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ABSTRACT
We continue the study of approximating the number of dis-
tinct elements in a data stream of length n to within a (1±ε)
factor. It is known that if the stream may consist of arbi-
trary data arriving in an arbitrary order, then any 1-pass al-
gorithm requires Ω(1/ε2) bits of space to perform this task.
To try to bypass this lower bound, the problem was recently
studied in a model in which the stream may consist of arbi-
trary data, but it arrives to the algorithm in a random order.
However, even in this model an Ω(1/ε2) lower bound was es-
tablished. This is because the adversary can still choose the
data arbitrarily. This leaves open the possibility that the
problem is only hard under a pathological choice of data,
which would be of little practical relevance.

We study the average-case complexity of this prob-
lem under certain distributions. Namely, we study the case
when each successive stream item is drawn independently
and uniformly at random from an unknown subset of d items
for an unknown value of d. This captures the notion of ran-
dom uncorrelated data. For a wide range of values of d and
n, we design a 1-pass algorithm that bypasses the Ω(1/ε2)
lower bound that holds in the adversarial and random-order
models, thereby showing that this model admits more space-
efficient algorithms. Moreover, the update time of our algo-
rithm is optimal. Despite these positive results, for a certain
range of values of d and n we show that estimating the num-
ber of distinct elements requires Ω(1/ε2) bits of space even
in this model. Our lower bound subsumes previous bounds,
showing that even for natural choices of data the problem is
hard.
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1. INTRODUCTION
In recent years the amount of available data has been

tremendous. Transaction data, the web and web access logs,
as well as network traffic are in abundance. Because of the
sheer size of the data, classical algorithms for computing over
such data are no longer deemed practical. Processors do not
have the capability to store the entire input and making
multiple passes over it is prohibitive. Even the most basic
statistics of the data cannot be computed exactly by such al-
gorithms in these settings, and so algorithms must be both
approximate and probabilistic. This model for algorithm
design is known as the streaming model and has become in-
creasingly popular, dating back to the work of Flajolet and
Martin [16], and resurging with the seminal work of Alon,
Matias, and Szegedy [2]. For a survey, see the book by
Muthukrishnan [30].

One of the most well-studied problems in the theory of
data streams is the computation or approximation of the
number of distinct elements. In the database community,
query optimizers can use this statistic to find the number
of unique attribute values without having to perform an ex-
pensive sort. It is also useful for planning how to execute
SQL queries and joins while avoiding redundant computa-
tion. Other applications include internet routing, for which
internet routers can gather the number of distinct sources
and destinations passing through them with only limited
memory. This is especially useful for detecting Denial of
Service attacks, see [1].

Let a = a1, a2, . . . , an be a sequence of n items, which
we refer to as a stream, drawn from a universe of items
[m] = {1, 2, . . . ,m}. We let F0 = F0(a) denote the number
of distinct elements in the stream. An algorithm A is said
to ε-approximate F0 if it outputs an estimate F̃0 for which
Pr[|F̃0 − F0| < εF0] > 2/3, where the probability is over
the coin tosses of A. The 2/3 probability can be amplified
by taking the median of several independent estimates. We
consider algorithms that make a constant (usually one) num-
ber of passes over a, and we are concerned with the memory
required of such algorithms.

The first streaming algorithm for estimating F0 in a data
stream is due to Flajolet and Martin [16], who assumed the
existence of hash functions with certain randomness proper-
ties that were unknown to exist. The best known algorithms
[5] ε-approximate F0 in Õ

(
1/ε2

)
space with one pass, where

the notation Õ(f) means f · polylog(nm/ε). These algo-
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rithms work for an arbitrary stream a, i.e., they are data-
independent and order-independent.

For a practical setting of m and ε (say, m = 232 and
ε = 10%), the space complexity is dominated by the 1/ε2

term. As the quality of approximation improves, say to
ε = 1%, the quadratic dependence on 1/ε is a major short-
coming of existing algorithms, and a natural question is if
this depedence is optimal.

Using a reduction from the communication complexity
of equality, Alon, Matias, and Szegedy [2] showed that for
adversarially chosen streams a, any one-pass algorithm A
which ε-approximates F0(a) must use Ω(logm) space. Bar-
Yossef [4] showed an Ω(1/ε) bound via a reduction from the
set-disjointness problem. Indyk and Woodruff introduced a
new problem, the gap-Hamming problem, to improve this to
Ω(1/ε2) bits of space, provided ε = Ω(m−1/(9+k)), for any
k > 0. The analysis was improved by Woodruff [33] who
showed an optimal1 Ω(1/ε2) bound for any ε = Ω(1/

√
m).

The proofs were simplified by Jayram, Kumar, and Sivaku-
mar [22].

Despite these negative results, practitioners may need to
ε-approximate F0 even when, say, ε = 1%. The question
that naturally arises is whether the data stream model, as
defined, naturally captures what is happening in practice.
Guha and McGregor ([19], [20]) showed that in many real-
world applications, the assumption that the data arrives in
an adversarial order is too strong. Indeed, consider a set-
ting for which the semantics of the data imply the data is
randomly ordered. For example, if employees in a database
are sorted by surname and there is no correlation between
the ordering of surnames and salaries, then salaries can be
thought of as ordered randomly. Several query optimizers
already make these assumptions ([19], [20]). Other instances
include the “backing sample” architecture proposed by Gib-
bons, Matias, and Poosala ([17], [18]) for studying aggregate
properties in a database, for which the ordering of the data is
random by design. Guha and McGregor refer to this model,
in which the data is adversarially-chosen but the order in
which it appears to a streaming algorithm is random over
all possible permutations, as the random-order model. This
model has become quite popular; see the works of ([9], [10],
[20], [19], [21]).

A natural question is whether this model admits algo-
rithms which can ε-approximate F0 in less space. The an-
swer to this turns out to be negative, as shown by Chakrabarti
et al [9], who show that any algorithm for ε-approximating
F0 in the random-order model needs Ω(1/ε2) space. The
result follows by arguing that random permutations of an
adversarially-chosen stream requiring Ω(1/ε2) space in the
standard model, will, most of the time, still require this
amount of space. Thus, the same motivation that led to the
creation of the random-order model still exists. Is it possible
to suitably adjust the random-order model to better reflect
what is happening in practice, so that there is some hope of
designing more space-efficient algorithms?

1.1 Our Contributions
We propose the random-data model, for which each item

of the data stream is drawn from an unknown distribution
D. Distibution D is defined by probabilities p1, . . . , pm, and

1This is optimal since there is an O(m)-space algorithm
which just maintains the characteristic vector of the under-
lying set of the data stream.

item x occurs as the next item in the stream with probability
px. SinceD is the same for each successive item, the random-
data model is contained in the random-order model, as all
permutations of the data are equally likely. The models are
quite different though, since the distribution on items in the
random-data model is a product distribution (namely, Dn),
whereas in the random-order model any symmetric distri-
bution on any choice of data is possible. Thus, the random-
data model better captures the situation when the data is
uncorrelated.

The random-data model has been implicitly studied be-
fore. Guha and McGregor [21] study the setting in which
each element of a data stream is a sample drawn indepen-
dently from some unknown distribution. In this model they
estimate the density function of the unknown distribution,
which has applications to learning theory. This is useful
for separating the sample and space complexity of learning
algorithms. The random-data model is also referred to as
the generation oracle model in property testing of distribu-
tions [6]. Moreover, the random-data model was assumed by
Motwani and Vassilvitskii [29], who studied sampling-based
F0-estimators under the assumption that the distribution of
data is Zipfian. Such an assumption turns out to be useful
for estimating statistics of the Web Graph and word frequen-
cies in many languages. Many statistical algorithms used in
practice for estimating the number of distinct elements based
on sampling techniques already impose such an assumption
(see the first paragraph in Section 1 of [31], and the many
references in [7] at www.stat.cornell.edu/~bunge/), with-
out which their performance is known to be poor [11]. One
important model is the Generalized Inverse Gaussian Pois-
son (GIGP) model [8], which allows the data to come from
uniform, Zipfian, and other distributions. Finally, the idea of
studying streaming algorithms through an instance-specific
lens was posed by Kumar and Panigrahy [25], who studied
the problem of finding frequent items in terms of the distri-
bution of item frequencies.

We prove bounds on the average-case complexity of esti-
mating the number of distinct elements when D is uniform
over an unknown subset of d items, chosen from the universe
[m], for some unknown value of d. That is, exactly d of the
item probabilities px are non-zero, and they are equal to 1

d
.

These distributions capture the natural situation when there
are d distinct universe items, for some unknown value of d,
and you see a stream of n uncorrelated samples from this
universe, i.e., you sample from a set of unknown size with
replacement.

Our choice of distribution is fairly robust in the sense that
other natural distributions can be reduced to a d-uniform
distribution. For example, a distribution with a few items
which occur with much larger probability than the remaining
items, which are approximately uniformly distributed (i.e.,
have the same probability up to a small relative error), can
be reduced to a d-uniform distribution. Indeed, algorithmi-
cally, a heavy-hitters algorithm, such as CountMin [13] or
CountSketch [12], can be used to first find and count the
items that occur with large probability. These items can be
filtered from the stream, and an algorithm for d-uniform dis-
tributions, such as the one described in the next paragraph,
can provide a good estimate to F0 on the filtered stream
(even though the probabilities are only approximately 1

d
).

Similarly, our lower bounds also apply to such distributions
since the few heavy-hitters have a negligible contribution
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to F0. Our algorithm also applies to pseudorandom distri-
butions with support size d, i.e., distributions on d items
that cannot be distinguished from uniform with a polyno-
mial number of samples.

The interesting properties of these distributions are that
(1) they are fairly natural, (2) for a certain range of d, we
show that one can beat the space lower bound that holds for
adversarially-chosen data, and (3) for another range of d,
we show that the lower bound for adversarially-chosen data
carries over to these distributions.

More precisely, when d = Ω(1/ε2) and d ≤ n, we design a
1-pass algorithm that uses an expected O(d(log 1/ε)/(nε2)+
logm) bits of space. Moreover, its worst-case update time
(i.e., the worst-case processing time per stream item) is O(1)
on words of size O(logm). Notice that if n = ω(d log 1/ε),
the algorithm breaks the Ω(1/ε2)-space lower bound that
holds in the adversarial and random-order models2. Even for
d ≤ n = O(d log 1/ε), our algorithm outperforms the best
known algorithms in the adversarial and random-order mod-
els [5]. The first algorithm in [5] has time O(logm log 1/ε)
and space O(1/ε2 logm). Thus, our time and space are al-
ways better. The second algorithm in [5] has time Ω(1/ε2)
and space O(1/ε2 log logm), so our time is better, while our
space is better for n = Ω(d(log 1/ε)/ log logm). The third
algorithm in [5] has time Ω(1/ε2) and spaceO(1/ε2(log logm+
log 1/ε)), so our time and space are always better. This last
algorithm has amortized time O(logm + log 1/ε), which is
worse than our worst-case time.

Despite these positive results, our main technical contri-
bution is to show that if n, d = Θ(1/ε2), then estimating
F0 requires Ω(1/ε2) bits of space even in the random data
model. The lower bound holds even if D is known to the
algorithm. This subsumes all lower bounds in other data
stream models for estimating F0, showing that even for a
natural choice of data the problem is hard. Unlike the
adversarially-chosen distributions implicitly used in previ-
ous lower bounds, which have trivial O(logm)-space 2-pass
algorithms, our hard distribution for 1-pass algorithms is the
first candidate for proving an Ω(1/ε2)-space bound for any
constant number of passes, which would resolve a conjecture
of Kumar [24]. To support this claim, in the related decision-
tree model of computation, this distribution was shown to
require depth Ω(1/ε2); see Section 4.5 of [34].

Techniques: Our algorithm for d = Ω(1/ε2) and d ≤ n
is based on the observation that the frequency of an item
in the stream should be about n/d. If n/d were larger than
1/ε2, we could obtain a (1 ± ε)-approximation to d with
constant probability simply from the frequency of the first
item in the data stream. Using a balls-and-bins occupancy
bound of Kamath et al [23] and the fact that d ≤ n, we
can show that a good estimate of d implies a good estimate
of F0. However, suppose 1 ≤ n/d < 1/ε2. Then we can
instead store the first O(1/ε2) items, treat these as a set,
and count the number of times some item in the remainder
of the stream occurs in this set. This is correct, but un-
necessary if d is much less than n. We instead look at the
frequency of the first O(1) stream items in the first half of

2The Ω(1/ε2) bound holds in both models for any n =
Ω(1/ε2), since we may take the known hard instance with
stream length Θ(1/ε2) and insert n − Θ(1/ε2) copies of a
new item x. This only changes F0 by 1, and the sub-stream
restricted to items other than x is the same as before (i.e.,
the random-order property is preserved).

the stream, and use these to obtain a constant factor ap-
proximation to d. On the remaining half of the stream we
create a set from the first O(d̃/(nε2)) items, where d̃ is our
O(1)-approximation to d, and count the number of times
some item in the remainder of the stream occurs in this set.
This makes the space sensitive to the ratio d/n, as the space

is now O(d̃(logn)/(nε2) + logn), since we have O(d̃/(nε2))
logn-bit numbers, and we store a single counter. To reduce
the logarithmic factor, we sub-sample the universe so that
our d-uniform distribution becomes a Θ(1/ε2)-uniform dis-
tribution over a smaller universe. Now we can store items
using O(log 1/ε) bits, and we put the items in a perfect hash
table to support O(1) update-time. We spread the construc-
tion of the perfect hash table over multiple stream updates,
so that our worst-case update time is always O(1). We show
that estimating the distribution’s support size in the sub-
sampled stream can be used to estimate d well, and thus can
be used to approximate F0 of the original stream. Finally,
we show that we can assume n ≤ m4, so logn = O(logm),
giving the claimed overall space complexity.

To obtain our 1-pass Ω(1/ε2) lower bound in the random
data model for n, d = Θ(1/ε2), we look at the 1-round dis-
tributional complexity of a two-party communication prob-
lem. It is essential that the distribution depend on D, and so
we cannot look at the more powerful notion of randomized
communication complexity used in previous work. We also
consider the distributional complexity of a function rather
than that of a promise problem in previous work, and give
a combinatorial proof that rectangles in the communication
matrix have low discrepancy.

2. PRELIMINARIES

2.1 The Random-Data Model

Definition 1. In the random-data model there is a
distribution D over items [m], and a stream of n independently-
drawn samples D1, . . . , Dn from D is seen by a streaming
algorithm A in that order. We say an algorithm A (1± ε)-
approximates a function f(D1, . . . , Dn) if it outputs an esti-

mate f̃ for which Pr[|f − f̃ | > εf ] < 1/10, where the proba-
bility is now over both the coin tosses of A and the random
variables D1, . . . , Dn.

We will restrict our attention to distributions D on [m] that
are uniform over a subset of [m], though as noted earlier,
other natural distributions can be reduced to these. Letting
d be the size of the subset, we call such a distribution d-
uniform.

We can assume that m ≤ poly(n). Indeed, otherwise we
may hash the universe down to a set of size n3, for which
the probability of a collision is negligible.

2.2 Communication Complexity
We will need tools from communication complexity for

our lower bounds. We assume the reader is familiar with
a few standard notions in communication complexity. The
interested reader may consult the book by Kushilevitz and
Nisan [26] for more detail. Let f : X × Y → {0, 1} be a
Boolean function. We will consider two parties, Alice and
Bob, receiving x and y respectively, who try to compute
f(x, y). We look at protocols which can err on a certain
fraction of inputs.
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Definition 2. Let µ be a distribution on X × Y . The
(µ, δ)-distributional communication complexity of f , Dµ,δ(f),
is the cost of the best deterministic protocol that gives the
correct answer for f on at least a 1− δ fraction of all inputs
in X × Y , weighted according to µ.

In the one-way model, Alice computes some function A(x)
of x and sends the result to Bob. Bob then attempts to com-
pute f(x, y) from A(x) and y. Only one message is sent, and
it is from Alice to Bob. We define D1−way

µ,δ (f) similarly to

Dµ,δ(f), but for one-way protocols. We consider a problem
tailored to our streaming application. It may seem artificial,
but it turns out to be what we need.

Definition 3. For x, y ∈ {0, 1}d, let τ = wt(x)+wt(y)−
2wt(x)wt(y)/d, where wt(x) is the Hamming weight of x,
i.e., the number of 1s in x. In this problem, Alice is given
the inputs wt(y) and x, while Bob is given the inputs wt(x)
and y. Let HAMd(x, y) = 1 if ∆(x, y) > τ , and otherwise
let HAMd(x, y) = 0. Here ∆(x, y) denotes the Hamming
distance between x and y, that is, the number of positions
that differ.

3. BREAKING THE Ω(1/ε2) BARRIER
We give an algorithm which illustrates that for a wide

range of values of d and n, one can estimate F0 with less
memory and update time in the random data model than
required in the adversarial and random-order models. We
start by showing that for d = Ω(1/ε2), estimating F0 reduces
to estimating d. For ease of presentation, some proofs are
deferred to the appendix. The next lemma can be proven us-
ing a strong tail bound [23] for balls-and-bins distributions.

Lemma 4. Let W > 0 be any positive constant, and sup-
pose ν/ε2 ≤ d ≤W ·n for a sufficiently large constant ν > 0.
Let d′ be such that d ≤ d′ ≤ (1 + ε′)d for a sufficiently small
ε′ = Θ(ε). Then with probability at least 99/100, over the

random data stream, the quantity, F̃0 = d′
[
1−

(
1− 1

d′

)n]
,

is a (1± ε)-approximation to F0.

We use this lemma to design an algorithm when d = Ω(1/ε2)
and d ≤ n. Notice that if d = o(1/ε2), we can simply store
the hashes of all distinct items in O(d log 1/ε + logm) =
o((log 1/ε)/ε2 + logm) bits of space. Let ε′ be as in Lemma
4, which is any sufficiently small value of the order Θ(ε).

We assume, as is typical for streaming algorithms, that n
is known in advance, though any O(1)-approximation would
work in the following algorithm with minor modifications.
Moreover, even if one only has an upper bound n′ on n,
where n′ = poly(n), one can adapt the algorithm with mi-
nor modifications. Indeed, one can “guess” n = 2i for i =
0, . . . , log2 n

′, and run our algorithm in parallel for each
guessed value. At the end of the stream, n is known, and
one can extract the information from the state of the algo-
rithm corresponding to the guess which is within a factor of
2. The space only blows up by a log n′ = O(logn) factor.

Theorem 5. If ν/ε2 ≤ d ≤ n for a sufficiently large con-
stant ν > 0, then F0-estimator outputs a (1±ε)-approximation
to F0 with probability at least 9/10. The algorithm is 1-
pass and uses an expected O(d(log 1/ε)/(nε2) + logm) bits
of space. The worst-case update time is O(1) on words of
size O(logm).

We can assume that n ≤ m4. If n were any larger, we
could restrict our attention to the first m4 positions in the
stream. The above algorithm would have expected space
O(d(log d)/(m4ε2)+logm) bits. This is O(1/(m2ε2)+logm)
bits because d ≤ m. Moreover, ε ≥ 1/(m + 1) since ε =
1/(m + 1) corresponds to computing F0 exactly. So by re-
placing n with m4, the space is still O(logm) bits. Hence,
logn = Θ(logm) (since we also have m ≤ n3).

The 1/10 error probability can be reduced to probability
δ by assuming that n = Ω(d log 1/δ). The algorithm breaks
the stream into ι = Θ(log 1/δ) contiguous substreams each
of length n/ι ≥ d. It runs F0-estimator on each substream
and outputs the median of its estimates. The output will be
a (1± ε)-approximation with probability ≥ 1− δ, while by a
Markov bound the space will beO(d(log 1/ε)(log 1/δ)/(nε2)+
logm log(1/δ)) with arbitrarily large constant probability.
We will need the following inequality, proven in the ap-
pendix.

Claim 6. Let 0 ≤ x < 1 and y ≥ 1, x, y ∈ R. Then,

xy − (xy)2

2
≤ 1− (1− x)y ≤ xy.

Proof of Theorem 5: We define several natural proba-
bilistic events.

DistinctStart: We have that d ≥ ν/ε2 for a sufficiently large
constant ν, and so we can assume that

Pr[a1, . . . , a5 are distinct ] ≥ 1− 25/d ≥ 299/300.

We call the event that a1, . . . , a5 are distinct DistinctStart,
which we condition on.

IGood: Notice that I − 5 is a geometric random variable
with expectation d/5. By Claim 6 and DistinctStart, we
have that Pr[I − 5 ≤ d/100] is at most

1− (1− 5/d)d/100 ≤ 5d/(100d) = 1/20.

Moreover,

Pr[I − 5 > d] = (1− 5/d)d ≤ e−5 ≤ e− ln 100 ≤ 1/100.

We condition on event IGood: I − 5 ∈ [d/100, d]. Hence,

A ∈
[⌊

(c′)2(ε′′)2d

104

⌋
,

⌊
(c′)2(ε′′)2d

102

⌋]
,

B ∈
[⌈

d

40(c′)2(ε′′)2n

⌉
,

⌈
5d

2(c′)2(ε′′)2n

⌉]
.

Using that d ≥ ν/ε2 for a sufficiently large ν > 0, we can
assume A ≥ 1. Also, by definition B ≥ 1.

GoodSubstream: Let D be the set of items x in the support
of distribution D for which g(x) = 1. Then E[|D|] = d/A.
Since g is pairwise-independent, Var[|D|] ≤ d/A. By Cheby-
shev’s inequality,

Pr

[∣∣∣∣|D| − d

A

∣∣∣∣ > c′ε′′
d

A

]
≤ A

(c′)2(ε′′)2d
≤ 1

100
,

where we conditioned on the event IGood. By the definition
of ε′′, if this event that we call GoodSubstream occurs, then
we have

||D| − d/A| ≤ c′ε′′d/A = (ε′/3)(d/A).
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F0-estimator:

1. If any of the first 5 = dln 100e items are duplicates, output fail. Otherwise, store the set S = {a1, . . . , a5} of the first
5 items.

2. Let I > 5 be the first position of a duplicate item in S in the first n/2 positions of the stream. If no such I exists,
output fail.

3. Set the parameters:
c′ = 100(1152/(9717 ln 200))1/2,
ε′′ = ε′/(3c′),
A = b(c′)2(ε′′)2(I − 5)/100c,
B = d5(I − 5)/(2(c′)2(ε′′)2n)e.
If A = 0, then output fail.

4. Let g : [m]→ [A] and h : [m]→ [d1/(ε′′)5e] be 2-wise independent functions.

5. Let b = b1, . . . , br be the sub-stream of an/2+1, . . . , an of items aj for which g(aj) = 1. That is, bk is the k-th item
among an/2+1, . . . , an which hashes to 1.

6. Store the set T of the at most B distinct values h(b1), . . . , h(bB) in a perfect hash table.

7. Let C be the number of items in stream b after position B which hash to a value in T .

8. Set d′ = A(r−B)|T |
(1−2ε′/5)(1−2ε′′)C .

9. Output the nearest integer to d′
[
1−

(
1− 1

d′

)n]
.

We condition on this event in the remainder of the proof.
Thus,

|D| ∈ [(1− ε′/3)d/A, (1 + ε′/3)d/A].

NoCollisions: Conditioned on GoodSubstream, it follows from
the definition ofA that |D| = O(1/ε2), and since the range of
h has size d1/(ε′′)5e, the probability there are no collisions
is at least 1 − O(ε), which can be assumed to be at least
299/300 for ε less than a small enough positive constant.
We condition on this event, which we call NoCollisions, in
the remainder of the proof.

LongSubstream: Conditioned on GoodSubstream, each item
in stream a in positions n/2 +1, . . . , n occurs independently
in b with probability |D|/d ≥ (1− ε′/3)/A (notice that the
randomness defining g is independent of the randomness in
the data stream, so whether two different items in a occur
in D are indeed independent events). So,

E[r] ≥ (n/2)(1− ε′/3)/A ≥ n/(3A)

for small enough ε′. Using independence, by a Chernoff
bound,

Pr[|E[r]− r| ≥ (1/2)E[r]] ≤ 2e−E[r]/12

≤ 2e−n/(36A)

= 2e−Θ(n/(dε2))

≤ 1

300
,

where the last equality follows from the fact thatA = Θ(dε2),
and the last inequality follows from the fact that n ≥ d
and ε can be made sufficiently small. Call this event that

r ≥ n/(6A) LongSubstream. We condition on it. Then,

r −B ≥ n

6A
−B ≥ 100n

6(c′)2(ε′′)2(I − 5)
− 5(I − 5)

2(c′)2(ε′′)2n
− 1.

Notice that, since ε′′ can be made arbitrarily small,

100

6(c′)2(ε′′)2
− 5

2(c′)2(ε′′)2
− 1 ≥ 50

3(c′)2(ε′′)2
− 3

(c′)2(ε′′)2

=
41

9(c′)2(ε′′)2
.

Since n ≥ (I − 5), we thus have

r −B ≥ n

I − 5
· 41

9(c′)2(ε′′)2
.

GoodEstimation: We now show that the output is a good ap-
proximation to F0. We calculate the expected size of T . Ob-
serve that bn/2+1, . . . , bn/2+B are random and independent
elements of D. Now, by event LongSubstream, r−B ≥ 1, so

E[C] =
(r −B)|T |
|D| ≥ n

I − 5
· 41

9(c′)2(ε′′)2
· |T ||D| ,

where the expectation is taken over the randomness in the
data stream in the last r−B positions of b, for given values of
r,B, |T |, |D|, and I − 5. Using GoodSubstream, |D| ≤ 2d/A,
and so,

E[C] ≥ n

I − 5
· 41

9(c′)2(ε′′)2
· A|T |

2d
=

41nA|T |
18(I − 5)d(c′)2(ε′′)2

.

Since A ≥ 1 and A = b(c′)2(ε′′)2(I − 5)/100c, we have

A ≥ (c′)2(ε′′)2(I − 5)/200.
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E[C] ≥ 41nA|T |
18(I − 5)d(c′)2(ε′′)2

≥ 41n|T |(c′)2(ε′′)2(I − 5)

3600(I − 5)d(c′)2(ε′′)2

=
41n|T |
3600d

.

Using NoCollisions, we have E[|T |] = |D|(1− (1− 1/|D|)B),
where the expectation is over the first B items of b, for a
given B and |D|. Now,

|D| ≥ 2d/A ≥ 200d/((c′)2(ε′′)2(I − 5))

using GoodSubstream. Since I − 5 ≤ d and ε′′ can be made
sufficiently small, |D| ≥ 40, so if B = 1, then |D| ≥ 40B.
Otherwise, B > 1, and since

B = d5(I − 5)/(2(c′)2(ε′′)2n)e,

it follows that

B ≤ 5(I − 5)/((c′)2(ε′′)2n).

Now,

I − 5 ≤ d ≤ n,

and so

|D| ≥ 200/((c′)2(ε′′)2),

while

B ≤ 5/((c′)2(ε′′)2),

so again |D| ≥ 40B. Using Claim 6,

E[|T |] = |D|(1− (1− 1/|D|)B)

≥ |D|(B/|D| −B2/(2|D|2))

≥ B −B2/(2|D|)
≥ B −B2/(80B)

≥ 79B/80.

Taking the expectation over g and the second half of stream
a,

E[C] ≥ 41nE|T|
3600d

≥ 41 · 79nB

3600 · 80d

≥ 41 · 79nd

40 · (c′)2 · (ε′′)2 · n · 3600 · 80 · d

=
c′′

(c′)2 · (ε′′)2
,

where

c′′ = 41 · 79/(40 · 3600 · 80).

Now, c′ was chosen so that we have

E[C] ≥ 3 · ln(200)/(ε′′)2.

Since the Ck are independent Bernoulli random variables,
by a Chernoff bound,

Pr[|C −E[C]| ≥ ε′′E[C]]

≤ 2e−(ε′′)2E[C]/3

≤ 2e− ln 200

≤ 1/100.

If |C − E[C]| < ε′′E[C], then we say that event GoodEs-
timation has occurred. By a union bound, we have that
the events DistinctStart, IGood, GoodSubstream, NoCollisions,
LongSubstream, and GoodEstimation simultaneously occur
with probability at least

1− 1

300
− 1

20
− 1

100
− 1

100
− 1

300
− 1

300
− 1

100
=

19

20
− 4

100
.

Since GoodEstimation occurs,

|C −E[C]| ≤ ε′′E[C].

Recalling that

E[C] = (r −B)|T |/|D|,

we have (r − B)|T |/C is a (1 ± 2ε′′)-approximation to |D|
for sufficiently small ε′′. It follows that A(r − B)|T |/C is a
(1 ± 2ε′/5)(1 ± 2ε′′)-approximation to d (for small enough
ε′). It follows by scaling by (1− 2ε′/5)(1− 2ε′′), we have

d ≤ d′ ≤ (1+2ε′/5)(1+2ε′′)d/((1−2ε′/5)(1−2ε′′)) ≤ (1+ε′)d

(for small enough ε′). Thus, we may apply Lemma 4, which
shows that with probability at least 99/100, the output is
a (1 ± ε)-approximation to F0 (when we take the nearest
integer, we can have an additional additive 1 error, which
since d, n = Ω(1/ε2), is negligible). The overall correctness
probability is at least 19/20− 4/100− 1/100 = 9/10.

Steps 1-5 require O(logm) bits of space. Steps 6-9 require
O(B log 1/ε+logm) bits. Note that in expectation the hash
table will have size O(B log 1/ε) bits [28]. The expected
space complexity is

O(E[B] log 1/ε+ logm)

= O(E[I − 5](log 1/ε)/(ε2n) + logm)

= O(d(log 1/ε)/(ε2n) + logm),

as desired. Our update time is O(1) for the first and sec-
ond halves of the stream. Since we use a perfect hash table,
checking membership can be done in O(1) time. The only
issue is how to quickly build the table. With high proba-
bility, the table can be built in O(B) time [28] (if not, we
output fail). This O(B) work can be spread out over the
Θ(B) udpates following bB . Note that LongSubstream guar-
antees that r − B = Ω(B), so this is possible. Thus, the
worst-case update time is O(1).

We remark that there are some streams for which F0-Estimator
always outputs the wrong answer. This is unavoidable if
one wants to maintain small space complexity, since some of
these streams do in fact correspond to the “hard instances”
used to establish the Ω(1/ε2) space lower bound in the case
of adversarially-chosen data, though they occur with very
low probability.

4. DISTINCT ELEMENTS IS HARD EVEN
FOR RANDOM STREAMS

We define the distribution µd on {0, 1}d for d = 1/ε2 to
be the distribution of characteristic vectors induced by the
product distribution Dn/2, where n = Θ(d) is such that

1− (1− 1/d)n/2 ∈ [1/3, 2/3]. We may assume, by adjusting
d, n by constant factors, that they are integers. Notice that
if X ∼ µd, then Xi = 1 if the “i-th bin” contains one of the
“n/2 balls”. Notice that

E[Xi] = 1− (1− 1/d)n/2.
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It is well-known (see, e.g., chapter 5 of [27]) that wt(X)
is tightly concentrated around its expectation since it cor-
responds to the number of non-empty bins when throwing
n/2 balls into d bins. Moreover, it is known that

Pr[d/4 ≤ wt(X) ≤ 3d/4] = 1− o(1).

By symmetry, for 0 ≤ k ≤ d the distribution µd | wt(X) = k
is uniform on strings of weight k. Put µ = µd × µd.

Lemma 7. Let k, ` ∈ [d/4, 3d/4] be arbitrary, and let X ∼
µd | wt(X) = k and Y ∼ µd | wt(Y ) = ` be independent
random variables. Then for any constant δ > 0, for a suffi-
ciently small choice of the constant α > 0,

Pr[|∆(X,Y )−E[∆(X,Y )]| ≥ α
√
d] > 1− δ.

Also,

Pr[∆(X,Y ) < E[∆(X,Y )]] ∈ [1/2− o(1), 1/2 + o(1)].

Proof. By symmetry, µd | wt(X) = k (respectively, µd |
wt(Y ) = `) is uniform over all strings containing exactly k
(respectively `) ones. Suppose X has ones in the set A ⊆ [d]
of size k, and Y has ones in the set B ⊆ [d] of size `. Then
∆(X,Y ) = k + ` − 2|A ∩ B|. The random variable |A ∩ B|
is identically distributed to |A ∩ B| | (A = a) for any fixed
set a of size k, so we may assume that

A = [k] = {1, 2, . . . , k}.

Thus, for any

i ∈ {0, 1, . . . ,min(k, `)},

we have

Pr[|[k] ∩B| = i] =

(
k
i

)(
d−k
`−i

)(
d
`

) .

Thus, |[k] ∩ B| follows a hypergeometric distribution. We
need the following normal approximation to the hypergeo-
metric distribution3 [15].

Theorem 8. For 0 < p < 1, q = 1− p, and any 0 ≤ r ≤
M , if N → ∞, M → ∞ so that M/N → ν ∈ (0, 1), and
(r −Mp)/

√
Mpq → x, then for a = 1/(1− ν),(

Np
r

)(
Nq
M−r

)(
N
M

) = (1− o(1))
e−ax

2/2√
2πMpq(1− ν)

.

Setting N = d, p = k/d, r = i, q = 1 − k/d, and M = `,
we have p, q ∈ [1/4, 3/4], M/N = ν ∈ [1/4, 3/4] and (r −
Mp)/

√
Mpq = x = (i − k`/d)/Θ(

√
d). For i = k`/d + α

√
d

for any α ∈ R, we thus have,

Pr[|[k] ∩B| = i] =

(
k

i

)(
d− k
`− i

)
/

(
d

`

)
= Θ(e−Θ(α2)/

√
d),

where the constants in the Θ(·) notation are absolute. Thus,

Pr[||[k] ∩B| − k`/d| ≤ α
√
d/2] ≤ α

√
d/Θ(

√
d).

For small enough α, this is ≤ δ. Now,

E[∆(X,Y )] = k + `− 2E[A ∩B],

3See also http://www.dartmouth.edu/~chance/
teaching_aids/books_articles/probability_book/
pinsky-hypergeometric.pdf

where

E[A ∩B] = k`/d,

and so

Pr[|∆(X,Y )−E[∆(X,Y )]| ≥ α
√
d]

= Pr[E[||[k] ∩B| − k`/d| ≥ α
√
d/2] ≥ 1− δ.

This proves the first part of the lemma. The second part
follows from the symmetry of Theorem 8.

Let SD,ε,`(F0) be the minimum space complexity, over all
algorithms A which ε-approximate F0 with `-passes in the
random-data model with item distribution D with probabil-
ity at least 1− δ/2 for a constant δ > 0.

Theorem 9. For any ε > 0 and constants δ, ` > 0, we
have that

SD,ε′,`(F0) ≥ Dµ,δ(HAMd)

and

SD,ε′,1(F0) ≥ D1−way
µ,δ (HAMd),

where ε′ = Θ(ε).

Proof. Let M be an `-pass ε′-approximation algorithm
for F0 in the random-data model with distribution D, which
succeeds with probability at least 1 − δ/2, and let n/2 and
µd be as above. Alice is given X ∼ µd, and Bob is given
Y ∼ µd, where X and Y are independent. Moreover, Alice is
also given wt(Y ) and Bob is also given wt(X). Conditioned
on X, Alice chooses a random stream aX of length n/2 with
characteristic vector X. Conditioned on Y , Bob chooses a
random stream aY of length n/2 with characteristic vector
y. Alice runs algorithm M on aX and transmits the state of
M to Bob, who continues running M on ay.

Observe that aX ◦ aY is a uniformly random stream of
length n, with items independently distributed according to
D. This follows from the fact that aX and aY are indepen-
dent, and they were drawn uniformly at random. Indeed, X
(resp. Y ) is a random characteristic vector, and aX (resp.
aY ) is random conditioned on having characteristic vector
X (resp. Y ).

By Lemma 7 and that

Pr[d/4 ≤ wt(X), wt(Y ) ≤ 3d/4] = 1− o(1),

there is a constant α > 0 for which with probability at least
1− δ/2, we have

|∆(x, y)−E[∆(x, y)]| ≥ α
√
d.

We condition on this event, denoted E . Put ε′ = αε/2.

Let F̃0 be the output of M . The claim is that F̃0 along
with wt(X) and wt(Y ) can be used to decide HAMd. We
first decompose F0. We have,

F0(aX ◦ aY )

= wt(X ∧ Y ) + ∆(X,Y ) =
1

2
(wt(X) + wt(Y ) + ∆(X,Y )) ,

and so

∆(X,Y ) = 2F0(aX ◦ aY )− (wt(X) + wt(Y )) .

Define the quantity E to be

E = 2M(aX ◦ aY )− (wt(X) + wt(Y )).

290



Let

τ = wt(X) + wt(Y )− wt(X)wt(Y )/d,

which Bob can compute. If E > τ , Bob outputs 1, otherwise
Bob outputs 0.

For correctness, suppose M outputs a (1± ε′) approxima-
tion to F0(aX ◦ aY ). Conditioned on E , and using the fact
that E[∆(X,Y )] = τ , we have two cases.

Case 1: Suppose

∆(X,Y ) > τ + α
√
d.

Using that d = 1/ε2, we have

E ≥ 2(1− ε′)F0 − wt(X)− wt(Y ) = ∆(X,Y )− 2ε′F0

≥ ∆(X,Y )− 2ε′d

≥ ∆(X,Y )− α
√
d

> τ + α
√
d− α

√
d

= τ.

Case 2: Suppose

∆(X,Y ) < τ − α
√
d.

Then,

E ≤ 2(1 + ε′)F0 − wt(X)− wt(Y )

≤ ∆(X,Y ) + 2ε′F0

≤ ∆(X,Y ) + 2ε′d

≤ ∆(X,Y ) + α
√
d

< τ − α
√
d+ α

√
d

= τ.

Since M outputs a (1 ± ε′) approximation to F0(aX ◦ aY )
with probability at least 1− δ/2, and

|∆(X,Y )− τ | ≥ α
√
d

with probability at least 1−δ/2, the parties can solve HAMd

with probability at least 1−δ and communication `SD,ε′,`(F0).
On the other hand, the communication must be at least
Dµ,δ(HAMd). If M is 1-pass, then the protocol is 1-way.
This concludes the proof.

By Theorem 9, to lower bound the space complexity of
approximating F0 in the random-data model in one pass,
it suffices to give a lower bound on the distributional com-
plexity D1−way

µ,δ (HAMd), where µ = µd × µd, and µd is a

distribution on {0, 1}d of characteristic vectors of Dn. As
mentioned above, it is well-known that wt(X) is tightly con-
centrated around its expectation since it corresponds to the
number of non-empty bins when throwing n balls into d bins.
In particular,

Pr[d/4 ≤ wt(X) ≤ 3d/4] = 1− o(1).

By a union bound,

Pr[d/4 ≤ wt(X), wt(Y ) ≤ 3d/4] = 1− o(1).

To simplify the analysis, it would be nice if we could as-
sume that there exist k, ` ∈ [d/4, 3d/4] for which wt(X) = k
and wt(Y ) = `. This will make X uniform over strings of
weight k, and Y uniform over strings of weight `. Let

ρk,` = µt | (wt(X) = k)× µt | (wt(Y ) = `).

The next lemma uses that Alice is given wt(Y ) and Bob is
given wt(X). Its proof appears in the appendix.

Lemma 10. There are k, ` ∈ [d/4, 3d/4] for which

Dµ,δ(HAMd) ≥ Dρk,`,δ/2(HAMd).

This also holds for 1-way protocols.

In the remainder we fix wt(X) = k and wt(Y ) = ` for k
and ` satisfying the premise of Lemma 10. To lower bound
D1−way
µ,δ (HAMd), it thus suffices to lower bound the value

D1−way
ρk,`,δ/2

(HAMd). For notational convenience, put ρ = ρk,`.

Note that for such a distribution, we do not need to give
Alice wt(Y ) or Bob wt(X), since we can assume the protocol
has these values hardwired.

Fix a 1-round protocol Π realizing D1−way
ρ,δ/2 (HAMd). Let

g : {0, 1}d × {0, 1}d → {0, 1} be such that g(x, y) = 1 iff

HAMd(x, y) = 1. We assume z
def
= D1−way

ρ,δ/2 (g) = o(d), and

derive a contradiction. Let M be the single message sent
from Alice to Bob in Π. Let A be the (deterministic) algo-
rithm run by Bob on M and Y . We have

Pr
(X,Y )∼ρ

[A(M,Y ) = g(X,Y )] ≥ 1− δ/2.

We need Fano’s inequality:

Fact 11. ([14]) For R,S ∈ {0, 1} and a function h,

H(Pr[h(R) 6= S]) ≥ H(S | R),

where for x ∈ [0, 1], H(x) = x log 1
x

+ (1− x) log 1
1−x is the

binary entropy function. Here, H(0) = H(1) = 0.

Applying this with h = A, R = (M,Y ), and S = g(X,Y ),
we have

H(g(X,Y ) |M,Y ) ≤ H(δ/2).

We now lower bound H(g(X,Y ) | M,Y ) as a positive con-
stant independent of δ, which will show a contradiction for
small enough δ.

For any r ∈ {0, 1}d, let Sr be the set of x ∈ {0, 1}d for
which M = r. Then

E[|SM |] =

(
d

k

)
/2z.

By a Markov argument,

Pr[|SM | ≥

(
d

k

)
/2z+1] ≥ 1

2
.

Let us condition on the event

E : |SM | ≥

(
d

k

)
/2z+1.

By concavity of the entropy,

H(g(X,Y ) |M,Y )

≥ H(g(X,Y ) |M,Y, E) Pr[E ] ≥ H(g(X,Y ) |M,Y, E)/2.

Now let S be any set of weight−k vectors for which

|S| ≥

(
d

k

)
/2z+1.
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The number of y ∈ {0, 1}d of weight ` for which g(x, y) = 1
for any given x of weight k is independent of the particular
x. Let q denote this quantity, where 1 ≤ q ≤

(
d
`

)
. By the

second part of Lemma 7,

q/

(
d

`

)
= 1/2± o(1).

For y of weight `, let Vy = Prx∈S [g(x, y) = 1]. By averaging,

Ey[Vy] = q/

(
d

`

)
.

For u ∈ S, let Cu = 1 if g(u, y) = 1, and Cu = 0 other-
wise. Then

Vy =
1

|S|
∑
u∈S

Cu.

We use the second-moment method (see, e.g., [3] for an in-
troduction to this technique). Consider

Vary[Vy] =
1

|S|2

[ ∑
u,v∈S

E[CuCv]−E[Cu]E[Cv]

]
.

Then

E[Cu] = q/

(
d

`

)
for all u ∈ S. Moreover,

E[C2
u] = E[Cu] = q/

(
d

`

)
.

Thus,

Vary[Vy]

=
1

|S|2

q|S|(
d
`

) [1− q(
d
`

)]+
∑
u6=v

[
E[CuCv]− q2(

d
`

)2
]

= o(1) +
1

|S|2
∑
u6=v

[
E[CuCv]− q2(

d
`

)2
]
.

The difficulty is in bounding E[CuCv]. Now we use the fact
that |S| is large.

Fact 12. ([32]) Let 0 < c < 1/2 be a constant. For any
u ∈ {0, 1}d, the number of v ∈ {0, 1}d for which ∆(u, v) < cd
or ∆(u, v) > (1− c)d is at most

2 · 2H(c)d,

where H is the binary entropy function.

Fact 13. ([32]) Let 0 < c < 1/2 be a constant. Then(
d

cd

)
≥ 2dH(c)−o(d).

Now,

|S| ≥

(
d

k

)
/2z+1,

and so using that k ∈ [d/4, 3d/4] and z = o(d), by Fact 13 we

have |S| ≥ 2dH(1/4)−o(d). Now using Fact 12, it follows that

of the
(|S|

2

)
pairs u, v ∈ S with u 6= v, all but 2|S|2dH(1/5) of

them have Hamming distance at least d/5 and at most 4d/5.
Thus, at least an α ≥ 1/2 of the pairs have this property.
Using that

q/

(
d

`

)
= 1/2± o(1)

in the final inequality,

Vary[Vy] = o(1) +
1

|S|2
∑
u6=v

[
E[CuCv]− q2(

d
`

)2
]

= o(1) +

1

|S|2
∑

∆(u,v)≤d/5 or ∆(u,v)≥4d/5

[
E[CuCv]− q2(

d
`

)2
]

+
1

|S|2
∑

d/5<∆(u,v)<4d/5

[
E[CuCv]− q2(

d
`

)2
]

≤ o(1) +

(1− α)q(
d
`

) [
1− q(

d
`

)]+

∑
d/5<∆(u,v)<4d/5

[
E[CuCv]

|S|2 − q2

|S|2
(
d
`

)2
]

≤ o(1) +

1− α
4

+

α · max
(u,v) | d/5<∆(u,v)<4d/5

[
E[CuCv]− 1

4

]
.

Our goal is to show that Vary[Vy] is a constant strictly less
than 1/4. Now,

E[CuCv] = Pr
y

[g(v, y) = 1 | g(u, y) = 1]
q(
d
`

)
=

Pry[g(v, y) = 1 | g(u, y) = 1]

2
± o(1).

By the above expressions, to show that Vary[Vy] is at most
a constant strictly less than 1/4 it suffices to show that there
exists a constant β > 0 for which

max
(u,v) | d/5<∆(u,v)<4d/5

Pr
y

[g(v, y) = 1 | g(u, y) = 1] < 1− β.

Fix any u, v for which

d/5 < ∆(u, v) < 4d/5.

By relabeling coordinates, we may assume that u = 1k0d−k,
and that

v = 1k
′
0k−k

′
1k−k

′
0d−2k+k′

for some k′. Notice that ∆(u, v) = 2(k − k′), so we know
that

k − k′ ∈ [d/10, 2d/5].

Consider a random weight-` vector y for which g(u, y) = 1.
By definition, this means that

∆(u, y) > k + `− 2k`/d.
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We just need to show that with probability Ω(1), we have
g(v, y) = 0, that is,

∆(v, y) < k + `− 2k`/d.

It will be more convenient to argue in terms of sets. Let
S be the set of coordinates in [k] for which y is 1, and let T
be the set of coordinates in {k + 1, . . . , d} for which y is 1.
Then

∆(u, y) = k − |S|+ `− |S| = k + `− 2|S|,

which we know is greater than k + `− 2k`/d. Thus,

|S| < k`/d.

Now, |S| is distributed as a conditional distribution of a
hypergeometric distribution. It follows as in the proof of
Lemma 7 (using Theorem 8), that with arbitrarily large con-
stant probability, we have

|S| = k`/d− Ω(
√
d)

(the probability tends to 1 as the constant in the Ω(·) nota-
tion tends to ∞). We condition on this event.

Conditioned on |S| = i for any

i ∈ [k`/d− Ω(
√
d), k`/d),

S is a random subset of size i contained in [k]. Moreover, T
is a random subset of size `− i contained in {k + 1, . . . , d}.
Letting

C = {k + 1, . . . , 2k − k′},
then

∆(v, y) = k′−|S∩[k′]|+|S|−|S∩[k′]|+k−k′+(`−i)−2|T∩C|,

which equals

k + `− 2|[k′] ∩ S| − 2|T ∩ C|.

Now, |[k′] ∩ S| is hypergeometrically distributed with mean
ik′/k and |T ∩ C| is hypergeometrically distributed with
mean (`− i)(k − k′)/(d− k). Write |[k′] ∩ S| as ik′/k + γ1,
and write |T ∩ C| as (`− i)(k − k′)/(d− k) + γ2. Put

i = k`/d− Ω(
√
d).

By direct substitution,

∆(v, y) = k + `− 2k`

d
+ Θ(

√
d)− 2γ1 − 2γ2.

Thus, to show that

∆(v, y) < k + `− 2k`/d

with constant probability, it suffices to show that for any
constant c > 0, we have

c
√
d < γ1 + γ2

with constant probability. Now, as in the proof of Lemma
7, we have

Pr[γ1 ≥ c
√
d] = Ω(1)

for any constant c > 0. Moreover, γ2 > 0 with probability
at least 1/2 − o(1). Note that conditioned on |S| = i for

any i ∈ [k`/d − Ω(
√
d), k`/d), γ1 and γ2 are independent.

Thus, for any value of i in this range, with probability Ω(1),

c
√
d < γ1 + γ2. It follows that conditioned on

|S| ∈ [k`/d− Ω(
√
d), k`/d),

we have c
√
d < γ1 + γ2 with constant probability. Since |S|

is in this range with arbitrarily large constant probability,
we have Pr[g(v, y) = 0] = Ω(1).

Hence, we have that Vary[Vy] = ζ for a constant ζ strictly
less than 1/4. Define the constant

ζ′ =

√
ζ

2
+

1

8
,

and note that ζ′ < 1/2. It follows by Chebyshev’s inequality
that,

Pr
y

[|Vy − 1/2| > ζ′]

≤ Pr
y

[
|Vy −E[Vy]| > ζ′ + o(1)

]
<

ζ

(ζ′)2
+ o(1).

This is a constant less than 1, so for an Ω(1) fraction of y,

|Vy − 1/2| ≤ ζ′.

Consider the event

F : |VY − 1/2| ≤ ζ′.

Since X and Y are independent, the above analysis implies
that

Pr
X,Y

[F | E ] = Ω(1).

Thus,

H(g(X,Y ) |M,Y, E) = Ω(H(g(X,Y ) |M,Y, E ,F).

But, by definition of VY , if E ∩ F occurs, then

1/2− ζ′ ≤ Pr
X

[g(X,Y ) = 1] ≤ 1/2 + ζ′.

Thus,

H(g(X,Y ) |M,Y, E ,F) = Ω(1),

where the constant is independent of δ. It follows that

H(g(X,Y ) |M,Y ) = Ω(1).

But we have shown that

H(g(X,Y ) |M,Y ) ≤ H(δ/2).

This is a contradiction for small enough constant δ. So our
assumption that z = o(d) was false. We conclude,

Theorem 14. D1−way
µ,δ (HAMd) = Ω(d). Hence, for a

constant δ > 0, when n, d = Θ(1/ε2), the space complex-
ity of any 1-pass algorithm in the random-data model which
ε-approximates F0 with probability at least 1− δ is Ω(1/ε2).

5. CONCLUSION
We introduced the random data model, in which each of

n successive stream items is drawn independently and uni-
formly at random from an unknown set of size d, for an un-
known value of d. For a wide range of values of d and n we
gave a 1-pass time-optimal algorithm that beats the Ω(1/ε2)
space lower bound that holds in the adversarial and random-
order models. Nevertheless, for certain values of d and n,
we showed that an Ω(1/ε2) space lower bound holds even
in this model, subsuming previous lower bounds (since our
model is strictly contained in existing models), and showing
that even for natural choices of data the problem is hard.
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In the future, it would be useful to understand whether our
1-pass algorithm is space-optimal, whether there are other
real-world distributions not easily reducible to the ones stud-
ied here, and whether multiple passes over the data can help
in this model.
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lower bounds for selection in randomly ordered
streams. In SODA, pages 720–729, 2008.

[11] M. Charikar, S. Chaudhuri, R. Motwani, and V. R.
Narasayya. Towards estimation error guarantees for
distinct values. In PODS, pages 268–279, 2000.

[12] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP, pages
693–703, 2002.

[13] G. Cormode and S. Muthukrishnan. Summarizing and
mining skewed data streams. In SDM, 2005.

[14] T. M. Cover and J. A. Thomas. Elements of
information theory. Wiley-Interscience, New York,
NY, USA, 1991.

[15] W. Feller. An Introduction to Probability Theory and
its Applications, volume 1. John Wiley and Sons, 3
edition, 1968.

[16] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31:182–209, 1985.

[17] P. B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In SODA, pages 909–910, 1999.

[18] P. B. Gibbons, Y. Matias, and V. Poosala. Fast
incremental maintenance of approximate histograms.
ACM Trans. Database Syst., 27(3):261–298, 2002.

[19] S. Guha and A. McGregor. Approximate quantiles and
the order of the stream. In PODS, pages 273–279,
2006.

[20] S. Guha and A. McGregor. Lower bounds for quantile
estimation in random-order and multi-pass streaming.
In ICALP, pages 704–715, 2007.

[21] S. Guha and A. Mcgregor. Space-efficient sampling. In
AISTATS, pages 169–176, 2007.

[22] T. S. Jayram, R. Kumar, and D. Sivakumar. The
one-way communication complexity of gap hamming
distance. Manuscript, 2007.

[23] A. Kamath, R. Motwani, K. V. Palem, and P. G.
Spirakis. Tail bounds for occupancy and the
satisfiability threshold conjecture. Random Structures
and Algorithms, 7(1):59–80, 1995.

[24] R. Kumar. Story of distinct elements. IITK Workshop
on Algorithms for Data Streams, 2006.

[25] R. Kumar and R. Panigrahy. On finding frequent
elements in a data stream. In APPROX-RANDOM,
pages 584–595, 2007.

[26] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[27] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[28] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[29] R. Motwani and S. Vassilvitskii. Distinct value
estimators in power law distributions. In ANALCO,
2006.

[30] S. Muthukrishnan. Data streams: algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2003.

[31] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith.
Strong lower bounds for approximating distribution
support size and the distinct elements problem. In
FOCS, pages 559–569, 2007.

[32] J. H. van Lint. An Introduction to Coding Theory.
New York: Springer-Verlag, 1992.

[33] D. Woodruff. Optimal space lower bounds for all
frequency moments. In SODA, pages 167–175, 2004.

[34] D. Woodruff. Efficient and Private Distance
Approximation in the Communication and Streaming
Models. PhD thesis, MIT, 2007.

APPENDIX
A. MISSING PROOFS

Proof of Lemma 4: The probability that an item i occurs
in the stream is 1 − (1 − 1/d)n, and so the expected value
of F0 is d(1− (1− 1/d)n). Define the defect ζ to be d− F0,
which has expected value κ = d(1 − 1/d)n. Since d ≤ Wn,

κ ≤ de−n/d ≤ d/e1/W . By Theorem 2 of [23], for any θ > 0,

Pr[|ζ − κ| ≥ θκ] ≤ 2e
− θ

2κ2(d−1/2)
d2−κ2 ≤ e−

cθ2κ2
d ,

where c > 0 is a constant. Choose θ so that θκ = ε′d for
a value ε′ = Θ(ε) that will be determined by the analy-

sis. Then, Pr[|ζ − κ| ≥ ε′d] ≤ e−c(ε
′)2d. Using that c is

a constant, and the assumption that d ≥ ν/ε2 for a suffi-
ciently large constant ν, this probability can be made to

294



be at most 1/100 for any choice of ε′. Conditioned on
|ζ − κ| ≤ θε′d, we have |d [1− (1− 1/d)n] − F0| ≤ ε′d.

Now, E[F0] = d − E[ζ] = d − κ ≥ (1 − 1/e1/W )d. So for
small enough ε′ = Θ(ε), we have |d [1− (1− 1/d)n]− F0| ≤
εE[F0]/3. Consider the quantity F̃0−d[1−(1−1/d)n], which
equals (d′ − d) + d(1 − 1/d)n − d′(1 − 1/d′)n. The func-
tion x(1 − 1/x)n is increasing in x, and since d′ ≥ d, we

have F̃0 − d[1 − (1 − 1/d)n] ≤ ε′d. On the other hand,

F̃0− d[1− (1− 1/d)n] is at least d(1− 1/d)n− d′(1− 1/d′)n.
Differentiating with respect to n, we find that it is minimized
when

d(ln(1− 1/d))(1− 1/d)n − d′(ln(1− 1/d′))(1− 1/d′)n = 0.

Substituting back into the expression, we find that its min-

imum value is d(1 − 1/d)n
[
1− ln(1−1/d)

ln(1−1/d′)

]
. Using that d ≥

ν/ε2, and thus 1/d < 1, a Taylor series expansion gives us
ln(1 − 1/d) = −1/d2 − Θ(1/d4), as well as ln(1 − 1/d′) =
−1/(d′)2 − Θ(1/d4), where we have used that d′ = Θ(d).
Substituting these bounds into the above minimum, we ob-
tain that the minimum is d(1−1/d)nΘ(ε′). Finally, using the
fact that d ≤ W · n, this is bounded as −O(ε′d). Thus, for

small enough ε′ = Θ(ε), using that E[F0] ≥ (1− 1/e1/W )d,

we have that |F̃0 − d[1− (1− 1/d)n]| ≤ εE[F0]/3. It follows

by the triangle inequality that |F̃0 − F0| ≤ εE[F0].

Proof of Claim 6: For the lower bound,

1− (1− x)y ≥ 1− e−xy

= 1−
(

1− xy +
(xy)2

2
− · · ·

)
= xy − (xy)2

2
+ · · ·

≥ xy − (xy)2

2
.

The first inequality follows from the fact that 1 + z ≤ ez

for all z ∈ R, see, e.g., [28]. The second inequality follows
via the Taylor expansion for e−xy. The equality and final
inequality are straightforward.

For the upper bound, we first show (1 − x)y ≥ 1 − xy.
By monotonicity of the ln(·) function, (1 − x)y ≥ 1 − xy
iff ln(1 − x)y ≥ ln(1 − xy). We use the Taylor expansion
for ln(1 + x), that is, for |x| < 1 we have the expansion

ln(1 + x) =
∑∞
n=0

(−1)n

n+1
xn+1. Then,

ln(1− x)y = −y
∞∑
i=1

xi

i+ 1
.

Also,

ln(1− xy) = −
∞∑
i=1

(xy)i

i+ 1
.

We will have ln(1− x)y ≥ ln(1− xy) if for all i ≥ 1,

−y xi

i+ 1
≥ − (xy)i

i+ 1
.

This holds provided yi−1 ≥ 1, which holds for y ≥ 1, as
given by the premise of the claim. Thus,

1− (1− x)y ≤ 1− (1− xy) ≤ xy,

completing the proof.

Proof of Lemma 10: Suppose not, and for each k, ` ∈
[d/4, 3d/4], let Πk,` be a protocol realizingDρk,`,δ/2(HAMd).

Given X ∼ µd, with probability 1 − o(1), wt(X), wt(Y ) ∈
[d/4, 3d/4]. Note that Alice is given wt(Y ) and can also de-
duce wt(X). She then runs Πwt(X),wt(Y ). Moreover, Bob
is given wt(X) and can deduce wt(Y ), so he also runs the
protocol Πwt(X),wt(Y ). The error of the protocol is at most
δ/2 + o(1) ≤ δ, and the communication is upper bounded
by Dρwt(X),wt(Y ),δ/2(HAMd). This is a contradiction to the

communication having to be at least Dµ,δ(HAMd).
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