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ABSTRACT This investigation builds upon previous work on verification of data-
We formalize and study business process systems that are centeredriven Web services and ASM transducers, while addressing signif-
around "business artifacts”, or simply "artifacts". Artifacts are used icant new technical challenges raised by the artifact model.
to represent (real or conceptual) key business entities, including
both their data schema and lifecycles. The lifecycle of an artifact
type specifies the possible sequencings of services that can be apl- INTRODUCTION
plied to an artifact of this type as it progresses through the businessBusinesses and other organizations increasingly rely on business
process. The artifact-centric approach was introduced by IBM, and process management, and in particular the management of elec-
has been used to achieve substantial savings when performing busitronic workflows underlying business processes. While most work-
ness transformations. flow is still organized around relatively flat process-centric models,
over the past several yeardata-centricapproach to workflow has
In this paper, artifacts carry attribute records and internal state rela-emerged. A watershed paper in this area is [44], which introduces
tions (holding sets of tuples) that services can consult and update.theartifact-centricapproach to workflow modeling. This approach
In addition, services can access an underlying database and cafocuses on data records, known as “business artifacts” or simply
introduce new values from an infinite domain, thus modeling exter- “artifacts”, that correspond to (real or conceptual) key business en-
nal inputs or partially specified processes described by pre-and-posﬁ:ities, including both their data schema and their lifecycle, which
conditions. The lifecycles associate services to the artifacts usingin turn specifies how/when services (a.k.a. tasks) are invoked and
declarative, condition-action style rules. sequenced on the artifacts. This approach provides a simple and ro-
bust structure for workflow, and has been demonstrated in practice
We consider the problem of statically verifying whether all runs 1o yield substantial savings when performing business transforma-
of an artifact system satisfy desirable correctness properties ex-tions [4].
pressed in a first-order extension of linear-time temporal logic. We
map the boundaries of decidability for the verification problem and From the formal perspective, little is understood about artifact-
provide its complexity. The technical challenge to static verifi- centric (and other data-centric) workflow. Citation [30] outlines
cation stems from the presence of data from an infinite domain, @ general framework for designing artifact-centric workflow meta-
yielding an infinite-state system. While much work has been done models, e.g., by varying the data model and/or the process specifi-
lately in the verification community on model checking specialized cation paradigm for lifecycles that is used. Citations [27, 28] pro-
classes of infinite-state systems, the available results do not transfevide preliminary investigations into the analysis of artifact-centric
to our framework, and this remains a difficult problem. We iden- Workflows that use state-machine based lifecycle specifications, [6]
tify an expressive class of artifact systems for which verification is provides a prliminary investigation into the analysis of artifact-
nonetheless decidable. The complexity of verification is PSPACE- centric workflows with declarative lifecycle specifications, and [26]
complete, which is no worse than classical finite-state model check- provides a preliminary investigation into automated synthesis of
ing. declarative artifact-centric workflows. The current paper devel-
ops static analysis techniques in the context of substantially richer
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tifacts. In this paper each artifact type will involve a famdy than the manufacturer’s desired price, explicit approval
attributes along with one relational state (a simple generalization from a human executive must be requested.

permits multiple relational states). Intuitively, the artifact starts
with just a few of the attributes defined (initialized), and the in-
voked services fill in, or overwrite, the artifact’s attributes and re-
lational state as the artifact moves through its lifecycle. As illus-

trated in [7], the macro-lifecycle of the artifacts can be used to cap- The main technical challenge to static verification lies in the fact

ture the key business-relevestages(or states) in the lifecycle of ¢ the artifact systems studied here are infinite-state systems, as
an artifact. _Stage trans_mons are typically specified using a finite- the domain of the data is infinite. In the general case, testing cor-
state machine, often with a handful to tens of stétdas.practlce., rectness of properties is undecidable. We map the boundaries of
the primary operations of a business may involve tens of artifacts yeigapility for the verification problem, and identify a class of re-
for small-to-medium-size businesses, and hundreds of artifacts for gyictions such that (a) artifact systems and properties that lie within
large businesses. this class are decidable, and (b) relaxing any of the restrictions leads
to undecidability. For the restricted setting, the decision problem is

The current paper specifies services and their association to arti'PSPACEcompIete. As will be seen, the running example obeys the
facts in a declarative manner, using input parameters, output paraM-ggyrictions, thus illustrating that they are not prohibitive for practi-
eters, pre-conditions, and post-conditions. This model is inspired 5| scenarios.

by the model of [6], and more broadly by the field of semantic
web services [40] (where post-conditions are called "conditional

effects"). The use of post-conditions permits non-determinism in Further related work. As mentioned above, artifacts and related

the outcome of a service, as is typically the case, for example, . . . .
. s as IS typically ample, 1 tions have been discussed in the research literature for several
in a business process service in which a human makes a final de-,

P ; . o .~ years now. The specific notion of artifact, along with specification
termination about the value of an attribute while satisfying certain > LI e -
constraints. Also following [6], in this paper the movefr}:wegt of ar- of key stages in its life-cycle, was first introduced in [44], and sub-

. . o . . sequently studied. from both practical and theoretical perspectives,
tifacts from one stage to another is specified declaratively, in our in[4, 5, 17, 7, 6, 27, 28, 30, 38, 34, 36, 47]. Some key roots of
case via state update rules (known as condition-action rules in [6]). S S : y

The model of [6] permits only attributes, and the analysis focuses the artifact-centric approach are present in adaptive objects [35],

. ) ’ . adaptive business objects [41], business entities, and “document-
only on whether these attributes are defined or undefined (so the'rdriven" workflow [48]. The notion of documents as in document

value is abstracted away). In the current paper we handle both at-_ . . ; . .
tributes and relational states. The service and property specifica-- o <o "9 [29] is focused on certain aspects of artifacts, namely
) property sp the artifact data itself and how it can be used to facilitate com-

tions m_anlpulate the d_ata values they hold, an(_:i can compare the.mmunication between sub-organizations in the course of workflow
according to a dense linear order. Further, we include here a static

database which can be accessed (but not updated) during the proprocessmg. The Vortex workflow framework [32, 24, 31] is also

- . - Gdata centric, and provides a declarative framework for specifying
cessing of artifacts by the services’ state update rules and pre- an f and wh Kl . b lied . if
post-conditions. if and when workflow services are to be applied to a given artifact.

More recently, [2] has studied automatic verification in the context
The workflow model used in this paper is illustrated with a run- of workflow based on Active XML documents.
hing example that models a scenario where a manufactu_rer fills Work on formal analysis of artifact-centric business processes in
customer purchase orders, negotiating the price of each item on icted texts has been reported in [6, 27, 28]. Properties in-
a case-hy-case basis. The example is introduced in Example 2.4restr_|cte contex een rep o T p
and presented in full in the appendix vestigated in the_se studies include _reachablllty [27, 28], gene_ral
) temporal constraints [28], and the existence of complete execution
or dead end [6]. Citations [27, 28] are focused on an essentially pro-
cedural version of artifact-centric workflow, and [6] is the first to
study a declarative version. For the variants considered in each pa-
per, verification is generally undecidable; decidability results were
obtained when rather severe restrictions are placed, e.g., restrict-
ing all guards on state transitions to be "true" [27], restricting to
bounded domains [28, 6], or restricting the language for conditions
Yo refer only to artifacts (and not their attribute values) [28]. None

For instance, in the running example, one wishes to guarantee theof the above papers permit an arbitrary external database, separate

We also show how other common analysis tasks for business pro-
cesses can be reduced to verification of LTL-FO properties.

This paper considers the problem of statically verifying whether
all runs of an artifact system satisfy desirable correctness prop-
erties expressed in a first-order extension of linear-time temporal
logic called LTL-FO . This language can express a wide variety
of properties pertaining to the consistency of the specification (e.g
two Boolean flags are mutually exclusive at every step of the busi-

following: from the artifacts, in their frameworks.
If the customer’s status is npteferredand the credit The OWL-S proposal [40, 39] describes the semantics of services
rating is worse thargood then before accepting an with input, output, pre-condition, and post-conditions (known there
order for a product with final negotiated price lower asconditional effects In that work, the pre-conditions and effects

refer tofluents that is predicates whose values can change over
1We note the difference between the “relational states” associated time. These are used to model evolving databases, for instance for
with artifacts in the current paper, and the “states” of state machinesflight reservations, bank accounts, and warehouse inventories. The
used to specify an artifact lifecycle as in [7, 44]. The relational GEleclarative artifact-centric approach to workflow modeling used

states here are part of the core data maintained in an artifact, an . : : .
can hold sets of tuples; in contrast the lifecycle state machine can ere is closely related to that of semantic web services in general,

be in just one state at a time. Note that in the current paper, either@nd OWL-S in particular.
an attribute or a relational state of an artifact can be used to record
the state-machine state that an artifact is currently in. Static analysis for semantic web services is considered in [42], but
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in a context restricted to finite domains. tation, over a database schema, is a mapping associating to each
relation symbolR of the schema a finite relation ové?, of ar-
The work [21] studies static verification of data-driven Web ser- ity a(R). We assume familiarity with First-Order logic (FO) over
vices that interact with external users through a Web browser inter- database schemas. Given a schémap denotes the set of FO
face and generate Web pages dynamically by queries on an underformulas overD U {=,<} (= and < are built-in relations over
lying database. The study identifies decidable cases of the problemD). In addition to relations, FO formulas may use a finite set of
of verifying if all runs of a Web service satisfy a correctness prop- constantsconsisting of elements d. As customary in relational
erty specified as a sentence in LTL-FO , the language of first order calculus, constants are always interpreted as themselves (this dif-
logic extended with linear-time temporal logic operators, which fers from constants in classical logic). ¢f(z) is an FO formula
we adopt also in this paper. Similar extensions have been pre-with free variablest, andw is a tuple overD of the same arity as
viously used in various contexts [25, 1, 46, 21, 23]. The model z, we denote byp(@) the sentence obtained by substitutingor
studied in [21] extends prior formalisms for specifying electronic Z in o(Z). Note that, since is infinite, an FO formula>(z) may
commerce applications with additional features that turn out to be be satisfied by infinitely many tuplesover D (so may define an
essential for describing Web applications. Its immediate ancestor infinite relation). Finiteness and effective evaluation can be guar-
is the ASM transducer [46, 45], a more remote one is the relational anteed by using thactive domain semantics which the domain
transducer [3]. The artifact system model could conceptually (if is restricted to the set of elements occurring in the given instance
not naturally) be encoded into the extended ASM transducer model (sometimes augmented with a specified finite set of constatis in
of [21]. However, this would not yield a proof of the results in this by default empty). For an instande we denote its active domain
paper, because business process modeling requires two non-triviaby adom(). We assume unrestricted semantics unless otherwise
extensions. First, runs of artifact systems must be allowed to use in-specified.
finitely many domain values in order to model arbitrary inputs from
external users or partially specified processes described by pre- andrhe artifact model uses a specific notion of class, schema and in-
post-conditions (unlike transducers, where the domain of each runstance, defined next.
is restricted to the active domain of the finite database). Second, the
underlying domain is ordered, which turns out to be a key feature
in writing practically useful pre- and post-conditions. These exten-  DEFINITION 2.1. Anartifact classs a pairC = (R, S) where
sions render the proof of decidability of verification considerably R and.S are two relation symbols. AimstanceofC is a pairC =
more involved. (R,S), where(i) R, called attribute relation, is an interpretation
of R containing exactly one tuple ovép, and (ii) S, called state
In the broader context of verification, data-centric business pro- relation is a finite interpretation of over D.
cesses can be viewed as a special case of infinite-state systems.
Over the last decade, much work in the verification community
has focused on extending classical model checking to infinite-state We also refer to aartifact instance of clas€ asartifact instance
systems (e.g., see [15] for a survey). However, in much of this or simplyartifact when the class is clear from the context or irrel-
work the emphasis is on studying recursive control rather than data, evant.
which is either ignored or finitely abstracted. More recent work
has been focusing specifically on data as a source of infinity. This . )
includes augmenting recursive procedures with integer parameters DEFINITION 2.2. Anartifact schemas a tuple
[11], rewriting systems with data [12, 10], Petri nets with data as- A=(C1,...,Ca,DB)
sociated to tokens [37], automata and logics over infinite alphabets o
[14, 13, 43, 18, 33, 8, 10], and temporal logics manipulating data where eacltC; = (R;, S;) is an artifact class DB is a relational
[18, 19]. However, the restricted use of data and the particular prop- schema, and;, C;, and DB have no relation symbols in common
erties verified have limited applicability to database-driven systems for i # j.
such as data-centric business artifacts.

By slight abuse, we sometimes identify an artifact schetnas

Paper outline. Our model of artifact systems and the language above with the relational schema

LTL-FO are introduced in Section 2, together with our running ex- DBA =DBU{R;,S; |1 <i<n}

ample. Section 3 states the restrictions needed for decidability of

verification, and provides the main decidability result. In Section

4, the restrictions are shown to be tight by considering several re- An instance of an artifact schema is a tuple of class instances, each
laxations that lead to undecidability of verification. Applications corresponding to an artifact class, plus a database instance:

of the main verification results to other business process analysis
tasks are provided in Section 5. We end with brief conclusions. An

appendix contains the full running example. DEFINITION 2.3. Aninstanceof an artifact schema

.A: (Cl,...,Cn,DB)

isatupled = (C4,...,CL, DB), whereC; is an instance of;
and DB is an instance oDB overD.

2. FRAMEWORK

We introduce here our model and basic definitions and notation.

We assume fixed an infinite, countable domBirequipped with a

total de_nse ordeg Wlth no endpo!nts. As usual, a databg_se scr_u_ama Again by slight abuse, we identify each instance
D consists of a finite set of relation symbols with specified arities.

The arity of relationR is denotedz(R). An instance, or interpre- A= (Cy,...,Cn,DB)
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of A with the relational instanc®B U {R;,Si|1 < i < n} over e in_process anddone

schemaDB 4. Let A be an artifact schema a5 4 its relational are nullary state relations (Boolean flags) keeping track of
schema. Given an artifact instance ovrthe semantics of for- the stage the artifact is in.

mulas inL 4 is the standard semantics on the associated relational

instance oveDB 4.
The intention is that, in stage_process, the customer repeatedly

updates the shopping cart by filling an individual, tentative line item

EXAMPLE 2.4. We illustrate the expressive power of the arti- Into attributesli_prod andli_gty. Subsequently, this line item is
fact model by specifying a scenario where a manufacturer fills cus- inserted intdine_items provided the price negotiation succeeds.
tomer purchase orders, negotiating the price of each line item on a\When the customer completes the purchase order, the ORDER ar-
case-by-case basis. We focus on two artifacts manipulated by thetifact transitions to stageone.
negotiation process, ORDER and QUOTE.

During the workflow, the customer repeatedly adds new line items

into (or updates existing ones in) the purchase order modeledby the  QUOTE = (R, li_quotes, idle, desired_price_calc,
ORDER artifact. Each line item specifies a product and its quantity. negotiation, approval_pending, archive)
Every tentative line item spawns a negotiation process, in which

manufacturer and customer complete rounds of declaring ask andis the artifact class modeling quotes, with:

bid prices, until agreement is reached or the negotiation fails. The
prices at every round are stored in the QUOTE artifact, which also
holds the manufacturer’s initially desired price, the lowest bid he
is willing to entertain, and the final negotiated price. Once the ne-
gotiation on a tentative line item succeeds, its outcome is scruti-
nized by a human executive working for the manufacturer. Upon is the attribute relation.

the executive’s approval, the line item is included into the purchase

order. During the negotiation, the manufacturer consults an un- @ li_quotes(prod_id, qty, price)

derlying database, which lists information about available products is a state relation storing the line item with the final negoti-
(e.g. manufacturing cost) and about customers (e.g. credit rating ated price quotes.

and status).

e Rqg(order#,desired_price,lowest_acceptable_price,
ask, bid, final_price, approved, li_prod, li_qty,
manu facturing_cost)

o idle, desired_price_calc, negotiation, approval_pending,

The corresponding artifact systefa, = (A,X) is partially de- andarchive _ _ .
scribed here and in Example 2.9 (see Appendix for the full specifi- are nullary state relations keeping track of the stage the arti-
cation). For convenience, we allow an artifact class to have several factis in.

state relations. This can be easily simulated with a single state re-

lation (see also Appendix). When inactive, the QUOTE artifact is in statie, but moves to

desired_price_calc as soon as the customer fills in the product id
and quantity of a line item. In this staggesired_pricettribute is

set (from the manufacturer’s point of view), possibly taking into ac-
count theneed_bydate attribute in the corresponding ORDER ar-
tifact and the manufacturing cost listed in the PRODUCT database.
During the ensuingiegotiation stage, the ask and bid prices are
e PRODUCTprod_id, manufacturing_cost, re_peatedly set (in attribu_task_ by thg m_anufactl_Jrer, respectively
bid by the customer) until a final price is established and recorded
) ) o in attributefinal_price or the negotiation fails. Final prices may
lists product manufacturing cost and minimum order quan- require approval by a human executive who works for the manu-
tity, and facturer. While approval is awaited, the QUOTE artifact is in stage
approval_pending. Approval is granted by setting Boolean at-
tribute approved Approved final prices are then archived in state
relationli_quotes (while the QUOTE artifact is in stagarchive).

|

The artifact schema igl = (ORDER,QUOTE, DB), detailed
as follows.

DB = (PRODUCT, CUSTOMER is the database schema, where:

min_order_qty)

e CUSTOMER customer_id, status, credit_rating) lists cus-
tomer status and credit rating.

ORDER = (Ro,line_items, in_process, done)

is the artifact class containing the information about a customer’s . . ) .
order. We now define the syntax of services. It will be useful to associate

to each attribute relatioR of an artifact schema a fixed sequence
Z r of distinct variables of length(R).
e Ro(order#, customer_id, need_by, li_prod, li_qty)
is the attribute relation holding the order number, the identi-
fier of the customer who placed the order, the day it is needed
by. The role of attributek_prod andli_qty is described later.

DEFINITION 2.5. A services over an artifact schema is a
tupleo = (mr, ¢, S) where:

2Artifact class ORDER illustrates an extension of Definition 2.1

. !ine_items(pro_d_id, qty) . _ i ) that allows several state relations. This extension is for convenience
is a state relation that acts as a “shopping cart” holding the only: it is easy to show a reduction from multiple-state artifacts to
collection of line items requested so far. single-state artifacts that preserves our decidability result.
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e 7, calledpre-condition, is a sentence if14;

e 1), calledpost-conditionis a formula inL 4, with free vari-
ables
{Zr | Ris an attribute relation of a class int};

e S is a set ofstate rulexontaining, for each state relatiofi
of A, one, both or none of the following rules:

- S(z) — o5 (2);
— 25(%) — ¢5(2);

where ¢ (z) and ¢5 (%) are £.4-formulas with free vari-
ablesz s.t. |Z| = a(S).

DEFINITION 2.6. An artifact systemis a pair I" (A, %),
whereA is an artifact schema anH is a non-empty set of services
over A.

We next define the semantics of services. We begin with the notion

DEFINITION 2.8. Arunof an artifact systeni’ = (4, ) is an
infinite sequence = {p;}:>o of artifact instances over (also
called configurationysuch that:

e po is aninitial instance of™;

e foreachi > 0, p; —— p;41 for somer € 3.

A pre-runis a finite sequencép; }o<i<~ satisfying the same con-
ditions as above foi < n. We say that a pre-run islockingif its
last configuration has no possible successor.

ExAamMPLE 2.9. Continuing Example 2.4, we show how to model
the operations allowed on artifacts by the Eebf available ser-
vices. Due to space constraints, we relegate most of the specifica-
tion of X to the appendix, focusing here on the service that models
the negotiation process. To illustrate the artifact model's natural
ability to specify processes at different levels of abstraction, we
describe the negotiation process at two levels. In a first, coarser

of possible successor of a given artifact instance with respect to acut, the process is abstracted as serdiegract_negotiation =

service.

DEFINITION 2.7. Leto = (m, 1, S) be a service over artifact
schemaA. Let A and A’ be instances afA. We say thatd’ is a
possible successaf A with respect tar (denotedd - A’) if
the following hold:

1. AEm,
2. A'\DB = A|DB;
3. if ar is the content of the attribute relatioR of A in A’,

then A satisfies the post-condition wherezr is replaced
by ur for eachR;

. for each state relatios’ of A and tupleu overadom(A) of
arity a(S), A’ = S(a) iff
A (65(a) A=gg (@) V (S(@) A o3 (a) A dg (1)
V(S(@) A =g (@) Ao (@)
where ¢ () and ¢ (u) are interpreted under active do-

main semantics, and are taken to be false if the respective
rule is not provided.

Note that, according to (2) in Definition 2.7, services do not update

the database contents (thus, the database contents is fixed through-

out each run, although it may of course be different across runs).

Instead, the data that is updatable throughout a run is carried by
the artifacts themselves, as attribute and state relations. This dis-

tinction between the static and updatable portions of the data is
convenient for technical reasons, as it is used in formulating the
restrictions needed for verification (see Section 3). Note that, if

(m™ ™, S™) about which we only know that the final price is
reached when the ask and bid prices coincide, and that it is guar-
anteed to lie between the allowed margins stored in attritdges
sired_priceand lowest_acceptable_priagf artifact QUOTE. The
specification of this service is relatively simple and given in the ap-
pendix. Alternatively, we show below servieefined_negotiation =
(™™, "™, 8™™) which refines the negotiation process all the way
to the level of individual negotiation rounds, each of which sets the
current ask and bid prices.

Conventions We adopt the following conventions:

(i) We model uninitialized attributes by setting them to the re-
served constarnd.

(i) We model Boolean states by nullary state relations, and drop
the parentheses from atoms using th&t; becomess. We
assume the usual encoding tofie as the singleton nullary
relation, andalseas the empty nullary relation. In particular,
all Boolean states are initialfiglse (since all state relations
are initially empty).

(iii) For convenience, we use the following syntactic sugar for
post-conditions: we write post-conditions as non-Horn rules
h(z) := b(y) where theheadh is a conjunction of atoms
over attribute relations i, with variablest, and thebodyb

is a formula inL 4 with free variableg;, wherey C z. The
semantics is that whenever -~ A’ holds, A’ |= h(a) for
some tuples, and A = b(a|y). Moreover, artifact relations
not mentioned irk remain unchanged. Clearly, this syntactic
sugar can be simulated by the official post-conditions, and
conversely.

so desired, one can make the entire database updatable by turning

it into a state. Also observe that the distinction between state and

We now describe servieefined_negotiation = (7", 4", S™"):

database is only conceptual, and does not preclude implementing

all relations within the same DBMS.
We next define the notion of run of an artifact systere= (A, X).

An initial instanceof I is an artifact instance ove4 whose states
are empty.
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Post-condition)™ is given as In order to specify temporal properties of runs, we use an extension
of linear-time temporal logic (LTL). Recall that LTL is proposi-
tional logic augmented with temporal operators suciXgsext),

U (until), G (always) andF (eventually). Essentially, the exten-
sion we use, denoted LTL-FO, is obtained from LTL by replacing
propositions by FO statements about individual artifact instances in
the run. The different statements may share variables that are uni-
versally quantified at the end. Similar extensions have previously
been used in various contexts [25, 1, 46, 21, 23].

According to the first disjunct, the negotiation is well-formed, i.e.
the bid never exceeds thskprice, and in each round, asking prices

a never increase while bidsnever decrease. Moreover, as long as
askandbid price differ, the final price remains undefined (equal to
w). Notice that the values af andb are otherwise unconstrained,
being simply drawn from the infinite domain. This reflects the fact
that they are external input from the manufacturer, respectively cus-
tomer. The second disjunct states that oaskprice a and bid
price b coincide, the final pricg is automatically set to the com-
mon value.

,app,p,q,m) =
(0,d,1,a', b ,w,app,p,q,m) Aa’ #b'A

(Rg(o,d,1,a,b,w,app,p,q,m) Na=b= f).

DEFINITION 2.10. The language LTL-FO (first-order linear-time
temporal logic) is obtained by closing FO under negation, disjunc-
tion, and the following formula formation rule: ¢ and+) are for-
mulas, therK¢ and U4 are formulas. Free and bound variables
are defined in the obvious way. Thaiversal closuref an LTL-
FO formulay(z) with free variablest is the formulavzp(z). An
LTL-FO sentence is the universal closure of an LTL-FO formula.

Let A be an artifact schema. An LTL-FO sentence aveis one
S™" contains rules that, upon detecting successful negotiation, switciyhere each FO component is ov@13.4. The semantics of LTL-
the QUOTE artifact to stagapproval_pending if the customer FO formulas is standard, and we describe it informally. Let
does not enjoy preferred status with excellent credit. If he does, (A, ¥) be an artifact system, ait () an LTL-FO sentence over
then the approval is short-circuited and the QUOTE goes directly 4. The artifact systenii satisfiesvzo(z) iff every run of I satis-

to stagearchive. The negotiation is successful when tmkand fiesit. Letp = {p; }i>0 be arun off’, and letp>; denote{p; }i>,

bid prices agree. for j > 0. Note thatp = p>o. The runp satisfiesvzo(z) iff for
each valuationv of z in D, p>o satisfiesp(v(z)). The latter is

approval_pending « defined by structural induction on the formula. Satisfaction of an

FO sentence) by p; is defined in the obvious way. The seman-

Jo,d,l,a, f,app,p,q,m Rq(o,d,l,a,a, f,app,p,q,m) A . ) ;
( o ) tics of Boolean operators is standard. The meaning of the temporal

EC, n RO((): ¢ n,p, q) A

~CUSTOMER(c, ” preferred”,” excellent”)) operatorsX, U is the following (whereg= denotes satisfaction and
j = 0):
archive «—
(307 d7 l7 a, fa app,p,q,m RQ(O7 d7 l7 a, a, f7 app, p, 4, m) A ® P> ): X(p iff P>j+1 ': P,
EC,’I’LRO(O, Cv”:p7 q) A . .
CUSTOMER(, " preferred”,” excellent”)) . ]f’Zj E Uy iff 3k > j such thalp>, = ¢ andp>: = ¢
orj <lIl<k.

—negotiation « (3o, d, , a, f,app, p,q, m
Rq(o,d,l,a,a, f,app, p,q,m)) Observe that the above temporal operators can simulate all com-
monly used operators, includirkig(eventually) G (always), and3

Note that state flagegotiation must be set before the state update (Pefore, which requires its first argument to hold before its second
rules execute (since pre-conditiofi” is satisfied). If neither ofthe ~ argument fails). Indeediy = true U o, Gp = —F(-p), and
state rule bodies is satisfied, then according to the possible succes¥BY = ~(~pU—¢). We use the above operators as shorthand
sor semantics, theegotiation flag remains set, enabling another N LTL-FO formulas whenever convenient.

negotiation roundd . . . .
Note that, as customary in verification, LTL-FO properties of arti-

fact systems concern exclusively their infinite runs. Thus, blocking
One of the points illustrated by Example 2.9 is that the artifact finite pre-runs are ignored. In particular, if an artifact system has
model is particularly well-suited for expressing a wide spectrum only blocking pre-runs (so no proper run) then it vacuously sat-
of abstraction levels desired in specification. This is shown by the isfies all LTL-FO formulas. For this and other reasons, one may
two specifications of the negotiation process, one refining it down wish to know if, for a given artifact systefi) all of its pre-runs
to individual rounds, the other abstracting it to an atomic sub-task are blocking, of(ii) there exists a blocking pre-run. We consider
with a post-condition on its outcome. In practice, the motivation decidability of these questions at the end of Section 3 (Corollary
for abstraction ranges from lack of information about an external 3.4) and Section 4 (Corollary 4.3).
process provided by an autonomous third party as a black box with
pre- and post-execution guarantees, to modeling non-deterministic . . . .
processes governed by chance or human agents rather than by pro- EXAMPLE 2.:_Ll. We illustrate desirable properties for_the arti-
gram. There are also technical reasons, such as the undecidabilCt Systemle. in Example 2.9. These properties pertain to the

ity of verification in the presence of arithmetic (as is the case in g]obgl evolution ofl’e, as.well as to the con5|st.ency of its spec-
many settings, including ours). In all these cases, abstracted sub-!f'cat'on' One such consistency property requires the state flags

processes can be naturally modeled as services, leveraging the norf_rll_p.roc'ess anddone in class ORDER to always be mutually ex-
determinism in their post-conditions. clusive:
G (—(in_process A done)).
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A more data-dependent consistency property requires limegteotes  restriction mainly requires a form of bounded quantification in for-

archived in staté_quotes of the QUOTE artifact to pertainonlyto  mulas used in state update rules and LTL-FO properties, together

tentative line items previously input by the customer (into attributes with some additional restrictions. The guarded restriction is formu-

li_prod andli_qty of the ORDER artifact), and which underwent lated as follows.

successful negotiation and approval. Successful negotiation occurs

whenask, bidandfinal_pricecoincide and the QUOTE artifact is

in statearchive: DEFINITION 3.1. LetT" = (A, X) be an artifact system. The
set of guarded FO formulas ovet is obtained by replacing in the
definition of FO the quantification formation rule by the following:

Vpid, qty, prc

G ((307 cn RO (07 c,n, p,l’d7 qty) A

3d,1,m Rg(o,d,l,pre, pre, pre,” yes” , pid, qty, m) A e if pis aformula,« is an atom using an attribute relation of
archive) some artifact ofd, z C free(a), andz N free(B) = 0 for

B every state atong in ¢, then3z(a A ¢) andVz(a — ¢)
=li_quotes(pid, qty, prc)) are formulas.

Notice the use of thbeforeoperatomB (requiring its first argument  An artifact system is guarded iff all formulas used in the state rules

to hold before its second argument fails). of its services are guarded, and all pre-and-post conditions are
3*FO formula$ in which all state atoms are ground (i.e. contain

The following property is more semantic in nature, capturing part only constants). An LTL-FO sentence oveis guarded iff all of

of the manufacturer’s business model. It requires that if the cus- its FO components are guarded.

tomer’s status is ndpreferred"and the credit rating is worse than

"good", then before archiving a line item with final negotiated price

lower than the manufacturer's desired price, explicit approval from Note that, in addition to the usual bounded quantification condi-

a human executive must have been requested. We assume the fotions, Definition 3.1 places the restrictiann free(3) = 0 for

lowing ordering on the constants indicating the credit ratihgior” <  €very state aton$ occurring in the scope of a quantificationof
” fair” < 7 good” <7 excellent” . in a guarded formula. This says that state atoms can only con-

tain constants or free variables in guarded formulas. Together with
the fact that state atoms must appear ground in pre-and-post condi-

p3 tions, this places strong restrictions that considerably limit the use
Yo,c,n,p,q,d,l, f,m,s,r of state information. Unfortunately, both restrictions are needed
G ((Ro(o,¢,n,p,q) Ain_process A negotiation A for decidability of verification. On the positive side, as illustrated
Ro(o,d, U, f, f, fyw,p,q,m) N f<dA by our running example, guarded artifact systems appear to remain
CUSTOMER(c,s,r) N s # " preferred” A powerful enough to model significant applications.

r < ”good”) —
(approval_pending
B ExampLE 3.2. The artifact systefi.,, in our running example
—(archive A li_quotes(p, ¢, f)))) is guarded. This includes the complete specification in Appendix,
which shows that the guardedness restriction still offers significant
) ) ] expressive power. For instance, notice that post-conditithis
Note thatp; involves both artifacts and the underlying database. If 41 3*FO formula with no non-ground state atoms (trivially so, as
the negotiation process is described by serefimed_negotiation  jt mentions no state at all). In addition, in all state rules the quan-
then the property happens to be satisfied: indeed, recall from its tjfieq variables appear guarded by atoms using attribute relations
state rules that this service requests approval whenever the CUSR, or Rg. No quantified variables appear in any state atom be-
tomer’s status is not preferred and his credit rating is not excellent. c5,,se no such atoms are mentioned. See the state rules of service
In particular, this applies to customers whose rating is worse than jncjude_line_itenin Appendix for a less trivial example of guarded
good, according to the above ordering of credit ratings. state rules. There, state atoms do occur in the rule body, but only
with non-quantified variables. All properties listed in Example 2.11

. e ) ) . ) are guarded.
A detailed specification of all services involved in our running ex-

ample can be found in the appendix. For an example of an unguarded state rule, consider a relaxation
of the insertion rule inS"™" demanding that executive approval be
3. DECIDABLE VERIFICATION short-circuited and tharchive flag be set for all preferred cus-

In this section we establish the main decidability result on verifica- tomers with better than fair rating:
tion of artifact systems.

archive «—
do,d,l,a, f,app,p,q, m, T
Rq(o,d,l,a,a, f,app,p,q,m) A

It is easily seen that satisfaction of an LTL-FO formula by an arti-
fact system is generally undecidable, using Trakhtenbrot’s theorem.
To obtain decidability, we introduce a restricted class of artifact Je.n Ro (o, ¢,m,p, q)A
systems and LTL-FO properties, callgdarded This is the analog ’ o0 & 1 by ” ” s
to artifact systems of the input-boundedness restriction, first intro- CUSTOMER(c,” preferred”, ) Ar > * fair

duced by Spielmann in the context of ASM transducers [46], and 3Note that these formulas do not have to obey the restricted quan-
subsequently used for Web service verification [21]. The guarded tification formation rule.
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The problem here is that quantified variableloes not appear in
any attribute atom (indeed it cannot, since neitRernor Ry have

any rating attribute). While our undecidability results in Section 4
imply that not every unguarded rule or property can be equiva-
lently rewritten into a guarded one, it is often possible to do so
by slightly modifying the specification, such that it preserves the

Proof: The result follows immediately from Theorem 3.3. Indeed,
all pre-runs ofl” are blocking iffT" has no (infinite) runs ift" &=
false The latter is decidable with the stated complexities by Theo-
rem 3.3. m|

intended business process semantics, at the cost of widening thé®ne may also wish to know if a given artifact system sase

attribute relation. This happens to apply here. One can simply ex-
tend the attribute schema & to include the customer’s rating, in
addition to the originally included customer id. The rating attribute

blocking pre-run. Interestingly, this turns out to be undecidable for
guarded artifact systems (see Corollary 4.3).

would be set at the same time as the customer id attribute. The latted. BOUNDARIES OF DECIDABILITY

is set by servicénitiate_orderin Appendix, using a guarded post-
condition that would remain guarded after the proposed extension.
O

The main result on decidability of verification for artifact systems
is the following.

THEOREM 3.3. It is decidable, given a guarded artifact sys-
temT" and a guarded LTL-FO formulg, whether every run of
satisfiesp. Furthermore, the complexity of the decision problem
is P;PACEcompIete for fixed arity schemas, apdPSsPACEOther-
wise'.

The main challenge in establishing the above result is that arti-
fact systems ar@nfinite-state systemslue to the presence of un-
bounded data. To deal with this, the key idea is to develop a con-
cise, symbolic representation of equivalence classes of rufis of
calledpseudorunsthat retain just the information needed to check
satisfaction ofp, and can be generatedris PACEwithout explicitly
constructing any actual run or database. The high-level structure of
the proof is similar to the one for decidability of verification for ex-
tended ASM transducers [21]. However, the result for the artifact
model substantively extends previous ones in two significant ways:
(i) runs of artifact systems may use infinitely many domain values
(unlike extended ASM transducers where the domain of each run
is restricted to the active domain of the finite database), and (ii) the

In this section we consider several variations of our artifact model
and relaxations of the guarded conditions and show that they lead
to undecidability of verification. This suggests that the restrictions
we presented in order to ensure decidability are quite tight. Due
to space constraints, the presentation of the alternative models is
informal.

Attributes versus states. We first revisit the distinction between
the attribute relatiorR and the state relatioff in artifact classes

C = (R, S). One might legitimately wonder if the separate treat-
ment is relevant to verification. We next show that this is indeed the
case. More precisely, consider a modification of the artifact model
where the stat& is treated in the same way &% except thatR
holds a single tuple whil& holds an entire relation. In particular,

in the definition of a service using artifact claSs= (R, S):

e the pre-and-post conditions of the service af€0O formu-
las usingR, S and the database (with-atoms no longer
restricted to be ground as previously);

e as before, the initial value & is empty;

e there are separate post-condition formulasands for R
and .S, defining their contents in the outpuR (consists, as
before, ofonearbitrary tuple satisfying r, while S consists
of thesetof tuples satisfying)s, with active domain seman-
tics to guarantee finiteness).

underlying domain is ordered. These extensions require much more .
care in developing the pseudorun technique, and render the proofVe refer toR as thetuple attribute seof C' and toS as there-

of decidability considerably more difficult. This proof is omitted
here.

Finally, we consider the issue of blocking pre-runs. As remarked
in Section 2, LTL-FO properties of artifact systems concern only
their (infinite) runs and ignore blocking pre-runs. In particular, if an
artifact system has only blocking pre-runs (so no proper run) then
it vacuously satisfies all LTL-FO formulas. It therefore becomes
of interest to know whether all pre-runs of an artifact system are
blocking. Moreover, blocking may also be of interest for reasons
specific to the application (see also discussion in Section 5). We
can show the following.

COROLLARY 3.4. Itis decidable, given a guarded artifact sys-
temT", whether all pre-runs of* are blocking. Furthermore, the
complexity is,sPACEfor fixed-arity schemas, anelxPsPACEoth-
erwise.

“The best lower bound we know for arbitrary arity schemas is
CO-NEXPTIME, shown by reduction from validity 6f*3*FO sen-
tences, known to beo-NEXPTIME-complete [9].
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lational attribute setof C. We refer to such artifact systems as
hybrid-attribute Note that, in this model, there are no longer sepa-
rate state relations. Since there are no states, the guarded restriction
on hybrid-attribute services now simply amounts toIHEO form

of the pre-and-post conditions. The guarded restriction for LTL-
FO properties remains unchanged. We can show the following (the
proof is by reduction from the Post Correspondence Problem).

THEOREM 4.1. Itis undecidable, given a guarded
hybrid-attribute artifact systefi and guarded LTL-FO formule,
whetherl’ = . Moreover, this holds even for singleton artifact
systems whose relational attribute set consist of a single attribute,
and for a fixed LTL-FO formule with no variables.

Relaxing the guarded restrictions. We now consider several re-
laxations of the guarded restrictions. It turns out that even very
small such relaxations lead to undecidability of verification. Specif-
ically, we consider the following: (i) allowing non-ground state
atoms in pre-and-post conditions, (ii) allowing state projections in



state update rules (a simple form of un-guarded quantificatii 5. FURTHER APPLICATIONS

allowing un-guarded quantification in the LTL-FO property, and We next discuss several problems previously raised in the context

(iv) extending LTL-FO with path quantifiers. of artifact systems, to which our results on verification can be ben-
eficially applied.

We can show that each of the relaxations (i)-(iv) leads to undecid-

ability of verification. The proof of (i) is similar to that of Theorem

4.1. The proofs of (i) and (iii) are by reduction from the implica-  Business rules.We consider an extension of the artifact formal-

tion problem for functional and inclusion dependencies, known to jsm in support of service reuse and customization. In practice,

be undecidable [16]. The proof of (iv) is by reduction from valid-  services are often provided by autonomous third-parties, who typ-

ity of 3"V*FO sentences, also known to be undecidable [9]. The jcally strive for wide applicability and impose as unrestrictive pre-

proofs of (ii)-(iv) can be easily adapted from analogous results ob- conditions as possible. In contrast, the designer who incorporates

tained for extended ASM transducers [21]. We therefore omit the thjrd-party services into the business process often requires more

details. control over when these services apply, in the form of more restric-
tive pre-conditions. Such additional control may also be needed
to ensure compliance with business regulations formulated by third

Functional dependencies.It is natural to ask whether the decid-  parties, independently of the specific application. To address such

ability of verification holds under the assumption that the database needs, [6] introducelsusiness rulgswhich are conditions that can

satisfies certain integrity constraints. Unfortunately, we show that be super-imposed on the pre-conditions of existing services without

even simple key dependencies lead to undecidability. changing their implementation.

We adopt the notion here and formalize it as follows. Given an
artifact systenI” = (A, ), we associate as& = {(, | o € I}

of business rules to the servicesiin A business rulés a sentence

in L 4, just like a service pre-condition.

THEOREM 4.2. Itis undecidable, given a guarded singleton ar-
tifact systenT’, a set of functional dependenciésover D3, and
a guarded LTL-FO sentencg, whetherp = ¢ for every runp
of I" on a database satisfying. Moreover, this holds even 3
consists of one binary and one unary relation, a@iaonsists of a
single key constraint on the binary relation.

For instance, we revisit our running example and assume that order
shipment is modeled by trehipservice, whose pre-condition only
checks that the ORDER artifact is in stalene. We also assume

the existence of aollect_paymengervice, which applies when the
ORDER is in statelone. Finally, we assume that the ORDER ar-
tifact is extended with @aid boolean state flag which is set by the
collect_paymengervice. Now we wish to super-impose the follow-
ing business rule, which implements the policy that only platinum
customers with excellent credit may get their order shipped before
payment is received:

The proof is done by reduction from the PCP, similarly to Theorem
4.1 (details are omitted).

Existence of a blocking pre-run. Recall the question raised in
Section 2: does an artifact system h&yenly blocking pre-runs,

or (ii) someblocking pre-run? We showed in Section 3 tfipis de-
cidable for guarded artifact systems (Corollary 3.4). Interestingly,
(ii) turns out to be undecidable.

Bship:
Jo,¢,n,p, s,7 Ro(o,c,n,p,q) AN CUSTOMER(, s, ) A
(s =" platinum” A\ r =" excellent” V paid)

COROLLARY 4.3. It is undecidable, given a guarded artifact

systeni’, whether” has some blocking pre-run. Verification under business rules. The verification problem for

artifact system” and propertyy under business ruleB, denoted

I =5 ¢, means checking that every runidfsatisfiesp, wherel™
The resultis shown similarly to Theorems 4.1 and 4.2, by reduction is obtained by adding each business rule as a pre-condition conjunct
from the PCP. The key idea is to first search for a match to the PCPto its corresponding service . We say that a business rule is
(without assurance that the key dependency assumed in Theorenguardedif it is guarded when viewed as a service pre-condition. It
4.2 is satisfied), and in case of success make continuance of thefollows immediately as a corollary of Theorem 3.3 that verification
run contingent upon violation of the dependency. This reduces the unders is decidable ifl", ¢ and all business rules ifi are guarded.
existence of a solution to the PCP to the existence of a blocking
pre-run. A related problem conceriiscrementalerification under business
rules. Note that, il" = ¢, thenI' =5 . However,I' £ ¢ does
notimply thatT’ 45 ¢. Thus, properties such as reachability of
a configuration satisfying some desired property are not inherited
when business rules are added. It is of interest whether such prop-
erties can be verified incrementally; however, we do not address
this here.

Order versus successor.Recall that decidability of verification
holds under the assumption that the domairis countable and
equipped with a dense, total ordgrwith no endpoints. 1< is
replaced by a successor relation Bnverification becomes unde-
cidable. The proof is, again, by reduction from the PCP.

We note that it remains open whether verification remains decidable Redundant business rules.Towards streamlining the specifica-

if some of the assumptions of do not hold, for instance iK is
not dense.
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tion, a desirable goal is the removal of redundant business rules.
This involves checking whether, given an artifact system (A4, ),



a new business rul@ asociated to some serviee € X has any
effect onT", i.e. excludes at least one of its runs. The latter prob-
lem amounts to verifying that at any point in a runlgfthe pre-
condition of o implies3: T' = G(m — ). If " is guarded, and

[ is guarded in the sense of guarded FO components of LTL-FO
properties, then, again as a corollary of Theorem 3.3, checking if
[ has an effect ol is decidable. Indeed, if is guarded, then we
haver = 3z f(z) with f a quantifier-free formula i 4. Then

I'EG@Ezf(z) — B)iff T E G(Vz—f(Z) vV 3)
iff I' =Vz G(—f(z)Vp)
N e

©

wherey is a guarded LTL-FO property if is. For examplegspip
above is guarded.

Redundant attributes. Another design simplification consists of
redundant attribute removal, a problem raised in [6]. We formulate
this as follows. We would like to test whether there is a way to
satisfy a property of runs without using one of the attributes, say
a, of artifactA. Checking redundancy afreduces to the following
verification problem:

I~ ¢ — F(313a Ra(ZT,a) A a # w)

o’

where we assume wlog thatis last in A’s attribute relationR 4.
Recall from Section 2 the convention of representing undefined at-
tributes using a constant The argument of the temporal operator
F (eventually checks that attribute is defined. Ify is guarded and

can be consulted by the services, and equips artifacts with updat-
able state relations. The service and property specifications allow
sophisticated manipulation of data values via first-order formulae
over the attributes and state of artifacts, the underlying database,
and an infinite, ordered underlying domain. Data awareness raises a
significant challenge compared to classical finite-state model check-
ing, by turning artifact systems into infinite-state systems, whose
verification problem is notoriously difficult.

We trace the boundaries of decidability for verification and we
identify the guarded restriction, defining a practically appealing
and fairly tight class of artifact systems and properties for which
verification is decidable irSPACE This complexity is the best
one can hope for, given that finite-state model checking is already
pspAcEcomplete. Our decidability result is significantly more dif-
ficult than the previous results of [46, 21] for ASM transducers and
Web services, because each run is allowed to use infinitely many
values from an underlying ordered domain. This extension is criti-
cal to the artifact framework, in order to adequately model arbitrary
external input and partially specified processes given by pre- and
post-conditions. Finally, we show that the verification techniques
can also be leveraged to solve other static analysis tasks previously
formulated for the artifact framework.

While the PspACEcomplexity of verification is reasonable within
the landscape of static analysis, one must legitimately wonder whether
verification of such complexity is feasible in practice. Fortunately,
previous experience is quite encouraging. IndeedraCcECOmplete
verification algorithm for data-driven Web services, exhibiting ex-
cellent performance on a significant range of applications, has been
implemented in the WAVE prototype [20, 22]. The implementation
relies on a mix of symbolic model checking and database optimiza-

has no global variables (i.e. its FO components are all sentences)yjon, techniques. We believe that a similar approach is likely to also
theny" is a guarded LTL-FO property. Therefore Theorem 3.3 pe effective, after appropriate extensions enabled by our results,

applies, yielding decidability.

Verifying termination properties. Recall that our semantics of
artifact systems and LTL-FO properties ignores blocking runs. How-
ever, in some applications, one would like to verify properties re-
lating to termination. As discussed in Section 3, it is decidable
if all pre-runs of an artifact system are blocking (Corollary 3.4).
However, it may be desirable to verify more expressive properties
involving blocking configurations. To this end, one can modify the
semantics to render all runs infinite by repeating forever blocking

configurations, whenever reached. It can be shown that our results

continue to hold with this semantics. Note that one can state, within
a guarded LTL-FO property, that a configuration of a guarded ar-
tifact system is blocking (all variables in negations of O
pre-conditions become globally quantified universally).

6. CONCLUSIONS

In this paper, we introduce the artifact system model, which for-

malizes a business process modeling paradigm that has recently [5]

attracted the attention of both the industrial and research commu-
nities. We study the problem of automatic verification of artifact

systems, with the goal of increasing confidence in the correctness [6]

of such business processes.

All prior versions of the artifact model are inherently data-aware,
being essentially evolved dataflow models. The version we con-
sider extends prior models, taking significant additional steps to-

wards data-awareness. It includes an underlying database which
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in the context of data-centric business process verification. This
would be of interest to the database, computer-aided verification,
and business process communities.
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APPENDIX

Running Example

We present here our full running example. We model a scenario
where a manufacturer fills customer purchase orders, negotiating
the price of each line item on a case-by-case basis. We focus on
two artifacts manipulated by the negotiation process, ORDER and
QUOTE. During the workflow, the customer repeatedly adds new
line items into (or updates existing ones in) the purchase order mod-
eled by the ORDER artifact. Each line item specifies a product and
its quantity. Line items are first tentatively filled in the ORDER
attributesli_prod and li_qty. Every tentative line item spawns a
negotiation process, in which manufacturer and customer complete
rounds of declaring ask and bid prices, until agreement is reached
or the negotiation fails. The prices at every round are stored in the
QUOTE artifact, which also holds the manufacturer’s initially de-
sired price, the lowest bid he is willing to entertain, and the final
negotiated price. Once the negotiation on a tentative line item suc-
ceeds, its outcome is scrutinized by a human executive working for
the manufacturer. Upon the executive’s approval, the line item is in-
cluded into the purchase order (by insertion into the ORDER state
line_items), and the final price is archived (in the QUOTE state
li_quotes). During the negotiation, the manufacturer consults an
underlying database, which lists information about available prod-
ucts (e.g. manufacturing cost) and about customers (e.g. credit
rating and status).

The corresponding artifact systefa, = (A, %) is formally de-
scribed below. As a font convention, we uBeo refer to an arti-
fact’s attribute relation an8 for state relations.

The artifact schema igl = (ORDER,QUOTE, DB), detailed
as follows.

1. DB = (PRODUCT CUSTOMER is the database schema,
where:
e PRODUCT prod_id, manufacturing_cost,
min_order_gty)
is the relation containing products and production infor-
mation, and
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e CUSTOMER customer_id, status, credit_rating)
contains information about customers, such as customer
status and credit rating.

2. ORDER = (Ro, line_items, in_process, done)

So
is the artifact class containing the information about a cus-
tomer’s order:

e Ro(order#, customer_id, need_by, li_prod, li_qty)

is the attribute relation holding the order number, the
identifier of the customer who placed the order, the day
it is needed by. The role of attributésprod andli_qty

is described below.

line_items(prod_id, qty)

is a state relation that acts as a “shopping cart” holding
the collection of line items requested so far.

in_process anddone
are nullary state relations (boolean flags) keeping track
of the stage the artifact is ifi.

The intention is that, in stage_process, the customer re-
peatedly updates the shopping cart by specifying an individ-
ual, tentative line item described by attributésprod and
li_qty. Subsequently, this line item is inserted into, deleted
from, or replaces itine_items an item with the samprod_id
provided the price negotiation succeeds. When the customer
completes the purchase order, the ORDER artifact transitions
to stagedone.

} 1 8q

3. QUOTE = (Rg,
li_quotes, idle, desired_price_calc,

negotiation,approval_pending, archive)
is the artifact class modeling quotes, with:

e Rqg(order#,desired_price,
lowest_acceptable_price, ask, bid,
final_price, approved, li_prod, li_qty,
manufacturing_cost)
is the attribute relation.
e li_quotes(prod_id, qty, price)
is a state relation holding the final negotiated price quotes
for the line items in the corresponding ORDER artifact.
e idle, desired_price_calc, negotiation,
approval_pending, archive
are nullary state relations.

When inactive, the QUOTE artifact is in statke, but moves

to desired_price_calc as soon as the customer fills in the
product id and quantity of a line item. In this stagée-
sired_priceattribute is set (from the manufacturer’s point of
view), possibly taking into account theed_bydate attribute

in the corresponding ORDER artifact and the manufacturing
cost listed in the PRODUCT database. During the ensuing
negotiation stage, the ask and bid prices are repeatedly set
(in attributeask by the manufacturer, respectiveiyd by the
customer) until a final price is established and recorded in at-
tribute final_price or the negotiation fails. Final prices may

SArtifact class ORDER illustrates an extension of Definition 2.1
that allows several state relations. This extension is for convenience
only: it is easy to show that it provides no additional expressive
power and preserves our decidability results. Indeed, given artifact
systeml” with multiple states per artifact and LTL-FO sentenge

we can construct in polynomial time artifact systEfand sentence

¢ suchthaf = ¢iff T’ |= ¢’. Moreover, ifl” andy are guarded,
then so ard” andy’.



require approval by a human executive to whom the negotia- Conventions. We adopt the following conventions:

tor reports. While approval is awaited, the QUOTE artifact is
in stageapproval_pending. Approval is granted by setting
boolean attributeapproved Approved final prices are then
archived in state relatiol_quotes (while the QUOTE arti-
fact is in stagearchive).

The operations allowed on artifacts are modeled by theset
available services, summarized below.

Serviceinitiate_order = (m'° ", S*) initializes the OR-
DER artifact, modeling the input of the order number and cus-
tomer id by the manufacturer, and the need-by date by the
customer.

Service add_or_modify_line_item = (m%™ ™ ST)
models the customer’s choice of a tentative line item to be
added to the purchase order, or to replace another line item for
the same product. The service records this choice in attributes
li_prod andli_qty of the ORDER artifact, and initializes the
QUOTE artifact in view of the upcoming negotiation. This
involves copying the order number and line item information
from ORDER to QUOTE, and filling the QUOTEmanufac-
turing_costattribute with the corresponding value looked up
in the PRODUCT database.

Serviceinclude_line_item = (" " S™) includes into

the purchase order the current tentative line item, by storing it
in ORDER statdine_items. The corresponding final negoti-
ated price is archived in QUOTE stdiequotes.

Servicecommit_order = (w1, S°) simply switches
the ORDER artifact to thelone stage, which disables any
further line item modifications. This service models the cus-
tomer’s non-deterministic decision to finalize the purchase or-
der.

Serviceset_quote_interval = (n°?,4°?, §°?) sets thede-
sired_ priceandlowest_acceptable_priegtributes of the QUOTE
artifact to frame the subsequent negotiation. This service ab-
stracts a complex sub-task, possibly taking into account the
ORDER’sneed_byattribute, the manufacturer’s desired profit
margin, the customer’s status, and input from a human man-
ager.

Servicequote_approval = (r?%,4?*,§%*) models the hu-
man supervisor who reviews the quote on behalf of the man-
ufacturer. The process is a black box, about which is only
known that it switches the QUOTE artifact éochive stage,

and it sets thepproveadattribute to eithetyes"or "no".

(i) We model uninitialized attributes by setting them to the re-

served constant.

(i) We model Boolean states by nullary state relations, and drop

the parentheses from atoms using th&t} becomess. We
assume the usual encoding tofie as the singleton nullary
relation, andalseas the empty nullary relation. In particular,
all Boolean states are initiallfalse (since all state relations
are initially empty).

(iii) For convenience, we use the following syntactic sugar for

post-conditions: we write post-conditions as non-Horn rules
h(z) := b(y) where theheadh is a conjunction of atoms
over attribute relations in4, with variablesz, and thebody

b is a formula inL 4 with free variablesy, wherey C Zz.
The semantics is that whenevar -~ A’ holds, A’ =
h(z < @) for some tuplei, andA = b(y < u|y). More-
over, artifact relations not mentioned/iremain unchanged.
Clearly, this syntactic sugar can be simulated by the official
post-conditions, and conversely.

Serviceinitiate_order = (n'°, 4, %) initializes the ORDER
artifact, where:

e 7° = —in_process,

i.e. the service applies when the ORDER artifact is not used
to process another order;

The post-condition)®® given by

Ro(o,c,nyw,w) =0 wAn#wA
3r, s CUSTOMER(G, s, 1)

guarantees that the attributasier# customer_icandneed_by
are initialized (set distinct fromy). By the semantics of post-
conditions, the pick ob, ¢, n is non-deterministic. The pick

of n models the customer’s input, while that@fnodels the
assignment of an order number by the manufacturer. Note
that no further constraints are imposed on these values, they
are simply picked from the infinite domain. In contrast, the
customer: must be one of the existing customers listed in the
database relation CUSTOMER. The pick«atlso models the
manufacturer’s input.

The tentative line item’s pricg and quantityy are left unini-
tialized (they equab) and will be set by the customer during
an activity modeled by servieedd_or_modi fy_line_item
below.

The state rules i include the following:

To showcase the artifact model’s natural ability to specify processes
even partially, we describe the negotiation process at two levels of

_ — in_process « true,
abstraction.

an insertion rule that sets tire_process boolean flag.
— —done « true,

e In a first, coarser cut, the process is abstracted as service a deletion rule that resets boolean state flage, ensur-

abstract_negotiation = (7" 1", S*") about which we
only know that the final price is reached when the ask and bid
prices coincide, and that it is guaranteed to lie between the
allowed margins stored in attributefesired_priceand low-

ing it is mutually exclusive within_process. (it is the
responsibility of all other services operating on ORDER
to keep them so

—seeadd_or_modify_line_item below).

est_acceptable_priad artifact QUOTE.

e Alternatively, we use serviceefined_negotiation =
(m™™, "™, 8™™) to refine the negotiation process all the way
to the level of individual negotiation rounds, each of which
sets the current ask and bid prices.

No rule refers to state relatidime_items, as no line item
exists yet.

Serviceadd_or_modify_line_item models the customer’s choice
of a tentative line item to be added to the purchase order, or to
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replace another line item for the same product. The service af-
fects both the ORDER and the QUOTE artifact, and it is given as
(me™ ™ S, where:

e ™™ = Jo,c,n in_process A Ro(o,c,n,w,w) A idle A
RQ (w’ w? UJ7 (JJ, w? w? UJ, w? w’ w),
i.e. the service applies only if the ORDER artifact is in the
in_process stage, no other line item is currently being pro-
cessed, and if the QUOTE artifact is currently unused (in the
idle stage, with all attributes uninitialized).

e The post-condition)*™ is

RO(O7 ¢, n,p, q) A RQ(O,w7w,w,w,w,w7p, q, m) =
3¢’ Ro(o,¢,n,w,w) Ap#wWAq#wA
q > q¢ ANPRODUCTp, m, q)

Note that the customer’s input of productidnd quantity; is
modeled as a non-deterministic pick from the infinite domain.
The pickedp must appear in the PRODUCT catalog stored in
the database. The quantijyis less restricted: we only know
that it is defined { # w) and, reflecting the manufacturer's
policy, it exceeds the minimum-order quantitylisted in the
PRODUCT catalog.

According to the post-condition, the service reacts as follows
to the customer’s input of the tentative line item. It stores the
valuesp andgq into the attributesi_prod li_qty of the OR-
DER artifact. Note that attributesrder# customer_idand
need_byremain unchanged. The service also initializes the
order# attribute of the QUOTE artifact to refer to the cor-
responding order, and also stores impjtg and the manu-
facturing costm for productp, which is looked up in the
database catalog PRODUCT. The QUOTE artifact’s remain-
ing attributes are left undefined, to be set during negotiation.

S*™ contains no ORDER state rule as the order’s state is left
unchanged. It contains the following state rules that move
the QUOTE artifact to thelesired_price_calc stage, which
enables the sub-task of quote negotiation: insertion rule

desired_price_calc « true

and deletion rule

—idle « true.

Serviceinclude_line_item = (' " S™) includes into the pur-
chase order the current tentative line item, by storing it in OR-
DER stateline_items. The corresponding final negotiated price
is archived in QUOTE statié_quotes. We have:

e The pre-condition
ﬂ_il

in_process A Jo, ¢, n, p,q Ro(o,¢,n,p,q) A
OFWACEFWANFWADPFWAGFH WA
ad,l, f,m Rg(o,d,l, f, f, f,” yes”,p,q,m) A
archive

ensures that the service applies only if a current line jtegn
exists, the ORDER artifact is in stage _process, and the
QUOTE artifact lists a successful and approved negotiation
for this line item and order (notice the common occurrence
of o, p, ¢ in both the QUOTE and the ORDER atoms). Suc-
cessful negotiation occurs when the ask, bid and final price
coincide, and the artifact is in steaechive. The final price is
approved when thapproveadattribute is set to “yes”.
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e The post-condition)® given by

Ro(o,¢,n,w,w) A Rg(w,w, w,w, w, w,w,w,w,w) :=

I',q¢ Ro(o,c,n,p’,q")
guarantees that, regardless of the current valug’ of the
line item, in the successor ORDER artifact the values are re-
set to undefined (), to make room for the next tentative line
item. Notice that the ORDER attributesder# customer_id
and need_byare preserved. The QUOTE attributes are all
reset, in preparation for the next negotiation.

The state rules i5* include the following:
— The state insertion rule

line_items(p, q) < Jo,¢,n Ro(o,¢,n,p,q)

operates on artifact ORDER, inserting the values of at-
tributesli_prod andli_qty into state relatiotine_items.
The state deletion rule

—line_items(p, q) «— Jo,c¢,n,q Ro(o,¢,n,p,q") A
line_items(p, q)

deletes any other entry pertaining to the same proguct
(if any). Recall that, according to the possible successor
definition, if stateline_items already contains an entry
for productp, the combined effect of the insertion and
deletion rule is that ofipdatingthe quantity of product

p to the latest customer-provided (and successfully ne-
gotiated) value. If no prior entry fop exists, then the
deletion rule has no effect.

The final negotiated price for this line item is archived in
QUOTE statdi_quotes by the following insertion rule:

li_quotes(p, g, f) —

307 d7l7 m RQ(O7 d7l7 f7 f7 f? ”yes’7ﬁp7 q7 m)
The following insertion and deletion rules move the QUOTE
artifact to statddle, signaling its availability for a new
negotiation sub-task:

idle « true and
—archive «— true.

Service commit_order (w1, 8°°) simply switches the

ORDER artifact to thelone stage, which disables any further line

item modifications. This service models the customer’s non-deterministic
decision to finalize the purchase order.

e 7 = in_process A
Jo,¢,n,p,q Ro(o,¢,n,p, ) \p=w A q=w,
i.e. the full order can be committed only if no tentative line
item is still being processed (which would maket w, g #
w).
1 is given by

RO(O7 c7n7p7 Q) = RO(O7 c7 n7p7 q)

i.e. the artifact’s attributes do not change.

S contains only the rules
in_process « false and
done « true.

The following services model the negotiation process.

Serviceset_quote_interval sets thadesired_ pricand
lowest_acceptable priaatributes of the QUOTE artifact to frame



the subsequent negotiation. This service abstracts a corsplex
task, possibly taking into account the ORDER&ed_byattribute,

the manufacturer’s desired profit margin, the customer’s status, and
input from a human manager.

set_quote_interval = (n°?,4°?, 5°?), where:

e 1% = desired_price_calc.
e Post-condition)?? given by

RQ(O7 d7l7d7w7wuw7p7Q7m) =
d#wNANl#wANd>1>mA
RQ(O’w7w7w’w’w7w7p’ q’m)'

models only what is known about the quote generation proce-
dure viewed as a black box: namely that the desired price is
higher than the lowest acceptable one, which in turn exceeds
the manufacturing cost. It also sets the initial asking price to

the desired price in preparation for the negotiation stage.

e The rules inS®? simply switch the artifact to theegotiation
stage, and are omitted.

To showcase the artifact model’s natural ability to specify processes
even partially, we describe the negotiation process at two levels of
abstraction.

In a first, coarser cut, the process is abstracted as service
abstract_negotiation = (w*" ™ S*") about which we only
know that the final price is reached when the ask and bid prices co-
incide, and that it is guaranteed to lie between the allowed margins
stored in attributeslesired_priceand lowest_acceptable_pricef
artifact QUOTE.

e 7" = negotiation,
since the process can only start when the QUOTE artifact is
ready, which is signaled by setting this state flag.

e Post-condition)®™, given as

Rg(o,d,Lf, f, f,app,p,q,m) :=
Ja’, V', f' Ro(o,d,l,a', V', f', app, p, ¢, m) A
1<f<d

guarantees that the final prigeagrees with the final ask and
bid prices regardless of their initial value$ b’, and thatf
lies between the desired priceand the lowest acceptable
pricel.

o We omit the rules inS*", which move the artifact to state

e 7'" = negotiation

ensures that the service applies only as long as the boolean
state flaghegotiation is set in the QUOTE artifact.

Post-condition)™ is given as

Rq (0,d,l,a,b, f,app,p, q,m) :=
(3d',V" Rq(o,d,1,a’,b',w, app,p,q,m) A
a ZVANl<a<d AV <bAf=uw)
v
(Rq(o,d,l,a,b,w,app,p,q,m) Na=b= f).

According to the first disjunct, the negotiation is well-formed,
i.e. the bid never exceeds the ask price, and in each round,
asking pricesz never increase while bids never decrease.
Moreover, as long as ask and bid price differ, the final price re-
mains undefined (equal to). Notice that the values af and

b are otherwise unconstrained, being simply drawn from the
infinite domain. This models their external input by the man-
ufacturer, respectively customer. The second disjunct states
that once ask price and bid priceb coincide, the final price

f is automatically set to the common value.

8™ contains rules that, upon detecting successful negotia-
tion, switch the QUOTE artifact to stagg@proval_pending

if the customer does not enjoy preferred status with excellent
credit. If he does, then the approval is short-circuited and the
QUOTE goes to stagarchive. The negotiation is successful
when ask and bid prices agree.

approval_pending «—

(Fo,d, 1, a, f,app,p,q,m Rq(o,d,l,a,a, f,app,p,q,m) A
Je,n Ro(o,c,m,p,q) A

—~CUSTOMER(, ” preferred”,” excellent”))

archive —

(Fo,d, 1, a, f,app,p,q,m Rq(o,d,1,a,a, f,app,p,q,m) A
367 n RO (07 ¢, n,p, q) A
CUSTOMER(, " preferred”,” excellent”))

—negotiation «— (3o, d, !, a, f,app,p,q,m
Rq(o,d,l,a,a, f,app,p,q,m))

Note that state flagegotiation must be set before the state
update rules execute (since pre-conditidft is satisfied). If
neither of the state rule bodies is satisfied, then according
to the possible successor semantics,rtégotiation flag re-
mains set, enabling another negotiation round.

Finally, servicequote_approval = (w?%,4?% S§%*) models the
human supervisor who reviews the quote on behalf of the manu-
facturer. The process is a black box, about which is only known
Alternatively, we can refine the negotiation process all the way to thatit switches the QUOTE artifact ochive stage, and it sets the
the level of individual negotiation rounds, each of which sets the approvedkttribute to eithetyes”or "no”.

current ask and bid prices. A post-condition ensures that the ne-
gotiation is well-formed, i.e. the bid never exceeds the ask price,
and that across rounds, asking prices never increase, while bids
never decrease. The negotiation is successful when ask and bid
prices agree, at which time the QUOTE artifact moves toare

approval_pending.

e 9% = approval_pending.

e )% is given by

Rg(o,d,l, f, f, f,app,p, q,m) :=

proval_pending state, thefinal_priceattribute is set, and and no
further rounds are conducted.

Servicerefined_negotiation = (7"",¢"™,S8™) is described as
follows:
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RQ(O,d,l,f,f,f,w,p,q,m) A
(app — 77yes>7 \/app — ”TLO”).

e S7% comprises the state rules that switch the artifact to stage

archive, and are omitted.



We illustrate desirable properties fo¢.., which pertain to its global
evolution, as well as to the consistency of the specification.

One such consistency property requires the state fitaggocess
anddone in class ORDER to always be mutually exclusive:

G(—(in_process A done)).

A more data-centric consistency property requires line item quotes
archived in staté_quotes of the QUOTE artifact to pertain only to
tentative line items previously input by the customer (into attributes
li_prod andli_qty of the ORDER artifact), and which underwent
successful negotiation and approval. Successful negotiation occurs
when ask, bid and final price coincide and the QUOTE artifactis in
statearchive:

Vpid, qty, prc
3d,l,m Rg(o,d,l, pre, pre, pre,” yes” , pid, qty, m) A
archive)
B

—li_quotes(pid, gty, prc))

Notice the use of thbeforeoperatoB (requiring its first argument
to hold before its second argument fails).

The following property is more semantic in nature, capturing part
of the manufacturer’'s business model. It requires that if the cus-
tomer’s status is ndpreferred”and the credit rating is worse than
"good", then before archiving a line item with final negotiated price
lower than the manufacturer’s desired price, explicit approval from

a human executive must have been requested. We assume the fol-
lowing ordering on the constants indicating the credit rating:

"poor" < "fair* < "good" < "excellent".

®3:
Vo7c7n1p7 q7d7l7 f7m7 S7T
G ((Ro(o,c,m,p,q) Ain_process A negotiation A
RQ(O’d7l7f?f7f7w?p7q7m) /\ f < d/\
CUSTOMER(c,s,r) A s # "preferred" A
r < "good") —
(approval_pending
B

—(archive A li_quotes(p, g, f))))

Note thatys involves both artifacts and the underlying database. If
the negotiation process is described by servef@ed_negotiation

then the property happens to be satisfied: indeed, recall from its
state rules that this service requests approval whenever the cus-
tomer’s status is not preferred and his credit rating is not excellent.
In particular, this applies to customers whose rating is worse than
good, according to the above ordering of credit ratings.
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