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ABSTRACT
Detecting emerging problems in information and manufac-
turing systems is the goal of monitoring tools. Good and
timely detection of problematic conditions from measured
indicators requires efficient and effective detection of critical
patterns in a stream of incoming observations.

We present Pattern Detector, an interactive system which
is capable of immediate detection and signaling of such pat-
terns. Using user-defined query patterns which indicate e.g.
low rate denial-of-service attacks in network traffic, this sys-
tem signals problems fast and transparently.

The underlying detection algorithm is based on matching
patterns using the Dynamic Time Warping (DTW). Fast
query processing is achieved by reliably filtering out candi-
dates via a highly efficient multistep filter-and-refine frame-
work, anticipatory DTW (ADTW). This framework is capa-
ble of processing continuous streams such that appropriate
action can be taken as soon as suspicious patterns occur.

While our pattern detector system is developed specif-
ically for network traffic by incorporating recent patterns
from computer networking, it easily generalizes to many on-
line stream monitoring tasks.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management
Database applications

General Terms
Pattern detection, time series, efficient query processing

1. INTRODUCTION
In many application domains, production and information

systems have to be routinely monitored. For example, tem-
perature and humidity of a manufacturing laboratory, or
incoming and outgoing network traffic in a computing en-
vironment are important for surveillance of vital company
assets. Automatically detecting critical situations as they
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arise is crucial for appropriate counter-action in time. As
networked information systems are increasingly vulnerable
to security attacks from outside, detecting e.g. denial-of-
service attacks before they bring down the system greatly
reduces the cost of restoring the system and bringing it back
up to regular operation. Similarly, monitoring production
systems and observing critical patterns in the development
of production conditions allows corrective measures before
damages or quality degradation occur.

Successful monitoring should be capable of effectively iden-
tifying patterns in streaming data which might indicate crit-
ical events. For most systems, but especially for highly
dynamic systems, or those systems which require following
a large number of measurements, and / or several stream
sources, efficiency of the detection is crucial. Especially if
several patterns for different problematic scenarios are mon-
itored, they have to be compared against the stream in a
highly efficient manner. Moreover, patterns may be of arbi-
trary length. And finally, from a user’s point of view, the
faster patterns are detected, the easier counter measures can
be taken.

In short, our pattern detector system has to meet the
following requirements:

• effective pattern detection

• efficient online processing

• easy interactive configuration of patterns and sources

In this work, we propose a system for monitoring contin-
uous streams of data, and for immediate signaling of critical
situations. The system visualizes the incoming information
stream(s), the critical pattern(s) that need to be detected,
and highlights the state of the system using an expressive
color code and sound signals for alerts. Users may interac-
tively choose streams to monitor, set up sensitivity thresh-
olds, as well as define and modify critical patterns.

The effectivity of the pattern detection is based on the
widely used Dynamic Time Warping Distance (DTW) mea-
sure, which is known to successfully identify patterns in time
series in a variety of application domains [4, 1, 5, 9, 6, 2].
As DTW computation is costly, we achieve efficient pattern
detection by employing a fast multistep filter-and-refine al-
gorithm, anticipatory DTW (ADTW) [3]. ADTW reduces
the number of necessary computations by faster rejection of
false candidates.

In our demonstration scenario, we exemplarily show how
network traffic can be monitored to identify threats such as
low rate TCP attacks, for which recent research result in the
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Figure 1: Pattern detector workflow: the user spec-
ifies query patterns which are continuously checked
against the data stream using DTW lower bounds
and ADTW for efficient processing. Detected pat-
terns results in visual and audio alerts and high-
lighted areas in the stream.

network community use DTW-based monitoring [12]. As the
data continuously arrives during the demonstration, efficient
detection and signaling of problematic traffic patterns can be
observed. Detailed information on monitoring, continuous
query processing, parameterization and evaluation will be
available for interactive configuration and usage.

Our pattern detector easily generalizes to other online
monitoring applications, e.g. monitoring of production pro-
cesses where detection of critical patterns can be used for
corrective measures before problems occur.

2. SYSTEM ARCHITECTURE
Monitoring network traffic requires an online algorithm

for efficient and effective detection of the relevant patterns
and their immediate signaling to the user. Our pattern de-
tector mechanism builds upon two main building blocks: an
effective pattern detection technique for low rate denial-of-
service (DoS) attacks as in [12], and an efficient algorithm
for the computation of DTW (Dynamic Time Warping) [3].

The overall workflow is illustrated in Figure 1. The pat-
tern detector can be configured to fit the needs of the user
by loading predefined patterns (e.g. for low rate DoS attacks
as defined in [12]), or by manually defining a pattern that
describes potentially suspicious time series. For each pat-
tern, sensitivity thresholds are adjustable. These sensitivity
thresholds corresponds to the similarity between the query
pattern and the traffic stream. By adjusting them, users can
opt for earlier alerts, which might induce more false alarms,
or for a more tolerant processing where only very similar pat-
terns lead to an alert. Likewise, for Dynamic Time Warping,
the degree of stretching and scaling of the pattern along the
time axis, can be set by the user (see also technical discus-
sion in the query processing section 3). This allows direct
parametrization of how close the matching between query
and stream should be.

The continuous data stream is monitored for the pat-
tern(s) and their parameterization(s) that the user has spec-
ified. We apply an efficient filtering scheme [3] to substan-
tially reduce the runtime.

Figure 2: Monitoring screen with alert information:
displays the currently observed data stream source,
its threat status, as well as the life stream situation.

If a suspicious pattern is detected, an audio alarm is played,
and the corresponding area in the stream is highlighted. Fig-
ure 2 shows the corresponding screen. A mouse click on the
highlighted area shows the patterns that have caused the
alert. The currently monitored source and the threat level
are indicated. As the stream continues in the main monitor-
ing window, the history tab allows users to go back to any
suspicious pattern by navigation back and forth along the
stream to inspect the entire stream, or just the highlighted
areas. Additional evaluation information that comprises sta-
tistical information on past detection is provided for further
in-depth analysis.

We provide several tools for statistical analysis of detected
patterns, both for the ongoing streamed data, and for his-
torical data. Figure 3 shows the overview screen. Users
may choose which time periods they would like to compare.
Statistical information on the detected patterns and their
threat level is made available. Moreover, aggregated views
on the stream are available at different levels of granularity
such that users can gain both an overview and take a look
at details of any monitored screen.

User may additionally choose to open several monitoring
windows for different sources. This allows displaying the
information for a number of observed entities side-by-side.
This feature is also helpful to compare the effect of differ-
ent parameterization or query pattern setups as the stream
continues.

The setup screen is displayed in Figure 5: a pattern can be
added to the current monitoring routine by loading it from a
file, or by creating a new pattern. To avoid a large number of
detected patterns, relevant thresholds can be selected. The
degree of stretching and scaling in DTW can be adjusted
from the default values to user defined parameter values. For
advanced users, we offer the possibility of choosing different
DTW processing algorithms (see Section 3 below for details).

3. QUERY PROCESSING
Dynamic Time Warping (DTW) is a distance measure

that was originally developed in speech recognition to over-
come the shortcomings of the Euclidean distance. Instead
of simply comparing values in two time series one value at
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Figure 3: Statistics screen for (historical) analy-
sis: allows for in-depth analysis of a specified data
stream source for different patterns and periods of
time, aggregated to the desired time granularity
level.

a time (as in Euclidean Distance), DTW allows for stretch-
ing and scaling along the time axis to find the best possi-
ble match between the two patterns (cf. Fig. 4). To avoid
degenerate matchings, the amount of stretching is usually
restricted to a band of k values. The best match DTW dis-
tance is defined recursively over time series of shorter length:

Definition 1. k-band DTW.
The Dynamic Time Warping distance between two time se-
ries s, t of length n, m (w.l.o.g. n ≤ m) with respect to a
bandwidth k is defined as:

DTW ([s1, ..., sn], [t1, ..., tm]) =

distband(sn, tm)+min

DTW ([s1, ..., sn−1], [t1, ..., tm−1])
DTW ([s1, ..., sn], [t1, ..., tm−1])
DTW ([s1, ..., sn−1], [t1, ..., tm])

with

distband(si, tj) =

{
dist(si, tj) |i−

⌈
j·n
m

⌉
| ≤ k

∞ else

DTW (∅, ∅) = 0, DTW (x, ∅) =∞, DTW (∅, y) =∞

Thus, DTW between two time series s and t is recursively
defined as the minimum over time series shorter by one el-
ement. The values at any given time point (distband) are
taken into account, as long as their values are within the
band constraint (|i− j| ≤ k for time series of equal length).

Dynamic time warping (DTW) can be computed using
dynamic programming. Its computational complexity, how-
ever, is too high for many applications. As a consequence,
speeding up DTW is an active research area. A number
of approaches are based on the multistep filter-and-refine
architecture [8, 13, 10]. Instead of naively comparing the

Euclidean Distance

Euclidean Distance

Dynamic Time Warping

Figure 4: Euclid (left) vs. DTW (right): black ver-
tical lines indicated how Euclide compares the top
blue pattern to its shifted counterpart at the bottom
(red), and how DTW matches corresponding parts
in the patterns through stretching.

query against all possible time series, the idea is to define a
filter distance for efficiently filtering out possible candidates.
Only these - ideally few - candidates are then refined using
the costly DTW distance. If the filter is lower bounding, i.e.
it never overestimates the true DTW distance value, then
multistep computation is lossless [7, 11]. Lossless query pro-
cessing means that the final results corresponds to exactly
the same as if the query had been naively compared to all
time series, but runtime is reduced.

For online algorithms, lower bounding filters may still not
be fast enough. They prune many time series, but many still
have to be evaluated using the costly exact DTW compu-
tation. In our recent prior work, we have proposed a novel
approach, called anticipatory pruning for the DTW distance
(ADTW for short) [3]. It is based on the observation, that
once a candidate has passed the lower bounding filter step,
the DTW computation starts from scratch. ADTW re-uses
the filter information to devise a novel pruning scheme dur-
ing DTW computation.

DTW is cumulative, i.e. in each step of its computa-
tion, a matrix column with partial DTW matching results
is filled. The minimum of the values per column is known to
be monotonously non-decreasing. As a result, the column
minima serve as a pruning step in what is known as early
stopping or early abandon [10, 9].

We have shown that many existing lower bounding filters
have a similar property, called piecewise, which complements
the cumulative nature of DTW. ADTW tightens the DTW
estimate by using a combination of column minima of DTW
plus an estimate of the remaining columns that is derived
directly from the previously computed filter step.

As a consequence, ADTW requires surprisingly little over-
head. It needs to simply keep track of the piecewise filter
information that is available anyhow, and combine it with
column minima of DTW. As the cumulative DTW matrix is
filled as in any standard DTW computation but for reversed
(query) time series, the computational effort for ADTW is
low, yet its pruning power has been shown to be greatly
improved [3].

In this system, employing ADTW leads to the necessary
efficiency gains that enable online monitoring via DTW. In
our system, we provide implementations of the ADTW com-
bined with state-of-the-art lower bounding filters (LB Keogh,
LB Hybrid, and FTW) [8, 13, 10]. For those interested in
the inner workings of the algorithms, we also provide stan-
dard implementations of these filters and a sequential DTW
processing. In our real world scenario, the difference in run-
times that stems from the different query processing algo-
rithms will be directly perceivable.
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4. DEMONSTRATION SCENARIO
In the demonstration scenario, we will provide users with

the opportunity to try out the monitoring tool themselves.
With a number of predefined patterns and parameteriza-
tions that have been empirically set for both the sensitivity
threshold and the tolerance in the DTW matching, we pro-
vide settings where the conference participants will be able
to immediately get results.

Additionally, all of the settings, the patterns, and data
streams can be modified by the attendees. In this way, it
will be possible to observe the performance of the network
monitoring and the detection of potential threats. For ad-
vanced users, it will be possible to compare different param-
eter settings, or different algorithmic approaches for DTW
computation.

Based on the approach presented in [12], we define query
patterns that correspond to potential low rate denial-of-
service attacks. These attacks are visible in regular network
traffic as occasional bursts that are periodically observable.
Bursts in traffic that exceed the victim’s capacity lead to a
loss of regular network traffic. This traffic cannot be ser-
viced as the attacker’s data floods the victim’s system for a
short period of time.

The authors provide a formalization of a family of such low
rate attacks. Based on samples of regular network traffic,
query patterns are determined. To account for the natural
differences in the query patterns of periodic attack signa-
tures and the actual network traffic, the authors use DTW-
based matching. This is followed by techniques for narrow-
ing down the source of the attack.

Our demonstration system not only provides the means
for monitoring, but additionally contains analytical tools for
evaluating the history of detected patterns. We also include
extensive information on the DTW query processing. Dif-
ferent algorithmic approaches can be seen in direct compar-
ison. Moreover, while we provide empirically tested default
parameterization settings, we allow users to set their own
values to study their effect on the current data stream.

5. CONCLUSION
The pattern detector is an online monitoring tool for con-

tinuous stream data as arises e.g. in early detection of net-
work attacks in regular network traffic. We provide query
patterns which correspond to DTW-based detection of low
rate denial-of-service attacks as recently proposed in the net-
work community. We achieve efficient query processing by
using our anticipatory pruning scheme for fast DTW com-
putation. In the demonstration scenario, the setup is fully
configurable by the user, and we provide tools for thorough
analysis.
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