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ABSTRACT
In this paper, we present a comprehensive theoretical analy-
sis of the sampling technique for the association rule mining
problem. Most of the previous works have concentrated only
on the empirical evaluation of the effectiveness of sampling
for the step of finding frequent itemsets. To the best of our
knowledge, a theoretical framework to analyze the quality
of the solutions obtained by sampling has not been stud-
ied. Our contributions are two-fold. First, we present the
notions of ε-close frequent itemset mining and ε-close asso-
ciation rule mining that help assess the quality of the solu-
tions obtained by sampling. Secondly, we show that both
the frequent items mining and association rule mining prob-
lems can be solved satisfactorily with a sample size that is
independent of both the number of transactions size and
the number of items. Let θ be the required support, ε the
closeness parameter, and 1/h the desired bound on the prob-
ability of failure. We show that the sampling based analysis
succeeds in solving both ε-close frequent itemset mining and
ε-close association rule mining with a probability of at least
(1− 1/h) with a sample of size S = O( 1

ε2θ
[∆ + log h

(1−ε)θ
]),

where ∆ is the maximum number of items present in any
transaction. Thus, we establish that it is possible to speed
up the entire process of association rule mining for massive
databases by working with a small sample while retaining
any desired degree of accuracy. Our work gives a compre-
hensive explanation for the well known empirical successes
of sampling for association rule mining.
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1. INTRODUCTION
Association rule mining over the basket data model was in-
troduced by Agrawal et al [1]. It allows businesses to infer
useful information on customer purchase patterns, shelving
criterion in retail chains, stock trends etc. The basket data
essentially consists of a large number of individual records
called transactions and each transaction is a list of items
that participated in the transaction. Consider for example,
the database of all the transactions that take place in a re-
tail chain. The goal of association rule mining is to discover
rules of the type, “whenever a transaction includes a par-
ticular set W of items, it is likely to contain a specific item
I 6∈ W”. In case of a retail chain, such rules can be used
to arrange the items on the shelves to increase the sales of
closely related items. A formal definition of association rule
mining is presented in Section 2. In this paper, we consider
sampling techniques for association rule mining in massive
databases.

Sampling has been used quite effectively for solving several
problems in databases and data mining. For example, statis-
tics collected from a sample of the database is used to gener-
ate near-optimal query execution plans. Another example is
fast, approximate computations of aggregate functions over
massive databases

Informally, the input to association rule mining consists of
the collection of transactions and two parameters θ ≤ 1, the
required support and γ ≤ 1, the desired confidence. It con-
sists of two steps, namely frequent itemset mining in which
itemsets with frequency of at least θ are identified, and as-
sociation rule mining in which the association rules of the
type W ⇒ I, with I 6∈ W , are identified. The itemset
W ∪ I should have a support of at least θ, and of all the
transactions containing W , the fraction of the transactions
that contain I should be at least γ. Agrawal and Srikant [2]
present the Apriori algorithm for frequent itemset mining
and FastGenRules heuristic to generate the association rules.
A substantial body of prior work deals with association rule
mining. We refer the reader to the survey by Ceglar and
Roddick [4] for more details.

In association rule mining, sampling has been used to speed
up frequent itemset mining [7, 6, 8]. The main theme in
this line of work is to empirically study the effectiveness of
sampling at different sample sizes. Toivonen [7] considers
the question of the sample size required to ensure that the
frequency of a given itemset in the sample is close to its
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actual frequency. However, to the best of our knowledge,
none of the previous works address the following question:
“What should be the size of the sample so that an algo-
rithm working only on the sample reports all itemsets that
have a support of θ and does not report any of the itemsets
that have a support of less than θ?”. In sampling based ap-
proaches, usually one identifies candidate frequent itemsets
using the sample and then takes a pass over the database to
filter out infrequent itemsets among the candidates. In our
framework, we do not allow the algorithm to take a second
pass over the database and require that the algorithm works
by only looking at the sample. Notice that the above prop-
erty is desirable, particularly when the database is massive.

The probabilistic nature of sampling based techniques does
not allow us to solve the above question exactly. However, it
is possible to compute approximate solutions. To that end,
we develop the notion of ε-close solutions. In frequent item-
sets mining, given the support parameter θ and the closeness
parameter ε, a solution is ε-close if it reports all itemsets
that have a support of θ and does not report any itemset
that has a support of less than most (1− ε)θ. In this paper,
we consider the following question: “what should be the size
of sample so that an algorithm that looks only at the sample
reports an ε-close solution to the frequent itemsets mining”.

We study the sample size required to ensure that an al-
gorithm that works only with the sample can produce ε-
close solution to the frequent itemset mining problem with
high probability. Let N be the number of transactions in
the database and m be the number of items. Using simple
Chernoff bounds [3] and counting arguments, we show that
a sample size of O( 1

ε2θ
(min{m, ∆ + log N}+ log h)) is suffi-

cient, where ∆ is the maximum number of items present in
a transaction and the algorithm succeeds with probability
atleast (1− 1/h). There are two problems with such a sam-
ple size. Firstly, m can be quite large in practice. Secondly
we would like to eliminate the dependence on log N which
grows asymptotically with the number of transactions. Our
main contribution is an improvement in the sample size over
the above naive bound. The question we answer in the pa-
per is, “is it possible to report ε-close solutions with a sample
size independent of m and N?”. We show that it is indeed
possible. Our sampling algorithm is a natural one: given
the closeness parameter ε, it reports all itemsets that have a
support of (1− ε/2)θ in the sample. We show that a sample
size S = O( 1

ε2θ
(∆ + log h

θ
)) is sufficient for our algorithm

to compute ε-close solutions. The main feature of this im-
proved bound on the sample size is that it is independent
of the number of items and number of transactions, and
depends only the size of the largest transaction. Our analy-
sis consists of two main ideas: (i) bounding the number of
itemsets of a given frequency more carefully than before,
and (ii) a technique of analyzing the probability of errors in
the geometrically varying ranges in the frequency range of
[1/N, (1− ε)θ].

We also present the notion of ε-close solutions to associa-
tion rule mining part. We present an algorithm and show
that a sample size of S = O( 1

ε2θ
(∆ + log h

θ
)) is sufficient to

produce ε-close solutions to association rule mining. Thus,
our results present a comprehensive analysis of all aspects
of sampling for association rule mining.

1.1 Prior Work
A large body of prior work deals with the association rule
mining problem. We refer to the survey by Ceglar and Rod-
dick [4] on various algorithms proposed for solving the prob-
lem. Below, we present a brief survey of sampling based
ideas proposed in prior work.

Association rule mining is usually carried out in two steps:
first, finding frequent itemsets and then using these item-
sets to identify the association rules. It is well known that
the first step of frequent itemset mining dominates the com-
putational and I/O requirements. Most of the prior work
on sampling have concentrated on speeding up this phase
by running a frequent itemset mining algorithm only on a
small sample of the database. Mostly, they correct the er-
rors in the sampling based output by one or two passes over
the database.

Perhaps the first work on sampling for association rule min-
ing is that of Mannila et al. [6]. But, their work deals with
many issues in addition to sampling and hence, their em-
pirical investigation only points to the possible effectiveness
of sampling. It does not provide a comprehensive empirical
investigation of the effectiveness of sampling for association
rule mining. Toivonen [7] focuses solely on the effectiveness
of sampling for frequent itemset mining. He gives a bound
on the sample size required to ensure that the frequency
of a given itemset in the sample is approximately equal to
its frequency in the database. Toivonen also presents de-
tailed experimental evaluation of the sampling techniques on
synthetic datasets modeling supermarket data based on [2].
These datasets have 100K records and it is shown that sam-
ple sizes from 20,000 to 80,000 give very high accuracy. To
eliminate errors induced by sampling he suggests a pass over
the entire database and eliminating infrequent itemsets iden-
tified by the sampling phase.

Zaki et al. [8] also carry out an empirical evaluation of
sampling for association rule mining. They observe that,
for a given itemset, sample sizes as required by Chernoff
bounds [3] to achieve a desired degree of accuracy is indepen-
dent of the size of database. For databases that have fewer
than 400K rows, and for some reasonable accuracy require-
ments, Chernoff bounds based sample sizes may be as large
as the entire database. However, they carry out elaborate
empirical experiments to demonstrate that the actual accu-
racy achieved by sampling is much better than the bounds
obtained by theoretical analysis. In particular, their exper-
iments suggest that, to get reasonable accuracy, a heuristic
of taking samples of size 10% to 25% of the database is re-
quired at various support levels. We observe that when the
databases are massive (say all seasonal transactions across
all Walmart stores 1 ), the sizes suggested by the Chernoff
bound analysis are much better than those suggested by the
heuristics of Zaki et al. [8].

Chen et. al [5] propose a sampling based algorithm for as-
sociation rule mining, without taking any subsequent passes
over the database. They devise sub-sampling based heuris-
tics, wherein a small sub-sample is constructed from a given

1Report at http://walmartstores.com/FactsNews/ Fact-
Sheets/Merchandising Fact Sheet.pdf mentions that num-
ber of weekly transactions at Walmart stores is 176 million.
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random sample and association rule mining is carried over
the sub-sample. They present a detailed experimental eval-
uation of the accuracy of the heuristics. While their algo-
rithms work only on the sample and solve the association
rule mining problem, they do not provide any theoretical
guarantees on the sample size or accuracy.

Thus, a body of prior work deals with sampling based tech-
niques for the association rule mining problem. However,
they do not address the issue of deriving a bound on the
sample size required to solve the problem by only looking
at the sample, while providing provable guarantees on the
accuracy obtained.

2. ASSOCIATION RULE MINING
The input to association rule mining consists of a database
T of N transactions, T = t1, t2, . . . tN over a set of m items
I= {I1, I2, . . . Im}. Each transaction is a subset of I. Let ∆
denote the size of the largest transaction2. A subset X ⊆ I
is called an itemset. The frequency of an itemset is the ratio
of the number of transactions that contain the itemset to the
total number of transactions in the database. We say that an
itemset X is p-frequent if its frequency is at least p. The goal
of association rule mining is to discover association rules of
the type W ⇒ I where W ⊆ I and I ∈ I \W . The support
of a rule W ⇒ I is equal to the frequency of the itemset
W ∪ I. The confidence of a rule W ⇒ I is equal to the ratio
of the frequency of W ∪ I to the frequency of W . Given two
parameters, θ ≤ 1 (called as support threshold) and γ ≤ 1
(called as confidence threshold), the goal of association rule
mining is to discover association rules that have a support
of at least θ and a confidence of at least γ. The intuitive
meaning of such a rule is that transactions that contain W∪I
occurs frequently and a large fraction of the transactions
that contain W also contain I.

3. PROBLEM FORMULATION
Typically, the task of association rule mining is carried out
in two steps. The first step consists of finding all θ-frequent
itemsets in the database. The second step consists of form-
ing the association rules among the frequent itemsets [2]. It
has been observed that the first step of identifying the fre-
quent itemsets is the most computation and I/O intensive.
Therefore, we first consider the problem of frequent itemset
mining where the goal is to mine all θ-frequent itemsets.

As discussed before, previous work on sampling for asso-
ciation rule mining are mainly empirical studies. From a
theoretical point of view, they consider a very restricted no-
tion of accuracy. Our goal is to design an algorithm that
only looks at a random sample. Ideally, we would like to re-
port all θ-frequent itemsets and not report any itemset with
frequency less than θ. However, the probabilistic nature of
sampling does not allow us to provide such a strong guaran-
tee. Therefore, we relax the correctness condition and allow
the solution to include some of the less than θ-frequent item-
sets whose frequency is very close to θ. We also allow the
algorithms to have a small probability of failure.

Given an error parameter ε > 0, an ε-close solution to fre-

2We assume that ∆ is part of the statistics maintained by
the database

quent itemset mining is a collection of itemsets that includes
all θ-frequent itemsets and does not include any itemset
whose frequency is less than (1 − ε)θ (Refer to Figure 1).
Notice that the solution may include some itemsets whose
frequency falls in the interval [(1− ε)θ, θ]. Then, ε-close fre-
quent items mining is the problem of finding a solution of
the above type.

Given a failure parameter h, our goal is to design an al-
gorithm that looks only at a random sample of size S and
outputs an ε-close solution with a probability of at least
(1−1/h). The main issue we consider is the size of the sam-
ple required to accomplish this. We observe that none of the
previous works on sampling for association rule mining have
addressed the problem of ε-close frequent items mining.

Similarly, we also consider association rule mining. Given
an error parameter ε, an ε-close solution to association rule
mining is one which

• consists of all association rules having support θ and
confidence γ

• does not consist of any association rule having support
less than (1− ε)θ

• does not include any association rule having confidence
less than (1− ε)γ

The problem of finding such a solution is called ε-close as-
sociation rule mining.

Given a failure parameter h, our goal is to design an al-
gorithm that looks only at a random sample of size S and
outputs an ε-close solution to the association rule mining
with a probability of at least (1− 1/h). Again, we consider
the bound on the size of the sample required to accomplish
this. None of the previous have even considered sampling
for the confidence part of association rule mining.

Remark. In this paper, all our samples are obtained with
replacement. This is to ensure the independence of random
variables while applying Chernoff bounds.

3.1 ε-close Frequent Itemset Mining: a Simple
Bound

In this section, we derive a simple bound on the sample
size that is sufficient for solving the ε-close frequent itemset
mining. Our algorithm is as follows: Given a sample of size
S, it reports all itemsets that occur at least S(1−ε/2)θ times
in the sample.

We now present the two Chernoff bounds that we use exten-
sively in this paper. Let X be a random variable obtained by
summing a set of independent identical indicator variables.
Following Chernoff bounds on the deviation of X from its
expected value are well known [2]. For all 0 < δ < 1:

Pr[X ≤ (1− δ)E[X]] ≤ e−
δ2E[X]

2 (1)

and

Pr[X ≥ (1 + δ)E[X]] ≤ e−
δ2E[X]

3 (2)
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in this region.

(1− ε)θ

Does not report any itemset Outputs all itemsets in this region w.h.p.

θ

Frequency

in this region w.h.p.

Could misreport itemsets

Figure 1: Reporting feature of ε-close frequent items mining.

For a given itemset W , let fW be its frequency in the data-
base and fs

W be its frequency in the sample. Let Cs
W =

fs
W · S denote the count of W in the sample. Note that
E[Cs

W ] = fW · S. It is easy to see that,

Pr[fs
W ≤ (1− δ)fW ] = Pr[Cs

W ≤ (1− δ)E[Cs
W ]]

Using the Chernoff bound in Equation 1, for all 0 < δ < 1,

Pr[fs
W ≤ (1− δ)fW ] ≤ e−

δ2SfW
2 . (3)

Similarly, for all 0 < δ < 1,

Pr[fs
W ≥ (1 + δ)fW ] ≤ e−

δ2SfW
3 (4)

Note that a θ-frequent itemset W is not reported by our
algorithm only if fs

W < (1 − ε/2)θ. Therefore, by invoking
Equation 3 with δ = ε/2, we get that,

Pr[W is not reported] ≤ e−
ε2Sθ

8 ,

Similarly, an itemset W with frequency less than (1− ε)θ is
reported by our algorithm only if fs

W ≥ (1 − ε/2)θ. There-
fore, by invoking Equation 4 with δ = ε/2, we get that,

Pr[W is reported] ≤ e−
ε2Sθ
12 .

Clearly, there are at most 2m itemsets possible where m is
the number of items. On the other hand, observe that the
number of itemsets that can occur in the database is at most
N2∆, where ∆ is the size of the largest transaction and N
is the number of transactions in the database. We observe
that a maximum of either 2m or N2∆ itemsets are there in
the database. Now, applying the union bound, we get that

Pr[the solution is not ε-close] ≤ min{2m, N2∆}e− ε2Sθ
12 .

Thus, if we take S ≥ 12
ε2θ

min{m + log h, log N + log h + ∆},
we get that the probability of failure is at most 1/h.

3.2 Main Question
Note that, for a single set W , the required sample size (given
by 2 log h

ε2θ
) is independent of the database size. However, a

straightforward application of Chernoff bounds with union
bound as shown previously yields a sample size that depends
on m or log N . In practice, m can be a few thousands.
Moreover, log N is dependent on the database size and is
unsatisfactory in an asymptotic sense. The main question
we address in this paper is whether it is possible to solve
ε-close frequent items mining and ε-close association rule
mining with a sample size independent of m and N .

Our main contribution is to show that both ε-close frequent
items mining and ε-close association rule mining can be

solved with samples whose sizes are independent of m and
N . We show that S ≥ O( 1

ε2θ
(∆ + log h/θ)) is sufficient to

solve ε-close frequent items mining and ε-close association
rule mining. Our results constitute a comprehensive analy-
sis of sampling techniques for association rule mining. The
claims are formalized below.

In Section 4, we prove the following theorem about the sam-
ple size required to solve ε-close frequent itemset mining.

Theorem 3.1. There exists an algorithm that, given a
sample of size

S ≥ 24

ε2(1− ε)θ

�
∆ + 5 + log

5h

(1− ε)θ

�
,

solves the ε-close frequent mining problem, i.e., outputs all
θ-frequent itemsets and does not output any of the less than
(1 − ε)θ-frequent itemsets, with a success probability of at
least (1− 4

5h
).

In Section 5, we prove the following theorem about the sam-
ple size required to solve ε-close association rule mining.

Theorem 3.2. There exists an algorithm that, given a
sample of size

S ≥ 48

ε2(1− ε)θ

�
∆ + 5 + log

5h

(1− ε)θ

�
,

solves both ε-close frequent itemset mining and ε-close as-
sociation rule mining with a success probability of at least
(1− 1/h).

4. SAMPLING SCHEME AND ANALYSIS
In this section, we present an analysis of sampling for solving
ε-close frequent items mining. We first present the algorithm
used to report the frequent itemsets from the given sample.

4.1 The Algorithm
Given a tolerance range of 0 < ε < 1, we solve the ε-close
frequent item mining as follows. Let α = ε/2. Our algorithm
is same as the one presented in Section 3.1. That is,

• Pick a random sample of size S (with replacement)
from the database.

• Report every itemset in S that has a frequency of (1−
α), i.e., occurs S(1− α)θ times in the sample.

We note that the main obstacle for obtaining a sample size
independent of m and log N in the previous section was the
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liberal counting of the number of frequent itemsets. It over-
looked the fact the number of itemsets of a frequency x is in-
versely proportional to x. To be able to use this observation
for our purpose, we also need to analyze the non-frequent
itemsets more carefully than before. We highlight the main
ideas of the analysis as we encounter them.

4.2 Accepting all Frequent Itemsets
We now present an analysis that bounds the size of the
sample required to ensure that our algorithm reports all θ-
frequent itemsets with a high probability. Our analysis is
similar to the one presented in Section 3.1 except that we
bound the number of θ-frequent itemsets more carefully.

As before, let fW denote the frequency of a itemset W in
the database and fs

W denote its frequency in the sample. As
seen earlier, for a θ-frequent itemset, we have that

Pr[fs
W < (1− α)θ] ≤ e−α2Sθ/2.

Let Failure≥θ denote the event that some θ-frequent itemset
is not reported by the algorithm.

Prob[Failure≥θ] ≤ (# θ-frequent itemsets)(e−α2Sθ/2).

We want S to be such that Prob[Failure≥θ] ≤ 1
5h

, ie,

(# θ-frequent itemsets)(e−α2Sθ/2) ≤ 1

5h
. (5)

Now, if we use the bound of 2m or N2∆ for the number
of θ-frequent itemsets, then we get the same result as in
previous section. Here, we use a simple, but what turns
out to be powerful observation (especially in analyzing non-
frequent itemsets) about the number of itemsets of a given
frequency.

Lemma 4.1. For any β > 0, the number of β-frequent
itemsets is at most 2∆/β.

Proof. There are at most N2∆ itemsets in all (with rep-
etition) over all the transactions. An β frequent itemset has
to consume at least Nβ of these sets. Therefore there can
be at most (N2∆)/(Nβ) = 2∆/β of β-frequent itemsets.

Now, substituting the number of θ-frequent itemsets in
Equation 5 by the bound implied by Lemma 4.1 for β = θ,
we get that S has to be such that,

(2∆/θ)(e−α2Sθ/2) ≤ 1

5h
.

Solving for S, we get that a sample size of S = 2
α2θ

(∆ +

log 5h
θ

) is sufficient to guarantee the required probability of
success. Thus, we have the following lemma,

Lemma 4.2. If the sample size S ≥ 2
α2θ

(∆ + log 5h
θ

),
Pr[Failure≥θ] ≤ 1/5h.

4.3 Rejecting Non-Frequent Itemsets
We now turn our attention to the itemsets whose frequency
is below (1−ε)θ. We want to bound the sample size required

to ensure that, with high probability, the algorithm does not
report any itemset with frequency less than (1−ε)θ. Our aim
is to prove a bound on the sample size that is independent
of m and N .

A straight-forward approach is as follows. First, upper
bound the frequency of any itemset in the range [1/N, (1−
ε)θ] by (1− ε)θ. Second, bound the number of such itemsets
by N2∆ or 2m. Third, apply the Chernoff bound along with
the union bound to obtain a bound on the sample size. This
was essentially the approach used in Section 3.1 and fails to
give a bound independent of m and N .

Consider an itemset with frequency f < (1 − ε)θ in the
original database. It gets reported by our algorithm if its
frequency in the sample crosses the threshold frequency of
(1−α)θ. As f decreases, the following two effects take place:
(i) the probability that our algorithm reports such an item-
set decreases, and (ii) the bound on the number of itemsets
of frequency atmost f , as given by Lemma 4.1 increases.
The main observation that we exploit in our analysis is that
the rate of decrease in probability is much more than the
rate of increase in the number of itemsets in the (1/N, f)
range. We therefore split the range of [1/N, (1 − ε)θ] into
multiple geometric ranges and bound the probability of fail-
ure separately for each range. The main details are below.

Let φ = (1− ε)θ = (1− 2α)θ. We divide the range (1/N, φ)
into sub-ranges R0, R1, . . . , RL−1 where L = log Nφ. Let
Rj denote the sub-range [φ/2j+1, φ/2j ] (Refer to Figure 2).
For each j, we consider the itemsets in the frequency range
Rj and analyze the probability that some itemset in that
range is reported by the algorithm.

Consider a range Rj , j ≥ 3. Let W be an itemset whose
frequency belongs to the Rj . Let fs

W denote its frequency
in the sample and fW denote its frequency in the database.
The itemset W is reported by our algorithm if its frequency
in the sample fs

W ≥ (1 − ε/2)θ. Recall that (1 − ε/2)θ =
(1 − α)θ and φ = (1 − 2α)θ. Therefore, it follows that
fs

W ≥ (1 + α)φ. Note that φ/2j+1 < fW ≤ φ/2j . Therefore,
the probability that W is reported is given by

Pr[fs
W ≥ (1− ε/2)θ)] ≤ Pr[fs

W ≥ (1 + α)φ]

≤ Pr[fs
W ≥ 2j(1 + α)fW ]

≤ Pr[fs
W ≥ 2j(1 + α)E[fs

W ]].

Now we use the general form of Chernoff bound [3]: For a
random variable X obtained by summing independent indi-

cator random variables, Pr[X ≥ (1 + δ)µ] ≤
�

eδ

(1+δ)(1+δ)

�µ

where µ = E[X]. Here, δ = 2j(1+α)−1 and µ ≥ Sφ2−(j+1).
Therefore,

Pr[W is reported] ≤
�

eδ

(1 + δ)(1+δ)

�µ

≤
�

e

1 + δ

�(1+δ)µ

≤
�

e

2j(1 + α)

�2j(1+α)Sφ2−(j+1)
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Rj

Frequency

φ/2j+1
φ/2j φ/4 φ/2 φ = (1− ε)θ = (1− 2α)θ

R0
R1

Figure 2: Geometric ranges over which the non-frequent itemsets are analyzed.

≤
�

1

2j−2(1 + α)

�(1+α)Sφ/2

≤
�

1

2j−2

�(1+α)Sφ/2

≤ 2−(j−2)φS/2

Therefore, if we take a sample size S ≥ 2
φ
(∆ + log 5h

φ
+ 5),

then

Pr[W is reported] ≤ 2
−(j−2)(∆+log 5h

φ
+5)

(6)

We now prove the following lemma about the sample size
required to ensure that, with high probability, no itemset
with frequency in the range Rj is reported by our algorithm.

Lemma 4.3. Consider the Interval Rj = (φ/2j+1, φ/2j ]
for j ≥ 3. If the sample size S ≥ 2

φ
(∆+log 5h

φ
+5), then the

probability that the algorithm reports any itemeset having
frequency in the range Rj is at most 2−(j−2) · 1

5h
, where

α = ε/2.

Proof. From Lemma 4.1, the total number of sets that
can occur in Rj in the database is at most 2∆+j+1/φ. We
now use the bound on the probability of failure for a single
itemset given by Equation 6 and apply union bound over the
2∆+j+1/φ possible itemsets in Rj . The probability that any
one of these itemsets is reported by the algorithm, denoted
by Prob[Failurej ], is

Pr[Failurej ] ≤ 2−(j−2)(∆+log 5h/φ+5) · 2∆+j+1

φ

≤ 2−(j−3)(∆+log 5h/φ+5) ×
2−(∆+log 5h/φ+5) × 2∆+j+1

φ

≤ 1

5h
· 2−(j−3)(∆+log 5h/φ+5)−5+(j+1)

≤ 1

5h
· 2−7(j−3)−5+(j+1) as ∆, log 5h

φ
≥ 1

≤ 1

5h
· 2−6j+17

≤ 1

5h
· 2−(j−2) for j ≥ 3

This completes the proof of the lemma.

We now bound the probability of failure for the itemsets in
the range (1/N, φ/8] denoted by Prob[Failure≤φ/8].

Lemma 4.4. Consider the range R = (1/N, φ/8]. If the
sample size S ≥ 2

φ
(∆ + log 5h

φ
+ 5), then the probability that

any of the itemsets in the range (1/N, φ/8) is reported by
our algorithm, denoted Prob[Failure≤φ/8], is at most 1

5h
.

Proof. From Lemma 4.3, we have that

Pr[Failure≤φ/8] ≤
log NφX

j=3

2−(j−2) · 1/5h ≤ 1/5h.

Now we consider the remaining itemsets in the range (φ/8,
φ]. We split this range into two ranges (φ/8, φ/2] and
(φ/2, φ]. We first consider the range (φ/2, φ]. Let W be
an itemset in the range (φ/2, φ]. Let fs

W be its frequency
in the sample, and let fW be its frequency in the database.
For W to be reported by our algorithm, its frequency must

be at least fs
W ≥ (1− α)θ. Therefore,

fs
W

fW
≥ 1 + α

1−2α
. The

number of itemsets in this range is at most 2∆+1/φ. Now,
following the steps of the proof of Lemma 4.2, we can show
that:

Lemma 4.5. If the sample size S ≥ 6
α2φ

(∆ + 1 + log 5h
φ

),

the probability that our algorithm will report an itemset in
the range (φ/2, φ], denoted by Prob[Failure(φ/2,φ]] is at most
1
5h

.

Compared to the proof of Lemma 4.2, the only change re-
quired to prove Lemma 4.5 is the use of Chernoff bound for
increase in frequency in the sample. For an itemset W with
fW ∈ (φ/2, φ], we use the following Chernoff bound on the
relative increase of the frequency of W in the sample:

Pr[fs
W ≥ (1 + δ)fW ] ≤ e−δ2Sφ/6 where δ = α/(1− 2α).

Let us now consider the range (φ/8, φ/2]. For an itemset

W in the range (φ/8, φ/2] it is easy to show that
fs

W
fW

≥
2 + 2α

(1−2α)
and the number of itemsets in this range is at

most 2∆+3/φ. Using a δ close to 1, it follows that,

Lemma 4.6. If the sample size S ≥ 24
φ

(∆+3+log 5h
φ

), the
probability that our algorithm will report an itemset in the
range (φ/8, φ/2] denoted by Prob[Failure(φ/8,φ]] is at most
1
5h

.

4.4 Proof of Theorem 3.1
Now, the algorithm fails if either a θ-frequent itemset is
not reported or some itemset that is less than (1 − ε)θ-
frequent is reported. Observe that the sample size S =

24
(ε2(1−ε)θ)

�
∆ + log 5h

((1−ε)θ
+ 5
�

mentioned in the statement

of Theorem 3.1 is greater than the samples sizes required in
each of the Lemmas 4.2, 4.4, 4.5, and 4.6. Therefore, the
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probability of algorithm’s failure Prob[Failure] is bounded
by

Pr[Failure] ≤ Pr[Failure≥θ] + Pr[Failure≤φ/8]

+Pr[Failure(φ/8,φ/2]] + Pr[Failure(φ/2,φ]]

≤ 1

5h
+

1

5h
+

1

5h
+

1

5h

≤ 4

5h

This completes the proof of Theorem 3.1.

5. ASSOCIATION RULE MINING
We now prove Theorem 3.2 for the ε-close association rule
mining problem. Our algorithm for reporting the association
rules is simple. It considers only those sets that are output
by the ε-close frequent items mining. Over them, it employs
the standard association rule mining [2] and reports all rules

that have a confidence of at least (1−ε/4)
(1+ε/4)

γ in the sample.

For an association rule A → x to have support θ, both
the itemsets A and A ∪ {x} must be θ-frequent. Note that
our sample size S is larger than the sample size required
by the algorithm in Theorem 3.1 and therefore ensures that
we identify all the itemsets that have frequency θ and re-
ject itemsets that have frequency less than (1 − ε)θ with a
probability of at least (1− 4

5h
). Therefore, we can guarantee

that we can reject any association rule not having support
at least (1 − ε)θ. Now consider the itemsets that are iden-
tified as frequent in the previous section. These itemsets
have frequency at least (1 − ε)θ. For any such itemset I,

let fI denote the frequency of the itemset and f̂I denote the
frequency of the itemset in the sample.

Pr[|f̂I − E[f̂I ]| ≥ (ε/4)E[f̂I ]] ≤ 2e−(ε/4)2(1−ε)θS/3

≤ 2e−ε2(1−ε)θS/48

Since there are at most 2∆/((1−ε)θ) such itemsets, choosing

S = 48
ε2(1−ε)θ

�
∆ + 5 + log 5h

(1−ε)θ

�
, we get that |f̂I−E[f̂I ]| ≤

(ε/4)E[f̂I ] for all such itemsets with probability at least
(1− 1

5h
). Now, our main task is to show that the threshold

of 1−ε/4
1+ε/4

γ allows us to distinguish between rules that have

confidence of at least γ from those that do not have.

Now consider an association rule A → x which has confi-
dence γ. Then

fA∪{x}
fA

≥ γ. Therefore,

f̂A∪{x}

f̂A
≥ (1− ε/4)E[f̂A∪{x}]

(1 + ε/4)E[f̂A]

=
(1− ε/4)

(1 + ε/4)
· fA∪{x}

fA

≥ (1− ε/4)

(1 + ε/4)
γ (7)

Next, consider an association rule A → x which has confi-

dence < (1− ε)γ. Then
fA∪{x}

fA
< (1− ε)γ. Therefore,

f̂A∪{x}

f̂A
≤ (1 + ε/4)E[f̂A∪{x}]

(1− ε/4)E[f̂A]

=
(1 + ε/4)

(1− ε/4)
· fA∪{x}

fA

<
(1 + ε/4)

(1− ε/4)
(1− ε)γ (8)

<
(1− ε/4)

(1 + ε/4)
γ

The last step follows from the fact that the ratio of
f̂A∪{x}

f̂A
in Equation 7 is strictly greater than the ratio in Equation
in 8 since (1 − ε/4)2 > (1 + ε/4)2(1 − ε). Therefore if we
report all the association rules having support (1 − ε/2)θ

and confidence (1−ε/4)
(1+ε/4)

γ in the sample S, we satisfy all the

required conditions for the ε-close association rule mining
problem.

This completes the proof of Theorem 3.2.

6. DISCUSSION
As discussed in the introduction, Zaki et al. [8] show that,
for small databases, a heuristic approach of sampling a fixed
percentage of the database (between 10% and 25%) reports
95% of the frequent itemsets for various values of θ. In the
case of databases that they consider, this turns out to be
more effective than Chernoff bounds based sample sizes. On
the other hand, we have shown that both the steps of ε-close
frequent itemset mining and ε-close association rule mining
(which put more stringent requirements on the accuracy of
the results) can be solved to any desired degree of probability
of success with sample sizes that are independent of both
the number of items and the number of transactions. In
this section, we briefly discuss the implication of our result
while doing association rule mining on massive databases.

As an example, let us consider all the transactions in a large
retain chain like Walmart in a year. Reports at the Walmart
website 3 mention that the number of weekly transactions
across all their stores is 176 · 106. The number of all trans-
actions in a year would be to the tune of 9 · 109. As a
conservative measure, let us work with a database of 2 · 109

transactions. Note that the sampling heuristic reported in
Zaki et al. [8] would imply prohibitively large sample sizes.
Let us now consider the sample sizes suggested by our analy-
sis. We work with θ = 1% (and the bounds get better as θ
grows), ∆ = 20 (in the typical retail data generated in [2]
average transaction size is around 10), and h = 210. If we
set ε = 0.25, we get sample size to be 3.2 × 106 (which is
a small fraction of the database) leading to enormous effi-
ciency gain. Let us say we want to be even more stringent
on the region of uncertainty and set ε to be 0.1. Even then
we get a sample size of just 20 · 106 and obtain highly ac-
curate answers. Our technique has the added advantage of
not requiring even a single pass of the database.

3http://walmartstores.com/FactsNews/FactSheets/ Mer-
chandising Fact Sheet.pdf
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7. CONCLUSION
We presented a comprehensive theoretical analysis of the
sampling technique for the association rule mining problem.
We presented the notions of ε-close frequent itemset min-
ing and ε-close association rule mining. We showed that
sampling based technique can solve both the problems us-
ing a sample whose size is independent of both the number
of items and the number of transactions. From our discus-
sion in Section 6, it follows that an empirical evaluation of
the sampling technique on massive databases would be very
interesting. The accuracy obtained at the sample sizes sug-
gested by our analysis should be investigated. It would be
interesting if similar accuracy can be obtained in practice
with much smaller sample sizes.
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