
Subsumption and Complementation
as Data Fusion Operators

Jens Bleiholder
Hasso-Plattner-Institut

Potsdam, Germany
jens.bleiholder@hpi.uni-

potsdam.de

Sascha Szott
∗

Konrad-Zuse-Zentrum
für Informationstechnik Berlin

Berlin, Germany
szott@zib.de

Melanie Herschel
†

Universität Tübingen
Tübingen, Germany

melanie.herschel@uni-
tuebingen.de

Frank Kaufer
Hasso-Plattner-Institut

Potsdam, Germany
frank.kaufer@hpi.uni-

potsdam.de

Felix Naumann
Hasso-Plattner-Institut

Potsdam, Germany
felix.naumann@hpi.uni-

potsdam.de

ABSTRACT
The goal of data fusion is to combine several representations of one
real world object into a single, consistent representation, e.g., in
data integration. A very popular operator to perform data fusion is
the minimum union operator. It is defined as the outer union and the
subsequent removal of subsumed tuples. Minimum union is used in
other applications as well, for instance in database query optimiza-
tion to rewrite outer join queries, in the semantic web community in
implementing SPARQL’s OPTIONAL operator, etc. Despite its wide
applicability, there are only few efficient implementations, and un-
til now, minimum union is not a relational database primitive.

This paper fills this gap as we present implementations of sub-
sumption that serve as a building block for minimum union. Fur-
thermore, we consider this operator as database primitive and show
how to perform optimization of query plans in presence of sub-
sumption and minimum union through rule-based plan transforma-
tions. Experiments on both artificial and real world data show that
our algorithms outperform existing algorithms used for subsump-
tion in terms of runtime and they scale to large volumes of data.

In the context of data integration, we observe that performing
data fusion calls for more than subsumption and minimum union.
Therefore, another contribution of this paper is the definition of
the complementation and complement union operators. Intuitively,
these allow to merge tuples that have complementing values and
thus eliminate unnecessary null-values.

∗Research was partially performed while at Hasso-Plattner-Institut.
†Research was partially performed while at Hasso-Plattner-Institut
and IBM Almaden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

General Terms
Algorithms

Keywords
minimum union, complement union, data integration, data quality

1. INTRODUCTION
Data integration is the process of providing users of an integrated

information system with a unified view of several data sources.
Three main challenges in data integration are (1) to transform the
data stored in the sources to the target schema (schema match-
ing [22] and mapping [14]), (2) to match object representations
from different sources representing the same real-world object (du-
plicate detection [8]), and (3) to combine several existing repre-
sentations of one real world object into a single consistent repre-
sentation (data fusion [3]). In this last step, which is the focus of
this paper, special care must be taken when handling data conflicts
between the different object representations.

We focus on two alternative operators, namely minimum union
and complement union. Both aim at resolving a special type of data
conflict, called uncertainty. Intuitively, the operators consider cases
where a concrete value in one tuple conflicts with a NULL value of
another tuple, and replaces the NULL value with the NON-NULL
value when merging the tuples.

Minimum union combines an outer union with the removal of
tuples that are contained in other tuples, so called subsumed tu-
ples [12]. For instance, tuple t1 = (a, b, c) subsumes tuple
t2 = (a, b,⊥), where ⊥ denotes a NULL value. When applying
subsumption, t2 is removed. This operator has been widely used
in the literature [11, 12, 14], however it lacks efficient and gener-
ally applicable implementations of the subsumption part, a gap this
paper aims to fill.

Complement union combines object representations by first com-
puting the outer union and then combining tuples that complement
each other. Consider above t2 and a tuple t3 = (a,⊥, c): t2 and
t3 complement each other and combine to a single tuple (a, b, c)

513

when complementation is applied. To the best of our knowledge,
this is the first proposal of an operator with these semantics.

tid Name DOB Sex Address

1 Miller 7/7/59 m 12 Main

2 Miller ⊥ ⊥ 12 Main

3 Peters 1/1/53 m 34 First

tid Name DOB Sex Blood

4 Peters 1/1/53 ⊥ AB

5 Peters 1/1/53 m ⊥

6 Miller ⊥ f B

7 Miller 7/7/59 m O

oid tid Name DOB Sex Address Blood

HospitalPolice

(1) Schema matching + outer union

+ duplicate detection

oid tid Name DOB Sex Address Blood

1 1 Miller 7/7/59 m 12 Main ⊥

1 2 Miller ⊥ ⊥ 12 Main ⊥

2 3 Peters 1/1/53 m 34 First ⊥

2 4 Peters 1/1/53 ⊥ ⊥ AB

2 5 Peters 1/1/53 m ⊥ ⊥

1 6 Miller ⊥ f ⊥ B

1 7 Miller 7/7/59 m ⊥ O(2.1) Fusion using (2.2) Fusion using1 7 Miller 7/7/59 m ⊥ O

oid tid Name DOB Sex Address Blood

1 1+2 Miller 7/7/59 m 12 Main ⊥

2 3+5 Peters 1/1/53 m 34 First ⊥

2 4 Peters 1/1/53 ⊥ ⊥ AB

1 6 Miller ⊥ f ⊥ B

1 7 Miller 7/7/59 m ⊥ O

oid tid Name DOB Sex Address Blood

1 1+7 Miller 7/7/59 m 12 Main O

1 2+6 Miller ⊥ f 12 Main B

2 3+4 Peters 1/1/53 m 34 First AB

2 4+5 Peters 1/1/53 ⊥ ⊥ AB

1 2+7 Miller 7/7/59 m 12 Main O

(2.1) Fusion using

subsumption

(2.2) Fusion using

complementation

Figure 1: Integration result after schema matching, outer
union, duplicate detection, subsumption (bottom left), and
complementation (bottom right)

Example. Consider a disaster management scenario where two
databases Police and Hospital are integrated. Excerpts of the two
sources are presented in Fig. 1 (top). The attribute tid is not part of
the relational attributes; its values merely serve as reference to tu-
ples throughout this paper. The goal is to detect missing people that
have been admitted to a hospital and contact their relatives when an
address is available.

After performing schema matching, and mapping the data into
one relation using outer union, duplicate detection is performed.
In the result of this first step as depicted in Fig. 1 (center), each
tuple corresponds to a person, either reported as missing in the Po-
lice database or admitted to a hospital according to the Hospital
database. The attribute oid refers to an object ID and is the output
of duplicate detection. If two tuples have the same oid, they are
considered to represent the same person. For instance, tuples with
tids 1, 2, 6, 7 represent the same individual, which we label with
oid 1, and tids 3, 4, 5 represent another single individual, identi-
fied by oid 2.1

The next and final step in the integration workflow is data fusion
that combines tuples that represent the same real-world object. De-
pending on the chosen strategy and types of conflicts handled by
these strategies, the results of data fusion differ. In Fig. 1, we show
the result of applying subsumption (bottom left) and complemen-
tation (bottom right) as fusion operator on the result of outer union
depicted in Fig. 1. Note that in this particular example, these re-
sults correspond to the results of minimum union and complement
union, respectively, which we could have computed directly. How-
ever, having subsumption and complementation as separate opera-
tors that are combined with outer union gives us more flexibility,
e.g., they can be used to clean the source databases before the in-
tegration process and it allows us to potentially use more sophisti-
cated schema mapping algorithms.

When applying subsumption, we see that tuple 2 is combined
with tuple 1. This is due to the fact that every NON-NULL value of
tuple 2 is also contained in tuple 1, and thus tuple 1 subsumes tu-
ple 2. So we keep only the more informative one. Analogously, tu-

1Duplicate detection may not achieve a perfectly correct result.
E.g., tuple 6 may not in fact be a duplicate to 1 or 7, because it
describes a female person. Hence, the oids only approximate real-
world keys, such as ISBN or SSN.

!

Result 1

B001B9ZSO2

Result 2

B001AY2P26

Result 3

B001B16PGK

Result 5

B001BN1V9O

Result 4

B001JINDU6

(a) Relationship between five representations of the 2008
Import CD “Comme si de Rien n’Etait” by Carla Bruni.
Dashed arrows signify that the source is subsumed by the
target, whereas solid edges represent complementation.

!

9/1/09 2:05 PMAmazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music

Page 1 of 6http://www.amazon.com/Comme-Rien-NEtait-Carla-Bruni/dp/B001AY2P26/ref=sr_1_3?ie=UTF8&s=music&qid=1251806086&sr=1-3

8 used & new from $19.98

Have one to sell?

Available to Download Now

 Buy the MP3 album for $9.49

Share with Friends

See larger image and other views

Share your own customer images

Listen to samples

Hello. Sign in to get personalized recommendations. New customer? Start here.
FREE 2-Day Shipping on college essentials

Sponsored by Canon Printers

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Music

Advanced Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads

See buying choices for this item to see if it's one of the millions that are eligible for Amazon Prime.

Comme Si de Rien N'Etait [IMPORT]
Carla Bruni

 (24 customer reviews) | More about this product

Available from these sellers.

5 new from $19.98 3 used from $36.00

Buy the MP3 album for $9.49 at the Amazon MP3

Downloads store.

Amazon's Carla Bruni Store

Find all the CDs, MP3s, and vinyl, plus photos, videos, biographies, discussions, and more.

› Visit Amazon's Carla Bruni Store

Product Details

Audio CD (July 22, 2008)

Original Release Date: August 5, 2008

Number of Discs: 1

Format: Import

ASIN: B001AY2P26

In-Print Editions: Audio CD | MP3 Download

Average Customer Review: (24 customer reviews)

Amazon.com Sales Rank: #705,864 in Music (See Bestsellers in Music)

 Would you like to update product info or give feedback on images?

Shop All Departments Cart Wish List

Music

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only. Shop now.

Customers Who Bought This Item Also Bought Page 1 of 8

Quelqu'un M'a Dit ~
Carla Bruni

 (57)

No Promises ~ Carla

Bruni

 (14) $14.99

La Biographie de Luka

Philipsen ~ Keren Ann

 (9) $12.99

Quelqu'un M'a Dit ~
Carla Bruni

 (7) $11.98

Back Next

9/1/09 2:05 PMAmazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music

Page 1 of 6http://www.amazon.com/Comme-Rien-NEtait-Carla-Bruni/dp/B001AY2P26/ref=sr_1_3?ie=UTF8&s=music&qid=1251806086&sr=1-3

8 used & new from $19.98

Have one to sell?

Available to Download Now

 Buy the MP3 album for $9.49

Share with Friends

See larger image and other views

Share your own customer images

Listen to samples

Hello. Sign in to get personalized recommendations. New customer? Start here.
FREE 2-Day Shipping on college essentials

Sponsored by Canon Printers

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Music

Advanced Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads

See buying choices for this item to see if it's one of the millions that are eligible for Amazon Prime.

Comme Si de Rien N'Etait [IMPORT]
Carla Bruni

 (24 customer reviews) | More about this product

Available from these sellers.

5 new from $19.98 3 used from $36.00

Buy the MP3 album for $9.49 at the Amazon MP3

Downloads store.

Amazon's Carla Bruni Store

Find all the CDs, MP3s, and vinyl, plus photos, videos, biographies, discussions, and more.

› Visit Amazon's Carla Bruni Store

Product Details

Audio CD (July 22, 2008)

Original Release Date: August 5, 2008

Number of Discs: 1

Format: Import

ASIN: B001AY2P26

In-Print Editions: Audio CD | MP3 Download

Average Customer Review: (24 customer reviews)

Amazon.com Sales Rank: #705,864 in Music (See Bestsellers in Music)

 Would you like to update product info or give feedback on images?

Shop All Departments Cart Wish List

Music

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only. Shop now.

Customers Who Bought This Item Also Bought Page 1 of 8

Quelqu'un M'a Dit ~
Carla Bruni

 (57)

No Promises ~ Carla

Bruni

 (14) $14.99

La Biographie de Luka

Philipsen ~ Keren Ann

 (9) $12.99

Quelqu'un M'a Dit ~
Carla Bruni

 (7) $11.98

Back Next

9/1/09 2:05 PMAmazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music

Page 1 of 6http://www.amazon.com/Comme-Rien-NEtait-Carla-Bruni/dp/B001AY2P26/ref=sr_1_3?ie=UTF8&s=music&qid=1251806086&sr=1-3

8 used & new from $19.98

Have one to sell?

Available to Download Now

 Buy the MP3 album for $9.49

Share with Friends

See larger image and other views

Share your own customer images

Listen to samples

Hello. Sign in to get personalized recommendations. New customer? Start here.
FREE 2-Day Shipping on college essentials

Sponsored by Canon Printers

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Music

Advanced Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads

See buying choices for this item to see if it's one of the millions that are eligible for Amazon Prime.

Comme Si de Rien N'Etait [IMPORT]
Carla Bruni

 (24 customer reviews) | More about this product

Available from these sellers.

5 new from $19.98 3 used from $36.00

Buy the MP3 album for $9.49 at the Amazon MP3

Downloads store.

Amazon's Carla Bruni Store

Find all the CDs, MP3s, and vinyl, plus photos, videos, biographies, discussions, and more.

› Visit Amazon's Carla Bruni Store

Product Details

Audio CD (July 22, 2008)

Original Release Date: August 5, 2008

Number of Discs: 1

Format: Import

ASIN: B001AY2P26

In-Print Editions: Audio CD | MP3 Download

Average Customer Review: (24 customer reviews)

Amazon.com Sales Rank: #705,864 in Music (See Bestsellers in Music)

 Would you like to update product info or give feedback on images?

Shop All Departments Cart Wish List

Music

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only. Shop now.

Customers Who Bought This Item Also Bought Page 1 of 8

Quelqu'un M'a Dit ~
Carla Bruni

 (57)

No Promises ~ Carla

Bruni

 (14) $14.99

La Biographie de Luka

Philipsen ~ Keren Ann

 (9) $12.99

Quelqu'un M'a Dit ~
Carla Bruni

 (7) $11.98

Back Next

9/1/09 2:56 PMAmazon.com: Comme Si De Rien N'Etait: Carla Bruni: Music

Page 1 of 3http://www.amazon.com/Comme-Rien-NEtait-Carla-Bruni/dp/B001JINDU6/ref=sr_1_7?ie=UTF8&s=music&qid=1251806086&sr=1-7

Get it for less!

Have one to sell?

Share with Friends

Hello. Sign in to get personalized recommendations. New customer? Start here.
FREE 2-Day Shipping on college essentials

Sponsored by Canon Printers

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Music

Advanced Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads

This item is not eligible for Amazon Prime, but millions of other items are. Join Amazon Prime today. Already a member? Sign in.

Comme Si De Rien N'Etait [IMPORT]
Carla Bruni (Artist)

No customer reviews yet. Be the first. | More about this product

This item has been discontinued by the manufacturer.

Product Details

Audio CD (July 22, 2008)

Number of Discs: 1

Format: Import

Label: Phantom Sound & Vision

ASIN: B001JINDU6

Average Customer Review: No customer reviews yet. Be the first.

 Would you like to update product info or give feedback on images?

Tag this product (What's this?)

Think of a tag as a keyword or label you consider is strongly related to this

product.

Tags will help all customers organize and find favorite items.

Your tags: Add your first tag

Search Products Tagged with

Help others find this product — tag it for Amazon search

No one has tagged this product for Amazon search yet. Why not be the first to suggest a search for which it should appear?

Customer Reviews

There are no customer reviews yet.

Video reviews

Amazon now allows customers to upload product video

reviews. Use a webcam or video camera to record and

upload reviews to Amazon.

Ad feedback

Shop All Departments Cart Wish List

Music

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only. Shop now.

9/1/09 2:56 PMAmazon.com: Comme Si De Rien N'Etait: Carla Bruni: Music

Page 1 of 3http://www.amazon.com/Comme-Rien-NEtait-Carla-Bruni/dp/B001JINDU6/ref=sr_1_7?ie=UTF8&s=music&qid=1251806086&sr=1-7

Get it for less!

Have one to sell?

Share with Friends

Hello. Sign in to get personalized recommendations. New customer? Start here.
FREE 2-Day Shipping on college essentials

Sponsored by Canon Printers

Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help

Search Music

Advanced Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads

This item is not eligible for Amazon Prime, but millions of other items are. Join Amazon Prime today. Already a member? Sign in.

Comme Si De Rien N'Etait [IMPORT]
Carla Bruni (Artist)

No customer reviews yet. Be the first. | More about this product

This item has been discontinued by the manufacturer.

Product Details

Audio CD (July 22, 2008)

Number of Discs: 1

Format: Import

Label: Phantom Sound & Vision

ASIN: B001JINDU6

Average Customer Review: No customer reviews yet. Be the first.

 Would you like to update product info or give feedback on images?

Tag this product (What's this?)

Think of a tag as a keyword or label you consider is strongly related to this

product.

Tags will help all customers organize and find favorite items.

Your tags: Add your first tag

Search Products Tagged with

Help others find this product — tag it for Amazon search

No one has tagged this product for Amazon search yet. Why not be the first to suggest a search for which it should appear?

Customer Reviews

There are no customer reviews yet.

Video reviews

Amazon now allows customers to upload product video

reviews. Use a webcam or video camera to record and

upload reviews to Amazon.

Ad feedback

Shop All Departments Cart Wish List

Music

Free MP3 Samplers and Up to 30% off CDs
Download over two dozen free MP3 samplers and shop
hundreds of CDs at up to 30% off at our World Music Festival
event. Savings available for a limited time only. Shop now.

(b) Amazon representations for Result 4 and Result 2

Figure 2: Real world examples of subsuming and complement-
ing representations of audio CD’s at amazon.com

ple 5 is subsumed by tuple 3. We further observe that not all repre-
sentations of a same real-world object are combined. For instance,
tuples 1 and 7 are not combined by minimum union, because one
stores the address whereas the other tuple stores the blood type.
However, all attributes with a NON-NULL value in both tuples have
the same value. Hence, these tuples complement each other. Con-
sidering tuples 1 and 6, they both store a value for sex, however
their values differ. This type of conflict cannot be solved by mini-
mum union or complement union and requires more sophisticated
methods.

The result of step 2.2 (Fig. 1, bottom right) shows that comple-
mentation allows to combine tuples that complement each other, for
instance, tuple 1 and 7. Note that subsumed tuples are not removed
by complement union, e.g., the complementation of tuple 4 and 5
appears in the result although it is subsumed by the complement
of tuples 3 and 4. In our operator based approach, we can apply a
subsumption operator on this result to remove subsumed tuples.
Real-world applications for minimum & complement union.
Throughout our experience with real-world data sets, including
those for which we report experiments in Sec. 6, we have seen the
need for the subsumption and complementation operators. Both
operations are fairly “risk-free”: only NULL values are eliminated.
Also, we can find numerous examples on the web. For instance,
as of 9/1/2009, when searching for “Carla Bruni rien” on Ama-
zon.com, we obtain five results for the 2008 Import CD “Comme
si de Rien n’Etait” by Carla Bruni. Fig. 2(a) shows a graph that
relates the different representations to each other. There, subsump-
tion is represented by dashed arrows (source is subsumed by tar-
get) and complementation is represented by solid lines. Note that
we labeled the nodes with the ASIN number, an identifier Amazon
assigns to its products. Two sample representations, e.g., Result 4
and Result 2 are represented in Fig. 2(b).

514

Subsumption and complementation both help to obtain a more
concise result. However, their results are inherently different, and
which operator to use is application dependent. On the one hand,
subsumption removes subsumed tuples but does not combine any
information that was not already combined in one of the sources.
Hence, subsumption can be used in applications where having cor-
rect (combined) information is crucial. A sample scenario is the
integration of a customer database with a bank account database,
where assigning an incorrect bank account to a person is not desir-
able. On the other hand, complementation combines tuples to form
new, more complete tuples than the individual input tuples. This
behavior is adequate in scenarios where a more complete descrip-
tion is desired and where occasional incorrect combinations have
little negative impact on the application. This is for instance true in
our disaster management scenario.
Contributions. We regard subsumption and complementation as
database primitives. The contributions of this paper are (1) the def-
inition of the novel complementation operator; (2) the definition of
complement union; (3) efficient algorithms for subsumption; and
(4) a study of how subsumption can be moved in an operator tree to
optimize queries using minimum union. Due to the lack of space,
we limit the discussion of algorithms and experiments to subsump-
tion. Algorithms on complementation and transformation rules are
described in [4].
Structure. After covering related work in Sec. 2, we formally de-
fine the operators in Sec. 3. Subsequently, we present algorithms
to implement subsumption in Sec. 4. How subsumption interacts
with outer union (for minimum union) and other relational opera-
tors in logical query plans is covered in Sec. 5. Sec. 6 evaluates our
algorithms and we conclude in Sec. 7.

2. RELATED WORK
In the literature, many different approaches to integrate two or

more sources with the help of individual operators already exist,
e.g., see [10, 12, 13, 19, 20, 23, 26, 28, 30] to name just a few. We
briefly summarize some of them here and refer readers to [3] for a
recent survey. Throughout our discussion, we distinguish possible
operators for fusion in general, work related to subsumption and
work related to complementation.
Operators for Data Fusion. Relational algebra offers some oper-
ators that can be used to combine the information of different ob-
ject representations for data fusion, e.g., union and join. However,
they do not handle uncertainties and conflicts well. Consequently,
specially designed operators to accomplish data fusion have been
proposed. We discuss the two most relevant.

Match join [30] implements a possible world semantics and,
given the conflicting source tables, creates all possible attribute
value combinations for a real world object. A designated identi-
fying attribute, e.g., a real world identifier, needs to be declared.
Assuming that Name is chosen as id, we obtain the result shown in
Fig. 3(a) when applying match join on Police and Hospital.

Interestingly, we obtain four variants of Miller that essentially
correspond to all possible combinations of sex and blood type, re-
gardless of a combination’s existence in any of the sources. The
other extreme is the single tuple for Peters, where no attribute value
is ambiguous.

Full disjunction [6, 7, 12, 23] is an associative extension of
the outerjoin operator to an arbitrary number of relations as it re-
turns all combinations of (partially) satisfied join paths and pads
the remaining attributes with NULL values. To produce concise
results, subsumption is considered when computing the full dis-
junction. However, the notion of subsumption refers to tuple
sets not being subsumed, as opposed to attribute sets not being

subsumed (the semantics we consider, as defined in Sec. 3). In
the special case where no NULL values exist in the sources [12,
23] both semantics are equivalent. For instance, performing the
full disjunction using (Name, DoB, Sex) as join attributes yields
to the relation of Fig. 3(b). Here, we observe that the first tu-
ple subsumes the third tuple when defining subsumption based on
the containment of attribute value sets, e.g., {Miller, 12 Main} ⊂
{Miller, 7/7/59, m, 12 Main, O}. On the other hand, referring to
the definition based on the containment of tuple sets that is in gen-
eral used for full disjunction [6, 7], we see that the third tuple results
from padding tuple 2 (i.e., the tuple with tid 2) with NULL values
and we can verify that there is no tuple set in the result of full dis-
junction that combines tuple 2 with any other tuple set. Hence, the
tuple set {tuple 2} is not subsumed by any other tuple set.

Name DOB Sex Address Blood

Miller 7/7/59 m 12 Main B

Miller 7/7/59 m 12 Main O

Miller 7/7/59 f 12 Main B

Miller 7/7/59 f 12 Main O

Peters 1/1/53 m 34 First AB

!"#$%&'()*&(+,-&*".,

Name DOB Sex Address Blood

Miller 7/7/59 m 12 Main O

Peters 1/1/53 m 34 First !

Miller ! ! 12 Main !

Peters 1/1/53 ! ! AB

Miller ! f ! B

/011&2)3'0*$4(*

Name DOB Sex Address Blood

Miller 7/7/59 m 12 Main B

Miller 7/7/59 m 12 Main O

Miller 7/7/59 f 12 Main B

Miller 7/7/59 f 12 Main O

Peters 1/1/53 m 34 First AB

!"#$%&'()*&(+,-&*".,

Name DOB Sex Address Blood

Miller 7/7/59 m 12 Main O

Peters 1/1/53 m 34 First !

Miller ! ! 12 Main !

Peters 1/1/53 ! ! AB

Miller ! f ! B

/011&2)3'0*$4(*(a) Match join over Name (b) Full disjunction

Figure 3: Results of two operators for data fusion on Police and
Hospital

In summary, full disjunction improves on minimum union as it
is able to combine complementing tuples from two sources, e.g.,
the tuples with tid 1 and 7 combine to the first tuple of Fig. 3(b).
However, it cannot combine complementing tuples from the same
source, nor can it combine tuples where overlapping/join attributes
contain NULL values. We observe that, as for complementation,
the removal of subsumed tuples is not an integral part of the full
disjunction operator.
Work related to Subsumption. The minimum union operator is
defined in [12] and is used in many applications. For instance,
minimum union is exploited in query optimization for outer join
queries [11]. However, an efficient algorithm for the general sub-
sumption task is still considered an open problem therein. An as-
sumption in that work is that the combined base relations do not
contain subsumed tuples, contrary to our work. Another difference
to our setting is the use of join instead of union to combine tables
before removing subsumed tuples. Another use case of minimum
union is its usage in Clio [14] as one possible semantics to use a
schema mapping for the creation of transformation rules [21].

Subsumption is used in [24] to create standardized outer join ex-
pressions, that way enabling outer join query optimization. The
authors propose a rewriting for subsumption in SQL, using the data
warehouse extensions provided by SQL. However, removing sub-
sumed tuples using the proposed SQL rewriting depends on the ex-
istence of an ordering such that subsuming tuples are sorted next to
each other. As subsumption establishes only a partial order, such
an ordering does not always exist (see Exp. 5, Sec. 6).

Another very efficient rewriting for subsumption is proposed
in [15]. However, it is also not applicable in general, as special
properties of the problem considered in [15] are used, namely key
properties of columns and additional conditions, such as certain
columns not containing NULL values.

The problem of tuple subsumption can be transformed into a
special case of the problem of minimizing tableau queries [1] by
transforming each tuple into a literal R(v1, ..., vm) where m is the
schema size and the vj are the attribute values of the tuple. Then,
finding a minimal tableau for the tableau created that way is equiv-
alent to removing subsumed tuples. There are algorithms for min-

515

imizing tableaus, e.g., [25]. However, they do not consider our
special case (resulting from our data fusion task), but the general
case, resulting in exponential time complexity.

Computing set containment joins, e.g., [17], is a similar concept
to removing subsumed tuples. Projecting on the self set contain-
ment join of a relation removes nearly all subsumed tuples: only
those that are subsumed but also subsume another tuple still remain
in the result.
Work related to Complementation. To the best of our knowledge,
this work is the first that considers data fusion with the semantics
of complement union. However, similar concepts have been previ-
ously explored. Replacing complementing tuples by their comple-
ment in a relation is equivalent to finding all maximal cliques in a
graph that has been constructed by creating one node per tuple and
an edge between nodes if the corresponding tuples complement one
another. Standard algorithms for finding all maximal cliques are
described in [5, 16], although [27] improves on that on dynamic
graphs by introducing edge weights. Work described in [18] enu-
merates all cliques of a minimum size.

3. DEFINITIONS AND NOTATION
We now formally define the operators discussed throughout this

paper, i.e., subsumption, complementation, minimum union, and
complement union.

We assume that we know which attributes are semantically
equivalent. For simplicity, these attributes have the same name in
our discussion. Further, both operators assume an “unknown” se-
mantics of NULL values, as they both aim at filling up NULL values
with existing data. Finally, we assume set semantics where exact
duplicates are removed; extending the operators to bag semantics
and other semantics of NULL (such as labeled NULLs as used in
data exchange [9]) is deferred to future work.

Let A = {a1, a2, . . . , am} be a set of m attributes that, to-
gether with the relation name, defines the schema of a relation.
A relation R = (A, T) of size n is defined by a schema and
a set T = {t1, t2, . . . , tn} of n tuples. When the schema and
the set of tuples are clear from the context, we denote relations
with R. A database consists of k relations R1, . . . , Rk. A re-
lational tuple ti is a set of up to m attribute/value combinations,
ti = {(a1, v1), (a2, v2), . . . , (am, vm)}. Values vj are of a do-
main dom(j), such as integers, strings, etc. Missing information
is usually modeled by introducing a special value, the NULL value
(⊥), which is not part of any domain. We model NULL values in
tuples by missing attribute/value combinations, i.e., if vj is NULL,
then there is no attribute/value pair (aj , vj) in tj . Based on these
definitions, we formally define the relevant operators. Note that
examples on how these operators behave are given in Fig. 1.

DEFINITION 1 (TUPLE SUBSUMPTION [12]). A tuple t1 ∈
T subsumes another tuple t2 ∈ T (t1 = t2), if (1) t1 and t2 have
the same schema, (2) t2 contains more NULL values than t1, and
(3) t2 coincides in all NON-NULL attribute values with t1. 2

When modeled as above, tuple subsumption is equal to set con-
tainment. A tuple t1 subsumes another tuple t2, if t1 ⊃ t2. Tuple
subsumption is a transitive relationship, so if t1 = t2 and t2 = t3,
then also t1 = t3. Tuple subsumption is neither symmetric nor
reflexive.

DEFINITION 2 (SUBSUMPTION OPERATOR). We use the
unary subsumption operator β to denote the removal of subsumed
tuples from a relation R: β (R) = {t ∈ R : ¬∃t′ ∈ R : t′ = t} 2

Note that equal tuples (exact duplicates) do not subsume each
other and are therefore not removed by β. Under set semantics,

exact duplicates do not exist anyway. Under bag semantics, the
distinct operator (δ) can additionally be used to remove exact du-
plicates.

DEFINITION 3 (OUTER UNION). The outer union operator,
], combines two (or more) relations R1] R2 by first construct-
ing the schema of the outer union as the set union of the schemata
of the source relations (S = S1 ∪ S2) and secondly by combining
the two tuple sets to form one single set (T = T1 ∪ T2). Missing
tuple values are padded with ⊥. 2

DEFINITION 4 (MINIMUM UNION). The minimum union
operator, ⊕, is the combination of outer union and subsumption
where subsumed tuples are removed from the result of the outer
union of the two input relations, i.e., A ⊕ B =β(A]B). 2

Note that the minimum union operator is commutative and asso-
ciative. Also note that the definition removes subsumed tuples both
from the same source (e.g., tuples with tid 1 and 2 from our ex-
ample in Fig. 1) and from different sources (e.g., tuples with tid 3
and 5).

DEFINITION 5 (TUPLE COMPLEMENTATION). A tuple t1
complements a tuple t2 (t1 ≷ t2) if (1) t1 and t2 have the same
schema, (2) values of corresponding attribute in t1 and t2 are ei-
ther equal or one of them is NULL , (3) t1 and t2 are neither equal
nor do they subsume one another, and (4) t1 and t2 have at least
one attribute value combination in common. 2

When modeled as above, two tuples t1 and t2 complement each
other, if for the set C = t1 ∪ t2 of all (aj , vj) pairs from both
tuples it holds that ∀(al, vl), (am, vm) ∈ C : al = am → l =
m ∧ C ⊃ t1 ∧ C ⊃ t2 (assuring at most one value per attribute,
or a NULL value). Set C is called the complement. Both t1 and
t2 are from the same T , assuring schema compliance. Similarly,
we can construct the complement out of three or more tuples. Tu-
ple complementation is a symmetric relationship (if t1 ≷ t2, then
t2 ≷ t1). It is not reflexive and in contrast to subsumption, tuple
complementation is not transitive.

In order to define the complementation operator we first intro-
duce maximal complementing sets:

DEFINITION 6 (MAXIMAL COMPLEMENTING SET). A max-
imal complementing set MCS of a relation R is a set of tuples
from T where for each pair ti, tj of tuples from MCS it holds that
ti ≷ tj and for every tk /∈MCS there is at least one ti ∈MCS
that does not complement tk. 2

A single tuple ti ∈ T that does not complement any other tuple
tj ∈ T forms a maximal complementing set of size one. A ti can
be part of more than one MCS and there may be multiple MCS
for a relation R. All tuples contained in a maximal complementing
set can be combined into one tuple, the complement.

DEFINITION 7 (COMPLEMENTATION OPERATOR). We
define the unary complementation operator κ to denote the re-
placement of all existing maximal complementing sets in a relation
R by the complement of the contained tuples. 2

DEFINITION 8 (COMPLEMENT UNION). The complement
union operator, �, is the combination of outer union and comple-
mentation, where complementary tuples in the result of the outer
union of the two input relations are replaced by the complement of
the two tuples, i.e., A � B =κ(A]B). 2

Complement union is commutative, but not associative. Similar
to subsumption, the definition forms complements of complemen-
tary tuples from the same source (e.g., tuples with tid 4 and 5) and
from different sources (e.g., tuples with tid 1 and 7).

516

4. IMPLEMENTING SUBSUMPTION
After having defined the necessary concepts, we now present dif-

ferent algorithms for computing subsumption. To implement min-
imum union, we simply combine subsumption with outer union,
which we further discuss in Sec. 5. We also devised algorithms
for computing complementation [4], which are similar in spirit to
those presented for subsumption. Due to the lack of space, we do
not discuss these in detail here.

The naive way of removing all subsumed tuples from a given
relation R consists of comparing all pairs of tuples from R and
including a tuple in the result only if it is not subsumed by any
other tuple in R. Clearly, this is not an efficient solution, and there
are two possible directions of speeding it up: First, we can stop
pairwise comparisons of a given tuple to other tuples as soon as
we have found a tuple that subsumes the one at hand. Second, we
can start grouping tuples along the process in such a way that two
tuples are in the same group, if one subsumes the other. In the
remainder of this paper, we refer to this improved naive algorithm
as the Simple algorithm. Its worst-case time complexity is still
O(n2) with n being the number of tuples in R.

In the following, we first present a partitioning technique (in
the spirit of hash-based duplicate elimination [29]) that can be ap-
plied in addition to the Simple or any other subsumption algorithm
to potentially further save runtime (Partitioning algorithm). We
then present an alternative algorithm for computing subsumption,
namely the Null-pattern-based algorithm, that potentially improves
on the worst-case time complexity of the Simple algorithm.

4.1 Input Partitioning
To improve the runtime for computing subsumption, we first pro-

pose to partition the input in such a way that tuples where one does
not subsume the other do not fall into the same partition. Then, the
input of any subsumption algorithm like the Simple algorithm is
reduced to the size of a partition, which potentially results in fewer
tuple comparisons and hence better runtime. Further on, we also
consider this technique in combination with the Null-pattern-based
algorithm.

Essentially, we select a partitioning criteria, such as a column c
and partition all tuples of the input relation according to their c-
values. If there are d distinct NON-NULL values in c, we obtain
d partitions Pi (one for each value of c). Eventually, we also get
an additional partition containing all tuples whose c-value is NULL
and which we denote as the NULL partition P⊥.

From the definition of subsumption follows that there cannot be
tuples t, t′ such that t subsumes t′ and the two tuples belong to dif-
ferent NON-NULL partitions. Therefore, we can handle each NON-
NULL partition separately. The NULL partition P⊥, in addition to
have subsumed tuples removed, needs special treatment, because
there can be tuples t, t′ such that t subsumes t′, where t′ belongs
to P⊥, but t does not. Therefore, we need to compare each tu-
ple in P⊥ with each tuple from all NON-NULL partitions. Such a
partitioning is visualized in Fig. 4(a).

In case only one column is selected to partition the relation, the
Partitioning algorithm performs the following steps: First, it pro-
duces a partitioning of the input. Second, it removes all subsumed
tuples within the NULL partition, P⊥, by applying an appropriate
algorithm A (e. g., in case of the Simple algorithm, by applying
pairwise comparisons to the tuples in P⊥). It also reads each NON-
NULL partition Pi and removes all subsumed tuples within it by
applying A (in case of the Simple algorithm, each tuple t in Pi is
compared to the tuples in Pi\{t}). After removing all subsumed
tuples from Pi, the remaining tuples constitute β(Pi) and are part
of the output. Third, the algorithm has to check if there are tu-

(1,2,3,4)(, , ,)

(3,4,6,1)
(3,4,3,2)(2,,3,4)

(2 3 3 4)

(,,3,4)
…

P(2,3,3,4)
… P3

P1

P2

P

(1,2,3,4)
(,,3,4)
…

(2,3,3,4)

(2,,3,4)

(, , ,)

(3,4,6,1)
(3,4,3,2)
…

P, 

P

P1,2
……

P2, 

P3,4

P2,3

(a) Partitioning by one
column.

(1,2,3,4)(, , ,)

(3,4,6,1)
(3,4,3,2)(2,,3,4)

(2 3 3 4)

(,,3,4)
…

P(2,3,3,4)
… P3

P1

P2

P

(1,2,3,4)
(,,3,4)
…

(2,3,3,4)

(2,,3,4)

(, , ,)

(3,4,6,1)
(3,4,3,2)
…

P, 

P

P1,2
……

P2, 

P3,4

P2,3

(b) Partitioning using two columns.

Figure 4: Example partitioning by one or two columns and
comparison schema given by the arrows

ples in the remaining NULL partition β(P⊥) that are subsumed
by tuples in β(P1), . . . , β(Pd). Therefore, each tuple t in β(P⊥)
is compared to the tuples in the remaining NON-NULL partitions
β(P1), . . . , β(Pd) and, in case t is subsumed, it is removed from
β(P⊥). Hence, after considering all tuples in β(P⊥), the remain-
ing tuples in it are part of the output.

If we choose more than just one column to partition the input, we
get one complete NULL partition (containing all tuples with NULL
values in all selected columns) and several partial NULL partitions
(containing tuples where only some of the selected columns have
NULL values). Tuples from the complete NULL partition need to be
compared to tuples from all other partitions, whereas tuples from a
partial NULL partition P need to be compared only to tuples from
those partitions P ′ that satisfy the following conditions:

1. There is at least one selected column where P has a NULL
value, but P ′ does not.

2. The value of a selected NON-NULL column in P coincides
in P and P ′, i. e., if the value of a selected column is NON-
NULL in both partitions, it must be the same.

3. For each selected NULL column in P , the column value in
P ′ is arbitrary.

An example for a partitioning by two columns is shown in
Fig. 4(b). According to the given conditions, tuples from the com-
plete (P⊥,⊥) or the partial NULL partitions (e.g., P2,⊥) need be
compared only with all tuples from appropriate adjacent partitions
to the left that may contain subsuming tuples (following the ar-
rows). Therefore, to remove tuples from P2,⊥ we need to consider
only P2,3.

The algorithm A used to compute the subsumption operator β
can be implemented in different ways. In our experiments we com-
bine Partitioning both with the Simple and the Null-pattern-based
algorithm, which is described in the next section.

The overall runtime of the Partitioning method depends both on
the runtime of the algorithm A used for computing subsumption
and the value distribution of the partitioning attribute c. In the fol-
lowing, we consider only the case where just one column is selected
for partitioning. In case more than one column is selected, a similar
argumentation holds. For an input relation of n tuples, let TA(n) be
the runtime of A. Then, the overall runtime complexity of the Par-
titioning method when having d NON-NULL partitions is bounded

517

by

TA(|P⊥|) to compute β(P⊥)

+
X

1≤i≤d

TA(|Pi|) to compute β(Pi)

+
X

1≤i≤d

|β(Pi)| · |β(P⊥)| to compare β(P⊥) with all β(Pi)

where |Pi| is the number of tuples in partition Pi. Using the Sim-
ple algorithm as algorithm A and estimating |β(Pi)| by the av-
erage size n/d of a partition (distributing n tuples over d parti-
tions), the overall runtime of the Partitioning algorithm evaluates
toO(n2)+O(d · (n

d
)2)+O(d · n

d
·n) = O(n2). In the above for-

mula, the last term gets more complicated when considering more
than one column for partitioning. The impact of the value distri-
bution is more difficult to quantify. When c is a key attribute, i.e.,
unique and not NULL, all three terms above are zero and no com-
parisons are necessary. When all values of attribute c are equally
distributed over all partitions, no term dominates the others, which
still leads to satisfactory results. For each NON-NULL partition that
has significantly larger size than others, the second term exhibits
peaks for the respective partitions. Depending on how many and
how big the peaks in the number of comparisons are, these peaks
may dominate runtime. The worst case however occurs when the
NULL partition contains significantly more tuples than the remain-
ing partitions. Indeed, this creates a peak for every ith product
in the third term and thus definitely dominates runtime. Avoiding
peaks in the histogram is the goal of the third rule in our heuristic
to select c. Experiments in Sec. 6 confirm this analysis.

We propose a heuristic approach that chooses a single partition-
ing column c based on the following rules applied in that order: 1)
Choose a key column, 2) Choose a column that does not contain
NULL values, and 3) Choose a column c where the product of the
number of distinct values in c and the maximum frequency of a
value in c is minimal.

To apply the above heuristic, we rely on both the schema S of the
input relation and on statistics about value distributions that were
collected beforehand.

When considering more than just one column for partitioning,
the number of partitions increases or stays the same when increas-
ing the number of columns. At the same time, the average size of
each partition decreases. We show in the experiments section that
it is generally beneficial to choose as many columns (maximum m
columns) as possible for partitioning.

Nevertheless there are cases where it might be better to use less
than the maximal possible number of columns for partitioning:
This is the case, e.g., if we can save the time for partitioning, i.e.,
if we can access tuples in order, for example by using an already
existing index. Also, given a fixed number of k columns for par-
titioning, one can formulate the optimization problem of finding
the combination of k columns that minimizes the number of sub-
sumption comparisons and by that the runtime. We show in the
experiments section that we can already reach a pretty good so-
lution for this optimization problem by applying a greedy heuris-
tic: First, we compute for each column c of the relation the term
Dc = dc · (n

dc
)2 + (dc · |P⊥|). Here, dc is the number of all par-

titions in column c, n
dc

is the average size of a partition and |P⊥|
is the size of the NULL partition. Then, Dc approximates the run-
time of the Partitioning algorithm, using the Simple algorithm asA
and one column for partitioning. Second, we choose the k small-
est columns with respect to Dc. The needed counts can easily be
obtained from standard database statistics.

Algorithm 1 Null-pattern-based Algorithm
1: for all tuple t ∈ T do
2: Compute the bit pattern (b1, . . . , bm) w. r. t. t;
3: Insert t into its corresponding bucket B(b1,...,bm);
4: end for
5: Let k be the minimal number of NULL values within any tuple;
6: Output all tuples with k NULL values;
7: for all i = k + 1, . . . ,m do
8: for all non-empty buckets Bj′ with exactly i NULL values do
9: Collect all buckets Bj where j is constructed out of j′ by setting

at least one 0-bit (all direct and indirect parent buckets in Fig. 5);
10: Generate π(Bj′) (cf. Equ. 1) and sort all tuples in it in lexico-

graphical order;
11: for all tuples t′ in Bj′ do
12: Generate π(t′) out of t′ (cf. Equ. 1) and test if π(t′) is sub-

sumed by a tuple in π(Bj′) using binary search;
13: if π(t′) is subsumed by a tuple in π(Bj′) then
14: Remove t′ from Bj′ ;
15: else
16: Output t′;
17: end if
18: end for
19: end for
20: end for

4.2 Null-pattern-based algorithm
We now present the Null-pattern-based algorithm. The main idea

of this algorithm is to use information about NULL values in the tu-
ples. Simply by looking at patterns of NULL values, we can exclude
tuples from the set of possibly subsuming tuples and avoid many
tuple comparisons.

The Null-pattern-based algorithm, which is described in Algo-
rithm 1, works in two steps. In the first step (lines 1 – 4) each tuple
is inserted into a bucket according to its existing NULL values. Let
t = {(a1, v1) . . . , (am, vm)} be a tuple of the input relation, then
t is inserted into the bucket B(b1,...,bm), for which

∀i ∈ {1, . . . ,m} : bi =

(
0 if vi is NULL

1 otherwise.

At the end of this step each bucket contains all tuples of the input
relation that have the same null-value pattern. Tab. 1 shows the
buckets to which tuples in our example of Fig. 1 are assigned.

AB34 Firstm1/1/53Peters

O12 Mainm7/7/59Miller

Name DOB Sex Address Blood
Miller 7/7/59 m 12 Main B

Miller 7/7/59 f 12 Main B
Miller 7/7/59 f 12 Main O

Name DOB Sex Address Blood
Peters 1/1/53 ⊥ ⊥ AB
Miller ⊥ f ⊥ B
Miller 7/7/59 m 12 Main O
Peters 1/1/53 m 34 First ⊥

7
6
5
4
3
2
1
id

O
B
⊥
AB
⊥
⊥
⊥

Blood

11101
10101
11100
11001
11110
10010
11110
BucketName DOB Sex Address

Miller 7/7/59 m 12 Main
Miller ⊥ ⊥ 12 Main
Peters 1/1/53 m 34 First
Peters 1/1/53 ⊥ ⊥
Peters 1/1/53 m ⊥
Miller ⊥ f ⊥
Miller 7/7/59 m ⊥

Match join Full disjunction

Table 1: Bucket assignment in example scenario

In the second step (lines 5 – 20) we compare tuples to determine
if one subsumes the other. To improve efficiency, we prune the set
of buckets under consideration based on the following conditions
that directly follow from the definition of subsumption: For a tuple
t′ to be subsumed by a tuple t, it is necessary that

1. the number of NULL values in t is smaller than the number
of NULL values in t′;

2. t and t′ coincide in every column in which t has a NULL
value, i. e. for each column where t has a NULL value, the
same holds for t′

518

B(11111)

B(01111)

B(10111)

B(11011)

B(11101)

B(11110)

B(00111)

B(01011)

B(01101)

B(01110)

B(10011)

B(10101)

B(10110)

B(11001)

B(11010)

B(11100)

B(00011)

B(00101)

B(01001)

B(10001)

B(00110)

B(01010)

B(10010)

B(01100)

B(10100)

B(11000)

B(00001)

B(00010)

B(00100)

B(01000)

B(10000)

B(00000)

11
22

33
44

55

66
77

Figure 5: Dependency between buckets and subsuming tuples

From the first condition it directly follows that all tuples in the
buckets with the least number of NULL values cannot be subsumed
by any other tuple inR. Hence, these tuples can be output to the re-
sult without further computation. In our example, these correspond
to the tuples 1, 3, and 7, which each have only one NULL value.

It further follows that tuples in a bucket Bj with i NULL val-
ues can potentially subsume only tuples in a bucket Bj′ with at
least i + 1 NULL values, where all zero bits in j are also zero
bits in j′ and where at least one 1-bit in the bit pattern j is un-
set in the bit pattern j′. In the graph depicted in Fig. 5 nodes
represent buckets and edges represent the relationship of unsetting
one bit from the parent (left) to child node (right). We added the
tuples of our example (represented as circles) to their respective
buckets, and we highlight those paths where subsumption occurs.
For instance, tuple 1 subsumes tuple 2 over the path of buckets
B(11110), B(10110), B(10010). Using this graph representation, only
descendant buckets of bucket Bj need to be considered when look-
ing for all tuples that can be potentially subsumed by a tuple in
Bj . We proceed incrementally and first consider all buckets with
i NULL values before considering buckets with i + 1 NULL values
(i. e., the buckets shown in Fig. 5 are processed from top to bottom
and left to right). As soon as we determine that one tuple in Bj′

is subsumed using the method described in the next paragraph, we
delete it from its bucket. Our traversal through the buckets can be
viewed as a breadth-first search starting from the bucketB(1...1), as
we first consider all buckets with i NULL values before considering
buckets with i+ 1 NULL values.

To efficiently determine if a tuple t′ in Bj′ is subsumed by a
tuple t in Bj , we can do better than performing a linear search.
Essentially, we perform a projection on t′ as well as on all tuples in
parent buckets in our graph representation, i.e., buckets that contain
tuples that potentially subsume t′. Formally, let

π(t′) := πx(t′) and π(Bj′) :=
[
Bj

{πx(t) : t ∈ Bj} (1)

where x is the sequence of all attributes for which all tuples in
Bj′ (and hence also t′) do not have NULL values. Hence, π(t′)
consists of all NON-NULL values of t′. Note, that the set π(Bj′)
does not contain any NULL values. Therefore, it is possible to sort
the tuples in π(Bj′) in lexicographical order. Afterwards, for each
tuple t′ in Bj′ we can decide within O(log |π(Bj′)|) time if t′ is
subsumed using the binary search method. If a tuple t′ ∈ Bj′ is
subsumed, we remove t′ fromBj′ . Once all tuples withinBj′ have
been processed in the described way, we add the remaining tuples
in Bj′ to the output, as it is guaranteed that these are not subsumed
by tuples in yet unprocessed buckets.

As an example, consider tuple 5 in Fig. 5, which lies in the bucket
B(11100). The parent buckets are B(11110) and B(11101), which

contain tuples 1, 3, and 7. After applying the projection to tuple 5
and the parent buckets, we obtain π(t′) =(Peters, 1/1/53, m) for
t′ being tuple 5 and π(B(11100)) ={(Miller, 7/7/59, m), (Peters,
1/1/53, m), (Miller, 7/7/59, m)}. After sorting π(B(11100)) and
applying binary search we detect that π(B(11100)) contains π(t′)
and conclude that there is a tuple subsuming t′. Note, that in this
example by applying binary search only one comparison step is
needed to find π(t′) within π(B(11100)).

In terms of the number n of tuples in the input relation and
the number of attributes m, the worst case time complexity of the
Null-pattern-based algorithm is O(min{2m, n}n logn). Assign-
ing each tuple to its corresponding bucket in the first step needs
O(n) time. In the second step each of at most n non-empty buck-
ets has to be processed. In principle, for each such bucket B, the
set π(B) has to be computed by considering all directly and indi-
rectly connected non-empty buckets to the left of B (according to
the scheme shown in Fig. 5). As the size of π(B) is bounded by n,
the runtime of this process can be bounded by O(n). Afterwards,
π(B) has to be sorted, which needs O(n logn) runtime. We now
have to check the at most O(n) elements in B for subsumption
by applying a binary search in π(B) for each of it, thus needing
|B| · O(logn) = O(n logn) runtime in total.

With m as the number of attributes at most 2m buckets are built
in the first step. Thus there can be at most 2m iterations within the
second step, which yields to an overall runtime of O(2mn logn).
For very wide tables this factor can become substantial, but in our
experience for customer relationship management data integration
scenarios, tables usually had less than ten relevant attributes and the
actual number of non-empty buckets was far below 2m. In fact for
large values of n, the total number of buckets, 2m, is substantially
smaller than n. Therefore, in most cases it is valid to consider m
as a constant, i. e., m ∈ O(1), giving an overall runtime for the
Null-pattern-based algorithm of O(n logn). In cases m does not
satisfy this condition, the overall runtime is given by

O(n2) , if m ∈ O(log(n
log n

))

O(n2 logn) , otherwise

The first result can be obtained by substituting m in the overall
runtime complexity given above:

O(2O(log(n/ log n))n logn) = O(
n

logn
n logn) = O(n2).

Therefore, as long as m ∈ o(log(n
log n

)) the asymptotic runtime of
the Null-pattern-based algorithm is smaller than that of the Simple
algorithm.

The second result arises from the fact, that at most n of the 2m

buckets can be filled. Therefore, the number of iterations of the
second step is bound by n, which results in an overall runtime of
O(n · (n logn)).

Therefore, we conclude that the worst-case time com-
plexity of the Null-pattern-based algorithm is given by
O(min{2m, n}n logn). Especially for the common case
that the number m of attributes is a constant, the time complexity
of the Null-pattern-based algorithm is O(n logn).

4.3 Comparison
Concluding the presentation of the two algorithms in the pre-

vious sections we briefly summarize their similarities and differ-
ences. Using the Partitioning algorithm as a starting point, the
Null-pattern-based algorithm is a further extension of a Partition-
ing algorithm version that uses all m columns to partition the input
relation. More specifically, this is done by combining all partitions
that have the same null-pattern (e. g., partition P1,⊥ and P3,⊥ are

519

combined into bucket B(10)) into one bucket, and adding two ad-
ditional features: the more intelligent processing order of the com-
plete and partial NULL partitions and the binary search within the
lexicographically sorted projections of the buckets.

However, as the Null-pattern-based algorithm is a subsumption
algorithm of its own it can also be used in combination with the
input partitioning technique itself. It then acts as the variable sub-
sumption algorithmA that is used to remove subsumed tuples from
the individual partitions in the Partitioning algorithm.

When choosing among algorithms for implementing the sub-
sumption operator we then have four different choices: a) the sim-
ple algorithm on its own, b) the Partitioning algorithm in com-
bination with the Simple algorithm, c) the Partitioning algorithm
in combination with the Null-pattern-based algorithm, and d) the
Null-pattern-based algorithm on its own. In the experiment Section
(Sec. 6) we evaluate and compare all four possibilities.

5. SUBSUMPTION IN QUERY PLANS
So far we considered efficient implementations of the subsump-

tion operator. We now focus on optimization at the logical level,
i.e., how operators can be moved in a query plan to increase ef-
ficiency. More specifically, we study how subsumption can be
moved in combination with other common relational operators.
Tab. 2 shows the rules that are subsequently described in more de-
tail.

Combinations with Outer Union
(1) β (A] B) =β (A)] β (B), if there are no subsumptions

across sources, and
(2) β (A] B) =β1 (β (A)] β (B)), in all other cases.
Combinations with Selection
(3) β (σc (A)) 6= σc (β (A)), if c is of the following form: x IS

NULL, with x being an attribute with NULL values, and
(4) β (σc (A)) =σc (β (A)), in all other cases
Combinations with Join
(5) β (A×B) =β (A) ×β (B)
(6) β (A./B) =β (A) ./ β (B), if selection can be pushed down
Combinations with Grouping and Aggregation
(7) λf(c) (β (A)) =λf(c) (A), for any column c and aggregation

function f ∈ {max,min}
(8) β (λf(c) (A)) =λf(c) (A), for any column c and any f
(9) λc,f(d) (β (A)) =λc,f(d) (A), for any different columns c, d

with c being the grouping column and not containing NULL val-
ues and aggregation function f ∈ {max,min}

(10) β (λc,f(d) (A)) =λc,f(d) (A), for any different columns c, d
with c being the grouping column and not containing NULL val-
ues and aggregation function f ∈ {max,min}

Other combinations
(11) β (β (A)) =β (A)

Table 2: Rewrite rules involving subsumption

Combinations with (Outer) Unions. Minimum union is defined
as the combination of outer union with the subsequent removal of
subsumed tuples (see Sec. 3). Therefore, we first examine the ex-
changeability of union and subsumption in operator trees.

As there may be subsuming tuples across sources, simply push-
ing subsumption through union is not possible without leaving
an additional subsumption operation on top of the outer union
(Rules (1) and (2) from Tab. 2). We use β1 for the subsumption on
top of the outer union to denote that in that place there does not need
to be a full version of subsumption as we need to test for subsumed
tuples only across sources. To compute β1, let P1 be the set of at-
tributes and values private to t1 ∈ A. Let P2 analogously be the
set of private attributes and values to t2 ∈ B, and let C1 and C2 be
the sets of attribute/value combinations with attributes common to

both tuples. For two tuples t1 and t2 from two sources to subsume
one another, the following condition needs to hold in order for t1 to
be subsumed by t2: P1 = ∅ ∧ (C1 ⊂ C2 ∨ (C1 = C2 ∧P2 = ∅)).
We use this condition in implementing β1 and it could also be used
in implementing minimum union as an independent operator.
Combinations with Projection. Potentially all attributes are
needed to decide if one tuple subsumes another. A projection can
be inserted, if it projects out columns that do not affect the removal
of subsumed tuples (e.g., a column that contains only one single
value, or a column that has the same value for all pairs of subsum-
ing tuples). Unfortunately, testing these properties has the same
complexity as performing the subsumption itself.
Combinations with Selection. As subsumption deals with the re-
moval of NULL values, in case the selection is applied on a column
without NULL values (e.g., a key, a unique column, or a NOT NULL
column), we can indeed push selection through the subsumption
operator (Rule 4).

If a column allows NULL values, pushing selection through sub-
sumption alters the result only if a tuple subsuming another tuple
is removed from the input of subsumption. We distinguish the fol-
lowing cases:

Case 1: Selections involving a column and a constant value v,
e.g., ai < v, ai = v, ai 6= v. In this case, selection can be pushed
through subsumption, because either both the subsuming and the
subsumed tuples, or only the subsuming tuple passes the selection
(Rule 4).

Case 2: Selections that test for NULL equality, i.e., ai IS NULL.
In this case, only the subsumed tuple passes the selection. There-
fore we cannot exchange β and σ in this case (Rule 3).

Case 3: Selections that test for NULL inequality, i.e., ai IS NOT
NULL. This is the opposite of Case 2, so the subsuming tuple passes
the selection. Therefore we can exchange β and σ in this case
(Rule 4).

Case 4: Selections involving two columns, i.e., ai < aj , ai =
aj , ai 6= aj . Generally, these selections can be pushed through
subsumption as in the cases with only one column (Rule 4).
Combinations with Join. When exchanging β and the Cartesian
product × we must ensure that when applying × (i) no additional
subsuming tuples are introduced if there have been none in the base
relations, and (ii) all subsuming tuples in the base relations still
subsume one another after applying ×. The former follows from
the definition of subsumption: if two tuples do not subsume one
another, no extension of the schema changes that fact. The latter
follows from the fact that by Cartesian product, two subsuming tu-
ples from one base relation are necessarily combined with the same
tuples from the other base relation resulting in the two resulting
tuples still being subsumed. When combining cross product and
subsumption, Rule 5 holds.

When exchanging β and ./ in the query plan, we need to apply
the rules involving selection. Although those rules are not applica-
ble for all possible join conditions, the most often occurring joins
(key and foreign key joins) can be transformed (Rule 6).
Combinations with Grouping and Aggregation. In general, sub-
sumption and grouping/aggregation are not exchangeable as Sub-
sumption may remove tuples that are essential for the computation
of the aggregate. However, there are certain cases in which we
can remove the subsumption operator and leave only the group-
ing/aggregation:

Case 1: If subsumption is followed by an aggregation alone, the
subsumption operator can be removed if NULL values or duplicate
values do not change the result of the aggregation. This is true for
null-tolerant and duplicate-insensitive functions such as min and
max (Rule 7).

520

dataset size %subsumed #columns %nulls
Gen1 10k - 5M 1, 5, 10 6 5
Gen2 10k - 5M 1, 5, 10 6, 20, 40 40
CDDB ≈ 10k 0.1 – 0.4 6 – 7 21 – 24
Actors ≈ 3.6M 0.5 12 53
Movies ≈ 500k 0.04 27 81
CRM ≤ 1M 0.03 – 0.8 5 – 8 13 – 40

Table 3: Dataset summary

Case 2: If subsumption follows an aggregation, the subsumption
operator can be removed for any aggregation function, as the result
of an aggregation consists only of one single value (Rule 8).

Case 3: Considering subsumption followed by a group-
ing/aggregation, or grouping/aggregation followed by subsump-
tion, the subsumption can only be removed if the functions that are
used are null-tolerant and duplicate-insensitive, such as min and
max (see Case 1), and additionally if the grouping column does
not contain NULL values (Rules 9 and 10). The latter condition is
necessary, because NULL values in the grouping column are com-
bined in a separate group. Tuples belonging to this group may be
removed by subsumption resulting in a different aggregation for
this group. Also, the group itself may be removed by subsumption
after grouping/aggregation.
Other Combinations. Subsumption (and our implementations
thereof) is not order-preserving. Therefore it does not make sense
to exchange sorting and subsumption operators. Two subsumption
operators can be combined into one (Rule 11).

6. EXPERIMENTS
For subsumption, we implemented the Null-pattern-based al-

gorithm from Sec. 4.2 as well as two partitioning variants: one
uses the Null-pattern-based algorithm as subroutine to perform sub-
sumption whereas the other variant uses the Simple algorithm. We
denote the variants as Partitioning (Null-pattern-based) and Parti-
tioning (Simple), respectively. For comparison, we also imple-
mented the Simple algorithm without partitioning and two vari-
ants of subsumption expressed as an SQL statement. One is a
straightforward and generally applicable implementation using a
NOT EXISTS subquery and the other one is applicable if a favor-
able ordering exists [24]. We focus on subsumption alone as the
extension to minimum union does not add significant complexity
and is also the same for all subsumption algorithms.

6.1 Data and Setting
We experimented both with synthetic and real world data. Tab. 3

provides a summary of the datasets subsequently used.
To evaluate our algorithms based on different characteristics, we

implemented a data generator that allows to generate datasets of
various sizes with a controllable amount of subsumed tuples. When
not mentioned otherwise, the generated datasets consist of integer
data in six columns, with an additional column that serves as tuple
identifier. One of the generated columns simulates a real world
key, i.e., representations of the same real-world object have the
same NON-NULL value in this column. We varied the number of
tuples per generated dataset from 10,000 to 5 million in order to
test for scalability. We further varied the percentage of subsumed
tuples from 1% to 5% to 10% for different amounts of overall
NULL values (5% and 40%). We also varied the number of columns
(6, 20, or 40 columns). The generated datasets are summarized in
rows labeled Gen1 and Gen2 in Tab. 3.

To validate our approaches on real-world data, we used data
from three real-world datasets. The first, called CDDB is a sam-

1

10

100

1000

10000

Ru
nt
im

e
(s
)

Simple

0,001

0,01

0,1

1

10

100

1000

10000

10k 100k 1.000k 10.000k

Ru
nt
im

e
(s
)

Data set size (1000s of tuples)

Simple
SQL (generally applicable)
SQL (special cases)
Partitioning (Simple)
Null‐pattern‐based
Partitioning (Null‐pattern‐based)

Figure 6: Comparison of subsumption algorithms on Gen2 (5%
subsumed tuples)

ple of 10,000 CDs from FreeDB2. The second dataset is an in-
tegrated dataset of actor and movie information integrated from
IMDB3, Filmdienst4, and three other smaller movie sources. The
third dataset is from a CRM domain with an industry partner, whose
identity cannot be disclosed due to privacy issues. The real-world
datasets mainly store strings and float.

A 2.3GHz dual processor quad core server with 16GB of RAM
was used to store the data in an IBM DB2 v9.5 DBMS and to per-
form the experiments that study the runtime of different algorithms
on varying datasets. All our algorithms are implemented in Java
1.6 and the reported runtimes are median values over 5 runs.

6.2 Results on Subsumption
Experiment 1: Algorithm Comparison. The goal of this exper-
iment is to compare different implementations of the subsumption
operator in terms of runtime.
Methodology. We consider six different implementations of sub-
sumption: Simple (the naive algorithm) and the generally appli-
cable SQL statement serve as baseline algorithms that are either
trivial or known from the literature. The data set also allows to use
the SQL rewriting for special cases as described in [24] as a favor-
able ordering exists. The remaining three implementations corre-
spond to the different variants presented in this paper, namely the
Null-pattern-based algorithm, Partitioning (Simple), and Partition-
ing (Null-pattern-based). Fig. 6 shows the runtime (in seconds)
obtained on dataset Gen2 when varying the size between 10,000
and 5 million and setting the percentage of subsumed tuples to 5%.
The heuristic given in Sec. 4.1 is used to choose the partitioning
column. Here, it is the column with the real-world identifier, re-
sulting in many very small partitions.
Discussion. The algorithms presented in this paper clearly outper-
form both the Simple algorithm and the generally applicable SQL
statement, and are able to handle up to five million tuples in less
than 100 seconds. On relatively small datasets, e.g., for 100,000
tuples, the difference in runtime between the baseline algorithms
and our algorithms is already two orders of magnitude. The SQL
rewriting is applicable for this dataset and performs comparable to
our algorithms.

We also make the following observations: For all but small data
set sizes, Partitioning applied to the Null-pattern-based algorithm
improves runtime compared to the Null-pattern-based algorithm
alone. The same is even more true when comparing the results
of Simple and Partitioning (Simple).
2FreeDB: www.freedb.org
3IMDB: www.imdb.com
4Data kindly provided by Filmdienst: film-dienst.
kim-info.de

521

6,1

7,9
9,2

2,34

6

8

10

R
u

m
ti

m
e

 (
s)

Large null-partition (48% of dataset)

Medium null-partition (13% of dataset)

2,1 2,1 2,3

0

2

4

100 1000 4117

R
u

m
ti

m
e

 (
s)

Number of non-null partitions

Figure 7: Comparing runtime of Partitioning (Simple) when
using different columns for partitioning for two datasets

Experiment 2: Partitioning. In the previous experiment, Par-
titioning(Simple) performs best, but as this experiment demon-
strates, its runtime highly depends on the size of the NULL partition
and, to a less extent, on the number of partitions.
Methodology. We constructed two Gen2 datasets with 5% of sub-
sumed tuples and 20,000 tuples. The datasets differ in the numbers
of distinct and NULL values per column and therefore in the size of
the NULL partition. Choosing different columns for partitioning re-
sults in different numbers of partitions. Fig. 7 shows the runtimes.
Discussion. We see that a poor column choice significantly in-
creases the runtime of Partitioning (Simple) and using the Null-
pattern-based algorithm in this case would be the better choice. In-
deed, the first observation is that if the partitioning column has a
large percentage of NULL values, the runtime is significantly higher
than when choosing a column that yields a small NULL partition.
The reason for this behavior is that every tuple in the NULL parti-
tion is compared with every other tuple in every other NON-NULL
partition. This behavior supports our theoretical considerations in
Sec. 4. In further experiments, e.g., the one reported in Fig. 12 we
also observe that when the size of the NULL partition is comparable,
runtime decreases with an increasing number of partitions, which
is also in accord with our theoretical analysis.
Experiment 3: Influence of amount of NULL values in non-
partitioning columns. In Experiment 2, we have seen that the
amount of NULL values in the partitioning column significantly af-
fects the runtime of the Partitioning algorithm. In this experiment,
we study the influence of the amount of NULL values in the remain-
ing columns.
Methodology. We perform two analyses: (i) We fix the type of
dataset to Gen2 and vary the distribution of NULL values such that
the percentage of subsumed tuples equals to 1%, 5%, and 10%,
and (ii) we fix the percentage of subsumed tuples to 5% and vary
the type of data set from Gen1 to Gen2. The main difference is
that Gen1 only contains 5% of NULL values over all its attributes,
whereas Gen2 consists of 40% overall NULL values. Runtime re-
sults for the former case are shown in Fig. 8 and results for the latter
case in Fig. 9.
Discussion. In Fig. 8, we see that all three algorithms are rela-
tively robust against changes in the percentage of subsumed tuples.
However, common to all algorithms, we observe a slight decrease
in runtime the higher the percentage of subsumed tuples, which
is best observed on the graphs for Partitioning (Null-pattern). In
Fig. 9, where we vary the total percentage of NULL values while
fixing the percentage of subsumed tuples, we see that the runtime
again decreases the higher the amount of NULL values, most obvi-
ous in the graph for the Null-pattern-based algorithm. We explain
this behavior with the fact that with a smaller number of NULL val-
ues, the distribution of tuples in the bucket structure (see Fig. 5)
changes in such a way that more tuples are in the leftmost buckets,
resulting in more overall comparisons needed in order to decide for

60

70

80

90

100

110

120

R
u

n
ti

m
e

 (
s)

Null-pattern-based, 1% subsumed tuples

Null-pattern-based, 5% subsumed tuples

Null-pattern-based, 10% subsumed tuples

Partitioning(Null-pattern), 1% subsumed tuples

Partitioning(Null-pattern), 5% subsumed tuples

Partitioning(Null-pattern), 10% subsumed tuples

Partitioning(Simple), 1% subsumed tuples

Partitioning(Simple), 5% subsumed tuples

Partitioning(Simple), 10% subsumed tuples

0

10

20

30

40

50

1000k 2000k 3000k 4000k 5000k

R
u

n
ti

m
e

 (
s)

Data set size (1000s of tuples)

Figure 8: Comparing the influence of different percentages of
subsumed tuples on the algorithms

50

60

70

80

90

R
u

n
ti

m
e

 (
s)

Null-pattern-based, 5% NULL values

Null-pattern-based, 40% NULL Values

Partitioning(Simple), 5% NULL values

Partitioning(Simple), 40% NULL values

0

10

20

30

40

50

0k 1000k 2000k 3000k 4000k 5000k

R
u

n
ti

m
e

 (
s)

Data set size (1000s of tuples)

Figure 9: Runtime of Partitioning (Simple) and NPB-algorithm
on Gen1 and Gen2 with 5% tuples being subsumed

a specific tuple if it is subsumed.
Experiment 4: Varying the number of attributes. In this exper-
iment, we study how runtime varies depending on the number of
attributes of a relation.
Methodology. In the previous experiments, we observed that Par-
tition (Simple) usually performs best, so here we consider only this
algorithm. We generate versions of data set Gen2 of different sizes
and with 6, 20, or 40 attributes per relation. Runtime results are
shown in Fig. 10.
Discussion. Clearly, the more attributes a relation has, the more
time is needed to perform subsumption. This comes as no sur-
prise, as each pairwise tuple comparison takes longer when more
attributes exist in a tuple. Nevertheless, the runtime is still accept-

10

100

1000

10000

R
u

n
ti

m
e

 (
s)

SQL - 40 attributes

SQL - 20 attributes

SQL - 6 attributes

Partitioning (Simple) - 40 attributes

Partitioning (Simple) - 20 attributes

Partitioning (Simple) - 6 attributes

0,01

0,1

1

0k 200k 400k 600k 800k 1000k

R
u

n
ti

m
e

 (
s)

Data set size (1000s of tuples)

Figure 10: Comparing runtimes for different schema sizes for
Partitioning (Simple) on Gen2 dataset

522

able: Tables with 40 attributes and 50,000 tuples are processed in
roughly 16 seconds. For comparison we also plotted runtime for the
SQL statement, which shows that for larger tables the performance
gain by our algorithms even increases.
Experiment 5: Subsumption on real-world data. The previous
results for subsumption were obtained on generated datasets and
we now evaluate our algorithms for subsumption on the different
real-world datasets summarized in Sec. 6.1.
Methodology. We consider the real-world datasets Actor, Movie,
CDDB, and CRM. Within the CRM database, we analyze three
tables (similarly to the Movie database from which we use both ac-
tors and movies). We denote these tables as CRM1 through CRM3.
For each of these datasets, we take samples of different sizes and
measure the runtime of the Null-pattern-based algorithm and Par-
titioning (Simple). Fig. 11 reports the results for the Actor and
the CRM datasets. The results on the Movie dataset are compa-
rable to the shown results for Partitioning (Simple), whereas the
runtime of the Null-pattern-based algorithm is higher than for the
other datasets. On the CDDB dataset, we evaluate the effect of
different partitionings on the runtime of Partitioning (Simple) and
report results in Fig. 12.

10

100

R
u

n
ti

m
e

 (
s)

Actor, Null-pattern-based
CRM1, Null-pattern-based

CRM2, Null-pattern-based
CRM3, Null-pattern-based
Actor, Partitioning(Simple)
CRM1, Partitioning(Simple)
CRM2, Partitioning(Simple)
CRM3, Partitioning(Simple)

0,01

0,1

1

10k 100k 1000k 10000k

R
u

n
ti

m
e

 (
s)

Data set size (1000s of tuples)

CRM3, Partitioning(Simple)

Figure 11: Subsumption runtime on real-world data

0,515

1,176
1,48

2,857

1

1,5

2

2,5

3

R
u

n
ti

m
e

 (
s)

CATEGORY ARTIST TITLE GENRE YEAR CDEXTRA

#partitions 11 7275 9368 521 80 1791

size null partition 0 0 15 3394 4541 6509

total 0,515 0,079 0,057 1,176 1,48 2,857

0,515

0,079 0,057
0

0,5

1

R
u

n
ti

m
e

 (
s)

Figure 12: Runtime for different partitioning columns in
CDDB

Discussion. In Fig. 11 as well as on the Movie and the CDDB
dataset, we observe that in our real-world scenarios, which all have
a low percentage of subsumed tuples, the runtime of Partition-
ing (Simple) is lower than the runtime of the Null-pattern-based
algorithm. Both algorithms exhibit a nearly linear increase in run-
time with respect to the increasing dataset size. The datasets con-
sidered in Fig. 11 all have a small number of attributes (i.e., at most
12) and we do not observe significant differences in runtime for
these. On the other hand, we observe that the runtime of the Null-
pattern-based algorithm on the Movie dataset with 27 attributes is
significantly higher than on the other datasets. This is in accord
with our theoretical analysis in Sec. 4.1. As a final observation, we
see that the runtime of both algorithms is higher on the real world
datasets than on generated data of same size and with comparable

characteristics. This difference is due to the longer comparisons
needed on string data present in real-world data compared to inte-
ger comparisons performed on the generated data.

Whereas the technique from [24] can be applied to the CDDB
dataset, it cannot to the Actors dataset, as a necessary favorable
order does not exist in this particular dataset.

Fig. 12 confirms the observations of Experiment 2 as it shows
that when partitioning based on attributes CATEGORY, ARTIST,
and TITLE, which yield a small NULL partition, the runtime of Par-
titioning (Simple) is significantly less than the runtime obtained
when partitioning based on attributes with large NULL partitions,
e.g., GENRE, YEAR, and CDEXTRA. Furthermore, for attributes
with comparable NULL partition sizes we observe that, as expected,
the runtime decreases with increasing number of partitions.

As a rule of thumb, whenever there is a key (or a pseudo-key) in a
relation (e.g., TITLE & ARTIST in dataset CDDB) we are better off
using the Partitioning (Simple) algorithm. If there is no such key
or pseudo-key, the Null-pattern-based algorithm performs better.
Experiment 6: Partitioning by more than one column. We eval-
uate the choice of more than one column for the partitioning algo-
rithm and evaluate the greedy heuristics to find the best partitioning.
Methodology. We use the real world CDDB dataset for our exper-
iments with more than one attribute when partitioning. We approx-
imate runtime by computing the theoretical runtime given by the
formula given in Sec. 4.1 and show it for all combinations of up to
k = 6 attributes (Fig. 13) for the CDDB dataset. We also find the
best combination of k attributes and compare it to the combination
found by the greedy heuristics from Sec. 4.1 and the average over
all possible solutions (Fig. 14).
Discussion. As already expected, we see in Fig. 13 that the ap-
proximated runtime differs much when comparing different possi-
ble partitions using k attributes. This underscores the importance
of a good choice for the partitioning. We also see that the approx-
imated runtimes of both the best and the worst possible solution
decrease with increasing k: using more attributes for the partition-
ing pays off. Fig. 14 compares the approximate runtimes of the
best solution, the average runtime of all possible solution and the
approximate runtime of the solution found by the greedy heuristics
relative to the best solution. For example, the solution found by
the heuristic for k = 3 attributes is (ARTIST, TITLE, GENRE) re-
sulting in approximately 693 operations whereas the best solution
is the partitioning by (ARTIST, TITLE, CATEGORY) with estimated
499 operations. This results in the greedy solution being 1.39 times
the best solution. Although the greedy algorithms finds the optimal
solution only twice (for k = 1 and k = 6), it always finds a so-
lution within 2.5 times the best solution. Comparing to the other
possible values in Fig. 13 this is always among the best solutions

10000000

100000000

e .)

CDDB dataset

100000

1000000

10000000

100000000

ru
nt
im

e
ub

s.
 o
ps
.)

CDDB dataset

10000

100000

1000000

10000000

100000000

pp
ro
x
ru
nt
im

e

of
 s
ub

s.
 o
ps
.)

CDDB dataset

100

1000

10000

100000

1000000

10000000

100000000

A
pp

ro
x
ru
nt
im

e
(in

 #
 o
f s
ub

s.
 o
ps
.)

CDDB dataset

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5 6

A
pp

ro
x
ru
nt
im

e
(in

 #
 o
f s
ub

s.
 o
ps
.)

k

CDDB dataset

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5 6

A
pp

ro
x
ru
nt
im

e
(in

 #
 o
f s
ub

s.
 o
ps
.)

k

CDDB dataset

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5 6

A
pp

ro
x
ru
nt
im

e
(in

 #
 o
f s
ub

s.
 o
ps
.)

k

CDDB dataset

Figure 13: Approximated runtime in number of subsumption
operations needed for all combinations of k attributes, k vary-
ing from 1 to 6 for the CDDB dataset

523

300%

250%

300%
on

 (i
n
%
)

% best

% greedy

150%

200%

250%

300%
es
t s
ol
ut
io
n
(in

 %
)

% best

% greedy

% average

50%

100%

150%

200%

250%

300%
on

 to
 b
es
t s
ol
ut
io
n
(in

 %
)

% best

% greedy

% average

1 2 3 4 5 6
0%

50%

100%

150%

200%

250%

300%
co
m
pa

ri
so
n
to
 b
es
t s
ol
ut
io
n
(in

 %
)

k

% best

% greedy

% average

1 2 3 4 5 6

% best 100% 100% 100% 100% 100% 100%

% greedy 243% 100% 139% 206% 210% 100%

0%

50%

100%

150%

200%

250%

300%
co
m
pa

ri
so
n
to
 b
es
t s
ol
ut
io
n
(in

 %
)

k

% best

% greedy

% average

1 2 3 4 5 6

% best 100% 100% 100% 100% 100% 100%

% greedy 243% 100% 139% 206% 210% 100%

% average 13143% 513485% 423115% 111697% 3065% 100%

0%

50%

100%

150%

200%

250%

300%
co
m
pa

ri
so
n
to
 b
es
t s
ol
ut
io
n
(in

 %
)

k

% best

% greedy

% average

1 2 3 4 5 6

% best 100% 100% 100% 100% 100% 100%

% greedy 243% 100% 139% 206% 210% 100%

% average 13143% 513485% 423115% 111697% 3065% 100%

0%

50%

100%

150%

200%

250%

300%
co
m
pa

ri
so
n
to
 b
es
t s
ol
ut
io
n
(in

 %
)

k

% best

% greedy

% average

Figure 14: Experiment on selecting partitioning attributes for
the CDDB dataset (y-axis truncated at 300% for readability)

and by magnitudes better than the average solution combination.

7. CONCLUSION AND OUTLOOK
We addressed the problem of combining multiple tuples to a

more concise representation in the context of data integration and
considered the problem of combining tuples based on subsumption
and complementation. Whereas the first operator is well-known,
the second defines a novel semantics for combining tuples. When
applying subsumption and complementation on top of the outer
union operator, we obtain the well-known minimum union and the
novel complement union operator, respectively. We presented sev-
eral algorithms as physical implementations of the subsumption op-
erator. Experiments showed that for subsumption, using a simple
input partitioning is the most efficient one, as long as a good parti-
tioning can be found, for instance using a real-world identifier. We
also observed that runtime improves with increasing ratio of NULL
values in the data. In general, choosing a partitioning attribute with
few NULL values is preferable. We also examined partitioning by
more than one column and showed that a simple greedy heuristic
helps in choosing a good partitioning. We further presented how
the subsumption operator can be moved within a query plan us-
ing transformation rules. Such transformations can improve query
execution time by reducing the input cardinality of the operators.

Future research directions on the operators themselves include
extending our work to other NULL semantics (e.g., labeled NULLs)
and bag semantics for the complementation operator. We also plan
to evaluate the inclusion of the removal of equal tuples into sub-
sumption, and the removal of subsumed tuples into complement.
The latter would be a unified operator for which new algorithms
must be found. Concerning query optimization, we are consider-
ing transformation rules for both operators in combination with ad-
vanced aggregation functions, e.g., those proposed for conflict res-
olution in combination with minimum union [2]. Some potential
improvements for the algorithms themselves remain: a partition-
ing scheme as used for set containment joins may further improve
runtime. Finally, we have not yet explored the potential of bitmap
indexes for NULL values.
Acknowledgment. This research was partly supported by the Ger-
man Research Society (DFG grant no. NA 432).

8. REFERENCES
[1] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among

relational expressions. SIAM Journal on Computing, 8(2):218–246,
1979.

[2] J. Bleiholder and F. Naumann. Declarative data fusion – syntax,
semantics, and implementation. In Proc. of ADBIS, pages 58–73,
2005.

[3] J. Bleiholder and F. Naumann. Data fusion. ACM CSUR,
41(1):1–41, 2008.

[4] J. Bleiholder, S. Szott, M. Herschel, and F. Naumann. Complement
union for data integration. In Proc. of NTII, 2010.

[5] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM, 16(9):575–577, 1973.

[6] S. Cohen, I. Fadida, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Full
disjunctions: Polynomial-delay iterators in action. In Proc. of
VLDB, pages 739–750, 2006.

[7] S. Cohen and Y. Sagiv. An incremental algorithm for computing
ranked full disjunctions. In Proc. of PODS, pages 98–107, New
York, NY, USA, 2005. ACM Press.

[8] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng.,
19(1):1–16, 2007.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
Semantics and query answering. In Proc. of ICDT, pages 207–224,
2003.

[10] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: efficient
management of inconsistent databases. In Proc. of SIGMOD, pages
155–166, New York, NY, USA, 2005. ACM Press.

[11] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplification and
reordering for query optimization. Trans. on Dat. Syst.,
22(1):43–74, 1997.

[12] C. A. Galindo-Legaria. Outerjoins as disjunctions. In Proc. of
SIGMOD, pages 348–358. ACM Press, 1994.

[13] S. Greco, L. Pontieri, and E. Zumpano. Integrating and managing
conflicting data. In Revised Papers from the 4th International
Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pages 349–362. Springer-Verlag, 2001.

[14] M. A. Hernández, L. Popa, Y. Velegrakis, R. J. Miller,
F. Naumann, and C.-T. Ho. Mapping XML and relational schemas
with Clio. In Proc. of ICDE, pages 498–499, 2002.

[15] P.-Å. Larson and J. Zhou. View matching for outer-join views. In
Proc. of VLDB, pages 445–456, 2005.

[16] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. In Proc. of SWAT, pages 260–272, 2004.

[17] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set
containment joins. Trans. on Dat. Syst., 28(1):56–99, 2003.

[18] N. Modani and K. Dey. Large maximal cliques enumeration in
sparse graphs. In CIKM, pages 1377–1378, 2008.

[19] A. Motro, P. Anokhin, and A. C. Acar. Utility-based resolution of
data inconsistencies. In Proc. of IQIS Workshop, pages 35–43.
ACM Press, 2004.

[20] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object
fusion in mediator systems. In Proc. of VLDB, pages 413–424.
Morgan Kaufmann Publishers Inc., 1996.

[21] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating web data. In Proc. of VLDB, Hong Kong,
2002.

[22] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

[23] A. Rajaraman and J. D. Ullman. Integrating information by
outerjoins and full disjunctions (extended abstract). In Proc. of
PODS, pages 238–248. ACM Press, 1996.

[24] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical abstraction for
outerjoin optimization. In Proc. of SIGMOD, pages 671–682.
ACM Press, 2004.

[25] Y. Sagiv. Quadratic algorithms for minimizing joins in restricted
relational expressions. SIAM J. Comput., 12(2):316–328, 1983.

[26] E. Schallehn, K.-U. Sattler, and G. Saake. Efficient
similarity-based operations for data integration. Data Knowl. Eng.,
48(3):361–387, 2004.

[27] V. Stix. Finding all maximal cliques in dynamic graphs. Comput.
Optim. Appl., 27(2):173–186, 2004.

[28] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. Lu,
A. Rajput, T. Rogers, R. Ross, and C. Ward. Hermes: A
heterogeneous reasoning and mediator system. Technical report,
University of Maryland, 1995.

[29] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems:
The Complete Book. Prentice Hall PTR, 2001.

[30] L. L. Yan and M. T. Özsu. Conflict tolerant queries in AURORA.
In Proc. of CoopIS, page 279. IEEE Computer Society, 1999.

524

