitioning strategy is a generalized form
of the query and data partitioning strategies and can be used
recursively.

4. STATISTICS-BASED COST MODEL
Our parallelization algorithm uses a statistics-based

model together with heuristics in order to find an efficient
parallel query processing plan. Recall that the search space
of all possible XPath query processing plans (parallel and se-
quential) is super-exponential. A statistics-based cost model
is used to quickly evaluate a candidate plan (or relevant
portions of a plan) and determine if it is likely to be an ef-
ficient plan. Running the cost model on every possible plan
is clearly infeasible; Hence, heuristics need to be used in
combination with the cost model to prune the search space.

The following factors affect the parallelization decision:

• cardinality of a step: if there are too few node instances
matching a particular step, performing parallelization
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via data partitioning at that step is not feasible.

• number of branches in the predicates of a step: If there
are no predicates or very few branches in the predi-
cate, performing parallelization via query partitioning
at that step is not feasible.

• amount of work done via sequential and via parallel
processing: For overall speedup, the sequential work
should be minimized and the maximum amount of
work parallelized.

Our statistics-based cost model quantifies the processing
cost of three basic ways of processing an XPath query: se-
quential, data partitioning, and query partitioning. The cost
functions for data partitioning and query partitioning both
rely on the cost function for sequential processing. Key com-
ponents of these functions are the notions of cardinality and
selectivity. While the two terms are sometimes used inter-
changeably in the literature, in our work there is a clear
distinction between the two. There is a substantial body
of work on cardinality and selectivity estimation. None of
these problems is the main focus of our work. Instead, we
rely and extend (where appropriate) existing definitions.

Statistics. XML statistics collection in the context of
traditional non-parallel XML query optimization is a well-
studied topic. Using XML statistics for parallelization of
XML queries, on the other hand, is unchartered waters. We
adopt a minimalist approach and begin our investigation by
using a small set of known XML statistics. The goal is to
determine how a minimal set of XML statistics can be used
in the parallelization process and whether it is adequate.
Statistics collection algorithms are beyond the scope of this
paper and the reader should refer to [1, 16, 17, 2]. The
small set of XML statistics needed by our parallelization is
summarized below.

1. Single tag count f(ti) counts the number of node in-
stances in the XML data tree that matches the tag
ti,

2. Fanout count f(ti|ti−1) counts the average number of
child node instances matching ti for each parent node
matching ti−1,

3. Children count f(∗|ti−1) counts the average number of
child node instances (regardless of tag) for each parent
node matching ti−1.

Although we use a first order Markov model for our statis-
tics, our parallelization algorithm is general and higher or-
der Markov models or other models can be used as well.

Under this simplifying assumption, to compute the above
three statistics, it is sufficient to collect single tag and tag-
tag pair counts, as described in [1, 16].

Cardinality. We first use the collected statistics to es-
timate the cardinality of each step in an XPath expression.
The cardinality of a step in an XPath expression is the num-
ber of nodes in the XML data tree that satisfy the conditions
of that step. For example, the cardinality of /a, /a/b and
/a/b/c are 1, 3, and 8 respectively for the XML data tree in
Figure 3.

Consider an XPath expression Q = /t0/t1/ . . . /ti/ . . . /tk

(with no predicates for now), where each ti is either a tag or
the wildcard ∗. Let Qi denote the sub-expression of Q up
to step ti. Then, the cardinality of Qi is estimated by the
recurrence relation,

card(Qi) =



1 if i = 0
f(ti|ti−1)card(Qi−1) otherwise

(1)

Cardinality, as define here, is similar to the definition in [2].

Example 1. Consider the XML data tree in Figure 3.
The cardinality of /a/b/c can be estimated as,

card(/a/b/c) = f(c|b)f(b|a)card(/a) =
8

3
·
3

1
· 1 = 8

Similarly, it is not hard to see that the cardinality of
/a/b/∗ is 10.

Selectivity. In order to estimate the cardinality of more
complex XPath expressions that contain predicates, the no-
tion of selectivity is needed. Selectivity is a fraction associ-
ated with a predicate that quantifies the filtering power of
the predicate. For example, the selectivity of predicate [e/f ]
in /a/b[e/f ] is 2

3
for the XML data tree in Figure 3.

Consider the XPath expression
Q = /t0/t1/ . . . /ti[ti,0/ti,1/ . . . /ti,j/ . . . /ti,m]/ . . . /tk, and
let Qi denote the sub-expression of Q up to step ti. Also,
let pi denote the predicate ti,0/ti,1/ . . . /ti,j/ . . . /ti,m of ti

and pi,j the sub-predicate of pi up to step ti,j . Then, the
selectivity of pi,j , denoted by sel(pi,j), can be computed
using the recurrence relation,

sel(pi,j) =



min(f(ti,0|ti), 1.0) if j = 0
min(f(ti,j |ti,j−1), 1.0)sel(pi,j−1) otherwise

(2)

Example 2. Consider the XML data tree in Figure 3.
The selectivity of predicate p = [e/f ] in /a/b[e/f ] can be
estimated as,

sel(e/f) = min(f(f |e), 1.0)sel(e)

= min(f(f |e), 1.0)min(f(e|b), 1.0)

= min(
3

2
, 1.0)min(

2

3
, 1.0) =

2

3
(3)

When a predicate is a boolean combination of sub-
predicates, the selectivity of the whole expression is com-
puted from the selectivity of the component sub-predicates
using the following rules,

sel(p AND p
′) = min(sel(p), sel(p′)) (4)

sel(p OR p
′) = max(sel(p), sel(p′)) (5)
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where p and p′ are the predicate sub-expressions.
Given the selectivity of predicates, we can now refine the

cardinality estimation (of Eqn. 1) to account for the pres-
ence of predicates. This can be done by multiplying the
cardinality of a step with the selectivity of the associated
predicate.

card(Qi[pi]) =



1 if i = 0
f(ti|ti−1)card(Qi−1[pi−1])sel(pi) otherwise

(6)
Of course, not all steps in a query have predicates. For

example, in the query /a/b[e/f ] only the second step has
a predicate. In order to be able to use the above formula
uniformly for all steps of any query, we introduce the notion
of the empty predicate [ǫ] (note that the empty predicate is
supported by the query grammar introduced in the previous
section). We define the selectivity of the empty predicate to
be equal to 1 and therefore any query in our grammar can
be rewritten to an equivalent query where each step has a
predicate. For example, query /a/b[e/f ] can be rewritten
to query /a[ǫ]/b[e[ǫ]/f [ǫ]]. Then, Eqn. 6 can be used to
compute the cardinality of each step. Hereafter, whenever
we compute cardinality, we will always use this formula on
queries whose steps always includes (empty) predicates.

Sequential Cost. Consider the XPath expression Q =
/t0[p0]/ . . . /ti−1[pi−1]/ti[pi]/ . . . /tk[pk], where each pi is ei-
ther a predicate of the query or an introduced empty predi-
cate. Suppose the prefix Qi−1[pi−1] has been processed (all
the steps and predicates up and including step ti−1) result-
ing in a node set Ni−1. For each node in the node set Ni−1,
the average cost of traversing the remaining suffix (starting
with step ti) of the XPath expression on a single processor
model can be estimated by,

cost(ti) =

8

>

>

>

<

>

>

>

:

f(ti|ti−1) if i = k and pi = ǫ

f(ti|ti−1) [cost(pi)
+ f(∗|ti)Cstep] if i = k and pi 6= ǫ

f(ti|ti−1) [cost(ti+1)
+ cost(pi) + f(∗|ti)Cstep] otherwise

(7)
where cost(pi) is the cost of processing the predicate pi, and
Cstep is the overhead associated with processing a step. The
intuition for the recursion is as follows. Starting from a sin-
gle node matching ti−1 (henceforth the parent node), there
are on average f(ti|ti−1) child nodes that match ti. For each
node that matches ti (henceforth current node), the average
cost can be computed as the sum of cost(ti+1) (computed
recursively), the cost cost(pi) of processing the predicate pi

associated with the current node, and an overhead associ-
ated with processing child steps from the current node. In
order to process both the predicate and the ti+1 step, all the
children of the current node need to be scanned once. The
cost of this scan is captured by the average number of chil-
dren of the current node multiplied by Cstep, the overhead
associated with processing a child step. In terms of cost(pi),
in general, a predicate pi is a boolean combination of XPath
expressions. Hence, cost(pi) can be estimated recursively
computing the cost of the constituent XPath expressions
and summing the costs together.

Example 3. The cost for the XPath expression /a/b[c
and e/f] can be estimated by essentially estimating the cost
of the query root.

cost(a) = f(a|root) [cost(b) + f(∗|a)Cstep]

= {f(b|a) [cost(c and e/f) + f(∗|b)Cstep]} + 4Cstep

= 3 [cost(c) + cost(e)] + 14Cstep

= 3



8

3
+

2

3

»

f(f |e) +
3

2
Cstep

–ff

+ 14Cstep

= 11 + 17Cstep

Note that the cost computed by Eqn. 7 is for each instance
of the node set matching the previous step. To obtain the
total cost of traversing the suffix starting at ti, the aver-
age cost cost(ti) needs to be multiplied by the cardinality
card(Qi−1[pi−1]) of the nodeset from the previous step.

Data Partitioning Cost. Consider the XPath expres-
sion Q = /t0[p0]/t1[p1]/ . . . /ti[pi]/ . . . /tk[pk]. The cost of
evaluating the XPath fragment starting at ti using data par-
titioning at ti over n processors can be estimated as

DPcost(ti, n) =
1

n
· card(Qi−1[pi−1]) · cost(ti)

+card(Qi[pi]]) · tempResultOverhead

+n · Cpar (8)

Note that DPcost(ti, n) does not take into account the cost
of traversing from the beginning of the XPath expression to
ti.

The first pass of our optimizer does not consider the num-
ber of processors when deciding whether a particular step
should be a candidate for parallelization via data partition-
ing. Moreover, the data partitioning cost function (Eqn. 8)
is non-monotonic. Hence, the candidacy decision is made
based on the optimal data partitioning cost over any num-
ber of processors,

DPcostopt(ti) = min
n

DPcost(ti, n) (9)

nopt = arg min
n

DPcost(ti, n) (10)

Query Partitioning Cost. Consider the XPath expres-
sion /t0/ . . . /ti[pi]/ . . . /tk. The predicate pi is a boolean
combination of predicate XPath expressions of the form
pi,0 op pi,1 op . . . op pi,n−1, where each op can be a conjunc-
tion or a disjunction. The cost of evaluating the predicates
associated with ti using query partitioning of the n predi-
cates over n processors can be estimated as

predQPcost(pi) = card(Qi−1[pi−1]) ·

»

max
0<j<n

cost(pi,j)

–

+booleanOverhead(pi) + n · Cpar (11)

In fact the boolean combination is parenthesized into a
binary tree and the overhead of merging the results after the
parallelized predicate XPath expressions have completed is
dependent on this binary tree. The overhead is computed
using the following recursive formula,
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Algorithm 1 ParallelizeXPath(xpath, S)

Input: XPath Expression xpath, Data Statistics S

Output: multi-threaded query plan

1: Q← XPathParser( xpath)

2: P ← ∅
3: annotateQueryTree(Q, FirstStep(Q), S,P)

4: /* Choose Partitioning Points */

5: Sort P by depth and parallel cost

6: Popt ← Pick top k points according to heuristics (Sec. 5.2)

7: Plan← Construct parallel plan using Popt

booleanOverhead(p)

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if p is atomic
ANDoverhead [sel(lhs(p))
+sel(rhs(p))]
+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))

if Op(p) is AND
ORoverhead [sel(lhs(p))
+sel(rhs(p))]
+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))

if Op(p) is OR
(12)

Note again that the query partitioning cost at step ti is com-
puted as the average cost for each instance node matching
ti. Hence, the total query partitioning cost at ti needs to be
computed by multiplying with the cardinality of ti.

5. STATISTICS-BASED XPATH PARAL-
LELIZATION

Our statistics-based parallelization algorithm is outlined
in Algorithm 1. The input XPath expression is first parsed
into a query tree using a standard XPath parser. The par-
allelization algorithm then makes two passes over the query
tree. In the first pass (line 1), data statistics are used to
estimate the cardinality and costs of each step in the XPath
expression and identifies a set P of candidate points for par-
allelization based on local conditions. In the second pass
(line 1-1), each candidate parallelization point is evaluated
using heuristics that take into account global conditions, and
the most promising parallelization points are picked. Once
the parallelization points have been chosen, a multi-threaded
parallel query processing plan can be constructed (line 1).
We describe the two passes in greater detail next.

5.1 Finding Candidate Partitioning Points
The first pass in our parallelization algorithm identifies

candidate partitioning points in the query tree using a cost
model. Each node in the query tree is traversed and eval-
uated using two mutually recursive procedures annotate-

QueryTree and annotateQueryTreePred. Conceptu-
ally, the procedure annotateQueryTree iterates over each
linear step of an XPath expression, while annotateQuery-

TreePred iterates over the boolean expressions contained
in predicates.

Algorithm 2 outlines the logic of annotateQueryTree.
The annotateQueryTree procedure takes as input the
query tree for the XPath expression, a pointer to the current
node in the query tree and data statistics, and returns the
selectivity and the cost of the XPath fragment starting from
the current node. The selectivity is used mainly in the case

Algorithm 2 annotateQueryTree(Q, ti, S,P)

Input: Abstract Query Tree Q, Current Node ti, Data Statistics S,

Current set of candidates P
Output: Selectivity at ti, Cost estimate at ti, adds candidates to

P

1: minpredsel←∞
2: (sumpredcost, sumntwigs, QPcost)← (0, 0, 0)

3: if ti is the end of list symbol then

4: return (1,0)

5: if ti is root then

6: sel← 1

7: card← 1

8: else if ti is a step then

9: sel← min(f(ti|ti−1), 1.0)

10: card← card(ti−1) · f(ti|ti−1)

11: for all p ∈ Predicates(ti) do

12: (predsel, predcost, predQPcost, ntwigs)←
annotateQueryTreePred(Q, p, S,P)

13: sumntwigs← sumntwigs + ntwigs

14: QPcost← max(QPcost, predQPcost)

15: minpredsel← min(minpredsel, predsel)

16: sumpredcost← sumpredcost + predcost

17: if sumpredcost > 0 then

18: cardWithPred← card ·minpredsel

19: QPcost← QPcost + sumntwigs ∗ Cpar

20: (rsel, rcost)← annotateQueryTree(Q, ti+1, S,P)

21: sel← sel ·min(rsel, minpredsel)

22: cost← f(ti|ti−1) · [sumpredcost + rcost + Cstep · f(∗|ti)]

/* Logic for DP candidacy */

23: if card ≥ minCardForDP then

24: DPcost← Eqn. 9

25: if DPcost < cost then

26: P ← P ∪ ti {/* add ti as a DP candidate */}
/* Logic for QP candidacy */

27: if sumntwigs> 0 then

28: QPcost← card · [QPcost + rcost + Cstep · f(∗|ti)]

29: if QPcost< cost then

30: P ← P ∪ ti {/* add ti as QP candidate */}
31: card(ti)← cardWithPred

32: return (sel, cost)

that the XPath fragment starting from the current node is
part of a predicate. The cost is an estimate of the amount of
work required to traverse the XPath fragment starting from
the current node using a single thread or processor. Concep-
tually, the algorithm consists of four main blocks: the base
case (line 2), the pre-recursion processing (line 2), the re-
cursive call (line 2), and the post-recursion processing (line
2). The base case of the recursion occurs when all the steps
in the XPath expression has been processed and the current
node is pointing at the end of list, i.e., beyond the last step
(line 2).

In the pre-recursion processing block (line 2), there are
two cases: the current node may be a root or a step. If the
current node is a root, the contribution to the overall selec-
tivity is always 1.0 and the contribution to the cost is 0. If
the current node is a step, the contribution to the selectiv-
ity is dependent on the fan-out into the current node, and
the contribution to the cost is proportional to the fan-out
into the current node multiplied by the cardinality of the
previous node. Moreover, one or more predicates may be
associated with a step. The block from line 2 to line 2 han-
dles the predicates associated with a step. Each predicate
is processed by invoking the annotateQueryTreePred

procedure. The annotateQueryTreePred procedure re-
turns the selectivity of the predicate, the sequential cost of
processing the predicate, the cost of processing the pred-
icate if parallelization via query partitioning is used, and
the number of twigs or branches in the predicate expres-
sion. Multiple predicates associated with a step are treated
as if they are AND’ed together. Hence, the combined query

165



Algorithm 3 annotateQueryTreePred(Q, pi, S,P)

Input: Abstract Query Tree Q, Current Predicate Expression Node

pi, Data Statistics S, Current candidates P
Output: Selectivity sel, Sequential cost cost, QP cost predQPcost,

QP branches ntwigs, adds candidates to P

1: if pi is a simple xpath expression then

2: (sel, cost)← annotateQueryTree(Q, Expr(pi), S,P)

3: return (sel, cost, cost, 1)

4: else if pi is a boolean expression then

5: (lhssel, lhscost, lhsQPcost, lhsntwigs)←
annotateQueryTreePred(Q, LeftExpr(pi), S,P)

6: (rhssel, rhscost, rhsQPcost, rhsntwigs)←
annotateQueryTreePred(Q, RightExpr(pi), S,P)

7: if boolean operator is AND then

8: sel← min(lhssel, rhssel)

9: predQPcost ← max(lhsQPcost, rhsQPcost) + (lhssel +

rhssel) · ANDoverhead

10: else if boolean operator is OR then

11: sel← max(lhssel, rhssel)

12: predQPcost ← max(lhsQPcost, rhsQPcost) + (lhssel +

rhssel) ·ORoverhead

13: return (sel, lhscost+rhscost, predQPcost, lhsntwigs+rhsntwigs)

partitioning cost is the maximum of the query partitioning
cost of each predicate, the sequential cost of processing all
the predicates is simply the sum of the individual predicate
costs (line 2), and the resultant selectivity is estimated us-
ing the minimum. Once the resultant selectivity has been
computed, the cardinality of the current step needs to be ad-
justed using the selectivity of the predicates (line 2). Line 2
adds the parallelization overhead (a tunable parameter) to
the combined query partitioning cost.

In line 2, annotateQueryTree is called recursively on
the next step in the XPath query tree. The recursive call
returns the selectivity and estimated sequential cost of the
XPath fragment starting from the next step.

The post recursion processing starts on line 2. The cur-
rent node’s contribution to the selectivity is multiplied with
the selectivity from the recursive call. The current node’s
contribution to the sequential traversal cost is computed and
incorporated with the cost from the recursive call. The pro-
cedure then evaluates whether it is feasible to parallelize the
processing from the current node using either data partition-
ing or query partitioning. Finally, the cardinality associated
with the current node is updated with the predicate selec-
tivity.

The logic of annotateQueryTreePred is outlined in
Algorithm 3 and we highlight the important details next.
The procedure takes as input the XPath query tree, a
pointer to a predicate expression node and the data statis-
tics, and returns the selectivity, sequential cost estimate,
query partitioning cost estimate and number of twigs of the
input predicate expression. If the predicate expression is a
simple XPath expression, annotateQueryTree is called
to obtain the selectivity and estimated cost. If the pred-
icate expression is a (binary) boolean expression, anno-

tateQueryTreePred is called recursively on the left and
right operands of the boolean expression. In the subsequent
post recursion processing, selectivity, sequential cost esti-
mate and query partitioning cost estimate are updated and
returned.

5.2 Choosing Candidate Partitioning Points
After the first pass has identified the set P of candidate

partitioning points, the second pass iterates over this set of
partitioning points to pick a subset of the most ‘optimal’ par-

titioning points. Recall that the first pass identifies candi-
date partitioning points based on local information. Hence,
in the second pass, we take into account information that
is more ‘global’ in nature. For example, a candidate data
partitioning point (eg. ‘c’ in /a/b/c/d/e) identified in the
first pass does not take into account the cost of processing
the query XPath up to the partitioning point (eg. /a/b). We
call the query XPath up to the candidate partitioning point
p the prefix prefix(p) of p.

The prefix of a partitioning point represents work that
needs to be done prior to the partitioning point in ques-
tion and in full generality, the prefix can also contain other
partitioning points. The number of ways that the prefix of
a partitioning point could be parallelized is therefore expo-
nential in the number of partitioning points it contains and
hence leads to a combinatorial explosion of the search space
of all possible parallel plans. We employ a greedy heuris-
tic to deal with this problem: w.r.t. the partitioing point
in question, we view the work associated with the prefix as
sequential (not parallelized). Using this assumption, given
two partitioning points, the partitioning point of which the
prefix requires less traversal of the data tree is likely to result
in a more efficient query plan.

The amount of traversal of a prefix can be quantified us-
ing the cost models decribed in Section 4. In the case where
the prefixes are relatively simple XPaths without descendent
axes, a simpler heuristic based on the length of the prefixes
can be used. Comparing two candidate partitioning points
of the same type (eg. both DP or both QP) becomes very
straightforward if the prefixes are simple XPaths: the parti-
tioning point with a shorter prefix results in a better query
plan. Note that since we assumed that no parallel process-
ing is done for the prefix, the overall processing time for
the entire XPath is limited by the processing for the prefix:
no amount of parallelism at the partitioning point can re-
duce the time required to process the prefix. For example,
consider the XPath ’/a/b/c/d[e and f and g]’ and two data
partitioning points at ’c’ and ’d’. The partitioning point ’c’
is likely to result in a better plan, because it probably takes
less time to process the prefix ’/a/b’ sequentially than it
does to process the prefix ’/a/b/c’.

A similar argument can be made when comparing a data
partitioning point and a query partitioning point: the less
work the prefix requires the more parallelism is exposed.
Given two partitioning points of which the prefixes are the
same, the parallel cost (estimated according to Eqn. 10 and
Eqn. 11) of processing the XPath fragment starting from
the partitioning will be used to distinguish the partitioning
points. The parallel cost of a query partitioning point is
limited by the number of branches and hence the amount of
inherent parallelism. Data partitioning, on the other hand,
is less limited, because the inherent limit on parallelism is
the cardinality of the partitioning point which for most real
data sets and queries is much larger than the number of
processors. Hence, when the estimated parallel costs of a
data and of a query partitioning point are equal (or very
close), the former is prefered.

Using the heuristics described previously, the paralleliza-
tion algorithm sorts the set of candidate partitioning points
found in the first pass and picks the top k number of can-
didate partitioning points. The parameter k can be chosen
based on the number of available processors (’cores’). At
the time of writing of this paper, the number of cores in
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most multi-core processors have yet to reach the order of
hundreds. Hence, in most cases, picking just one partition-
ing point is sufficient to produce an efficient parallel query
plan. When the number of cores have reached the order
of hundreds and beyond, a larger number of partitioning
points can be picked. The resultant parallel query plan will
contain nested partitioning points, and the processor assign-
ment problem (mapping processors/cores to partitions) will
become a significant problem. Discussion of the processor
assignment problem is beyond the scope of this paper and
we hope to address it as part of our future work.

5.3 Constructing the Parallel Query Plans
Once the top k candidate partitioning points have been

chosen by the parallelization algorithm, the next step is to
construct a parallel execution plan for the input query based
on these points. This is done by an algorithm that accepts
as input a query tree Q and the set of partitioning points
P, and builds the parallel execution plan iteratively. At
each iteration the execution plan is built by considering the
partially constructed plan of the previous iteration and by
applying the following operations (we omit the pseudo-code
of the algorithm, due to lack of space): It picks the next
partitioning point t ∈ P and locates the position(s) of t in
the partially constructed plan from the last iteration (in the
first iteration, this partial plan coincides with the query tree
Q). Then, if t is a data partitioning node, a new special DP
node is inserted into the tree in place of t to denote that
data partitioning occurs at this point. Then, the algorithm
consider the subtree in the plan formerly rooted at t and
creates as many duplicates of this sub-tree as the number of
processors we are assigning to this partitioning point. All
these sub-trees become children of the new DP node. Fur-
thermore, to each instance of node t we add a new subtree
corresponding to the predicate that defines the section of
the XML document over which the query is to be executed
(see Section on Partitioning Strategies).

In the case of query partitioning, we know that by parti-
tioning the query at point t, we essentially rewrite Q into a
set of queries whose expressions (and thus trees) differ only
after step t. These differing trees of the rewritten queries
become the children of a new special QP node and the new
query tree rooted at QP replaces the partial plan from the
previous iteration.

This concludes one iteration of the algorithm and the next
partitioning point is considered. Notice that an iteration
i might create multiple copies of the partitioning point at
iteration i + 1. Then, the above procedure must be applied
to each one of these copies.

As an example of the above procedure, consider Figure 4.
In the middle of the figure, we show the query tree corre-
sponding to the query /a/b/c[d and e/f ]. Assuming that
step c is a candidate partitioning point, then to the left of
the figure we show the plan in the case that c is a query
partitioning point, while to the right of the figure we show
the plan in the case of data partitioning. Notice that in the
latter plan, each of the subtrees of DP has an additional
predicate specifying the section of the XML document over
which the query is to be executed. What if an additional
data partitioning point exists for step e? Then, for the right
branch of the left plan node e is replaced by DP and two
new subtrees for e/f are created as children of DP. For the
right plan, we need to do a similar change in both subtrees
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Figure 4: Query and data partitioning plans.

XMark-large XMark-huge FpML

Size (MB) 116 1172 833

Number of Nodes 514 514 466

Number of Docs na na 43,968

Depth 12 12 11

Table 1: Characteristics of the XMark and FpML
dataset

of the (existing) topmost DP node.

6. EXPERIMENTS
We have performed extensive experiments on several types

of XPath queries over many XML datasets. In this section,
we describe our experiments and present a representative
subset (due to space constraints) of our experiment results.
The performance of both our statistics-based parallelization
algorithm and the parallel query plans are very similar on
the other datasets.

Prototype Implementation. We implemented a pro-
totype of our multi-core XPath processing system includ-
ing our own implementation of an XPath processor, the
parallelization algorithm, and the parallel query operators.
The XPath processor leverages Xerces-C and XALAN DOM
APIs. The parallelization algorithm is implemented in
PERL and leverages the XML::XPath package to parse an
XPath into an abstract syntax tree. The output of the
parallelization algorithm is a (set of) optimal partitioning
point(s). We then generate the query plans by hooking up
a set of basic query operators implemented in C++. These
operators rely on our XPath processor and include a se-
quential XPath operator, a parallel data partitioning XPath
operator, a parallel query partitioning XPath operator, a
parallel hybrid query and data partitioning operator, and
sequential operators for merging node lists either via inter-
section or union. The query operators are parametrized by
the number of threads.

Datasets and Queries. We experimented with DBLP,
Mondial, Treebank, Swissprot, XMark [25], and an FpML
dataset from an investment bank. Due to space constraints,
we present representative results from the XMark and FpML
dataset. The FpML dataset is a collection of 43,968 real
anonymized FpML1 documents from an unnamed invest-
ment bank. Each document follows a proprietary extension
of the FpML industry standard schema. We constructed a
super root fpmldocs in order link the entire collection into a
single XML document. In addition to the real FpML data,

1Financial products markup language. www.fpml.org
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Document Key XPath Query

XMark.xml XM1 /site/closed_auctions/closed_auction/annotation/description/text/keyword
XM2 /site/people/person[profile/gender and profile/age]/name
XM3 /site/regions/asia/item[mailbox/mail/date and description/parlist/listitem/text and payment]/name
XM4 /site/open_auctions/open_auction[annotation/author and

annotation/description and bidder/date and privacy]

FPML.xml FM1 /fpmldocs/Message/FpML/trade/creditDefaultSwap/generalTerms/effectiveDate/unadjustedDate
FM2 /fpmldocs/Message/FpML[party/partyName and trade/creditDefaultSwap/generalTerms

/effectiveDate/unadjustedDate]/trade/tradeHeader/tradeDate

Figure 5: XPath Queries used for Experimental Evaluation

we also used XPath expressions extracted from a real query
workload provided by the investment bank. Table 5 lists the
representative XPath queries over the two XML datasets.
Two of the XMark queries were drawn from the XPath-
Mark [9] benchmark. The query XM1 was run against the
XMark-huge document. The remaining XMark queries were
run on the XMark-large document. The experiments were
performed on a dual quad-core 2.66 GHz Intel Xeon system
running Linux.

Methodology. For each dataset and each query in the
testing set for that dataset, we use our parallelization al-
gorithm to identify the candidate partitioning points and
strategies. Each of these partitioning point and strategy
corresponds to a prebuilt parametrized query plan in our
prototype. These query plans are executed on the dataset
in question by setting the parameters with the appropriate
XPath query fragments, the partitioning point and the num-
ber of processors to use. In general, we run the query plans
over different number of processors and record the wall-clock
execution time. We then check if the query plan (i.e., par-
titioning point and strategy) chosen by the parallelization
algorithm is the among the fastest running query plan.

6.1 Evaluation Results
The query XM1 (Table 5) consists of a series of 6 child

steps. As the query does not contain any predicates, this
query can be parallelized only via the data partitioning ap-
proach. Figure 6(a) presents relative performance of five
possible data partitioning query plans, dp1 to dp5 for the
query XM1. These plans differ in the way the original query
is partitioned into sequential and parallel queries. The query
plan, dp1, uses the earliest partitioning point, the child step
/closed_auctions, to partition the original query, while the
query plan, dp5, chooses the later child step, /text, to parti-
tion the query. Our parallelization algorithm identified two
plans, dp2, and dp3, that use the child steps, /closed_auction
and /annotation, respectively, to partition the original query.
Based on the recommendation, our system’s heuristic (Sec-
tion 5.2) finally chose the query plan, dp2, as the ideal plan
for executing the query XM1. Note that the among the five
evaluated plans, only dp2 consistently performs better than
the sequential execution, which requires 3.31 seconds (Fig-
ure 6(a)). As Figure 6(a) illustrates, performance of query
XM1 under the plan dp2 is dominated by the parallel ex-
ecution time which improves as the number of processors
is increased. The best query performance is observed when
the query is executed using dp2 on 6 processors (1.65 sec-
onds). For the plans dp3 to dp5, the overall performance
is dominated by the sequential execution costs. Hence, al-
though the parallel execution costs improve as the number
of processors is increased, the overall performance degrades.
It is important to note that aggressive parallelization as im-
plemented in the plan dp1 performs poorly since each par-

ticipating processor ends up doing the amount of work sim-
ilar to the purely sequential execution (as there is only one
/closed_auctions node and it gets replicated on all participat-
ing processors). In such setting, the amount of available
processing power is inconsequential as demonstrated in Fig-
ure 6(a). The important lesson from this experiment is that
the best execution plans result in finding the proper mix of
sequential and parallel execution.

Figure 6(b) presents performance of executing the query
XM2 using different parallel execution plans. XM2 is a pred-
icated query with a conjunction of two path predicates. The
parallelization algorithm first evaluates whether the query
should be parallelized or not. For XM2, the paralleliza-
tion algorithm determined that the query would benefit from
parallelization. It further evaluated the two different paral-
lelization strategies: data- and query partitioning over dif-
ferent partitioning points in the original query. The paral-
lelization algorithm’s top recommendation is to use the data
partitioning strategy at the partitioning point, /person. The
second choice is the query partitioning strategy by partition-
ing the query predicates at the partitioning point, /person,
over 2 processors. In the query partitioning execution, the
original query is rewritten into two sub-queries, each exe-
cuting a distinct path predicate on the /person node. These
two sub-queries are then executed on two different processors
and their local results are intersected to compute the final re-
sult. We first evaluated these two options and observed that
the query partitioning plan performs (1.02 seconds) as bad as
the sequential execution (1 second). Still, as the paralleliza-
tion algorithm chose the query partitioning as the second
option, we decided to use the hybrid approach to provide
the query partitioning plan more parallelism. The hybrid
partitioning scheme first uses the query partitioning scheme
to partition the original query and then follows the data
partitioning strategy to execute individual sub-queries on
two processor groups of 3 (HYB1) and 4 processors (HYB2)
each. As Figure 6(b) illustrates neither HYB1 nor HYB2
plans match the performance of the data partitioning plan
selected by our parallelization algorithm.

Figures 6(c) and 6(d) present the performance of differ-
ent query execution plans for the queries XM3 and XM4,
respectively. For the query XM3, the parallelization algo-
rithm selects the data partitioning at the partitioning point
/item to be the optimal execution plan, followed by a query
partitioning plan at the same partitioning point by partition-
ing the predicates over 3 processors. Similar to the query
XM1, the query execution plan performs (0.15 seconds) as
bad as the sequential plan (0.16 seconds). We also tried
applying the hybrid strategy to the query execution plan,
where each sub-query was executed over 2 processors. How-
ever, the hybrid approach was not able to provide significant
improvement over the query execution plan (0.11 seconds)
and the best performance was observed by the data parti-
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Figure 6: Experiments results. We use the convention of annotating the plan chosen by the parallelization
algorithm using (*).

tioning plan chosen by the parallelization algorithm (0.066
seconds).

For query XM4, we observe similar behavior. Our paral-
lelization algorithm recommended the data partitioning plan
at point, /open_auction, as the top plan. It also suggested
two query partitioning plans at the same partitioning point:
the first plan creates two predicated sub-queries, first as a
conjunction of two predicates, annotation/author and annota-

tion/description, and the second as a conjunction of remain-
ing predicates, bidder/date and privacy, the second plan cre-
ates four predicated sub-queries, each with a separate pred-
icate. We ran the first query partitioned plan on 2 and the
second on 4 processors. Both performed worse (1.75 seconds
and 1.38 seconds) than the data partitioned plan (0.85 sec-
onds using 6 processors). Application of hybrid partitioning
strategy didn’t have any performance improvements. The
best performance resulted in by using the data partitioning
strategy on 6 processors.

Figure 6(e) presents the comparison of three different
data partitioning queries for the query FM1 on the FPML
dataset. Our parallelization algorithm suggested only one
possible partitioning point, /Message, to generate the serial
and parallel sub-queries (dp1). To evaluate the efficacy of
the suggested plan, we compared it with two different data
partitioning plans, dp2 and dp3, with partitioning points
at /FpML and /trade, respectively. As illustrated in the Fig-
ure 6(e), the plan suggested by the parallelization algorithm

provided the best performance as it had the smallest serial
component.

Finally, Figure 6(f) presents comparison of multiple query
plans for the Query FM2. Our parallelization algorithm sug-
gested two possible plans: data partitioning at the partition
point, FpML, and query partitioning over 2 processors by cre-
ating two sub-queries for two different predicates. Similar to
previous cases with predicated queries, the query partition-
ing plan (6.24 seconds) performed as bad as the sequential
execution (6.26 seconds), and the hybrid partitioning was
also ineffective. The best performance (1.94 seconds) was
produced by the data partitioning plan recommended by
our parallelization algorithm.

Our experiments have demonstrated that our paralleliza-
tion algorithm precisely predicted the XPath execution costs
and consistently recommended the optimal plan. For the
data partitioning strategy, our parallelization algorithm con-
sistently picks the optimal partitioning point. For the query
partitioning strategy, our parallelization algorithm correctly
determined that it is inefficient for the given queries (note
that we can always construct artificial queries where the
query partitioning plan would win). For predicated queries,
query partitioning requires the participating processors to
traverse the entire tree. If the work involved in executing
the predicates is not dominant, then individual processors
perform the same amount of work as the sequential plan,
and further their traversal patterns overlap. Hence, their
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execution times match the sequential counterpart (e.g., Fig-
ures 6(b), 6(c), and 6(f)). Therefore, the query partitioning
strategy on the predicate work is suitable for those queries
whose overall work is dominated by the predicate execution.

7. CONCLUSION
Motivated by the emergence of multi-core processors in

commodity systems, this paper presented the first system-
atic investigation towards parallelizing XPath queries. We
considered alternative strategies of XPath parallelization
and presented a series of cost functions to estimate the pro-
cessing costs of different phases in the parallalization process
that use these strategies. These cost functions take into ac-
count both the data statistics and query specifics, and form
the basis of our parallel optimizer. For our optimizer, we
used a number of heuristics that consider a subset of the
exponentially large search space of possible parallelization
plans. Our heuristics identified the most promising plans in
this subset which were then used to generate parallel exe-
cution plans. We have implemented a prototype end-to-end
parallel XPath processing system that incorporates all the
aforementioned functionalities. Our experiments using real-
istic XPath workloads demonstrated the efficacy of our tech-
niques in identifying optimal parallel execution plans. This
work is only a first step in the exploration of XPath paral-
lelization and many future research topics exist, including,
support for a wider fragment of XPath and the problem of
choosing the optimal processor assignment.
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