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ABSTRACT
We formalize and study business process systems that are centered
around "business artifacts", or simply "artifacts". Artifacts are used
to represent (real or conceptual) key business entities, including
both their data schema and lifecycles. The lifecycle of an artifact
type specifies the possible sequencings of services that can be ap-
plied to an artifact of this type as it progresses through the business
process. The artifact-centric approach was introduced by IBM, and
has been used to achieve substantial savings when performing busi-
ness transformations.

In this paper, artifacts carry attribute records and internal state rela-
tions (holding sets of tuples) that services can consult and update.
In addition, services can access an underlying database and can
introduce new values from an infinite domain, thus modeling exter-
nal inputs or partially specified processes described by pre-and-post
conditions. The lifecycles associate services to the artifacts using
declarative, condition-action style rules.

We consider the problem of statically verifying whether all runs
of an artifact system satisfy desirable correctness properties ex-
pressed in a first-order extension of linear-time temporal logic. We
map the boundaries of decidability for the verification problem and
provide its complexity. The technical challenge to static verifi-
cation stems from the presence of data from an infinite domain,
yielding an infinite-state system. While much work has been done
lately in the verification community on model checking specialized
classes of infinite-state systems, the available results do not transfer
to our framework, and this remains a difficult problem. We iden-
tify an expressive class of artifact systems for which verification is
nonetheless decidable. The complexity of verification is PSPACE-
complete, which is no worse than classical finite-state model check-
ing.
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This investigation builds upon previous work on verification of data-
driven Web services and ASM transducers, while addressing signif-
icant new technical challenges raised by the artifact model.

1. INTRODUCTION
Businesses and other organizations increasingly rely on business
process management, and in particular the management of elec-
tronic workflows underlying business processes. While most work-
flow is still organized around relatively flat process-centric models,
over the past several years adata-centricapproach to workflow has
emerged. A watershed paper in this area is [44], which introduces
theartifact-centricapproach to workflow modeling. This approach
focuses on data records, known as “business artifacts” or simply
“artifacts”, that correspond to (real or conceptual) key business en-
tities, including both their data schema and their lifecycle, which
in turn specifies how/when services (a.k.a. tasks) are invoked and
sequenced on the artifacts. This approach provides a simple and ro-
bust structure for workflow, and has been demonstrated in practice
to yield substantial savings when performing business transforma-
tions [4].

From the formal perspective, little is understood about artifact-
centric (and other data-centric) workflow. Citation [30] outlines
a general framework for designing artifact-centric workflow meta-
models, e.g., by varying the data model and/or the process specifi-
cation paradigm for lifecycles that is used. Citations [27, 28] pro-
vide preliminary investigations into the analysis of artifact-centric
workflows that use state-machine based lifecycle specifications, [6]
provides a prliminary investigation into the analysis of artifact-
centric workflows with declarative lifecycle specifications, and [26]
provides a preliminary investigation into automated synthesis of
declarative artifact-centric workflows. The current paper devel-
ops static analysis techniques in the context of substantially richer
declarative artifact-centric workflows, in which each artifact car-
ries, in addition to the data record containing business-relevant val-
ues, a full relational state (i.e., a set of tuples whose contents can
change over time) used to hold additional business-relevant infor-
mation. The focus here is on decision problems for a first-order
extension of linear-time temporal logic. In general such decision
problems are undecidable, but the paper identifies a large, use-
ful class of workflows for which the complexity of verification
is PSPACE-complete, which is no worse than classical finite-state
model checking.

Following [7], an artifact-centric workflow model typically focuses
on (a) the business artifacts, (b) the (macro-)life cycle of the ar-
tifacts, (c) the services (a.k.a. tasks) that operate on the artifacts,
and (d) the mechanisms whereby services are associated to the ar-
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tifacts. In this paper each artifact type will involve a familyof
attributes along with one relational state (a simple generalization
permits multiple relational states). Intuitively, the artifact starts
with just a few of the attributes defined (initialized), and the in-
voked services fill in, or overwrite, the artifact’s attributes and re-
lational state as the artifact moves through its lifecycle. As illus-
trated in [7], the macro-lifecycle of the artifacts can be used to cap-
ture the key business-relevantstages(or states) in the lifecycle of
an artifact. Stage transitions are typically specified using a finite-
state machine, often with a handful to tens of states.1 In practice,
the primary operations of a business may involve tens of artifacts
for small-to-medium-size businesses, and hundreds of artifacts for
large businesses.

The current paper specifies services and their association to arti-
facts in a declarative manner, using input parameters, output param-
eters, pre-conditions, and post-conditions. This model is inspired
by the model of [6], and more broadly by the field of semantic
web services [40] (where post-conditions are called "conditional
effects"). The use of post-conditions permits non-determinism in
the outcome of a service, as is typically the case, for example,
in a business process service in which a human makes a final de-
termination about the value of an attribute while satisfying certain
constraints. Also following [6], in this paper the movement of ar-
tifacts from one stage to another is specified declaratively, in our
case via state update rules (known as condition-action rules in [6]).
The model of [6] permits only attributes, and the analysis focuses
only on whether these attributes are defined or undefined (so their
value is abstracted away). In the current paper we handle both at-
tributes and relational states. The service and property specifica-
tions manipulate the data values they hold, and can compare them
according to a dense linear order. Further, we include here a static
database which can be accessed (but not updated) during the pro-
cessing of artifacts by the services’ state update rules and pre- and
post-conditions.

The workflow model used in this paper is illustrated with a run-
ning example that models a scenario where a manufacturer fills
customer purchase orders, negotiating the price of each item on
a case-by-case basis. The example is introduced in Example 2.4
and presented in full in the appendix.

This paper considers the problem of statically verifying whether
all runs of an artifact system satisfy desirable correctness prop-
erties expressed in a first-order extension of linear-time temporal
logic called LTL-FO . This language can express a wide variety
of properties pertaining to the consistency of the specification (e.g
two Boolean flags are mutually exclusive at every step of the busi-
ness process), or to the policies implemented by a business process.
For instance, in the running example, one wishes to guarantee the
following:

If the customer’s status is notpreferredand the credit
rating is worse thangood, then before accepting an
order for a product with final negotiated price lower

1We note the difference between the “relational states” associated
with artifacts in the current paper, and the “states” of state machines
used to specify an artifact lifecycle as in [7, 44]. The relational
states here are part of the core data maintained in an artifact, and
can hold sets of tuples; in contrast the lifecycle state machine can
be in just one state at a time. Note that in the current paper, either
an attribute or a relational state of an artifact can be used to record
the state-machine state that an artifact is currently in.

than the manufacturer’s desired price, explicit approval
from a human executive must be requested.

We also show how other common analysis tasks for business pro-
cesses can be reduced to verification of LTL-FO properties.

The main technical challenge to static verification lies in the fact
that the artifact systems studied here are infinite-state systems, as
the domain of the data is infinite. In the general case, testing cor-
rectness of properties is undecidable. We map the boundaries of
decidability for the verification problem, and identify a class of re-
strictions such that (a) artifact systems and properties that lie within
this class are decidable, and (b) relaxing any of the restrictions leads
to undecidability. For the restricted setting, the decision problem is
PSPACE-complete. As will be seen, the running example obeys the
restrictions, thus illustrating that they are not prohibitive for practi-
cal scenarios.

Further related work. As mentioned above, artifacts and related
notions have been discussed in the research literature for several
years now. The specific notion of artifact, along with specification
of key stages in its life-cycle, was first introduced in [44], and sub-
sequently studied. from both practical and theoretical perspectives,
in [4, 5, 17, 7, 6, 27, 28, 30, 38, 34, 36, 47]. Some key roots of
the artifact-centric approach are present in adaptive objects [35],
adaptive business objects [41], business entities, and “document-
driven” workflow [48]. The notion of documents as in document
engineering [29] is focused on certain aspects of artifacts, namely
the artifact data itself and how it can be used to facilitate com-
munication between sub-organizations in the course of workflow
processing. The Vortex workflow framework [32, 24, 31] is also
data centric, and provides a declarative framework for specifying
if and when workflow services are to be applied to a given artifact.
More recently, [2] has studied automatic verification in the context
of workflow based on Active XML documents.

Work on formal analysis of artifact-centric business processes in
restricted contexts has been reported in [6, 27, 28]. Properties in-
vestigated in these studies include reachability [27, 28], general
temporal constraints [28], and the existence of complete execution
or dead end [6]. Citations [27, 28] are focused on an essentially pro-
cedural version of artifact-centric workflow, and [6] is the first to
study a declarative version. For the variants considered in each pa-
per, verification is generally undecidable; decidability results were
obtained when rather severe restrictions are placed, e.g., restrict-
ing all guards on state transitions to be "true" [27], restricting to
bounded domains [28, 6], or restricting the language for conditions
to refer only to artifacts (and not their attribute values) [28]. None
of the above papers permit an arbitrary external database, separate
from the artifacts, in their frameworks.

The OWL-S proposal [40, 39] describes the semantics of services
with input, output, pre-condition, and post-conditions (known there
asconditional effects). In that work, the pre-conditions and effects
refer to fluents, that is predicates whose values can change over
time. These are used to model evolving databases, for instance for
flight reservations, bank accounts, and warehouse inventories. The
declarative artifact-centric approach to workflow modeling used
here is closely related to that of semantic web services in general,
and OWL-S in particular.

Static analysis for semantic web services is considered in [42], but
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in a context restricted to finite domains.

The work [21] studies static verification of data-driven Web ser-
vices that interact with external users through a Web browser inter-
face and generate Web pages dynamically by queries on an under-
lying database. The study identifies decidable cases of the problem
of verifying if all runs of a Web service satisfy a correctness prop-
erty specified as a sentence in LTL-FO , the language of first order
logic extended with linear-time temporal logic operators, which
we adopt also in this paper. Similar extensions have been pre-
viously used in various contexts [25, 1, 46, 21, 23]. The model
studied in [21] extends prior formalisms for specifying electronic
commerce applications with additional features that turn out to be
essential for describing Web applications. Its immediate ancestor
is the ASM transducer [46, 45], a more remote one is the relational
transducer [3]. The artifact system model could conceptually (if
not naturally) be encoded into the extended ASM transducer model
of [21]. However, this would not yield a proof of the results in this
paper, because business process modeling requires two non-trivial
extensions. First, runs of artifact systems must be allowed to use in-
finitely many domain values in order to model arbitrary inputs from
external users or partially specified processes described by pre- and
post-conditions (unlike transducers, where the domain of each run
is restricted to the active domain of the finite database). Second, the
underlying domain is ordered, which turns out to be a key feature
in writing practically useful pre- and post-conditions. These exten-
sions render the proof of decidability of verification considerably
more involved.

In the broader context of verification, data-centric business pro-
cesses can be viewed as a special case of infinite-state systems.
Over the last decade, much work in the verification community
has focused on extending classical model checking to infinite-state
systems (e.g., see [15] for a survey). However, in much of this
work the emphasis is on studying recursive control rather than data,
which is either ignored or finitely abstracted. More recent work
has been focusing specifically on data as a source of infinity. This
includes augmenting recursive procedures with integer parameters
[11], rewriting systems with data [12, 10], Petri nets with data as-
sociated to tokens [37], automata and logics over infinite alphabets
[14, 13, 43, 18, 33, 8, 10], and temporal logics manipulating data
[18, 19]. However, the restricted use of data and the particular prop-
erties verified have limited applicability to database-driven systems
such as data-centric business artifacts.

Paper outline. Our model of artifact systems and the language
LTL-FO are introduced in Section 2, together with our running ex-
ample. Section 3 states the restrictions needed for decidability of
verification, and provides the main decidability result. In Section
4, the restrictions are shown to be tight by considering several re-
laxations that lead to undecidability of verification. Applications
of the main verification results to other business process analysis
tasks are provided in Section 5. We end with brief conclusions. An
appendix contains the full running example.

2. FRAMEWORK
We introduce here our model and basic definitions and notation.

We assume fixed an infinite, countable domainD equipped with a
total dense order≤with no endpoints. As usual, a database schema
D consists of a finite set of relation symbols with specified arities.
The arity of relationR is denoteda(R). An instance, or interpre-

tation, over a database schema, is a mapping associating to each
relation symbolR of the schema a finite relation overD, of ar-
ity a(R). We assume familiarity with First-Order logic (FO) over
database schemas. Given a schemaD, LD denotes the set of FO
formulas overD ∪ {=,≤} (= and≤ are built-in relations over
D). In addition to relations, FO formulas may use a finite set of
constants, consisting of elements ofD. As customary in relational
calculus, constants are always interpreted as themselves (this dif-
fers from constants in classical logic). Ifϕ(x̄) is an FO formula
with free variables̄x, andū is a tuple overD of the same arity as
x̄, we denote byϕ(ū) the sentence obtained by substitutingū for
x̄ in ϕ(x̄). Note that, sinceD is infinite, an FO formulaϕ(x̄) may
be satisfied by infinitely many tuples̄u overD (so may define an
infinite relation). Finiteness and effective evaluation can be guar-
anteed by using theactive domain semantics, in which the domain
is restricted to the set of elements occurring in the given instance
(sometimes augmented with a specified finite set of constants inD,
by default empty). For an instanceI, we denote its active domain
by adom(I). We assume unrestricted semantics unless otherwise
specified.

The artifact model uses a specific notion of class, schema and in-
stance, defined next.

DEFINITION 2.1. An artifact classis a pairC = 〈R,S〉 where
R andS are two relation symbols. Aninstanceof C is a pairC =
〈R,S〉, where(i) R, called attribute relation, is an interpretation
of R containing exactly one tuple overD, and (ii) S, called state
relation, is a finite interpretation ofS overD.

We also refer to anartifact instance of classC asartifact instance,
or simplyartifact when the class is clear from the context or irrel-
evant.

DEFINITION 2.2. An artifact schemais a tuple

A = 〈C1, . . . , Cn,DB〉

where eachCi = 〈Ri, Si〉 is an artifact class,DB is a relational
schema, andCi, Cj , andDB have no relation symbols in common
for i 6= j.

By slight abuse, we sometimes identify an artifact schemaA as
above with the relational schema

DBA = DB ∪ {Ri, Si | 1 ≤ i ≤ n}.

An instance of an artifact schema is a tuple of class instances, each
corresponding to an artifact class, plus a database instance:

DEFINITION 2.3. An instanceof an artifact schema

A = 〈C1, . . . , Cn,DB〉

is a tupleA = 〈C1, . . . , Cn, DB〉, whereCi is an instance ofCi

andDB is an instance ofDB overD.

Again by slight abuse, we identify each instance

A = 〈C1, . . . , Cn, DB〉
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of A with the relational instanceDB ∪ {Ri,Si|1 ≤ i ≤ n} over
schemaDBA. LetA be an artifact schema andDBA its relational
schema. Given an artifact instance overA, the semantics of for-
mulas inLA is the standard semantics on the associated relational
instance overDBA.

EXAMPLE 2.4. We illustrate the expressive power of the arti-
fact model by specifying a scenario where a manufacturer fills cus-
tomer purchase orders, negotiating the price of each line item on a
case-by-case basis. We focus on two artifacts manipulated by the
negotiation process, ORDER and QUOTE.

During the workflow, the customer repeatedly adds new line items
into (or updates existing ones in) the purchase order modeled by the
ORDER artifact. Each line item specifies a product and its quantity.
Every tentative line item spawns a negotiation process, in which
manufacturer and customer complete rounds of declaring ask and
bid prices, until agreement is reached or the negotiation fails. The
prices at every round are stored in the QUOTE artifact, which also
holds the manufacturer’s initially desired price, the lowest bid he
is willing to entertain, and the final negotiated price. Once the ne-
gotiation on a tentative line item succeeds, its outcome is scruti-
nized by a human executive working for the manufacturer. Upon
the executive’s approval, the line item is included into the purchase
order. During the negotiation, the manufacturer consults an un-
derlying database, which lists information about available products
(e.g. manufacturing cost) and about customers (e.g. credit rating
and status).

The corresponding artifact systemΓex = 〈A,Σ〉 is partially de-
scribed here and in Example 2.9 (see Appendix for the full specifi-
cation). For convenience, we allow an artifact class to have several
state relations. This can be easily simulated with a single state re-
lation (see also Appendix).

The artifact schema isA = 〈ORDER,QUOTE,DB〉, detailed
as follows.

DB = 〈PRODUCT,CUSTOMER〉 is the database schema, where:

• PRODUCT(prod_id,manufacturing_cost,
min_order_qty)

lists product manufacturing cost and minimum order quan-
tity, and

• CUSTOMER(customer_id, status, credit_rating) lists cus-
tomer status and credit rating.

ORDER = 〈RO, line_items, in_process, done〉
is the artifact class containing the information about a customer’s
order.

• RO(order#, customer_id, need_by, li_prod, li_qty)
is the attribute relation holding the order number, the identi-
fier of the customer who placed the order, the day it is needed
by. The role of attributesli_prod andli_qty is described later.

• line_items(prod_id, qty)
is a state relation that acts as a “shopping cart” holding the
collection of line items requested so far.

• in_process anddone
are nullary state relations (Boolean flags) keeping track of
the stage the artifact is in.2

The intention is that, in stagein_process, the customer repeatedly
updates the shopping cart by filling an individual, tentative line item
into attributesli_prod and li_qty. Subsequently, this line item is
inserted intoline_items provided the price negotiation succeeds.
When the customer completes the purchase order, the ORDER ar-
tifact transitions to stagedone.

QUOTE = 〈RQ, li_quotes, idle, desired_price_calc,
negotiation, approval_pending, archive〉

is the artifact class modeling quotes, with:

• RQ( order#, desired_price, lowest_acceptable_price,
ask, bid, final_price, approved, li_prod, li_qty,
manufacturing_cost)

is the attribute relation.

• li_quotes(prod_id, qty, price)
is a state relation storing the line item with the final negoti-
ated price quotes.

• idle, desired_price_calc, negotiation, approval_pending,
andarchive
are nullary state relations keeping track of the stage the arti-
fact is in.

When inactive, the QUOTE artifact is in stateidle, but moves to
desired_price_calc as soon as the customer fills in the product id
and quantity of a line item. In this stage,desired_priceattribute is
set (from the manufacturer’s point of view), possibly taking into ac-
count theneed_bydate attribute in the corresponding ORDER ar-
tifact and the manufacturing cost listed in the PRODUCT database.
During the ensuingnegotiation stage, the ask and bid prices are
repeatedly set (in attributeask by the manufacturer, respectively
bid by the customer) until a final price is established and recorded
in attributefinal_price, or the negotiation fails. Final prices may
require approval by a human executive who works for the manu-
facturer. While approval is awaited, the QUOTE artifact is in stage
approval_pending. Approval is granted by setting Boolean at-
tributeapproved. Approved final prices are then archived in state
relationli_quotes (while the QUOTE artifact is in stagearchive).
2

We now define the syntax of services. It will be useful to associate
to each attribute relationR of an artifact schemaA a fixed sequence
x̄R of distinct variables of lengtha(R).

DEFINITION 2.5. A serviceσ over an artifact schemaA is a
tupleσ = 〈π, ψ,S〉 where:

2Artifact class ORDER illustrates an extension of Definition 2.1
that allows several state relations. This extension is for convenience
only: it is easy to show a reduction from multiple-state artifacts to
single-state artifacts that preserves our decidability result.
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• π, calledpre-condition, is a sentence inLA;

• ψ, calledpost-condition, is a formula inLA, with free vari-
ables
{x̄R | R is an attribute relation of a class inA};

• S is a set ofstate rulescontaining, for each state relationS
ofA, one, both or none of the following rules:

– S(x̄)← φ+

S (x̄);

– ¬S(x̄)← φ−
S (x̄);

whereφ+

S (x̄) and φ−
S (x̄) are LA-formulas with free vari-

ablesx̄ s.t. |x̄| = a(S).

DEFINITION 2.6. An artifact systemis a pair Γ = 〈A,Σ〉,
whereA is an artifact schema andΣ is a non-empty set of services
overA.

We next define the semantics of services. We begin with the notion
of possible successor of a given artifact instance with respect to a
service.

DEFINITION 2.7. Let σ = 〈π, ψ,S〉 be a service over artifact
schemaA. LetA andA′ be instances ofA. We say thatA′ is a
possible successorof A with respect toσ (denotedA

σ
−→ A′) if

the following hold:

1. A |= π;

2. A′|DB = A|DB;

3. if ūR is the content of the attribute relationR of A in A′,
thenA satisfies the post-conditionψ wherex̄R is replaced
by ūR for eachR;

4. for each state relationS ofA and tupleū overadom(A) of
arity a(S),A′ |= S(ū) iff

A |= (φ+

S (ū) ∧ ¬φ−
S (ū)) ∨ (S(ū) ∧ φ+

S (ū) ∧ φ−
S (ū))

∨(S(ū) ∧ ¬φ+

S (ū) ∧ ¬φ−
S (ū))

whereφ+

S (ū) and φ−
S (ū) are interpreted under active do-

main semantics, and are taken to be false if the respective
rule is not provided.

Note that, according to (2) in Definition 2.7, services do not update
the database contents (thus, the database contents is fixed through-
out each run, although it may of course be different across runs).
Instead, the data that is updatable throughout a run is carried by
the artifacts themselves, as attribute and state relations. This dis-
tinction between the static and updatable portions of the data is
convenient for technical reasons, as it is used in formulating the
restrictions needed for verification (see Section 3). Note that, if
so desired, one can make the entire database updatable by turning
it into a state. Also observe that the distinction between state and
database is only conceptual, and does not preclude implementing
all relations within the same DBMS.

We next define the notion of run of an artifact systemΓ = 〈A,Σ〉.
An initial instanceof Γ is an artifact instance overA whose states
are empty.

DEFINITION 2.8. A runof an artifact systemΓ = 〈A,Σ〉 is an
infinite sequenceρ = {ρi}i≥0 of artifact instances overA (also
calledconfigurations) such that:

• ρ0 is an initial instance ofΓ;

• for eachi ≥ 0, ρi
σ
−→ ρi+1 for someσ ∈ Σ.

A pre-runis a finite sequence{ρi}0≤i≤n satisfying the same con-
ditions as above fori < n. We say that a pre-run isblocking if its
last configuration has no possible successor.

EXAMPLE 2.9. Continuing Example 2.4, we show how to model
the operations allowed on artifacts by the setΣ of available ser-
vices. Due to space constraints, we relegate most of the specifica-
tion of Σ to the appendix, focusing here on the service that models
the negotiation process. To illustrate the artifact model’s natural
ability to specify processes at different levels of abstraction, we
describe the negotiation process at two levels. In a first, coarser
cut, the process is abstracted as serviceabstract_negotiation =
〈πan, ψan,San〉 about which we only know that the final price is
reached when the ask and bid prices coincide, and that it is guar-
anteed to lie between the allowed margins stored in attributesde-
sired_priceand lowest_acceptable_priceof artifact QUOTE. The
specification of this service is relatively simple and given in the ap-
pendix. Alternatively, we show below servicerefined_negotiation =
〈πrn, ψrn,Srn〉 which refines the negotiation process all the way
to the level of individual negotiation rounds, each of which sets the
current ask and bid prices.

Conventions.We adopt the following conventions:

(i) We model uninitialized attributes by setting them to the re-
served constantω.

(ii) We model Boolean states by nullary state relations, and drop
the parentheses from atoms using them:S() becomesS. We
assume the usual encoding oftrue as the singleton nullary
relation, andfalseas the empty nullary relation. In particular,
all Boolean states are initiallyfalse(since all state relations
are initially empty).

(iii) For convenience, we use the following syntactic sugar for
post-conditions: we write post-conditions as non-Horn rules
h(x̄) := b(ȳ) where theheadh is a conjunction of atoms
over attribute relations inA, with variables̄x, and thebodyb
is a formula inLA with free variables̄y, whereȳ ⊆ x̄. The
semantics is that wheneverA

σ
−→ A′ holds,A′ |= h(ū) for

some tuplēu, andA |= b(ū|ȳ). Moreover, artifact relations
not mentioned inh remain unchanged. Clearly, this syntactic
sugar can be simulated by the official post-conditions, and
conversely.

We now describe servicerefined_negotiation = 〈πrn, ψrn,Srn〉:

The pre-condition

π
rn .

= negotiation

ensures that the service applies only as long as the Boolean state
flag negotiation is set in the QUOTE artifact.
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Post-conditionψrn is given as

RQ (o, d, l, a, b, f, app, p, q,m) :=
(∃a′, b′ RQ(o, d, l, a′, b′, ω, app, p, q,m) ∧ a′ 6= b′∧
l ≤ a ≤ a′ ∧ b′ ≤ b ∧ f = ω)
∨
(RQ(o, d, l, a, b, ω, app, p, q,m) ∧ a = b = f).

According to the first disjunct, the negotiation is well-formed, i.e.
the bid never exceeds theaskprice, and in each round, asking prices
a never increase while bidsb never decrease. Moreover, as long as
askandbid price differ, the final price remains undefined (equal to
ω). Notice that the values ofa andb are otherwise unconstrained,
being simply drawn from the infinite domain. This reflects the fact
that they are external input from the manufacturer, respectively cus-
tomer. The second disjunct states that onceask price a and bid
priceb coincide, the final pricef is automatically set to the com-
mon value.

Srn contains rules that, upon detecting successful negotiation, switch
the QUOTE artifact to stageapproval_pending if the customer
does not enjoy preferred status with excellent credit. If he does,
then the approval is short-circuited and the QUOTE goes directly
to stagearchive. The negotiation is successful when theaskand
bid prices agree.

approval_pending←
(∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m) ∧
∃c, n RO(o, c, n, p, q) ∧
¬CUSTOMER(c, ”preferred”, ”excellent”))

archive←
(∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m) ∧
∃c, n RO(o, c, n, p, q) ∧
CUSTOMER(c, ”preferred”, ”excellent”))

¬negotiation← (∃o, d, l, a, f, app, p, q,m
RQ(o, d, l, a, a, f, app, p, q,m))

Note that state flagnegotiation must be set before the state update
rules execute (since pre-conditionπrn is satisfied). If neither of the
state rule bodies is satisfied, then according to the possible succes-
sor semantics, thenegotiation flag remains set, enabling another
negotiation round.2

One of the points illustrated by Example 2.9 is that the artifact
model is particularly well-suited for expressing a wide spectrum
of abstraction levels desired in specification. This is shown by the
two specifications of the negotiation process, one refining it down
to individual rounds, the other abstracting it to an atomic sub-task
with a post-condition on its outcome. In practice, the motivation
for abstraction ranges from lack of information about an external
process provided by an autonomous third party as a black box with
pre- and post-execution guarantees, to modeling non-deterministic
processes governed by chance or human agents rather than by pro-
gram. There are also technical reasons, such as the undecidabil-
ity of verification in the presence of arithmetic (as is the case in
many settings, including ours). In all these cases, abstracted sub-
processes can be naturally modeled as services, leveraging the non-
determinism in their post-conditions.

In order to specify temporal properties of runs, we use an extension
of linear-time temporal logic (LTL). Recall that LTL is proposi-
tional logic augmented with temporal operators such asX (next),
U (until), G (always) andF (eventually). Essentially, the exten-
sion we use, denoted LTL-FO, is obtained from LTL by replacing
propositions by FO statements about individual artifact instances in
the run. The different statements may share variables that are uni-
versally quantified at the end. Similar extensions have previously
been used in various contexts [25, 1, 46, 21, 23].

DEFINITION 2.10. The language LTL-FO (first-order linear-time
temporal logic) is obtained by closing FO under negation, disjunc-
tion, and the following formula formation rule: Ifϕ andψ are for-
mulas, thenXϕ andϕUψ are formulas. Free and bound variables
are defined in the obvious way. Theuniversal closureof an LTL-
FO formulaϕ(x̄) with free variables̄x is the formula∀x̄ϕ(x̄). An
LTL-FO sentence is the universal closure of an LTL-FO formula.

Let A be an artifact schema. An LTL-FO sentence overA is one
where each FO component is overDBA. The semantics of LTL-
FO formulas is standard, and we describe it informally. LetΓ =
〈A,Σ〉 be an artifact system, and∀x̄ϕ(x̄) an LTL-FO sentence over
A. The artifact systemΓ satisfies∀x̄ϕ(x̄) iff every run ofΓ satis-
fies it. Letρ = {ρi}i≥0 be a run ofΓ, and letρ≥j denote{ρi}i≥j ,
for j ≥ 0. Note thatρ = ρ≥0. The runρ satisfies∀x̄ϕ(x̄) iff for
each valuationν of x̄ in D, ρ≥0 satisfiesϕ(ν(x̄)). The latter is
defined by structural induction on the formula. Satisfaction of an
FO sentenceψ by ρi is defined in the obvious way. The seman-
tics of Boolean operators is standard. The meaning of the temporal
operatorsX, U is the following (where|= denotes satisfaction and
j ≥ 0):

• ρ≥j |= Xϕ iff ρ≥j+1 |= ϕ,

• ρ≥j |= ϕUψ iff ∃k ≥ j such thatρ≥k |= ψ andρ≥l |= ϕ

for j ≤ l < k.

Observe that the above temporal operators can simulate all com-
monly used operators, includingF (eventually),G (always), andB
(before, which requires its first argument to hold before its second
argument fails). Indeed,Fϕ ≡ true U ϕ, Gϕ ≡ ¬F(¬ϕ), and
ϕBψ ≡ ¬(¬ϕU¬ψ). We use the above operators as shorthand
in LTL-FO formulas whenever convenient.

Note that, as customary in verification, LTL-FO properties of arti-
fact systems concern exclusively their infinite runs. Thus, blocking
finite pre-runs are ignored. In particular, if an artifact system has
only blocking pre-runs (so no proper run) then it vacuously sat-
isfies all LTL-FO formulas. For this and other reasons, one may
wish to know if, for a given artifact system(i) all of its pre-runs
are blocking, or(ii) there exists a blocking pre-run. We consider
decidability of these questions at the end of Section 3 (Corollary
3.4) and Section 4 (Corollary 4.3).

EXAMPLE 2.11. We illustrate desirable properties for the arti-
fact systemΓex in Example 2.9. These properties pertain to the
global evolution ofΓex, as well as to the consistency of its spec-
ification. One such consistency property requires the state flags
in_process anddone in class ORDER to always be mutually ex-
clusive:

G(¬(in_process ∧ done)).
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A more data-dependent consistency property requires line item quotes
archived in stateli_quotes of the QUOTE artifact to pertain only to
tentative line items previously input by the customer (into attributes
li_prod and li_qty of the ORDER artifact), and which underwent
successful negotiation and approval. Successful negotiation occurs
whenask, bidandfinal_pricecoincide and the QUOTE artifact is
in statearchive:

∀pid, qty, prc
G ((∃o, c, n RO(o, c, n, pid, qty) ∧
∃d, l,m RQ(o, d, l, prc, prc, prc, ”yes”, pid, qty,m) ∧
archive)

B

¬li_quotes(pid, qty, prc))

Notice the use of thebeforeoperatorB (requiring its first argument
to hold before its second argument fails).

The following property is more semantic in nature, capturing part
of the manufacturer’s business model. It requires that if the cus-
tomer’s status is not"preferred"and the credit rating is worse than
"good", then before archiving a line item with final negotiated price
lower than the manufacturer’s desired price, explicit approval from
a human executive must have been requested. We assume the fol-
lowing ordering on the constants indicating the credit rating:”poor” <
”fair” < ”good” < ”excellent”.

ϕ3 :
∀o,c, n, p, q, d, l, f,m, s, r

G ((RO(o, c, n, p, q) ∧ in_process ∧ negotiation ∧
RQ(o, d, l, f, f, f, ω, p, q,m) ∧ f < d ∧
CUSTOMER(c, s, r) ∧ s 6= ”preferred” ∧
r < ”good”)→
(approval_pending

B

¬(archive ∧ li_quotes(p, q, f))))

Note thatϕ3 involves both artifacts and the underlying database. If
the negotiation process is described by servicerefined_negotiation,
then the property happens to be satisfied: indeed, recall from its
state rules that this service requests approval whenever the cus-
tomer’s status is not preferred and his credit rating is not excellent.
In particular, this applies to customers whose rating is worse than
good, according to the above ordering of credit ratings.2

A detailed specification of all services involved in our running ex-
ample can be found in the appendix.

3. DECIDABLE VERIFICATION
In this section we establish the main decidability result on verifica-
tion of artifact systems.

It is easily seen that satisfaction of an LTL-FO formula by an arti-
fact system is generally undecidable, using Trakhtenbrot’s theorem.
To obtain decidability, we introduce a restricted class of artifact
systems and LTL-FO properties, calledguarded. This is the analog
to artifact systems of the input-boundedness restriction, first intro-
duced by Spielmann in the context of ASM transducers [46], and
subsequently used for Web service verification [21]. The guarded

restriction mainly requires a form of bounded quantification in for-
mulas used in state update rules and LTL-FO properties, together
with some additional restrictions. The guarded restriction is formu-
lated as follows.

DEFINITION 3.1. Let Γ = 〈A,Σ〉 be an artifact system. The
set of guarded FO formulas overA is obtained by replacing in the
definition of FO the quantification formation rule by the following:

• if ϕ is a formula,α is an atom using an attribute relation of
some artifact ofA, x̄ ⊆ free(α), andx̄ ∩ free(β) = ∅ for
every state atomβ in ϕ, then∃x̄(α ∧ ϕ) and∀x̄(α → ϕ)
are formulas.

An artifact system is guarded iff all formulas used in the state rules
of its services are guarded, and all pre-and-post conditions are
∃∗FO formulas3 in which all state atoms are ground (i.e. contain
only constants). An LTL-FO sentence overA is guarded iff all of
its FO components are guarded.

Note that, in addition to the usual bounded quantification condi-
tions, Definition 3.1 places the restriction̄x ∩ free(β) = ∅ for
every state atomβ occurring in the scope of a quantification ofx
in a guarded formula. This says that state atoms can only con-
tain constants or free variables in guarded formulas. Together with
the fact that state atoms must appear ground in pre-and-post condi-
tions, this places strong restrictions that considerably limit the use
of state information. Unfortunately, both restrictions are needed
for decidability of verification. On the positive side, as illustrated
by our running example, guarded artifact systems appear to remain
powerful enough to model significant applications.

EXAMPLE 3.2. The artifact systemΓex in our running example
is guarded. This includes the complete specification in Appendix,
which shows that the guardedness restriction still offers significant
expressive power. For instance, notice that post-conditionψrn is
an∃∗FO formula with no non-ground state atoms (trivially so, as
it mentions no state at all). In addition, in all state rules the quan-
tified variables appear guarded by atoms using attribute relations
RO or RQ. No quantified variables appear in any state atom be-
cause no such atoms are mentioned. See the state rules of service
include_line_itemin Appendix for a less trivial example of guarded
state rules. There, state atoms do occur in the rule body, but only
with non-quantified variables. All properties listed in Example 2.11
are guarded.

For an example of an unguarded state rule, consider a relaxation
of the insertion rule inSrn demanding that executive approval be
short-circuited and thearchive flag be set for all preferred cus-
tomers with better than fair rating:

archive←
∃o, d, l, a, f, app, p, q,m, r
RQ(o, d, l, a, a, f, app, p, q,m) ∧
∃c, n RO(o, c, n, p, q)∧

CUSTOMER(c, ”preferred”, r) ∧ r > ”fair”

3Note that these formulas do not have to obey the restricted quan-
tification formation rule.
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The problem here is that quantified variabler does not appear in
any attribute atom (indeed it cannot, since neitherRO norRQ have
any rating attribute). While our undecidability results in Section 4
imply that not every unguarded rule or property can be equiva-
lently rewritten into a guarded one, it is often possible to do so
by slightly modifying the specification, such that it preserves the
intended business process semantics, at the cost of widening the
attribute relation. This happens to apply here. One can simply ex-
tend the attribute schema ofRO to include the customer’s rating, in
addition to the originally included customer id. The rating attribute
would be set at the same time as the customer id attribute. The latter
is set by serviceinitiate_orderin Appendix, using a guarded post-
condition that would remain guarded after the proposed extension.
2

The main result on decidability of verification for artifact systems
is the following.

THEOREM 3.3. It is decidable, given a guarded artifact sys-
temΓ and a guarded LTL-FO formulaϕ, whether every run ofΓ
satisfiesϕ. Furthermore, the complexity of the decision problem
is PSPACE-complete for fixed arity schemas, andEXPSPACEother-
wise4.

The main challenge in establishing the above result is that arti-
fact systems areinfinite-state systems, due to the presence of un-
bounded data. To deal with this, the key idea is to develop a con-
cise, symbolic representation of equivalence classes of runs ofΓ,
calledpseudoruns, that retain just the information needed to check
satisfaction ofϕ, and can be generated inPSPACEwithout explicitly
constructing any actual run or database. The high-level structure of
the proof is similar to the one for decidability of verification for ex-
tended ASM transducers [21]. However, the result for the artifact
model substantively extends previous ones in two significant ways:
(i) runs of artifact systems may use infinitely many domain values
(unlike extended ASM transducers where the domain of each run
is restricted to the active domain of the finite database), and (ii) the
underlying domain is ordered. These extensions require much more
care in developing the pseudorun technique, and render the proof
of decidability considerably more difficult. This proof is omitted
here.

Finally, we consider the issue of blocking pre-runs. As remarked
in Section 2, LTL-FO properties of artifact systems concern only
their (infinite) runs and ignore blocking pre-runs. In particular, if an
artifact system has only blocking pre-runs (so no proper run) then
it vacuously satisfies all LTL-FO formulas. It therefore becomes
of interest to know whether all pre-runs of an artifact system are
blocking. Moreover, blocking may also be of interest for reasons
specific to the application (see also discussion in Section 5). We
can show the following.

COROLLARY 3.4. It is decidable, given a guarded artifact sys-
temΓ, whether all pre-runs ofΓ are blocking. Furthermore, the
complexity isPSPACEfor fixed-arity schemas, andEXPSPACEoth-
erwise.

4The best lower bound we know for arbitrary arity schemas is
CO-NEXPTIME, shown by reduction from validity of∀∗∃∗FO sen-
tences, known to beCO-NEXPTIME-complete [9].

Proof: The result follows immediately from Theorem 3.3. Indeed,
all pre-runs ofΓ are blocking iffΓ has no (infinite) runs iffΓ |=
false. The latter is decidable with the stated complexities by Theo-
rem 3.3. 2

One may also wish to know if a given artifact system hassome
blocking pre-run. Interestingly, this turns out to be undecidable for
guarded artifact systems (see Corollary 4.3).

4. BOUNDARIES OF DECIDABILITY
In this section we consider several variations of our artifact model
and relaxations of the guarded conditions and show that they lead
to undecidability of verification. This suggests that the restrictions
we presented in order to ensure decidability are quite tight. Due
to space constraints, the presentation of the alternative models is
informal.

Attributes versus states. We first revisit the distinction between
the attribute relationR and the state relationS in artifact classes
C = 〈R,S〉. One might legitimately wonder if the separate treat-
ment is relevant to verification. We next show that this is indeed the
case. More precisely, consider a modification of the artifact model
where the stateS is treated in the same way asR, except thatR
holds a single tuple whileS holds an entire relation. In particular,
in the definition of a service using artifact classC = 〈R, S〉:

• the pre-and-post conditions of the service are∃∗FO formu-
las usingR, S and the database (withS-atoms no longer
restricted to be ground as previously);

• as before, the initial value ofS is empty;

• there are separate post-condition formulasψR andψS for R
andS, defining their contents in the output (R consists, as
before, ofonearbitrary tuple satisfyingψR, whileS consists
of thesetof tuples satisfyingψS , with active domain seman-
tics to guarantee finiteness).

We refer toR as thetuple attribute setof C and toS as there-
lational attribute setof C. We refer to such artifact systems as
hybrid-attribute. Note that, in this model, there are no longer sepa-
rate state relations. Since there are no states, the guarded restriction
on hybrid-attribute services now simply amounts to the∃∗FO form
of the pre-and-post conditions. The guarded restriction for LTL-
FO properties remains unchanged. We can show the following (the
proof is by reduction from the Post Correspondence Problem).

THEOREM 4.1. It is undecidable, given a guarded
hybrid-attribute artifact systemΓ and guarded LTL-FO formulaϕ,
whetherΓ |= ϕ. Moreover, this holds even for singleton artifact
systems whose relational attribute set consist of a single attribute,
and for a fixed LTL-FO formulaϕ with no variables.

Relaxing the guarded restrictions. We now consider several re-
laxations of the guarded restrictions. It turns out that even very
small such relaxations lead to undecidability of verification. Specif-
ically, we consider the following: (i) allowing non-ground state
atoms in pre-and-post conditions, (ii) allowing state projections in
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state update rules (a simple form of un-guarded quantification), (iii)
allowing un-guarded quantification in the LTL-FO property, and
(iv) extending LTL-FO with path quantifiers.

We can show that each of the relaxations (i)-(iv) leads to undecid-
ability of verification. The proof of (i) is similar to that of Theorem
4.1. The proofs of (ii) and (iii) are by reduction from the implica-
tion problem for functional and inclusion dependencies, known to
be undecidable [16]. The proof of (iv) is by reduction from valid-
ity of ∃∗∀∗FO sentences, also known to be undecidable [9]. The
proofs of (ii)-(iv) can be easily adapted from analogous results ob-
tained for extended ASM transducers [21]. We therefore omit the
details.

Functional dependencies.It is natural to ask whether the decid-
ability of verification holds under the assumption that the database
satisfies certain integrity constraints. Unfortunately, we show that
even simple key dependencies lead to undecidability.

THEOREM 4.2. It is undecidable, given a guarded singleton ar-
tifact systemΓ, a set of functional dependenciesF overDB, and
a guarded LTL-FO sentenceϕ, whetherρ |= ϕ for every runρ
of Γ on a database satisfyingF . Moreover, this holds even ifDB
consists of one binary and one unary relation, andF consists of a
single key constraint on the binary relation.

The proof is done by reduction from the PCP, similarly to Theorem
4.1 (details are omitted).

Existence of a blocking pre-run. Recall the question raised in
Section 2: does an artifact system have(i) only blocking pre-runs,
or (ii) someblocking pre-run? We showed in Section 3 that(i) is de-
cidable for guarded artifact systems (Corollary 3.4). Interestingly,
(ii) turns out to be undecidable.

COROLLARY 4.3. It is undecidable, given a guarded artifact
systemΓ, whetherΓ has some blocking pre-run.

The result is shown similarly to Theorems 4.1 and 4.2, by reduction
from the PCP. The key idea is to first search for a match to the PCP
(without assurance that the key dependency assumed in Theorem
4.2 is satisfied), and in case of success make continuance of the
run contingent upon violation of the dependency. This reduces the
existence of a solution to the PCP to the existence of a blocking
pre-run.

Order versus successor.Recall that decidability of verification
holds under the assumption that the domainD is countable and
equipped with a dense, total order≤ with no endpoints. If≤ is
replaced by a successor relation onD, verification becomes unde-
cidable. The proof is, again, by reduction from the PCP.

We note that it remains open whether verification remains decidable
if some of the assumptions on≤ do not hold, for instance if≤ is
not dense.

5. FURTHER APPLICATIONS
We next discuss several problems previously raised in the context
of artifact systems, to which our results on verification can be ben-
eficially applied.

Business rules.We consider an extension of the artifact formal-
ism in support of service reuse and customization. In practice,
services are often provided by autonomous third-parties, who typ-
ically strive for wide applicability and impose as unrestrictive pre-
conditions as possible. In contrast, the designer who incorporates
third-party services into the business process often requires more
control over when these services apply, in the form of more restric-
tive pre-conditions. Such additional control may also be needed
to ensure compliance with business regulations formulated by third
parties, independently of the specific application. To address such
needs, [6] introducesbusiness rules, which are conditions that can
be super-imposed on the pre-conditions of existing services without
changing their implementation.

We adopt the notion here and formalize it as follows. Given an
artifact systemΓ = 〈A,Σ〉, we associate a setB = {βσ | σ ∈ Σ}
of business rules to the services inΣ. A business ruleis a sentence
in LA, just like a service pre-condition.

For instance, we revisit our running example and assume that order
shipment is modeled by theshipservice, whose pre-condition only
checks that the ORDER artifact is in statedone. We also assume
the existence of acollect_paymentservice, which applies when the
ORDER is in statedone. Finally, we assume that the ORDER ar-
tifact is extended with apaid boolean state flag which is set by the
collect_paymentservice. Now we wish to super-impose the follow-
ing business rule, which implements the policy that only platinum
customers with excellent credit may get their order shipped before
payment is received:

βship:
∃o, c, n, p, s, r RO(o, c, n, p, q) ∧ CUSTOMER(c, s, r) ∧
(s = ”platinum” ∧ r = ”excellent” ∨ paid)

Verification under business rules. The verification problem for
artifact systemΓ and propertyϕ under business rulesB, denoted
Γ |=B ϕ, means checking that every run ofΓ′ satisfiesϕ, whereΓ′

is obtained by adding each business rule as a pre-condition conjunct
to its corresponding service inΓ. We say that a business rule is
guardedif it is guarded when viewed as a service pre-condition. It
follows immediately as a corollary of Theorem 3.3 that verification
underB is decidable ifΓ, ϕ and all business rules inB are guarded.

A related problem concernsincrementalverification under business
rules. Note that, ifΓ |= ϕ, thenΓ |=B ϕ. However,Γ 6|= ϕ does
not imply thatΓ 6|=B ϕ. Thus, properties such as reachability of
a configuration satisfying some desired property are not inherited
when business rules are added. It is of interest whether such prop-
erties can be verified incrementally; however, we do not address
this here.

Redundant business rules.Towards streamlining the specifica-
tion, a desirable goal is the removal of redundant business rules.
This involves checking whether, given an artifact systemΓ = 〈A,Σ〉,
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a new business ruleβ associated to some serviceσ ∈ Σ has any
effect onΓ, i.e. excludes at least one of its runs. The latter prob-
lem amounts to verifying that at any point in a run ofΓ, the pre-
conditionπ of σ impliesβ: Γ |= G(π → β). If Γ is guarded, and
β is guarded in the sense of guarded FO components of LTL-FO
properties, then, again as a corollary of Theorem 3.3, checking if
β has an effect onΓ is decidable. Indeed, ifπ is guarded, then we
haveπ

.
= ∃x̄ f(x̄) with f a quantifier-free formula inLA. Then

Γ |= G(∃x̄f(x̄)→ β) iff Γ |= G(∀x̄¬f(x̄) ∨ β)
iff Γ |= ∀x̄G(¬f(x̄) ∨ β)

| {z }

ϕ

whereϕ is a guarded LTL-FO property ifβ is. For example,βship

above is guarded.

Redundant attributes. Another design simplification consists of
redundant attribute removal, a problem raised in [6]. We formulate
this as follows. We would like to test whether there is a way to
satisfy a propertyϕ of runs without using one of the attributes, say
a, of artifactA. Checking redundancy ofa reduces to the following
verification problem:

Γ 6|= ϕ→ F(∃x̄∃a RA(x̄, a) ∧ a 6= ω)
| {z }

ϕ′

where we assume wlog thata is last inA’s attribute relationRA.
Recall from Section 2 the convention of representing undefined at-
tributes using a constantω. The argument of the temporal operator
F (eventually) checks that attributea is defined. Ifϕ is guarded and
has no global variables (i.e. its FO components are all sentences),
thenϕ′ is a guarded LTL-FO property. Therefore Theorem 3.3
applies, yielding decidability.

Verifying termination properties. Recall that our semantics of
artifact systems and LTL-FO properties ignores blocking runs. How-
ever, in some applications, one would like to verify properties re-
lating to termination. As discussed in Section 3, it is decidable
if all pre-runs of an artifact system are blocking (Corollary 3.4).
However, it may be desirable to verify more expressive properties
involving blocking configurations. To this end, one can modify the
semantics to render all runs infinite by repeating forever blocking
configurations, whenever reached. It can be shown that our results
continue to hold with this semantics. Note that one can state, within
a guarded LTL-FO property, that a configuration of a guarded ar-
tifact system is blocking (all variables in negations of the∃∗FO
pre-conditions become globally quantified universally).

6. CONCLUSIONS
In this paper, we introduce the artifact system model, which for-
malizes a business process modeling paradigm that has recently
attracted the attention of both the industrial and research commu-
nities. We study the problem of automatic verification of artifact
systems, with the goal of increasing confidence in the correctness
of such business processes.

All prior versions of the artifact model are inherently data-aware,
being essentially evolved dataflow models. The version we con-
sider extends prior models, taking significant additional steps to-
wards data-awareness. It includes an underlying database which

can be consulted by the services, and equips artifacts with updat-
able state relations. The service and property specifications allow
sophisticated manipulation of data values via first-order formulae
over the attributes and state of artifacts, the underlying database,
and an infinite, ordered underlying domain. Data awareness raises a
significant challenge compared to classical finite-state model check-
ing, by turning artifact systems into infinite-state systems, whose
verification problem is notoriously difficult.

We trace the boundaries of decidability for verification and we
identify the guarded restriction, defining a practically appealing
and fairly tight class of artifact systems and properties for which
verification is decidable inPSPACE. This complexity is the best
one can hope for, given that finite-state model checking is already
PSPACE-complete. Our decidability result is significantly more dif-
ficult than the previous results of [46, 21] for ASM transducers and
Web services, because each run is allowed to use infinitely many
values from an underlying ordered domain. This extension is criti-
cal to the artifact framework, in order to adequately model arbitrary
external input and partially specified processes given by pre- and
post-conditions. Finally, we show that the verification techniques
can also be leveraged to solve other static analysis tasks previously
formulated for the artifact framework.

While thePSPACEcomplexity of verification is reasonable within
the landscape of static analysis, one must legitimately wonder whether
verification of such complexity is feasible in practice. Fortunately,
previous experience is quite encouraging. Indeed, aPSPACE-complete
verification algorithm for data-driven Web services, exhibiting ex-
cellent performance on a significant range of applications, has been
implemented in the WAVE prototype [20, 22]. The implementation
relies on a mix of symbolic model checking and database optimiza-
tion techniques. We believe that a similar approach is likely to also
be effective, after appropriate extensions enabled by our results,
in the context of data-centric business process verification. This
would be of interest to the database, computer-aided verification,
and business process communities.
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APPENDIX
Running Example
We present here our full running example. We model a scenario
where a manufacturer fills customer purchase orders, negotiating
the price of each line item on a case-by-case basis. We focus on
two artifacts manipulated by the negotiation process, ORDER and
QUOTE. During the workflow, the customer repeatedly adds new
line items into (or updates existing ones in) the purchase order mod-
eled by the ORDER artifact. Each line item specifies a product and
its quantity. Line items are first tentatively filled in the ORDER
attributesli_prod and li_qty. Every tentative line item spawns a
negotiation process, in which manufacturer and customer complete
rounds of declaring ask and bid prices, until agreement is reached
or the negotiation fails. The prices at every round are stored in the
QUOTE artifact, which also holds the manufacturer’s initially de-
sired price, the lowest bid he is willing to entertain, and the final
negotiated price. Once the negotiation on a tentative line item suc-
ceeds, its outcome is scrutinized by a human executive working for
the manufacturer. Upon the executive’s approval, the line item is in-
cluded into the purchase order (by insertion into the ORDER state
line_items), and the final price is archived (in the QUOTE state
li_quotes). During the negotiation, the manufacturer consults an
underlying database, which lists information about available prod-
ucts (e.g. manufacturing cost) and about customers (e.g. credit
rating and status).

The corresponding artifact systemΓex = 〈A,Σ〉 is formally de-
scribed below. As a font convention, we useR to refer to an arti-
fact’s attribute relation andS for state relations.

The artifact schema isA = 〈ORDER,QUOTE,DB〉, detailed
as follows.

1. DB = 〈PRODUCT,CUSTOMER〉 is the database schema,
where:

• PRODUCT(prod_id,manufacturing_cost,
min_order_qty)

is the relation containing products and production infor-
mation, and

• CUSTOMER(customer_id, status, credit_rating)
contains information about customers, such as customer
status and credit rating.

2. ORDER = 〈RO, line_items, in_process, done
| {z }

SO

〉

is the artifact class containing the information about a cus-
tomer’s order:

• RO(order#, customer_id, need_by, li_prod, li_qty)
is the attribute relation holding the order number, the
identifier of the customer who placed the order, the day
it is needed by. The role of attributesli_prod andli_qty
is described below.
• line_items(prod_id, qty)

is a state relation that acts as a “shopping cart” holding
the collection of line items requested so far.
• in_process anddone

are nullary state relations (boolean flags) keeping track
of the stage the artifact is in.5

The intention is that, in stagein_process, the customer re-
peatedly updates the shopping cart by specifying an individ-
ual, tentative line item described by attributesli_prod and
li_qty. Subsequently, this line item is inserted into, deleted
from, or replaces inline_items an item with the sameprod_id,
provided the price negotiation succeeds. When the customer
completes the purchase order, the ORDER artifact transitions
to stagedone.

3. QUOTE = 〈RQ,

li_quotes, idle, desired_price_calc,
negotiation,approval_pending, archive〉

ff

: SQ

is the artifact class modeling quotes, with:

• RQ( order#, desired_price,
lowest_acceptable_price, ask, bid,
final_price, approved, li_prod, li_qty,
manufacturing_cost)

is the attribute relation.
• li_quotes(prod_id, qty, price)

is a state relation holding the final negotiated price quotes
for the line items in the corresponding ORDER artifact.
• idle, desired_price_calc, negotiation,

approval_pending, archive
are nullary state relations.

When inactive, the QUOTE artifact is in stateidle, but moves
to desired_price_calc as soon as the customer fills in the
product id and quantity of a line item. In this stage,de-
sired_priceattribute is set (from the manufacturer’s point of
view), possibly taking into account theneed_bydate attribute
in the corresponding ORDER artifact and the manufacturing
cost listed in the PRODUCT database. During the ensuing
negotiation stage, the ask and bid prices are repeatedly set
(in attributeask by the manufacturer, respectivelybid by the
customer) until a final price is established and recorded in at-
tributefinal_price, or the negotiation fails. Final prices may

5Artifact class ORDER illustrates an extension of Definition 2.1
that allows several state relations. This extension is for convenience
only: it is easy to show that it provides no additional expressive
power and preserves our decidability results. Indeed, given artifact
systemΓ with multiple states per artifact and LTL-FO sentenceϕ,
we can construct in polynomial time artifact systemΓ′ and sentence
ϕ′ such thatΓ |= ϕ iff Γ′ |= ϕ′. Moreover, ifΓ andϕ are guarded,
then so areΓ′ andϕ′.
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require approval by a human executive to whom the negotia-
tor reports. While approval is awaited, the QUOTE artifact is
in stageapproval_pending. Approval is granted by setting
boolean attributeapproved. Approved final prices are then
archived in state relationli_quotes (while the QUOTE arti-
fact is in stagearchive).

The operations allowed on artifacts are modeled by the setΣ of
available services, summarized below.

• Serviceinitiate_order = 〈πio, ψio,Sio〉 initializes the OR-
DER artifact, modeling the input of the order number and cus-
tomer id by the manufacturer, and the need-by date by the
customer.

• Serviceadd_or_modify_line_item = 〈πam, ψam,Sam〉
models the customer’s choice of a tentative line item to be
added to the purchase order, or to replace another line item for
the same product. The service records this choice in attributes
li_prod andli_qty of the ORDER artifact, and initializes the
QUOTE artifact in view of the upcoming negotiation. This
involves copying the order number and line item information
from ORDER to QUOTE, and filling the QUOTE’smanufac-
turing_costattribute with the corresponding value looked up
in the PRODUCT database.

• Serviceinclude_line_item = 〈πil, ψil,Sil〉 includes into
the purchase order the current tentative line item, by storing it
in ORDER stateline_items. The corresponding final negoti-
ated price is archived in QUOTE stateli_quotes.

• Servicecommit_order = 〈πco, ψco,Sco〉 simply switches
the ORDER artifact to thedone stage, which disables any
further line item modifications. This service models the cus-
tomer’s non-deterministic decision to finalize the purchase or-
der.

• Serviceset_quote_interval = 〈πsq, ψsq ,Ssq〉 sets thede-
sired_ priceandlowest_acceptable_priceattributes of the QUOTE
artifact to frame the subsequent negotiation. This service ab-
stracts a complex sub-task, possibly taking into account the
ORDER’sneed_byattribute, the manufacturer’s desired profit
margin, the customer’s status, and input from a human man-
ager.

• Servicequote_approval = 〈πqa, ψqa,Sqa〉 models the hu-
man supervisor who reviews the quote on behalf of the man-
ufacturer. The process is a black box, about which is only
known that it switches the QUOTE artifact toarchive stage,
and it sets theapprovedattribute to either"yes"or "no".

To showcase the artifact model’s natural ability to specify processes
even partially, we describe the negotiation process at two levels of
abstraction.

• In a first, coarser cut, the process is abstracted as service
abstract_negotiation = 〈πan, ψan,San〉 about which we
only know that the final price is reached when the ask and bid
prices coincide, and that it is guaranteed to lie between the
allowed margins stored in attributesdesired_priceand low-
est_acceptable_priceof artifact QUOTE.

• Alternatively, we use servicerefined_negotiation =
〈πrn, ψrn,Srn〉 to refine the negotiation process all the way
to the level of individual negotiation rounds, each of which
sets the current ask and bid prices.

Conventions. We adopt the following conventions:

(i) We model uninitialized attributes by setting them to the re-
served constantω.

(ii) We model Boolean states by nullary state relations, and drop
the parentheses from atoms using them:S() becomesS. We
assume the usual encoding oftrue as the singleton nullary
relation, andfalseas the empty nullary relation. In particular,
all Boolean states are initiallyfalse (since all state relations
are initially empty).

(iii) For convenience, we use the following syntactic sugar for
post-conditions: we write post-conditions as non-Horn rules
h(x̄) := b(ȳ) where theheadh is a conjunction of atoms
over attribute relations inA, with variablesx̄, and thebody
b is a formula inLA with free variables̄y, whereȳ ⊆ x̄.
The semantics is that wheneverA

σ
−→ A′ holds,A′ |=

h(x̄ ← ū) for some tuplēu, andA |= b(ȳ ← ū|ȳ). More-
over, artifact relations not mentioned inh remain unchanged.
Clearly, this syntactic sugar can be simulated by the official
post-conditions, and conversely.

Serviceinitiate_order = 〈πio, ψio,Sio〉 initializes the ORDER
artifact, where:

• πio .
= ¬in_process,

i.e. the service applies when the ORDER artifact is not used
to process another order;

• The post-conditionψio given by

RO(o, c, n, ω, ω) := o 6= ω ∧ n 6= ω ∧
∃r, s CUSTOMER(c, s, r)

guarantees that the attributesorder#, customer_idandneed_by
are initialized (set distinct fromω). By the semantics of post-
conditions, the pick ofo, c, n is non-deterministic. The pick
of n models the customer’s input, while that ofo models the
assignment of an order number by the manufacturer. Note
that no further constraints are imposed on these values, they
are simply picked from the infinite domain. In contrast, the
customerc must be one of the existing customers listed in the
database relation CUSTOMER. The pick ofc also models the
manufacturer’s input.
The tentative line item’s pricep and quantityq are left unini-
tialized (they equalω) and will be set by the customer during
an activity modeled by serviceadd_or_modify_line_item
below.

• The state rules inSio include the following:

– in_process← true,
an insertion rule that sets thein_process boolean flag.

– ¬done← true,
a deletion rule that resets boolean state flagdone, ensur-
ing it is mutually exclusive within_process. (it is the
responsibility of all other services operating on ORDER
to keep them so
– seeadd_or_modify_line_item below).

No rule refers to state relationline_items, as no line item
exists yet.

Serviceadd_or_modify_line_item models the customer’s choice
of a tentative line item to be added to the purchase order, or to
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replace another line item for the same product. The service af-
fects both the ORDER and the QUOTE artifact, and it is given as
〈πam, ψam,Sam〉, where:

• πam .
= ∃o, c, n in_process ∧ RO(o, c, n, ω, ω) ∧ idle ∧

RQ(ω, ω, ω, ω, ω, ω, ω, ω, ω, ω),
i.e. the service applies only if the ORDER artifact is in the
in_process stage, no other line item is currently being pro-
cessed, and if the QUOTE artifact is currently unused (in the
idle stage, with all attributes uninitialized).

• The post-conditionψam is

RO(o, c, n,p, q) ∧RQ(o, ω, ω, ω,ω, ω, ω, p, q,m) :=
∃q′ RO(o, c, n, ω, ω) ∧ p 6= ω ∧ q 6= ω ∧
q ≥ q′ ∧ PRODUCT(p,m, q′)

Note that the customer’s input of product idp and quantityq is
modeled as a non-deterministic pick from the infinite domain.
The pickedp must appear in the PRODUCT catalog stored in
the database. The quantityq is less restricted: we only know
that it is defined (q 6= ω) and, reflecting the manufacturer’s
policy, it exceeds the minimum-order quantityq′ listed in the
PRODUCT catalog.
According to the post-condition, the service reacts as follows
to the customer’s input of the tentative line item. It stores the
valuesp andq into the attributesli_prod, li_qty of the OR-
DER artifact. Note that attributesorder#, customer_idand
need_byremain unchanged. The service also initializes the
order# attribute of the QUOTE artifact to refer to the cor-
responding order, and also stores in itp, q and the manu-
facturing costm for productp, which is looked up in the
database catalog PRODUCT. The QUOTE artifact’s remain-
ing attributes are left undefined, to be set during negotiation.

• Sam contains no ORDER state rule as the order’s state is left
unchanged. It contains the following state rules that move
the QUOTE artifact to thedesired_price_calc stage, which
enables the sub-task of quote negotiation: insertion rule

desired_price_calc← true

and deletion rule

¬idle← true.

Serviceinclude_line_item = 〈πil, ψil,Sil〉 includes into the pur-
chase order the current tentative line item, by storing it in OR-
DER stateline_items. The corresponding final negotiated price
is archived in QUOTE stateli_quotes. We have:

• The pre-condition

π
il .

= in_process ∧ ∃o, c, n, p, q RO(o, c, n, p, q) ∧

o 6= ω ∧ c 6= ω ∧ n 6= ω ∧ p 6= ω ∧ q 6= ω ∧

∃d, l, f,m RQ(o, d, l, f, f, f, ”yes”, p, q,m) ∧

archive

ensures that the service applies only if a current line itemp, q
exists, the ORDER artifact is in stagein_process, and the
QUOTE artifact lists a successful and approved negotiation
for this line item and order (notice the common occurrence
of o, p, q in both the QUOTE and the ORDER atoms). Suc-
cessful negotiation occurs when the ask, bid and final price
coincide, and the artifact is in statearchive. The final price is
approved when theapprovedattribute is set to “yes”.

• The post-conditionψil given by

RO(o, c, n, ω, ω) ∧RQ(ω, ω, ω,ω, ω, ω, ω, ω, ω, ω) :=
∃p′, q′ RO(o, c, n, p′, q′)

guarantees that, regardless of the current valuep′, q′ of the
line item, in the successor ORDER artifact the values are re-
set to undefined (ω), to make room for the next tentative line
item. Notice that the ORDER attributesorder#, customer_id
and need_byare preserved. The QUOTE attributes are all
reset, in preparation for the next negotiation.

• The state rules inSil include the following:

– The state insertion rule

line_items(p, q)← ∃o, c, n RO(o, c, n, p, q)

operates on artifact ORDER, inserting the values of at-
tributesli_prod andli_qty into state relationline_items.
The state deletion rule

¬line_items(p, q)← ∃o, c, n, q′ RO(o, c, n, p, q′) ∧

line_items(p, q)

deletes any other entry pertaining to the same productp

(if any). Recall that, according to the possible successor
definition, if stateline_items already contains an entry
for productp, the combined effect of the insertion and
deletion rule is that ofupdatingthe quantity of product
p to the latest customer-provided (and successfully ne-
gotiated) value. If no prior entry forp exists, then the
deletion rule has no effect.

– The final negotiated price for this line item is archived in
QUOTE stateli_quotes by the following insertion rule:
li_quotes(p, q, f)←

∃o, d, l,m RQ(o, d, l, f, f, f, ”yes”, p, q,m).

The following insertion and deletion rules move the QUOTE
artifact to stateidle, signaling its availability for a new
negotiation sub-task:

idle← true and
¬archive← true.

Servicecommit_order = 〈πco, ψco,Sco〉 simply switches the
ORDER artifact to thedone stage, which disables any further line
item modifications. This service models the customer’s non-deterministic
decision to finalize the purchase order.

• πco .
= in_process ∧

∃o, c, n, p, q RO(o, c, n, p, q) ∧ p = ω ∧ q = ω,
i.e. the full order can be committed only if no tentative line
item is still being processed (which would makep 6= ω, q 6=
ω).

• ψco is given by

RO(o, c, n, p, q) := RO(o, c, n, p, q)

i.e. the artifact’s attributes do not change.

• Sco contains only the rules
in_process← false and
done← true.

The following services model the negotiation process.

Serviceset_quote_interval sets thedesired_ priceand
lowest_acceptable_priceattributes of the QUOTE artifact to frame
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the subsequent negotiation. This service abstracts a complexsub-
task, possibly taking into account the ORDER’sneed_byattribute,
the manufacturer’s desired profit margin, the customer’s status, and
input from a human manager.

set_quote_interval = 〈πsq, ψsq,Ssq〉, where:

• πsq .
= desired_price_calc.

• Post-conditionψsq given by

RQ(o, d, l, d, ω, ω, ω,p, q,m) :=
d 6= ω ∧ l 6= ω ∧ d ≥ l ≥ m ∧
RQ(o, ω, ω, ω, ω, ω, ω, p, q,m).

models only what is known about the quote generation proce-
dure viewed as a black box: namely that the desired price is
higher than the lowest acceptable one, which in turn exceeds
the manufacturing cost. It also sets the initial asking price to
the desired price in preparation for the negotiation stage.

• The rules inSsq simply switch the artifact to thenegotiation
stage, and are omitted.

To showcase the artifact model’s natural ability to specify processes
even partially, we describe the negotiation process at two levels of
abstraction.

In a first, coarser cut, the process is abstracted as service
abstract_negotiation = 〈πan, ψan,San〉 about which we only
know that the final price is reached when the ask and bid prices co-
incide, and that it is guaranteed to lie between the allowed margins
stored in attributesdesired_priceand lowest_acceptable_priceof
artifact QUOTE.

• πan = negotiation,
since the process can only start when the QUOTE artifact is
ready, which is signaled by setting this state flag.

• Post-conditionψan, given as

RQ(o, d, l,f, f, f, app, p, q,m) :=
∃a′, b′, f ′ RQ(o, d, l, a′, b′, f ′, app, p, q,m) ∧
l ≤ f ≤ d

guarantees that the final pricef agrees with the final ask and
bid prices regardless of their initial valuesa′, b′, and thatf
lies between the desired priced and the lowest acceptable
pricel.

• We omit the rules inSan, which move the artifact to state
approval_pending.

Alternatively, we can refine the negotiation process all the way to
the level of individual negotiation rounds, each of which sets the
current ask and bid prices. A post-condition ensures that the ne-
gotiation is well-formed, i.e. the bid never exceeds the ask price,
and that across rounds, asking prices never increase, while bids
never decrease. The negotiation is successful when ask and bid
prices agree, at which time the QUOTE artifact moves to theap-
proval_pending state, thefinal_priceattribute is set, and and no
further rounds are conducted.

Servicerefined_negotiation = 〈πrn, ψrn,Srn〉 is described as
follows:

• πrn = negotiation
ensures that the service applies only as long as the boolean
state flagnegotiation is set in the QUOTE artifact.

• Post-conditionψrn is given as

RQ (o, d, l, a, b, f, app, p, q,m) :=
(∃a′, b′ RQ(o, d, l, a′, b′, ω, app, p, q,m) ∧
a′ 6= b′ ∧ l ≤ a ≤ a′ ∧ b′ ≤ b ∧ f = ω)
∨
(RQ(o, d, l, a, b, ω, app, p, q,m) ∧ a = b = f).

According to the first disjunct, the negotiation is well-formed,
i.e. the bid never exceeds the ask price, and in each round,
asking pricesa never increase while bidsb never decrease.
Moreover, as long as ask and bid price differ, the final price re-
mains undefined (equal toω). Notice that the values ofa and
b are otherwise unconstrained, being simply drawn from the
infinite domain. This models their external input by the man-
ufacturer, respectively customer. The second disjunct states
that once ask pricea and bid priceb coincide, the final price
f is automatically set to the common value.

• Srn contains rules that, upon detecting successful negotia-
tion, switch the QUOTE artifact to stageapproval_pending
if the customer does not enjoy preferred status with excellent
credit. If he does, then the approval is short-circuited and the
QUOTE goes to stagearchive. The negotiation is successful
when ask and bid prices agree.

approval_pending←
(∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m) ∧
∃c, n RO(o, c, n, p, q) ∧
¬CUSTOMER(c, ”preferred”, ”excellent”))

archive←
(∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m) ∧
∃c, n RO(o, c, n, p, q) ∧
CUSTOMER(c, ”preferred”, ”excellent”))

¬negotiation← (∃o, d, l, a, f, app, p, q,m
RQ(o, d, l, a, a, f, app, p, q,m))

Note that state flagnegotiation must be set before the state
update rules execute (since pre-conditionπrn is satisfied). If
neither of the state rule bodies is satisfied, then according
to the possible successor semantics, thenegotiation flag re-
mains set, enabling another negotiation round.

Finally, servicequote_approval = 〈πqa, ψqa,Sqa〉 models the
human supervisor who reviews the quote on behalf of the manu-
facturer. The process is a black box, about which is only known
that it switches the QUOTE artifact toarchive stage, and it sets the
approvedattribute to either"yes"or "no".

• πqa .
= approval_pending.

• ψqa is given by

RQ(o, d, l, f, f, f, app,p, q,m) :=
RQ(o, d, l, f, f, f, ω, p, q,m) ∧
(app = ”yes” ∨ app = ”no”).

• Sqa comprises the state rules that switch the artifact to stage
archive, and are omitted.
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We illustrate desirable properties forΓex, which pertain to its global
evolution, as well as to the consistency of the specification.

One such consistency property requires the state flagsin_process
anddone in class ORDER to always be mutually exclusive:

G(¬(in_process ∧ done)).

A more data-centric consistency property requires line item quotes
archived in stateli_quotes of the QUOTE artifact to pertain only to
tentative line items previously input by the customer (into attributes
li_prod and li_qty of the ORDER artifact), and which underwent
successful negotiation and approval. Successful negotiation occurs
when ask, bid and final price coincide and the QUOTE artifact is in
statearchive:

∀pid, qty, prc
G ((∃o, c, n RO(o, c, n, pid, qty) ∧
∃d, l,m RQ(o, d, l, prc, prc, prc, ”yes”, pid, qty,m) ∧
archive)

B

¬li_quotes(pid, qty, prc))

Notice the use of thebeforeoperatorB (requiring its first argument
to hold before its second argument fails).

The following property is more semantic in nature, capturing part
of the manufacturer’s business model. It requires that if the cus-
tomer’s status is not"preferred"and the credit rating is worse than
"good", then before archiving a line item with final negotiated price
lower than the manufacturer’s desired price, explicit approval from
a human executive must have been requested. We assume the fol-
lowing ordering on the constants indicating the credit rating:

"poor" < "fair" < "good"< "excellent".

ϕ3 :
∀o,c, n, p, q, d, l, f,m, s, r

G ((RO(o, c, n, p, q) ∧ in_process ∧ negotiation ∧
RQ(o, d, l, f, f, f, ω, p, q,m) ∧ f < d ∧
CUSTOMER(c, s, r) ∧ s 6= "preferred"∧
r < "good")→
(approval_pending

B

¬(archive ∧ li_quotes(p, q, f))))

Note thatϕ3 involves both artifacts and the underlying database. If
the negotiation process is described by servicerefined_negotiation,
then the property happens to be satisfied: indeed, recall from its
state rules that this service requests approval whenever the cus-
tomer’s status is not preferred and his credit rating is not excellent.
In particular, this applies to customers whose rating is worse than
good, according to the above ordering of credit ratings.
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