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ABSTRACT
Managing inconsistency in databases has long been recognized
as an important problem. One of the most promising approaches
to coping with inconsistency in databases is the framework of
database repairs, which has been the topic of an extensive in-
vestigation over the past several years. Intuitively, a repair of
an inconsistent database is a consistent database that differs
from the given inconsistent database in a minimal way. So
far, most of the work in this area has addressed the problem
of obtaining the consistent answers to a query posed on an in-
consistent database. Repair checking is the following decision
problem: given two databases r and r′, is r′ a repair of r? Al-
though repair checking is a fundamental algorithmic problem
about inconsistent databases, it has not received as much at-
tention as consistent query answering. In this paper, we give a
polynomial-time algorithm for subset-repair checking under in-
tegrity constraints that are the union of a weakly acyclic set of
local-as-view (LAV) tuple-generating dependencies and a set
of equality-generating dependencies. This result significantly
generalizes earlier work for subset-repair checking when the
integrity constraints are the union of an acyclic set of inclusion
dependencies and a set of functional dependencies. We also
give a polynomial-time algorithm for symmetric-difference re-
pair checking, when the integrity constraints form a weakly
acyclic set of LAV tgds. After this, we establish a number
of complexity-theoretic results that delineate the boundary be-
tween tractability and intractability for the repair-checking prob-
lem. Specifically, we show that the aforementioned tractability
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results are optimal; in particular, subset-repair checking for ar-
bitrary weakly acyclic sets of tuple-generating dependencies is
a coNP-complete problem. We also study cardinality-based re-
pairs and show that cardinality-repair checking is coNP-complete
for various classes of integrity constraints encountered in database
design and data exchange.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; F.1.2
[Theory of Computation]: Complexity Measures and Classes—
Reducibility and completeness

General Terms
Theory, Algorithms

Keywords
Inconsistent databases, database repairs, repair checking, con-
sistent query answering, tuple-generating dependencies, equality-
generating dependencies, weakly acyclic set, polynomial time,
coNP-complete problem

1. Introduction
Managing inconsistency in databases has long been recog-

nized as an important problem. It is well understood that in-
consistent databases arise in a variety of contexts and for several
different reasons. For example, inconsistent databases arise be-
cause current database management systems may not support a
particular type of integrity constraints. Furthermore, inconsis-
tent databases arise in data integration, data warehousing, and
other critical data inter-operability applications in which het-
erogeneous and distributed data have to be integrated or materi-
alized in a new format and have to obey potentially different in-
tegrity constraints. Data cleaning is an area of research that ad-
dresses data quality by considering inconsistent databases and
extracting “desirable" consistent databases according to some
criterion of goodness. Some of the work done so far focuses on
elimination of duplicates (e.g., [2, 19, 16, 23]) using a variety
of different methods and algorithms or on more elaborate data
value manipulations as in [26], which integrates transformation
and discrepancy detection. In addition, application-specific in-
tegrity constraints have been considered to model the semantics
of the data [7, 14, 25]. It has been argued, however, that much
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remains to be done in the area of data cleaning as regards to
well-justified solutions [12].

Database Repairs In 1999, Arenas, Bertossi and Chomicki [1]
introduced and developed a framework for extracting consistent
data from an inconsistent database. Their framework is based
on the concept of a repair of an inconsistent database. Intu-
itively, a repair of an inconsistent database is a database over
the same schema that satisfies the integrity constraints at hand
and differs from the given inconsistent database in some min-
imal way. This framework turned out to be quite influential
and gave rise to numerous subsequent investigations of various
notions of repairs based on different minimality criteria. In par-
ticular, work in this direction has considered repairs obtained
by tuple deletions and insertions [1, 10, 22, 27] or by attribute
value changes [4, 5, 6, 8, 28]; see also the survey [3] and the
keynote paper [9].

The minimality criterion adopted in [1] was that the sym-
metric difference r ⊕ r′ between the inconsistent database r
and a consistent database r′ is minimal with respect to set in-
clusion. This gives rise to the concept of symmetric-difference
repairs or, in short, ⊕-repairs. Several other notions of repairs
obtained by deletion and/or insertion of tuples have also been
considered in recent years. Specifically, subset-repairs [10] are
the special case of⊕-repairs in which the repair r′ is also a sub-
instance of the inconsistent database r. In general, a ⊕-repair
need not be a subset-repair; it is easy to see, however, that if all
constraints at hand are functional dependencies, then ⊕-repairs
and subset-repairs coincide. Finally, cardinality-repairs or, in
short C-repairs, [22] are consistent databases such that the car-
dinality |r⊕r′| of the symmetric difference r⊕r′ is minimized.
Every C-repair is a ⊕-repair, but not vice versa.
Repair Checking There are two fundamental algorithmic prob-
lems concerning repairs of inconsistent databases. The first and
most extensively studied is the problem of computing the con-
sistent answers of a query over an inconsistent database. The
set of all repairs of an inconsistent database is viewed as a set
of possible worlds. The consistent answers of a query over an
inconsistent database are then defined to be the certain answers
of the query over the set of all repairs, i.e., the tuples that are
an answer to the query in every repair. Consistent query an-
swering has been the focus of numerous investigations aiming
to discover the boundary between tractability and intractabil-
ity for this problem by taking into account two parameters: the
type of repairs and the class of integrity constraints. Instead of
giving a comprehensive list of earlier work on this topic, we
refer the reader to the overviews [3] and [9].

The second fundamental algorithmic problem concerning re-
pairs is repair checking: given two databases r and r′ over the
same schema, is r′ a repair of r? This paper is devoted to the
study of the repair checking problem. As with consistent query
answering, repair checking is parameterized by the type of re-
pairs and by the class of integrity constraints considered. Repair
checking is the model checking problem for repairs. As such, it
is a natural data-cleaning problem. Moreover, it underlies con-
sistent query answering, because, for many classes of integrity
constraints, repair checking is log-space reducible to consistent
query answering (but not the other way around) [10].

So far, repair checking has not been investigated in the same
depth as consistent query answering. The first study of repair
checking in its own right was carried out by Chomicki and
Marcinkowski [10], who investigated this problem for subset-

repairs and for various classes of integrity constraints. In par-
ticular, they showed that if Σ is the union of an acyclic set of
inclusion dependencies and a set of functional dependencies,
then subset-repair checking with respect to Σ is in PTIME.
The assumption of acyclicity turns out to be crucial, since they
also showed that, for arbitrary sets of inclusion dependencies
and functional dependencies, subset-repair checking is coNP-
complete. Staworko [27] showed that if Σ is a set of full tuple-
generating dependencies (full tgds), then ⊕-repair checking is
in PTIME (hence, subset-repair checking is also in PTIME).
Prior to this, Wijsen [28] had established that, for a certain
type of attribute-based repairs, the repair checking problem for
sets of full tgds and equality-generating dependencies (egds)
is in PTIME. Finally, it follows from results in Lopatenko and
Bertossi [22] that there is a set Σ of denial constraints for which
the C-repair checking problem is coNP-complete (denial con-
straints form a broad class of constraints that include as a spe-
cial case; the precise definition of a denial constraint will be
given in the next section).
Summary of Results Acyclic sets of inclusion dependencies
and sets of full tgds are important special cases of weakly acyclic
sets of tuple-generating dependencies (tgds). Weakly acyclic
sets of tgds have been extensively studied in the context of data
exchange, where it was shown that they have tractable behavior
as regards the key algorithmic problems encountered there, in-
cluding the existence of solutions, the computation of universal
solutions and conjunctive-query answering [13], and also the
computation of the core of universal solutions [17]. Thus it is
natural to ask: does the tractable behavior of weakly acyclic
sets of tgds extend to the repair checking problem?

The main tractability results established in this paper are as
follows. First, if Σ is the union of a weakly acyclic set of LAV
(local-as-view) tgds and a set of equality-generating dependen-
cies (egds), then the subset-repair checking problem w.r.t. Σ is
in PTIME; in fact, it is in LOGSPACE. This tractability result
significantly extends the result of Chomicki and Marcinkowski
[10] about acyclic sets of inclusion dependencies and functional
dependencies, because every acyclic set of inclusion dependen-
cies is a weakly acyclic set of LAV tgds (but not vice versa).
Second, we show that if Σ is a weakly acyclic set of LAV tgds,
then the ⊕-checking problem w.r.t. Σ is in PTIME; in fact, it is
in LOGSPACE. We also show that there is a set of full tgds for
which the subset-repair checking problem is PTIME-complete,
hence highly unlikely to be in LOGSPACE.

After this, we obtain a number of complexity-theoretic re-
sults that delineate the boundary between tractability and in-
tractability for the repair checking problem. To begin with, we
show that our two main tractability results are, in a sense, op-
timal. First, we construct a weakly acyclic set of non-LAV
tgds for which the subset-repair checking problem is coNP-
complete. To the best of our knowledge, subset-repair check-
ing is the first example of a basic algorithmic problem that is
tractable both for sets of full tgds and for acyclic sets of in-
clusion dependencies (in fact, it is tractable for weakly acyclic
sets of LAV tgds), but can be intractable for weakly acyclic sets
of tgds. We also construct a set that is the union of a weakly
acyclic set of LAV tgds with a set of egds for which the ⊕-
repair checking problem is coNP-complete.

Finally, we investigate cardinality-based repairs. In fact, we
consider two different versions of cardinality-based repairs. The
first is the aforementioned notion of a C-repair studied in [22]
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in which the aim is to minimize the cardinality |r ⊕ r′| of
the symmetric difference r ⊕ r′ between a given inconsistent
database r and a consistent database r′. The second is a new
notion of component cardinality repair, denoted by CC-repair,
which we introduce in this paper. This new notion has a fla-
vor of Pareto optimality, as the aim is to simultaneously mini-
mize the cardinalities |P r ⊕ P r′ | of the symmetric differences
P r ⊕P r′ , for every relation symbol P in the database schema.
Every C-repair is a CC-repair, and every CC-repair is a ⊕-
repair, but not vice versa. Depending on the application at hand,
cardinality-based repairs may be preferable to other types of re-
pairs since they amount to “repairing" an inconsistent database
with a minimum number of insertions and deletions. We show,
however, that the repair-checking problem for cardinality-based
repairs is intractable even for classes of constraints for which
the ⊕-repair checking problem is tractable. Specifically, we
construct a set Σ of constraints that is the union of an acyclic
set of inclusion dependencies and a set of functional depen-
dencies and has the property that the C-repair checking prob-
lem w.r.t. Σ is coNP-complete. We also construct a set of full
tgds for which the C-repair problem is coNP-complete. Finally,
we show that the CC-repair checking problem can be coNP-
complete for sets of denial constraints, for sets of full tgds, and
for acyclic sets of inclusion dependencies. This leaves subset-
repairs and ⊕-repairs as the only type of repairs based on tuple
insertion and deletion for which the repair-checking problem is
tractable for considerably broad classes of constraints.

Table 1 summarizes the emerging picture of the complexity
of repair checking for various types of repairs and for various
classes of integrity constraints. In this table, the annotation ‡ in
an entry indicates a new result established in this paper, while
the annotation † indicates that PTIME-hardness was established
in this paper, while membership in PTIME was proved in [27].
Entries with no annotation are results obtained earlier in [10]
and [22]. Finally, IND stands for inclusion dependencies.

Complete proofs of the results reported here will appear in
the full version of the paper.

2. Preliminaries and Basic Facts
We consider instances over some fixed relational schema S.

If P is a relation symbol of S and r is an instance over S, then
P r denotes the interpretation of P on r. We write |B| to denote
the cardinality of a set B. If r is an instance over S and t is a
tuple such that t ∈ P r for some relation symbol P of S, then
we say that P r(t) is a fact of r. An instance r can be identified
with the set of all its facts.

We now give the precise definitions and several examples of
the different types of integrity constraints that we will consider
in this paper. They include the main constraints studied in clas-
sical dependency theory and, more recently, in data exchange
and data integration (see the surveys [20, 21]).

DEFINITION 1. Let S be a relational schema.

1. An equality-generating dependency (egd) is a first-order for-
mula of the form

∀x(φ(x) → xi = xj),

where φ(x) is a conjunction of atomic formulas over S with
variables from x, each variable in x occurs in at least one
atomic formula in φ(x), and xi, xj are among the variables
in x.

An example of an egd is the functional dependency

∀x, y, z(MOTHER(z, x)∧MOTHER(w, x) → z = w).

In fact, every functional dependency is an egd, but not vice-
versa.

2. A denial constraint is a first-order formula of the form
∀x¬(α(x)∧β(x)), where α(x) is a non-empty conjunction
of atomic formulas P (t) over S such that the variables in
t are among the variables in x, and β(x) is a (possibly
empty) conjunction of comparison atoms xi = xj , xi 6= xj ,
xi < xj , xi ≤ xj , where the variables xi and xj are
among those occurring in α(x).

Clearly, every egd is (logically equivalent to) a denial con-
straint, but not vice versa. For example, the formula

∀x, y(MOTHER(x, y) → x 6= y)

is (logically equivalent to) a denial constraint, but is not
(logically equivalent to) any egd.

3. A tuple-generating dependency (tgd) is a first-order formula
of the form

∀x(φ(x) → ∃yψ(x,y)),

where φ(x) is a conjunction of atomic formulas over S with
variables in x, each variable in x occurs in at least one
formula in φ(x), and ψ(x,y) is a conjunction of atomic
formulas with variables in x and y.

For example, the following formula is a tgd:

∀x, y, z(MOTHER(z, x) ∧MOTHER(z, y) →
∃u, v(FATHER(u, x) ∧ FATHER(v, y))).

4. A full tgd is a tgd with no existential quantifiers in the right-
hand side; thus, a full tgd is a formula of the form ∀x(φ(x) →
ψ(x)), where φ(x) and ψ(x) are conjunctions of atomic
formulas over S.

For example, the formula

∀x, y, z(MOTHER(z, x) ∧MOTHER(z, y) →
SIBLING(x, y))

is a full tgd.
5. A LAV (local-as-view) tgd is a tgd in which the left-hand

side is a single atom. In other words, a LAV tgd is a first-
order formula of the form ∀x(P (x) → ∃yψ(x,y)), where
P is a relation symbol in S and ψ(x,y) is a conjunction of
atomic formulas over S.

For example, the formula

∀x, y(SIBLING(x, y) →
∃z(MOTHER(z, x) ∧MOTHER(z, y)))

is a LAV tgd. Note also that inclusion dependencies are the
special case of LAV tgds in which the right-hand side has a
single atom.

From now on, we will drop the universal quantifiers in front
of egds, denial constraints, and tgds.

DEFINITION 2. In what follows, we will make use of the
following notation.
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Constraints \ Semantics Subset-repair ⊕-repair C-repair CC-Repair
Denial LOGSPACE LOGSPACE coNP-complete coNP-complete‡

Acyclic set of IND & egds LOGSPACE Open coNP-complete‡ coNP-complete‡
Weakly acyclic set of LAV tgds & egds LOGSPACE‡ coNP-complete‡ coNP-complete‡ coNP-complete‡

Weakly acyclic set of LAV tgds LOGSPACE‡ LOGSPACE‡ coNP-complete‡ coNP-complete‡
Full tgds & egds PTIME-complete† PTIME-complete† coNP-complete‡ coNP-complete‡

IND & egds coNP-complete coNP-complete coNP-complete‡ coNP-complete‡
Weakly acyclic set of tgds & egds coNP-complete‡ coNP-complete‡ coNP-complete‡ coNP-complete‡

Table 1: The complexity of repair checking.

• r ⊆ r′ denotes that for every relation symbol P in the
schema, we have that P r ⊆ P r′ . This is the same as assert-
ing that r is contained in r′, where r and r′ are identified
with the sets of their facts.

• r ⊂ r′ denotes that r ⊆ r′ and there is at least one relation
symbol P in the schema such that P r ⊂ P r′ . This is the
same as asserting that r is properly contained in r′, where
r and r′ are identified with the sets of their facts.

• r ⊕ r′ denotes the symmetric difference of r and r′ as sets
of facts.

• |r| ≤cc |r′| denotes that for every relation symbol P in the
schema, we have that |P r| ≤ |P r′ |. Similarly, |r| <cc |r′|
denotes that |r| ≤cc |r′| and there is at least one relation
symbol P in the schema such that |P r| < |P r′ |.

Repairs are defined with respect to a fixed set of constraints
Σ and with respect to minimality in some partial order between
instances over the fixed relational schema S. Here, we will
focus on the following notions of repairs. From now on, we
assume that all sets of constraints considered are finite.

DEFINITION 3. Let Σ be a set of integrity constraints and
let r be a database instance.

1. A subset-repair of r is a sub-instance r′ of r that is a
maximal consistent sub-instance of r; this means that r′

satisfies Σ and there is no instance r′′ such that r′ ⊂
r′′ ⊆ r and r′′ satisfies Σ.

2. A symmetric-difference-repair of r (or, in symbols, a ⊕-
repair of r) is an instance r′ that satisfies Σ and there is
no instance r′′ such that r⊕ r′′ ⊂ r⊕ r′ and r′′ satisfies
Σ.

3. A cardinality repair of r (or, in symbols, a C-repair of r)
is an instance r′ that satisfies the constraints in Σ and
there is no instance r′′ such that |r ⊕ r′′| < |r ⊕ r′| and
r′′ satisfies Σ.

4. A component-cardinality repair of r (or, in symbols a
CC-repair of r) is an instance r′ that satisfies Σ and
there is no instance r′′ such that |r ⊕ r′′| <cc |r ⊕ r′|
and r′′ satisfies Σ.

As mentioned in the Introduction, the concept of a CC-repair
is new, and is introduced for the first time in this paper. We
believe that it is a natural concept of database repair that de-
serves to be studied in its own right. To give some intuition
about CC-repairs, we need to define an auxiliary concept. If
r and r′ are two database instances over the same relational

schema, then the characteristic sequence of r′ with respect to r

is the sequence with coordinates the cardinalities |P r ⊕ P r′ |,
as P varies over the relation symbols of the database schema
(under some fixed order of the relation symbols in the under-
lying database schema). The definition of CC-repair can then
be restated as follows: an instance r′ is a CC-repair of r if
and only if r′ satisfies Σ and the characteristic sequence of r′

with respect to r is minimal under the coordinate-wise ordering
of sequences. In other words, a CC-repair of r is a consistent
database r′ such that the cardinality |P r⊕P r′ | of the symmet-
ric difference between a relation P r of r and the corresponding
relation P r′ of r′ cannot be made smaller without at the same
time increasing the cardinality |Qr ⊕ Qr′ | of the symmetric
difference between some other relation Qr of r and the corre-
sponding relation Qr′ of r′. Thus, the characteristic sequence
of a CC-repair r′ of r satisfies a Pareto optimality condition.

The relation between C-repairs, CC-repairs, and ⊕-repairs
is as follows.

PROPOSITION 1. Let Σ be a set of integrity constraints and
let r be a database instance.

1. Every C-repair of r is a CC-repair of r.

2. Every CC-repair of r is a ⊕-repair of r.

The converses are not true, i.e., there are ⊕-repairs that are
not CC-repairs, and there are CC-repairs that are not C-repairs.
The latter is shown in the following example, which, in addi-
tion, shows that there are CC-repairs with distinct characteris-
tic sequences.

EXAMPLE 1. Let Σ be the set consisting of the following
four tgds:

P (x) → R(x), P ′(x) → R′(x), R(x) → R′(x), P ′(x) → Q′(x).

Consider the inconsistent instance r = {P (1), P ′(1)} and the
four consistent instances r1, r2, r3, and r4 below. After each
instance ri, we list the cardinality |r⊕ri| and the characteristic
sequence of ri under the order (P, P ′, R, R′, Q′):

r1 = ∅; 2; (1, 1, 0, 0, 0)

r2 = {P (1), P ′(1), R(1), R′(1), Q′(1)}; 3; (0, 0, 1, 1, 1)

r3 = {P ′(1), R′(1), Q′(1)}; 3; (1, 0, 0, 1, 1)

r4 = {P (1), R(1), R′(1), }; 3; (0, 1, 1, 1, 0)

Each of the above instances is a CC-repair of r. However, it
is obvious from the cardinalities of the symmetric differences
r ⊕ ri that only r1 is a C-repair of r.
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In the remainder of this section, we will give several elemen-
tary, but useful, results about repairs. They have been observed
by several different researchers in one form or another. We be-
gin with the relationship between ⊕-repairs and subset-repairs.

PROPOSITION 2. If r′ ⊆ r, then the following statements
are equivalent.

1. r′ is a subset-repair of r

2. r′ is a ⊕-repair of r.

The next proposition is about denial constraints.

PROPOSITION 3. Let Σ be a set of denial constraints.

1. If r |= Σ and r∗ ⊆ r, then r∗ |= Σ.

2. If r′ is a ⊕-repair of r, then r′ is a subset repair of r.

Consequently, for denial constraints,⊕-repairs and subset-repairs
coincide.

It should be emphasized that Proposition 3 is not true for
set of full tgds. For example, let ψ be the full tgd (E(x, y) →
E(y, x)). Consider the database instances r = {E(a, b), E(b, a)}
and r∗ = {E(a, b)}. Then r |= ψ and r∗ ⊆ r, but r∗ 6|= ψ.
Furthermore, r is a ⊕-repair of r∗, but not a subset-repair.

We now introduce the main algorithmic problem studied in
this paper.

DEFINITION 4. Let Σ be a set of constraints and T a type
of repair. The T -repair checking problem with respect to Σ is
the following decision problem: given two instances r and r′,
is r′ is a T -repair of r?

By Proposition 2, if the ⊕-repair checking problem w.r.t. Σ is
in some complexity class, then so is the subset-repair checking
problem w.r.t. Σ. Moreover, if the subset-repair checking prob-
lem w.r.t. Σ is hard for some complexity class, then so is the
⊕-repair checking problem w.r.t. Σ.

The following simple result yields an upper bound for all
types of repairs and for all classes of constraints introduced in
this section.

PROPOSITION 4. Let Σ be a set of constraints such that
checking whether an instance r satisfies Σ is in PTIME. Then
the C-repair checking problem w.r.t. Σ, the CC-repair check-
ing problem w.r.t. Σ, and the ⊕-repair checking problem w.r.t.
Σ are in coNP. Hence, the subset-repair problem w.r.t. Σ is also
in coNP.

Note that the hypothesis in Proposition 4 is satisfied by every
finite set Σ of first-order constraints. In particular, Proposition 4
applies to every finite set Σ of tgds, egds, or denial constraints.

3. Tractable Repair Checking
In this section, we give a polynomial-time algorithm for the

subset-repair checking problem w.r.t. sets of constraints that are
the union of a weakly acyclic set of LAV tgds and a set of egds.
Such sets contain as a special case all sets of constraints that are
the union of an acyclic set of inclusion dependencies and a set
of functional dependencies. In addition, we give a polynomial-
time algorithm for the⊕-repair checking problem w.r.t. weakly
acyclic sets of LAV tgds. To place our tractability results in the
proper context, we begin by reviewing some earlier tractability
results for repair checking. The first is part of the “folklore”.

PROPOSITION 5. If Σ is a set of denial constraints over
some relational schema S, then the subset-repair checking prob-
lem w.r.t. Σ (equivalently, the ⊕-repair checking problem w.r.t.
Σ) is in LOGSPACE.

PROOF. The basic idea is that we can test whether r′ is max-
imal by checking one fact from r−r′ at a time. More formally,
we first check whether r′ |= Σ and then we check whether
r′ ⊆ r. If r′ 6⊆ r, then, by the second part of Proposition 3, r′

is not a⊕-repair. If r′ |= Σ and r′ ⊆ r, then we add facts P (t)
from r to r′ one at a time and check whether r′∪{R(t)} |= Σ.
If such a fact R(t) is found, then r′ is not a repair; otherwise,
it is a repair. The correctness of this algorithm follows from the
first part of Proposition 3.

Recall that a set Σ of inclusion dependencies is acyclic if
the dependency graph of Σ has no cycles, where the depen-
dency graph of Σ is the graph whose nodes are the relation
symbols occurring in Σ and whose edges are pairs of the form
(R, S) such that R occurs in the left-hand side of some de-
pendency in Σ and S occurs in the right-hand side of that de-
pendency. Chomicki and Marcinkowski [10, Theorem 4.2] ob-
tained the following tractability result for subset-repair check-
ing w.r.t. acyclic sets of inclusion dependencies.

THEOREM 1. (Chomicki and Marcinkowski) If Σ is the union
of an acyclic set of inclusion dependencies and a set of func-
tional dependencies over some relational schema S, then the
subset-repair checking problem w.r.t. Σ is in PTIME.

A perusal of the algorithm in the proof of Theorem 1 in [10]
actually shows that this algorithm uses logarithmic space only.
Intuitively, the reason is that the algorithm uses the fixed fi-
nite acyclic dependency graph, examines all relations in the
database schema starting with the sinks of the dependency graph,
and, in each step, it tests one fact at a time. Thus, if Σ is the
union of an acyclic set of inclusion dependencies and a set of
functional dependencies, then the subset-repair checking prob-
lem w.r.t. Σ is in LOGSPACE.

In what follows, we will significantly extend Theorem 1 from
acyclic sets of inclusion dependencies and functional depen-
dencies to weakly acyclic sets of LAV tgds and egds. As is well
known, the notion of a weakly acyclic set of tgds was consid-
ered first in [11] and [13], and plays a key role in data exchange.

DEFINITION 5. Let Σ be a set of tgds over a relational
schema S.

• The position graph of Σ is constructed as follows:

1. There is a node for every pair (R, A), where R is a
relation symbol of S and A is an attribute of R. We
call such a pair (R, A) a position.

2. Let φ(x) → ∃yψ(x,y) be a tgd in Σ and let x in x
be a variable that also occurs in ψ(x,y). For every
occurrence of x in φ(x) in position (R, Ai), do the
following:
(i) For every occurrence of x in ψ(x,y) in position
(S, Bj), add an edge (R, Ai) → (S, Bj) (if one
does not already exist);
(ii) In addition, for every existentially quantified vari-
able y in y and for every occurrence of y in ψ(x,y)

in position (T, Ck), add a special edge (R, Ai)
∗→

(T, Ck) (if one does not already exist).
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• We say that Σ is weakly acyclic if the dependency graph
has no cycle going through a special edge.

• We say that a tgd θ is weakly acyclic if the singleton {θ}
is weakly acyclic.

Every set of full tgds is weakly acyclic since the dependency
graph contains no special edges. Furthermore, every acyclic
set of inclusion dependencies is a weakly acyclic set of LAV
tgds, since every cycle in the position graph induces a cycle in
the dependency graph. The converse, however, is not true. For
example, Σ = {D(e, m) → M(m), M(m) → ∃eD(e, m)}
is a weakly acyclic, but cyclic, set of inclusion dependencies.
We are now ready to state our first main result.

THEOREM 2. If Σ is the union of a weakly acyclic set of
LAV tgds and a set of egds over some relational schema S, then
the subset-repair problem w.r.t. Σ is in PTIME; in fact, it is in
LOGSPACE.

Theorem 2 will be proved by giving a polynomial-time algo-
rithm for this problem. The algorithm we will give has a simple
description, but its proof of correctness is quite non-trivial. It
will make essential use of both the hypothesis that every tgd
in Σ is a LAV tgd and the hypothesis that the tgds in Σ form
a weakly acyclic set. The main property of LAV tgds used is
that only single facts (and not combinations of facts) “trigger"
a LAV tgd. One important consequence of this property is that
if r1 and r2 are two databases instances that satisfy a LAV tgd d,
then their union (as sets of facts) also satisfies d; this property
fails for arbitrary tgds. The main property of weakly acyclic
sets of tgds used is that the chase procedure converges in poly-
nomial time on such sets (see [13]). Actually, we will need a
more delicate version of the chase procedure, called solution
aware chase, which was introduced and studied in [15]. Before
describing our algorithm, we present the necessary background
about the solution aware chase and several technical lemmas.

Suppose we have a schema mapping specified by a set of
source-to-target tgds and a set of target constraints that is the
union of a weakly acyclic set of target tgds with a set of target
egds. In [13], the chase procedure was used in this context to
detect the existence of solutions and, if solutions exist, to con-
struct a canonical universal solution. During a chase step, the
chase procedure introduces new labeled nulls as needed to wit-
ness the existentially quantified variables of a tgd that has been
triggered. Thus, databases instances produced by the chase
procedure may contain constants and labeled nulls as values.
Suppose now that we have a set Σ of tgds and egds, and two
database instances K and K′ such that K is a sub-instance of
K′, K does not satisfy Σ, and K′ satisfies Σ. In [15], the solu-
tion aware chase procedure was introduced and used to chase
K with Σ and in such a way that, instead of new nulls, values
from K′ are used to witness the existentially quantified vari-
ables in the tgds in Σ (such values exist because K′ satisfies
Σ). The precise notions of a solution-aware chase step and
solution-aware chase are as follows.

DEFINITION 6. (Solution-aware chase step [15]) Let K1

be an instance.

(tgd) Let d be a tgd ∀x(φ(x) → ∃yψ(x,y)). Let K be an
instance that contains K1 and satisfies d. Let h be a homo-
morphism from φ(x) to K1 such that there is no extension
of h to a homomorphism h′ from φ(x) ∧ ψ(x,y) to K1.

We say that d can be applied to K1 with homomorphism
h and solution K, or simply, d can be applied to K1 with
homomorphism h if K is understood from context.

Let h′ be an extension of h such that every variable in y
is assigned a value in K and h′ : ψ(x,y) → K and let
K2 = K1 ∪ h′(ψ(x,y)), where

h′(ψ(x,y)) =

{R(h′(z1), ..., h
′(zn)) : R(z1, . . . , zn) is atom of ψ(x,y)}

We say that the result of applying d to K1 with h and so-

lution K is K2, and write K1
d,h,K−→ K2. We drop K and

write K1
d,h−→ K2 if K is understood from the context.

(egd) Let d be an egd ∀x(φ(x) → (x1 = x2)). Let h be a
homomorphism from φ(x) to K1 such that h(x1) 6= h(x2).
We say that d can be applied to K1 with homomorphism h.
We distinguish two cases.

• If both h(x1) and h(x2) are constants, then we say that
the result of applying d to K1 with h is “failure”, and

write K1
d,h−→ ⊥.

• Otherwise, let K2 be K1 where we identify h(x1) and
h(x2) as follows: if one is a constant, then the labeled
null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the
other. We say that the result of applying d to K1 with h

is K2, and write K1
d,h−→ K2.

DEFINITION 7. (Solution-aware chase) Let Σ be a set of
tgds and egds. Let K be an instance and K′ be an instance
that contains K and satisfies the set of tgds in Σ.

• A solution-aware chase sequence of K with Σ and K′

is a sequence (finite or infinite) of solution-aware chase

steps Ki
di,hi−→ Ki+1, with i = 0, 1, ..., with K = K0

and di a dependency in Σ.

• A finite solution-aware chase of K with Σ and K′ is a fi-

nite solution-aware chase sequence Ki
di,hi−→ Ki+1, 0 ≤

i ≤ m, with the requirement that either (a) Km = ⊥ or
(b) there is no dependency di of Σ and there is no homo-
morphism hi such that di can be applied to Km with hi.
We say that Km is the result of the finite solution-aware
chase. We refer to case (a) as the case of a failing finite
solution-aware chase and we refer to case (b) as the case
of a successful finite solution-aware chase.

The following lemma (which is Lemma 3.4 in [15]) asserts
that if Σ is the union of a weakly acyclic set of tgds with a set
of egds, then the length of every chase sequence of an instance
is bounded by a polynomial in the size of the instance.

LEMMA 1. [15, Lemma 3.4] Let Σ be the union of a weakly
acyclic set of tgds with a set of egds over some schema. Then
there exists a polynomial p(x) having the following property:
if K and K′ are instances such that K′ satisfies Σ and K′

contains K, then the length of every solution-aware chase se-
quence of K with Σ and K′ is bounded by p(|K|), where |K|
is the size of K.

The next lemma follows easily from (the proof of) Lemma
3.5 in [15].
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LEMMA 2. (implicit in [15]) Let Σ be the union of a weakly
acyclic set of tgds with a set of egds over some schema. Then
there exists a polynomial p(x) having the following property:
if K and K′ are instances such that K′ satisfies Σ and K′

contains K, then there is an instance K∗ such that K is con-
tained in K∗, K∗ is contained in K′, K∗ satisfies Σ, and
|K∗| ≤ p(|K|).

In a nutshell, Lemma 2 is proved by showing that if we chase
K with Σ and K′, then a successful finite solution-aware chase
exists. This gives the desired instance K∗ whose size, accord-
ing to Lemma 1 is bounded by a polynomial in the size of K.
The following result is an immediate consequence of Lemma 2.

COROLLARY 1. Let Σ be the union of a weakly acyclic set
of tgds with a set of egds over some schema. Then there exists a
constant c (that depends only on Σ) having the following prop-
erty: if K′ is an instance that satisfies Σ and t is a fact in K′,
then there is an instance K∗ such that t ∈ K∗, K∗ is contained
in K′, K∗ satisfies Σ, and |K∗| ≤ c.

PROOF. We let c = p(1) = p(|{t}|), where p(x) is the
polynomial given by Lemma 2.

Using Corollary 1 and properties of LAV tgds and egds, we
can now obtain the following key technical lemma, which will
be heavily used in our polynomial-time algorithm for subset-
repair checking w.r.t. a set of constraints that is the union of a
weakly acyclic set of LAV tgds with a set of egds. This lemma
will also be used in designing our polynomial-time algorithm
for ⊕-repair checking w.r.t. a weakly acyclic set of LAV tgds
(note that in Lemma 3 below we do not assume that r′ is con-
tained in r).

LEMMA 3. Let Σ be a set that is the union of a weakly
acyclic set of LAV tgds with a set of egds. Then there is a con-
stant c (that depends only on Σ) such that the following holds.
Let r and r′ be two instances and suppose that r′ satisfies Σ.
Let t be a fact in r − r′ such that there is a non-empty set
A ⊆ r − r′ of facts such that t ∈ A and r′ ∪ A satisfies Σ.
Then there is a set At of facts such that t ∈ At, At ⊆ r − r′,
|At| ≤ c, and r′ ∪At satisfies Σ.

PROOF. Let c be the constant given by Corollary 1. Suppose
that we are given instances r and r′, a fact t in r − r′, and a
set A of facts that satisfy the hypotheses of the lemma. By
applying Corollary 1 to Σ, to t, and to K′ = r′ ∪A, we obtain
an instance K∗ such that t ∈ K∗, K∗ is contained in r′ ∪ A,
K∗ satisfies Σ, and |K∗| ≤ c. We now claim that the instance
r′ ∪ K∗ satisfies Σ. First, r′ ∪ K∗ satisfies every tgd in Σ
because all tgds in Σ are LAV tgds and both r′ and K∗ satisfy
Σ (as mentioned earlier, LAV tgds are preserved under union of
models). Furthermore, r′∪K∗ satisfies every egd in Σ because
r′ ∪K∗ is contained in r′ ∪A and r′ ∪A satisfies Σ (egds are
preserved under sub-instances). Let At = K∗ ∩ (r− r′). Then
t ∈ At, At ⊆ r − r′, |At| ≤ c, and r′ ∪ At satisfies Σ, since
r′ ∪At = r′ ∪K∗.

We are now ready to embark on the proof of Theorem 2.
Proof of Theorem 2: We give the promised polynomial-time
algorithm for the subset-repair checking problem and outline its
proof of correctness. Assume that Σ is the union of a weakly
acyclic set of LAV tgds and a set of egds. Let c be the constant
given by Corollary 1.

Algorithm for subset-repair checking w.r.t. Σ
Input: Two instances r and r′ such that r′ ⊂ r, r does not satisfy Σ
and r′ satisfies Σ.
Output: Determine whether or not r′ is a subset-repair of r w.r.t. Σ.

Test whether there is a set A∗ of facts such that:
1. A∗ is non-empty;
2. |A∗| ≤ c;
3. A∗ is contained in r − r′;
4. r′ ∪A∗ satisfies Σ.

If such a set A∗ is found, then stop, report that “r′ is not a subset-
repair of r", and exit. If no such set A∗ is found, then stop, report that
“r′ is a subset-repair of r", and exit.

We now have to analyze the running time of this algorithm
and prove its correctness. The algorithm runs in time poly-
nomial in the sizes of r and r′, since we have a polynomial
number of tests and each step can be carried out in polynomial
time. Actually, each of these tests can be done in space loga-
rithmic in the sizes of r and r′, and we can keep track of the
number of tests by maintaining a counter in binary. It follows
that this a log-space algorithm. Next, we turn to the correctness
of the algorithm. It is obvious that if the algorithm terminates
by finding such a set A∗, then r′ is not a subset-repair of r,
because r′ ∪ A∗ is a consistent instance that is contained in r
and properly contains r′. In the other direction, assume that r′

is not a subset-repair of r. Let r′′ be a database instance such
that r′′ |= Σ and r′ ⊂ r′′ ⊂ r. Hence, there is a non-empty
set A ⊂ r − r′ such that r′′ = r′ ∪ A. By applying Lemma
3, we conclude that there is a non-empty set A∗ ⊆ r − r′ such
that |A∗| ≤ c and r′ ∪ A∗ |= Σ. This completes the proof of
Theorem 2. .

As a byproduct of the polynomial-time algorithm for subset-
repair checking, we obtain a polynomial-time algorithm for find-
ing a subset-repair of an inconsistent instance.

COROLLARY 2. Let Σ be the union of a weakly acyclic set
of LAV tgds and a set of egds over some relational schema
S. Then there is a polynomial-time algorithm for the follow-
ing problem: given a database instance r such that r does not
satisfy Σ, find a subset-repair of r.

PROOF. We start with the empty instance and apply repeat-
edly the polynomial-time algorithm for subset-repair checking.
Since at each step we get a consistent instance that properly
contains the previous consistent instance, the algorithm will
terminate in a polynomial-time of steps and produce a subset-
repair of r.

Our second main result is a polynomial-time algorithm for
the⊕-repair checking problem w.r.t. weakly acyclic sets of LAV
tgds (no egds are allowed).

THEOREM 3. If Σ is a weakly acyclic set of LAV tgds over
some relational schema S, then the ⊕-repair checking problem
w.r.t. Σ is in PTIME; in fact, it is in LOGSPACE.

PROOF. Assume that Σ is a weakly acyclic set of LAV tgds.
Let c be the constant given by Corollary 1.

Algorithm for⊕-repair checking w.r.t. Σ
Input: Two instances r and r′ such that r does not satisfy Σ and r′
satisfies Σ.
Output: Determine whether or not r′ is a ⊕-repair of r w.r.t. Σ.
Step 1. Test whether there is a set A∗ of facts such that:

37



1. A∗ is non-empty;
2. |A∗| ≤ c;
3. A∗ is contained in r − r′;
4. r′ ∪A∗ satisfies Σ.

If such a set A∗ is found, then stop, report that “r′ is not a⊕-repair
of r", and exit; else, go to Step 2.

Step 2. Test whether there is a set B∗ of facts such that
1. B∗ is non-empty;
2. |B∗| ≤ c;
3. B∗ is contained in r′ − r;
4. r′ −B∗ satisfies Σ.

If such a set B∗ is found, then stop, report that “r′ is not a⊕-repair
of r", and exit. If no such B∗ is found, then stop, report that “r′ is a
⊕-repair of r", and exit.

We now have to analyze the running time of this algorithm
and prove its correctness. The algorithm runs in polynomial
time, because we have a polynomial-number of tests in Steps
1 and 2, and each step can be carried out in polynomial time.
In fact, this is a log-space algorithm. Next, we turn to the cor-
rectness of the algorithm. It is obvious that if the algorithm
terminates by finding such a set A∗, then r′ is not a ⊕-repair
of r since r′ ∪ A∗ is a consistent instance that is “better" than
r′. Similarly, if the algorithm terminates by finding such a set
B∗, then r′ is not a ⊕-repair of r since r′ − B∗ is a consistent
instance that is “better" than r′. So, it remains to show that if
r′ is not a ⊕-repair of r, then such a set A∗ exists or such a set
B∗ exists. To establish this fact, we will need three additional
lemmas. The first is an elementary property of sets.

LEMMA 4. Let r, r′, and r′′ be sets such that (r′′ − r) ∪
(r − r′′) ⊂ (r′ − r) ∪ (r − r′). Then there are sets A and B
such that the following hold:

1. At least one of A and B is non-empty;

2. r′′ = (r′ −B) ∪A;

3. A ⊆ r − r′ and B ⊆ r′ − r.

Using Lemma 4, we obtain the following crucial lemma.

LEMMA 5. Let Σ be a weakly acyclic set of LAV tgds, and
let r and r′ be two database instances such that r does not
satisfy Σ and r′ satisfies Σ. If r′ is not a ⊕-repair of r, then
there are sets A and B of facts such that the following hold:

1. At least one of A and B is non-empty;

2. A ⊆ r − r′ and B ⊆ r′ − r;

3. Either A is empty (which implies that B is non-empty) and
r′ − B satisfies Σ, or A is non-empty and r′ ∪ A satisfies
Σ.

PROOF. If r′ is not a ⊕-repair of r, then there is an instance
r′′ such that r′′ satisfies Σ and (r′′ − r) ∪ (r − r′′) ⊂ (r′ −
r) ∪ (r − r′). By Lemma 4, there are sets A and B of facts
that satisfy the three conditions in the conclusion of Lemma 4.
In particular, A and B already satisfy the first two conditions
that we had to prove in the present lemma. Note also that r′′ =
(r′ − B) ∪ A ⊆ r′ ∪ A. It remains to show that either A is
non-empty and r′ ∪ A satisfies Σ, or A is empty and r′ − B
satisfies Σ. For this, we consider two cases: A is empty or A is
non-empty.

Case 1: Suppose that A is empty. In this case, we have that
r′′ = (r′ −B) ∪A = r′ −B and so r′ −B satisfies Σ (since
r′′ satisfies Σ).

Case 2: Suppose that A is non-empty. We will show that r′∪A
satisfies Σ. Let d be a tgd in Σ. Then d must be a LAV tgd,
which implies that only single facts can “trigger" d. So, assume
that t is a fact in r′ ∪ A that satisfies the left-hand side of d. If
t is in r′, then the right-hand side of d is satisfied in r′ (since r′

satisfies Σ) and so d is satisfied in r′∪A. If t ∈ A, then t ∈ r′′,
hence the right-hand of d is satisfied in r′′ (since r′′ satisfies Σ)
and so d is satisfied in r′ ∪ A (since r′′ = (r′ − B) ∪ A ⊆
r′ ∪A).

It should be pointed out that it was important in the proof of
Lemma 5 that Σ contained no egds (Case 2 does not go through
for egds). We now state the third and final lemma.

LEMMA 6. Let Σ be a weakly acyclic set of LAV tgds. Then
there is a constant (that depends only on Σ) such that the fol-
lowing holds. Suppose that r and r′ are two instances such that
r′ satisfies Σ. Suppose also that there exists a non-empty set
B ⊆ r′ − r such that r′ − B satisfies Σ. Then there is a non-
empty set B0 such that B0 ⊆ r′ − r, |B0| ≤ c, and r′ − B0

satisfies Σ.

PROOF. Let c be the constant in Corollary 1. Let B0 be
a minimal set such that B0 is non-empty, B0 ⊆ r′ − r, and
r′ −B0 satisfies Σ (i.e., no proper subset of B0 has these three
properties). We claim that |B0| ≤ c. Towards a contradiction,
suppose that |B0| > c. Let t be a fact in B0. By applying
Corollary 1 to r′ and to t, we obtain a set B′ of facts such that
t ∈ B′, B′ ⊆ r′, |B′| ≤ c, and B′ |= Σ. It follows that
(r′ − B0) ∪ B′ |= Σ. Moreover, we have that (r′ − B0) ∪
B′ = r′ − (B0 − B′). We now have that B0 − B′ is a proper
subset of B0 (because t ∈ B′ ∩ B0), B0 − B′ is non-empty
(because |B0| > c and |B′| ≤ c), B0 − B′ ⊆ r′ − r (because
B0 ⊆ r′−r), and r′−(B0−B′) |= Σ. This, however, violates
the minimality of B0, hence |B0| ≤ c.

Using Lemmas 5 and 6, we can now prove that if r′ is not a
⊕-repair of r, then such a set A∗ exists or such a set B∗ exists.
For this, we distinguish two cases. The first is the case in which,
by Lemma 5, a non-empty subset A of r − r′ exists such that
r′∪A |= Σ. In this case, by applying Corollary 1 to r′∪A and
to some fact t in A, we obtain the desired set A∗. The second
case is the case in which, by Lemma 5, a set non-empty subset
B of r′ − r exists such that r′ − B |= Σ. In this case, the
desired set B∗ is given by Lemma 6.

We note that our polynomial-time algorithm for⊕-repair check-
ing can be modified to a polynomial-time algorithm for finding
a ⊕-repair of an inconsistent database (w.r.t. a weakly acyclic
set of LAV tgds).

3.1 P-completeness for the case of full tgds

In his Ph.D. thesis, Staworko [27] identified another natural
and extensively studied class of constraints for which the ⊕-
repair checking problem is tractable.

THEOREM 4. (Staworko) If Σ is a set of full tgds, then the
⊕-repair checking problem w.r.t. Σ is in PTIME.
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Our second result in this section asserts that there is a set
of full tgds for which the subset-repair checking problem is
PTIME-complete (consequently, the ⊕-repair checking prob-
lem is PTIME-complete as well).

THEOREM 5. There is a set Σ of full tgds such that the
subset-repair checking problem w.r.t. Σ is PTIME-complete.

PROOF. (Sketch) By Theorem 4, for every finite set of full
tgds, the subset-repair checking problem is in PTIME. We will
establish PTIME-hardness via a log-space reduction from HORN
3-SAT, which is the following decision problem: given a Horn
formula ϕ with at most three literals per clause, is ϕ satisfi-
able? (It is well known that HORN 3-SAT is PTIME-complete;
see [18].)

We consider a database schema consisting of four unary re-
lation symbols A, U , M , F , and two ternary relation symbols
P and N . Let Σ be the set of the following four full tgds:

A(w) ∧ U(x) → M(x)

A(w) ∧ P (x, y, z) ∧M(x) ∧M(y) → M(z)

(w) ∧N(x, y, z) ∧M(x) ∧M(y) ∧M(z) → F (w)

M(w) → A(w).

In the full version of this paper, we show that, given a Horn
formula ϕ with at most three literals per clause, we can con-
struct in log-space two database instances r and r′ such that ϕ
is satisfiable if and only if r′ is not a subset-repair of r.

It follows that, unless PTIME = LOGSPACE, the subset-
repair checking problem for sets of full tgds is not in LOGSPACE.
Thus, in a precise complexity-theoretic sense, the subset-repair
checking problem for sets of full tgds is harder than the subset-
repair checking problem for sets of denial constraints or for sets
that are the union of a weakly acyclic set of LAV tgds with a set
of egds.

4. Intractable Repair Checking

4.1 Subset-repair checking and ⊕-repair checking

Chomicki and Marcinkowski [10, Theorem 4.4] obtained the
following intractability result.

THEOREM 6. (Chomicki and Marcinkowski) There is a set
Σ consisting of one inclusion dependency and one functional
dependency such that the subset-repair checking problem w.r.t.
Σ is coNP-complete.

The inclusion dependency in the proof of Theorem 6 is

R(x1, x2, x3, x4) → ∃y1, y2, y3R(y1, y2, x4, y3).

This inclusion dependency is cyclic; as a matter of fact, it is not
even weakly acyclic, since its position graph contains a self-
loop with a special edge in position (R, 4). By Theorem 2, if
Σ is the union of a weakly acyclic set of LAV tgds and a set
of egds, then the subset-repair checking problem w.r.t. Σ is in
PTIME. Our first intractability result reveals that the hypothesis
in Theorem 2 that all tgds are LAV is of the essence.

THEOREM 7. There is a weakly acyclic set Σ of tgds such
that the subset-repair problem w.r.t. Σ is coNP-complete. Con-
sequently, also the⊕-repair checking problem w.r.t. Σ is coNP-
complete.

PROOF. (Sketch) For every finite set of tgds, the subset-
repair checking problem is in coNP by Corollary 2 and Propo-
sition 4. We will show that there is a weakly acyclic set of
tgds for which this problem is coNP-hard via a reduction from
POSITIVE-1-IN-3-SAT. Recall that POSITIVE 1-IN-3-SAT is
the following decision problem: given a Boolean formula ϕ in
conjunctive normal form and such that each clause is a disjunc-
tion (x∨ y ∨ z) of three positive literals, is there a truth assign-
ment that makes true exactly one variable in every clause?

Let Σ be the set consisting of the (non-LAV) acyclic tgd

A(s) ∧ P (x, y, z) → ∃u, v, w(T (x, u) ∧ T (y, v) ∧
T (z, w) ∧ S(u, v, w))

and the following two full tgds:

T (x, u) ∧ T (x, u′) ∧D(u, u′) → S(u, u, u)

T (x, u) → A(u).

Note that Σ is a weakly acyclic set of tgds; indeed, the only
special edges in the dependency graph of Σ are from the posi-
tions of P to the positions of T , and no position in P has an
incoming edge. In the full version of this paper, we show that,
given an instance ϕ of POSITIVE 1-IN-3 SAT with n variables,
we can construct in polynomial time two database instances r
and r′ such that here is a truth assignment s that makes true
exactly one variable in each clause of ϕ if and only if r′ is not
a subset-repair of r.

By Theorem 3, if Σ is a weakly acyclic set of LAV tgds,
then the ⊕-repair checking problem w.r.t. Σ is in PTIME. Our
second intractability result reveals that the absence of egds from
Σ is of the essence. It is proved via a reduction from POSITIVE-
1-IN-3-SAT, which is given in the full version of this paper.

THEOREM 8. There is a weakly acyclic set Σ1 of LAV tgds
and a set Σ2 of egds such that the ⊕-repair checking problem
w.r.t. Σ1 ∪ Σ2 is coNP-complete.

Combined with the tractability results in Section 3, Theo-
rems 7 and 8 yield a fairly complete characterization of the
computational complexity of the subset-repair problem and the
⊕-repair checking problem for the various classes of constraints
considered here. In fact, as depicted in Table 1, the only ques-
tion that remains open is whether there is a set Σ that is the
union of an acyclic set of inclusion dependencies and a set of
egds such that the ⊕-repair checking problem w.r.t. Σ is coNP-
complete.

4.2 Cardinality-based repair checking

The following result is implicit in [22]; actually, it follows
from Lemma 4 in [22].

THEOREM 9. (Lopatenko and Bertossi) There is a denial
constraint ϕ such that the C-repair checking problem w.r.t. ϕ
is coNP-complete.

Theorem 9 tells that, for denial constraints, the coNP-upper
bound in Proposition 4 is optimal. It should be pointed out
that the denial constraint used to prove Theorem 9 involves no
comparison atoms, i.e., it is an first-order formula of the form
∀x¬α(x), where α(x) is a conjunction of relational atoms.
Furthermore, the proof is via a reduction from the following
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variant of the MAXIMUM INDEPENDENT SET problem: given
a graph G = (V, E) and a subset V ′ of the set V of the nodes
of G, is V ′ an independent set of maximum cardinality in G?

We now adapt the main idea in the proof of Theorem 9 to
show that the C-repair checking problem can be coNP-hard for
full tgds. It is proved via a reduction from MAX CLIQUE.

THEOREM 10. There is a full tgd ϕ such that the C-repair
checking problem w.r.t. ϕ is coNP-complete.

PROOF. (Sketch) For every finite set of tgds, the C-repair
checking problem is in coNP by Proposition 4. We will show
that there is a full tgd for which this problem is coNP-hard via a
reduction from the following variant of the MAXIMUM CLIQUE
problem: given a graph G = (V, E) and a subset V ′ of the set
V of the nodes of V , is V ′ a clique of maximum cardinality in
G?

We consider a relational vocabulary consisting of two unary
relation symbol A and N , and a ternary relation symbol F . Let
ϕ be the following full tgd:

∀x, y, w(A(x) ∧A(y) ∧N(w) → F (x, y, w)).

Suppose that we are given a graph G = (V, E) and a subset V ′

of V , and we wish to determine whether or not V ′ is a clique
of maximum cardinality in G. Without loss of generality, we
may also assume that V is not a clique, but V ′ is a clique. In
the full version of this paper, we show that we can construct in
polynomial time two database instances r and r′ such that V ′

is a clique of maximum cardinality in G if and only if r′ is a
C-repair of r.

Our next result shows a dramatic difference in the complexity
between the subset-repair checking problem and the C-repair
checking problem for acyclic sets of inclusion dependencies
and functional dependencies.

THEOREM 11. There is an acyclic set Σ of inclusion depen-
dencies and a functional dependency d such that the C-repair
checking problem w.r.t. Σ ∪ {d} is coNP-complete.

Theorem 11 is established via a delicate reduction from CU-
BIC POSITIVE-IN-3-SAT, which is the restriction of POSITIVE-
IN-3-SAT to positive 3CNF-formulas in which every variable
occurs exactly three times; this problem was shown to be NP-
complete in [24].

Our final result shows that the CC-repair checking problem
can be coNP-hard for all classes of constraints considered here.

THEOREM 12. The following statements are true.

1. There is denial constraint χ such that the CC-repair check-
ing problem w.r.t. χ is coNP-complete.

2. There is a full tgd θ such that the CC-repair problem w.r.t.
θ is coNP-complete.

3. There is a LAV acyclic tgd ψ such that the CC-repair check-
ing problem w.r.t. ψ is coNP-complete.

4. There is an acyclic set Ψ of inclusion dependencies such
that the CC-repair problem w.r.t. Ψ is coNP-complete.

PROOF. (Sketch) For every finite set of tgds, the CC-repair
checking problem is in coNP by Proposition 4. The coNP-
hardness for denial constraints is proved via a reduction from
MAXIMUM INDEPENDENT SET using the denial constraint

∀x, y(¬A(x) ∨ ¬A(y) ∨ ¬F (x, y)).

The coNP-hardness for full tgds is proved via a reduction from
MAXIMUM CLIQUE using the full tgd

∀x, y(A(x) ∧A(y) → F (x, y)).

The last two coNP-hardness results are proved via suitable re-
ductions from POSITIVE-1-IN-3-SAT. First, let ψ be the fol-
lowing LAV acyclic tgd:

∀x, y, z, u, v, w(P (x, y, z) →
∃u, v, w(T (x, u) ∧ T (y, v) ∧ T (z, w) ∧ S(u, v, w))).

Finally, let Ψ be the set consisting of the following five inclu-
sion dependencies (clearly, Ψ is an acyclic set):

P (x, y, z) → ∃u, v, wQ(x, y, z, u, v, w),

Q(x, y, z, u, v, w) → S(u, v, w)

Q(x, y, z, u, v, w) → T (x, u),

Q(x, y, z, u, v, w) → T (y, v),

Q(x, y, z, u, v, w) → T (z, w).

In the full version of this paper, we show that the complement
of POSITIVE-1-IN-3-SAT can be reduced in polynomial time
to both the CC-repair checking problem w.r.t. to ψ and the CC-
repair checking problem w.r.t. Ψ.

5. Concluding Remarks
In this paper, we carried out a systematic investigation of

the repair-checking problem for several different types of re-
pairs and for various classes of integrity constraint encountered
in database design, data integration, and data exchange. On the
side of tractability, we gave a polynomial-time algorithm for the
subset-repair checking problem w.r.t. every set of constraints
that is the union of a weakly acyclic set of LAV tgds and a set of
egds. This result significantly extends earlier tractability results
for acyclic sets of inclusion dependencies and functional de-
pendencies. We also gave a polynomial-time algorithm for the
⊕-repair checking problem w.r.t. a weakly acyclic set of LAV
tgds. These two tractability results turn out to be optimal be-
cause we found a weakly acyclic set of non-LAV tgds for which
the subset-repair checking problem is coNP-complete. Further-
more, we found a set that is the union of a weakly acyclic set
of LAV tgds with a set of egds for which the ⊕-repair checking
problem is coNP-complete.

We also studied the repair-checking problem for cardinality-
based repairs. In addition to considering C-repairs which mini-
mize the cardinality of the symmetric difference, we introduced
and studied CC-repairs, a new type of cardinality-based repairs
that have a Pareto optimality character. In general, C-repairs
are stricter than CC-repairs, and CC-repairs are stricter than
⊕-repairs. We showed that both the C-repair checking prob-
lem and the CC-repair checking problem are intractable w.r.t.
classes of integrity constraints for which the subset repair prob-
lem or the ⊕-repair problem are tractable. Thus, our results
reveal that testing that a consistent instance repairs a database
by minimizing the number of insertions and deletions is gener-
ally harder than testing that it is a subset-repair or a ⊕-repair.

The work reported here suggests several different research
directions. On the side of theory, the definitive result in the
study of the repair-checking problem would be a dichotomy the-
orem to the effect that, for every set Σ of tgds and egds and for
every type T of repairs, either the T -repair checking problem
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w.r.t. Σ is in PTIME or it is coNP-complete. We conjecture
that such a dichotomy theorem holds, even though its discovery
is not in sight. On the side of practice, it would be interest-
ing to identify natural syntactic conditions on various classes
of integrity constraints used in applications for which the re-
pair checking problem is solvable efficiently by algorithms of
low running time. In a different direction, the results obtained
here hint at a connection between data exchange and database
repairs. In particular, a version of the chase algorithm (which
is conspicuous in the study of algorithmic problems in data ex-
change) was used in proving the correctness of our polynomial-
time algorithm for the subset-repair checking problem w.r.t. a
set of constraints that is the union of a weakly acyclic set of
LAV tgds and a set of egds (Theorem 2). It would be inter-
esting to pursue this connection further and perhaps unveil a
deeper relationship between algorithmic problems in data ex-
change and algorithmic problems concerning database repairs.
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