
FOGGER: An Algorithm for Graph Generator Discovery∗

Zhiping Zeng1 , Jianyong Wang2 , Jun Zhang3 , Lizhu Zhou4

Department of Computer Science and Technology
Tsinghua University, Beijing, 100084, P.R.China

{clipse.zeng1 , zhangjun033
}@gmail.com, {jianyong2 , dcszlz4

}@tsinghua.edu.cn

ABSTRACT
To our best knowledge, all existing graph pattern mining al-
gorithms can only mine either closed, maximal or the com-
plete set of frequent subgraphs instead of graph generators
which are preferable to the closed subgraphs according to
the Minimum Description Length principle in some ap-
plications. In this paper, we study a new problem of frequent
subgraph mining, called frequent connected graph generator
mining, which poses significant challenges due to the under-
lying complexity associated with frequent subgraph mining
as well as the absence of Apriori property for graph gener-
ators. Whereas, we still present an efficient solution Fog-

ger
1 for this new problem. By exploring some properties

of graph generators, two effective pruning techniques, back-
ward edge pruning and forward edge pruning , are pro-
posed to prune the branches of the well-known DFS code
enumeration tree that do not contain graph generators. To
further improve the efficiency, an effective index structure,
ADI++, is also devised to facilitate the subgraph isomor-
phism checking. We experimentally evaluate various aspects
of Fogger using both real and synthetic datasets. Our re-
sults demonstrate that the two pruning techniques are ef-
fective in pruning the unpromising parts of search space,
and Fogger is efficient and scalable in terms of the base
size of input databases. Meanwhile, the performance study
for graph generator-based classification model shows that
generator-based model is much simpler and can achieve al-
most the same accuracy for classifying chemical compounds
in comparison with closed subgraph-based model.

∗This work was supported in part by National Natural
Science Foundation of China under grant No. 60873171,
60573061 and 60833003, National Basic Research Program
of China under Grant No. 2006CB303103, Basic Research
Foundation of Tsinghua National Laboratory for Informa-
tion Science and Technology(TNList), Program for New
Century Excellent Talents in University under Grant No.
NCET-07-0491, State Education Ministry of China.
1
Fogger stands for Frequent cOnnected Graph

GenERator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT ’09, March 24-26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

Keywords
Graph mining, graph generator, graph classification

1. INTRODUCTION
As graph structures provide a general way to model a

variety of relationships among different objects and arise
naturally in a wide range of disciplines and applications,
graph pattern mining has raised great interest and become
a very active topic in data mining research. One of the
essential problem formulations in graph pattern mining is
frequent subgraph mining based on a given input graph
database and a user-specified minimum support threshold,
which has shown various applications in bioinformatics[8],
subgraph-index based data management[28, 33, 3, 25] and
so on. Many efficient algorithms[23, 32, 21, 18, 20] have
been developed and widely used in real applications, typical
examples including AGM[11], TreeMiner[30], FSG[12].

However, due to the intractable combinatorial explo-

sion problem , frequent subgraph mining is a very time-
consuming process and usually generates a huge number of
frequent subgraphs. For example, as shown in [26], nearly
1,000,000 frequent subgraphs with a minimum support thresh-
old of 5% can be mined even from the small and sparse CA
dataset which contains 422 active chemical compounds in
AIDS antiviral screen dataset provided by NCI/NIH. The
huge number of frequent subgraphs also makes some further
data analysis like feature selection and chemical compound
classification a very challenging task.

Fortunately, not all the frequent subgraphs are of inter-
est from the application point of view. We can divide the
complete set of frequent subgraphs into a set of equivalence
classes. Informally speaking, a set of frequent subgraphs
forms an equivalence class if and only if they are supported
by the same set of input graphs. The maximal subgraphs
in each equivalence class are called closed subgraphs, while
the minimal ones are called graph generators. As we can
see, because both the set of frequent graph generators and
the set of frequent closed subgraphs are subsets of all fre-
quent subgraphs, they tend to be more concise. In addition,
to mine graph generators(or closed subgraphs) only, we can
devise more effective optimization techniques to prune some
parts of the search space which contain no graph genera-
tor(or closed subgraph). Thus, both graph generator mining
and closed subgraph mining can be potentially more efficient
than all frequent subgraph mining too. To our best knowl-
edge, although there is some work on mining frequent closed
subgraphs[26] or fully connected closed subgraphs only[24],
no attention has been paid to graph generator mining.

517

Compared with closed subgraph mining, graph generator
mining has its own advantage and deserves some research
efforts. From the graph data classification point of view,
graph generators are usually preferable to their correspond-
ing closed subgraphs according to the MDL principle [16,
15, 6], which has a sound statistical foundation rooted in the
well-known Bayesian inference and Kolmogorov complexity.
We will explain this in detail in Section 2.2 after the in-
troductionn of some necessary preliminaries. Moreover, we
will compare the average pattern size and the number of
patterns in the result set of graph generators with those in
the result set of closed subgraphs, and show the effective-
ness of the generator-based graph classification model in the
performance study section.

To our best knowledge, this work is the first attempt to
design an algorithm for mining frequent connected graph
generators. We summarize our contributions as follows:

• We formally define the problem of mining frequent con-
nected graph generators, explore their properties, and
present the first graph generator mining algorithm,
Fogger.

• Two novel pruning techniques whose effectiveness are
verified in the performance study section are proposed
to prune the unpromising parts of search space.

• An effective index structure, ADI++, is devised to as-
sist the subgraph isomorphism checking, which can be
widely used as an underlying index structure for a large
number of existing graph pattern mining algorithms.

• Extensive study has been conducted to validate the
algorithm’s efficiency and scalability, and demonstrate
its utility in graph data classification such as classify-
ing chemical compounds.

The rest of this paper is organized as follows. Section 2
gives the problem formulation, explains the motivation of
graph generator mining and explores some properties of graph
generators. Section 3 presents our solution for frequent con-
nected graph generator mining. It first gives a brief intro-
duction about the DFS(depth-first search) code tree enu-
meration framework and introduces two novel pruning tech-
niques. And then, generator checking scheme is described
as well as ADI++ structure which can facilitate the sub-
graph isomorphism checking. At the end of this section, the
integrated algorithm for mining frequent connected graph
generators, Fogger, is outlined. Section 4 investigates the
comprehensive performance study followed by related work
discussion in Section 5. At last, this study concludes with
Section 6.

2. PRELIMINARIES
In this section, we introduce some preliminary concepts

and notations about frequent subgraph mining, formulate
and motivate the problem of frequent connected graph gen-
erator mining. Some properties of graph generators are also
explored.

2.1 Graph Generators and Closed Graphs
In this paper, only simple graph structures are considered,

i.e., undirected graphs without multi-edges and self-loops.
An undirected labeled graph G can be represented by a

6-tuple, G = (V, E, Lv, Le, Fv, Fe), where V is a finite set of
vertices, E ⊆ V × V is a set of edges, Lv and Le are the
sets of vertex labels and edge labels respectively, and Fv :
V → Lv and Fe : E → Le are labeling functions assigning
labels to vertices and edges respectively. G is said to be
connected if at least one path exists between any pair of
vertices in V , otherwise it is called a disconnected graph.
In addition, singleton graphs are considered as connected
graphs. G1 is graph isomorphic to another graph G2 iff
there exists a bijection f : V1 → V2 such that for any vertex
v ∈ V1, f(v) ∈ V2 ∧ Fv(v) = Fv(f(v)), and for any edge
(u, v) ∈ E1, (f(u), f(v)) ∈ E2 ∧ Fe(u, v) = Fe(f(u), f(v)).
G1 is a subgraph of G2 iff V1 ⊆ V2 and E1 ⊆ E2∩(V1 ×V1),
denoted by G1 v G2 or G1 < G2 (i.e., G1 v G2 but G1 6=
G2). Equivalently, G2 is a supergraph of G1 and is said to
contain G1. Moreover, if G1 is isomorphic to a subgraph g
of G2, G1 is said to be subgraph isomorphic to G2, and g
is called an instance of G1 in G2.

A graph database D is defined as a set of input graphs
whose cardinality is denoted by |D|. Figure 1 shows a graph
database example containing four input graphs which will
be used as our running example in the following discussion.
Assume P is the set of subgraph patterns each of which is
contained by at least one input graph in D. The Galois

connection [4] between 2D and 2P is a couple of functions
(f, g) where f(p) = {d ∈ D | p v d} and g(D) = {p | ∀ d ∈
D, p v d}. Intuitively, f(p) is the set of all input graphs in
D containing p, and dually, g(D) is the set of all subgraph
patterns in P shared by all input graphs in D. The Galois

closure operators are the following functions: h = g ◦ f
and h′ = f ◦g, where ◦ denotes the composition of functions.
Given an subgraph pattern p, h(p) = g(f(p)) is called the
closure of p.

The closure induces an equivalence relation ∼
D

by p1 ∼
D

p2 iff h(p1) = h(p2). Thus, the equivalence class of a
subgraph pattern p, denoted by[p], is defined as the set
{p′|h(p′) = h(p)}. For an equivalence class [p], if p0 ∈ [p]
and @ p′ ∈ [p] such that p0 < p′, p0 is a maximal pattern in
[p] and is said to be closed ; otherwise, if @ p′ ∈ [p] such that
p′

< p0 , p0 is a minimal pattern in [p] and is called a gener-

ator . For the patterns in the form of itemsets, there is one
and only one closed pattern in each equivalence class[14].
But for connected graph patterns, there could be more than
one closed patterns in an equivalence class. The support of
a subgraph pattern p, denoted by sup(p), is defined as the
number of input graphs containing p, i.e., sup(p) = |f(p)|.
A subgraph p is said to be frequent if its support is no less
than a user-specified threshold min sup.
Problem Statement: Given an input graph database D
and a minimum support threshold min sup, we study the
problem of mining the complete set of graph generators which
are frequent and also connected.

For simplicity, if the context is clear we will omit the graph
database D. Moreover, since we only consider connected
graphs, if not explicitly stated, the notation “graph” means
a connected graphs by default in the rest of this paper.

2.2 MDL Favors Generators
In Section 1, we stated that graph generators are prefer-

able to closed subgraphs according to MDL principle. Here
we give a theoretical description of this principle and explain
the reason. A crude two-part version of MDL principle[7]
can be described as follows: let H = {H1, H2, · · · , Hn} be

518

A

D

B

C

x

x

z

D

y

y

A

D

B

C

x

x

z

D

y

y

x z

A

D

B

C

y

z

D

y

x

G1 G2

G4

A

D

B

C

x

x

y

D

y

y

G3

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

Figure 1: An Example of Graph Database

a set of candidate models, each of which contains a set of
point hypotheses, the best point hypothesis H ∈ H1 ∪H2 ∪
· · · ∪ Hn to explain D is the one which minimizes the sum
L(H)+L(D|H), where L(H) is the length of the description
of this hypothesis and L(D|H) is the length of the descrip-
tion of D when encoded with the help of H . The best model
to explain D is the smallest model containing the selected
H .

The same as [5] and [14], we apply this principle in the
context of graph generators and closed subgraphs. Assume
Q is an equivalence class of some data D, g and c are a
generator and a closed subgraph in Q respectively. Let
DQ = f(g) = f(c), then g and c are two hypotheses de-
scribing DQ. Because g and c occur in the same data DQ,
L(DQ|c) = L(DQ|g) holds. Furthermore, g is no “greater”
than c, then L(g) ≤ L(c). Therefore, we can get that
L(c) + L(DQ|c) ≥ L(g) + L(DQ|g). According to MDL, g is
preferable to c for describing the data DQ. The advantages
of graph generators over closed subgraphs are also confirmed
by the result data in classifying chemical compounds con-
ducted in Section 4.

2.3 Properties of Graph Generators
Based on the definition of generators, one way to get all

generators in an equivalence class [p] is to elicit them from all
patterns belonging to [p]. In order to determine whether p′

belongs to [p] or not, we can test whether h(p) = h(p′) holds.
However, the computation of h(p) = g(f(p)) is an expensive
operation. f(p) is needed first, and then g(f(p)) can be
calculated based on f(p). Given a set D of input graphs, the
computation of g(D) is equivalent to discover the complete
set of frequent subgraphs in D with the support threshold of
100% which itself is a tough problem. Therefore, we need to
find an efficient method to determine whether h(p) = h(p′).
The lemma introduced next provides us such an efficient
method.

Lemma 2.1. h(p1) = h(p2) iff f(p1) = f(p2).

Proof. Sufficiency. According to the definition of h(p),
if f(p1) = f(p2), g(f(p1)) = g(f(p2)) must hold. Therefore,
h(p1) = h(p2) holds.
Necessity. Since h(p1) = h(p2), g(f(p1)) = g(f(p2)) must

hold. Because p1 ∈ g(f(p1)), then p1 ∈ g(f(p2)). From the
definition of the function g, ∀ d ∈ f(p2), p1 v d. Moreover,
according to the definition of f , we know that d ∈ f(p1).
Therefore, ∀ d ∈ f(p2), d ∈ f(p1), i.e. f(p2) ⊆ f(p1). In the
same way, we can prove that f(p1) ⊆ f(p2). Consequently,
f(p1) = f(p2).

Based on Lemma 2.1, in order to determine whether h(p1) =
h(p2), we only need to examine whether f(p1) = f(p2) or
not. Thus, the computation of g(f(p1)) and g(f(p2)) are
ignored, and the determination is much easier. This lemma
also indicates that all subgraph patterns in an equivalence
class are contained in the same set of input graphs. More-
over, given two subgraph patterns p1 and p2, if p1 < p2

and sup(p1) = sup(p2), f(p1) ⊇ f(p2) and |f(p1)| = |f(p2)|
hold. Therefore, f(p1) = f(p2) holds, i.e., h(p1) = h(p2).

In [14], the authors introduced and proved the Apriori
property for itemset generators: every proper-subset of an
itemset generator is also an itemset generator. Depending
on this nice property, several effective pruning techniques
were proposed, and an efficient algorithm for mining the
frequent itemset generators was introduced. This nice prop-
erty, however, no longer holds for graph generators. For
example, assume there is a graph database D0 consisting of
four graphs C1, C2, C3 and C4 shown in Figure 2. By setting
min sup=1, we know that C1 is a graph generator in D0,
but C2 is not a graph generator even it is a proper-subgraph
of C1.

A

B

C

C1

A

B

B

C

C2 C3

D C D

C

D

C4

Figure 2: Apriori Property Absence for Graph Gen-

erators

As illustrated in the above example, the Apriori prop-
erty does not hold for graph generators. Thus, the Apriori
property-based pruning techniques used in itemset genera-
tor mining[14] cannot be applied to graph generator min-
ing. In addition, graphs in general have undesirable theo-
retical properties with regard to algorithmic complexity. In
terms of complexity theory, subgraph isomorphism is NP-
Complete. Furthermore, no efficient algorithm is known to
perform systematic enumeration of the subgraphs of a given
graph. Consequently, all of the above factors make it quite
difficult and challenging to discover frequent graph genera-
tors.

3. EFFICIENT MINING OF GENERATORS
In this section, we illustrate how to efficiently mine the

complete set of frequent graph generators from input graph
databases. First, we give a brief introduction about DFS
code tree enumeration framework which is adopted to enu-
merate frequent subgraphs in this paper. And then, two
novel pruning techniques are introduced to prune the branches
of the numeration tree that do not contain graph generators.
A generator checking scheme is devised to discover graph

519

generators. To improve the efficiency, an effective underly-
ing index structure, ADI++, is devised to assist subgraph
isomorphism checking. Integrated the above techniques, an
efficient algorithm Fogger is presented at the end of this
section.

3.1 DFS Code Tree Enumeration Framework
All frequent subgraph mining algorithms need an enumer-

ation framework to guarantee that they can discover the
complete set of frequent subgraphs. DFS code tree enumer-
ation framework[27] is an effective and widely used method
to enumerate frequent connected subgraphs. In this pa-
per we also adopt this well-known enumeration framework.
DFS code enumeration framework is based on the mini-

mum DFS code, which is a good canonical representation
of graphs and has a nice property: two graphs g and g′ are
graph isomorphic to each other iff min(g) = min(g′)(here
min(g) denotes the minimum DFS code of graph g). More-
over, with the help of minimum DFS code, the problem of
mining frequent subgraph patterns is reduced to mining fre-
quent minimum DFS codes, which are sequences with con-
straints preserving the connectivity of graphs. Please refer
to [27] for more details about the minimum DFS code and
the DFS code tree enumeration framework.

Figure 3 illustrates the DFS code tree for enumerating
the frequent subgraphs with min sup = 2 from our running
example graph database shown in Figure 1. There is a pair
of numbers in the form of “a:b” near each node in the tree,
which represents the order of this node being enumerated
and the support of this node in the graph database respec-
tively. In the rest of this paper, we use the order to represent
a node in the DFS code tree. For instance, node 14 indi-
cates the subgraph 〈0, 1, A, y,C〉. In Figure 3, the nodes
with gray background are frequent generators, and there
are 26 frequent subgraphs with min sup = 2, only seven
of which are generators. Many unpromising parts of search
space should not been enumerated. In the next subsection,
optimization techniques will be described to prune some of
these unpromising branches by exploring some properties of
graph generators.

At first, we introduce two important terms, forward edge

and backward edge, which will be used in the following
discussion. For an edge in the DFS code representation of a
graph, if its start vertex is discovered before its end vertex in
DFS search, it is a forward edge; otherwise, it is a backward
edge. For example, in node 2 of Figure 3, 〈1, 2, B, x, C〉 is a
forward edge while 〈2, 0, C, y,A〉 is a backward edge.

Lemma 3.1. For a connected graph, if any number of back-
ward edges are removed, the derived subgraph is still con-
nected; furthermore, if no edge starts from the end vertex of
a forward edge, the subgraph derived by removing this for-
ward edge is still connected.

The proof of the above lemma is simple, thus it is omitted
here. Based on Lemma 3.1, we know that the removal of
backward edges or some special forward edges which satisfy
the specific constraint from a connected graph will not cause
the disconnectivity. It will be applied in the proof of two
pruning techniques introduced next.

3.2 Pruning Techniques
Besides the underlying complexity associated with fre-

quent subgraph mining, the Apriori property no longer holds

for graph generators. Thus, devising effective pruning tech-
niques for graph generator mining is quite difficult and chal-
lenging. In this subsection, we introduce two novel pruning
techniques whose effectiveness is confirmed by the experi-
mental results shown in Section 4.

Given a node p in the DFS code tree(i.e., a subgraph pat-
tern), let Ex(p) denote the set of valid extensible DFS edges
which can be used to extend p to get “bigger” subgraph
patterns. For a node p = (a0, a1, ..., an) and a DFS edge
e ∈ Ex(p), the number of input graphs which contain the
subgraph pattern (a0, a1, ..., an, e) in the input database is
called the conditional support of e w.r.t. p, denoted by
sup(e|p). For simplicity, in the following we use p�e to de-
note the subgraph pattern (a0, a1, ..., an, e). Accordingly, we
know that sup(p � e) = sup(e|p) holds. Based on the defi-
nition of graph generators, we can easily get the following
lemma.

Lemma 3.2. For a subgraph pattern p and a DFS edge
e ∈ Ex(p), if sup(e|p) = sup(p), p � e cannot be a generator.

The above lemma is evident and the proof is omitted here.
Thereby, any subgraph pattern p � e with sup(e|p) = sup(p)
is definitely not a generator. Moreover, p � e is said to be
a generator candidate if sup(e|p) < sup(p). Apparently,
only generator candidates might be graph generators, and
graph generators can only be discovered from the set of gen-
erator candidates.

To date, using DFS code tree enumeration framework,
a straightforward solution can be devised to discover the
complete set of graph generators from the set of generator
candidates. However, this rudimentary approach is rather
brute-force and will take an unacceptable time. In the fol-
lowing, we elaborate on pruning techniques which can im-
prove the efficiency. For a node p in the DFS code tree, the
branch rooted by p can be pruned only on the condition that
all descendants of p are not graph generators. More specifi-
cally, for any descendant p′ of p, if there exists a connected
subgraph which is derived by removing one edge from p′ and
possesses the support of sup(p′), the branch rooted by p can
be safely pruned. Based on this idea, two novel pruning
techniques are introduced in the following.

3.2.1 Backward Edge Pruning

Lemma 3.3. Given a subgraph pattern p = (a0, a1, ..., an)
(n ≥ 0) in the DFS code tree, let p′ = p � (e, b0, b1, . . . , bm)
(m ≥ 0) be a descendant of p in the DFS code tree, if
e ∈ Ex(p) is a backward extensible edge for each instance
of p, then sup(p′) = sup(p′′) must hold where p′′ = p �
(b0, b1, . . . , bm).

Proof. Since e is a backward edge, according to Lemma 3.1,
p′′ is connected which is derived by removing e from p′.
Moreover, because p′′

< p′, f(p′′) ⊇ f(p′) holds. Assume
f(p′′) 6= f(p′), then at least one input graph d0 exists s.t.
d0 ∈ f(p′′)−f(p′), i.e., p′′ v d0 and p′ 6v d0. Accordingly, d0

must contain some instances of p. Because e is an extensible
edge for all instances of p, for any instance tp of p in d0, tp

has an extensible DFS edge e. Furthermore, since inserting
backward edges to a subgraph pattern does not introduce
new vertices to the current subgraph pattern2, any super-
2This is a very important property. As shown in the dis-
cussion of forward edge pruning, without this property we
cannot state that each t′ can be extended with e.

520

<0,1,A,x,B>

<0,1,A,x,B>

<1,2,B,x,C>

<0,1,A,x,B>

<1,2,B,x,C>

<2,0,C,y,A>

φ

0:3

1:3

2:3

<0,1,A,x,B>

<0,2,A,y,C>

<0,1,A,x,B>

<1,2,B,x,C>

<2,3,C,z,D>

<0,1,A,x,B>

<1,2,B,x,C>

<0,3,A,y,D>

13:3

6:2 8:3

<0,1,A,x,B>

<1,2,B,x,C>

<2,0,C,y,A>

<2,3,C,z,D>

<0,1,A,x,B>

<1,2,B,x,C>

<2,0,C,y,A>

<0,3,A,y,D>

3:2 5:3
<0,1,A,x,B>

<1,2,B,x,C>

<2,3,C,z,D>

<0,4,A,y,d>

7:2

<0,1,A,x,B>

<0,2,A,y,C>

<0,3,A,y,D>

<0,1,A,x,B>

<0,2,A,y,D>

15:3

12:3

<0,1,A,y,C> <0,1,A,y,D> <0,1,B,x,C> <0,1,C,z,D>

25:322:414:3 23:3

<0,1,A,y,C>

<1,2,C,x,B>

<0,1,A,y,C>

<1,2,C,z,D>

<0,1,A,y,C>

<0,2,A,y,D>

19:2 21:3

<0,1,A,y,C>

<1,2,C,x,B>

<1,3,C,z,D>

<0,1,A,y,C>

<1,2,C,x,B>

<0,3,A,y,D>

16:2 18:3

<0,1,A,y,C>

<1,2,C,x,B>

<1,3,C,z,D>

<0,4,A,y,d>

4:2

<0,1,A,y,C>

<1,2,C,z,D>

<0,3,A,y,D>

<0,1,B,x,C>

<1,2,C,z,D>

20:2

24.2

17:2

<0,1,A,x,B> <1,2,B,x,C> <2,0,C,y,A> <2,3,C,z,D> <0,4,A,y,D>

9:3

<0,1,A,x,B>

<0,2,A,y,C>

<2,3,C,z,D>

10:2

<0,1,A,x,B>

<0,2,A,y,C>

<2,3,C,z,D>

<0,4,A,y,d>

11:2

Figure 3: DFS code Tree of Frequent Subgraphs in Figure 1 with min sup = 2

graph t′ of tp without e can be extended with e to generate
a “bigger” connected graph. Because p′′ v d0, at least one
instance of p′′ resides in d0, denoted by tp′′ . Obviously, tp′′

is a supergraph of tp without e, thus, tp′′ can be extended
with e to generate a bigger connected graph which is graph
isomorphic to p′. Consequently, p′ v d0 which contradicts
the assumption that p′ 6v d0. Therefore, f(p′) = f(p′′),
namely, sup(p′) = sup(p′′).

Based on Lemma 3.3, if e is a backward extensible edge
for each instance of p, all descendants of p�e cannot be gen-
erators. Moreover, p�e itself is also not a generator because
sup(p) = sup(e|p). Therefore, the branch rooted by p � e
can be pruned safely. This pruning technique is called back-

ward edge pruning . For instance, the edge 〈2, 0, C, y,A〉
is a backward extensible edge for all three instances of node
1 in Figure 3. According to the backward edge pruning,
the branch rooted by node 2 will make no contribution to
the discovery of graph generators and can be safely pruned.
Therefore, many unpromising nodes will not be enumerated
and the enumeration process will become more efficient.

Furthermore, if e is an extensible edge for each instance of
p, sup(p) = sup(e|p) must hold. Hence, if sup(p) 6= sup(e|p),
it is not necessary to apply the backward edge pruning tech-
nique. Over relational graph databases in which vertex la-
bels are distinct, this pruning technique will be very efficient
because at most one instance exists in each input graph for
a subgraph pattern. Therefore, in this case once a backward
extensible edge e s.t. sup(p) = sup(e|p) encountered, we can
stop growing p with e. Note that the prunable backward
edges here correspond to associative edges in Tail Shrink
proposed in [10]. The difference is that Huan et al. aim
at maximal graphs, therefore these associated edges are re-
moved from the tail of the tree and are augmented to this
tree without missing any maximal ones.

3.2.2 Forward Edge Pruning
In previous discussion, a backward edge-based pruning

technique is proposed. Intuitively, we intend to devise for-
ward edge-based pruning techniques. Based on Lemma 3.1,

if no edge starts from the end vertex of a forward edge,
the removal of this forward edge can preserve the connectiv-
ity. Accordingly, for a subgraph pattern pn = (a0, a1, ..., an)
where an is a forward edge, if b1 in p′ = pn � (b1, · · · , bm)
is a forward edge which does not start from the end ver-
tex of an, according to the DFS code tree enumeration
framework, no valid DFS edge among b2, . . . , bm will con-
nect to the end vertex of an. Thus, the removal of an from
p′ will preserve the connectivity of the derived subgraph
p′′ = pn−1 � (b1, · · · , bm). Based on the idea of Lemma 3.3,
perhaps we would make an assumption that if an is a forward
extensible edge for each instance of pn, sup(p′) = sup(p′′)
holds. Unfortunately, this is not true.

(a) (b)

A B C A B C

D D

C

Figure 4: A Failure Case

For example, let pn = 〈0, 1, A, B〉〈1, 2, B, C〉, p′ = pn �
〈0, 3, A, D〉 〈3, 4, D, C〉 and p′′ = 〈0, 1, A, B〉 〈0, 2, A, D〉 〈2, 3, D, C〉
(edge labels are ignored). Considering a graph database con-
taining two input graphs shown in Figure 4, 〈1, 2, B, C〉 is a
forward extensible edge for each instance of 〈0, 1, A, B〉, and
〈0, 3, A, D〉 is a forward extensible edge of pn which does
not start from the end vertex of 〈1, 2, B, C〉. In this case,
sup(p′) = 1 and sup(p′′) = 2, i.e., sup(p′) 6= sup(p′′). Thus,
the assumption is not true. The reason for this failure is that
even though 〈1, 2, B, C〉 is a forward extensible edge for each
instance of 〈0, 1, A,B〉, the vertex C in 〈1, 2, B, C〉 is con-
tained in the instance of p′′ in Figure 4 a). Consequently,
although Figure 4 a) contains p′′, it does not contain p′.
Based on this analysis, a subgraph pattern pn is called a
pruning candidate if both of the following two constraints
are satisfied:

521

1. pn−1 is φ or an is a forward extensible edge for each
instance of pn−1;

2. the end vertex of an in each instance of pn will not be
contained in any instance of p′′.

Lemma 3.4. If pn is a pruning candidate and e ∈ Ex(pn)
is a forward edge that does not start from the rightmost ver-
tex of pn, p′ and p′′ have the same support, i.e. sup(p′) =
sup(p′′).

Proof. First, according to Lemma 3.1, p′′ is a connected
graph. Because p′′

< p′, f(p′′) ⊇ f(p′) holds. Assume
f(p′′) ⊃ f(p′) and d0 ∈ f(p′′) − f(p′), then p′′ v d0 and
p′ 6v d0. Because pn is a pruning candidate, an is a for-
ward extensible edge for each instance of pn−1 and the end
vertex of an in each instance of pn will not reside in any in-
stance of p′′. Accordingly, for each instance of p′′ in d0, an

can be attached to this instance to get a “bigger” subgraph
pattern which is graph isomorphic to p′. Thus, p′ v d0

which contradicts with the assumption that p′ 6v d0. Con-
sequently, the assumption does not hold and we can know
that f(p′) = f(p′′), namely, sup(p′′) = sup(p′).

Based on Lemma 3.4, if constraints are satisfied, pn � e’s
descendants including pn � e itself cannot be graph genera-
tors. Thus, we can safely prune the branch rooted by pn �e.
We call this pruning technique the forward edge pruning .
However, to determine whether the end vertex of an will
be contained in the instances of p′′ or not is still an open
problem. Actually, it is quite difficult to predict this. But
if the following condition is satisfied, we can state that the
end vertex of an will never be contained in any instance of
p′′: in each input graph containing pn, the end vertex

of an in each instance only connects to vertices that

are already contained in this instance. For example,
〈1, 2, C, x, B〉 is a forward extensible edge for each instance
of node 14 in Figure 3, the vertex B which is the end ver-
tex of this forward edge only connects to vertices that are
already contained in each instance of node 15. Thus, node
15 in Figure 3 is a pruning candidate. Moreover, because
〈1, 3, C, z, D〉 is forward extensible edge of node 15 and does
not start from the right most vertex of node 15, node 16
can be safely pruned according to the forward edge pruning
technique.

The solid lines among different nodes in Figure 3 are valid
enumeration paths after applying both backward edge prun-
ing or forward edge pruning techniques, while the dashed
lines are invalid. The effectiveness of these two pruning
techniques in both pruning the unpromising branches and
improving the efficiency of enumeration process will be con-
firmed in the experimental study.

3.3 Efficient Generator Discovery
In previous discussion, an efficient numeration framework

integrated with two effective pruning techniques is intro-
duced to enumerate frequent subgraphs. However, not all
remaining frequent subgraphs are graph generators. In this
subsection, we address the problem of how to elicit graph
generators efficiently.

3.3.1 Generator Checking Scheme
As stated in Section 3.2, graph generators can only be

discovered from generator candidates. To elicit graph gen-
erators, we maintain a set of selected generator candidates

during the enumeration process, denoted by R, in which el-
ements are grouped according to their supports. While a
generator candidate p is encountered, we are trying to in-
sert it into R. According to the DFS code tree enumeration
framework, all proper-subgraphs of p that are enumerated
before p must reside in the path from the root of the search
tree to p. Thus, if one proper-subgraph of p in this path has
the support sup(p), p cannot be a generator candidate; if p
is a generator candidate, all proper-subgraphs of p in this
path have supports greater than sup(p). Therefore, while in-
serting a generator candidate p into R, no proper-subgraph
of p with support sup(p) will exist in R. Whereas, some
proper-supergraphs of p with support sup(p) might exist in
R, and these patterns should be removed from R since they
are not graph generators. For example, node 6 in Figure 3
is a generator candidate, but it is not a graph generator
because node 24 is a proper-subgraph of it with the same
support.

Consequently, only one operation should be performed
while inserting a generator candidate into R, i.e., remov-
ing elements in R s.t. they are proper-supergraphs of p and
possess the support of sup(p). Because elements in R are
grouped by their supports, proper-supergraph checking only
needs to performed in the group with the support of sup(p).
In general, however, the problem of subgraph isomorphism
is NP-Complete. Thus, the proper-supergraph checking is a
very time-consuming operation. Accordingly, we devise an
effective underlying index structure ADI++, which is an en-
hancement of ADI structure introduced in [22], to facilitate
the subgraph isomorphism checking problem.

3.3.2 The ADI++ Structure
Chen Wang et al.[22] analyzed previous algorithms on

frequent subgraph mining, such as FSG[12], gSpan[27] and
CloseGraph[26], and pointed out that random access to el-
ements in graph databases and checking the graph isomor-
phism are frequent and expensive operations in these algo-
rithms. Accordingly, ADI structure, which supports these
frequent and expensive operations very well, was devised to
facilitate the scalable mining of frequent subgraphs. In this
paper, we introduce a novel index structure, ADI++, which
is an enhancement of ADI. Besides preserving all advan-
tages of ADI, ADI++ can be exploited to assist in solving
the (sub)graph isomorphism checking problem efficiently.

Similar to ADI structure, ADI++ structure is a three-
level index for edges, graph-ids and adjacency information.
An example is shown in Figure 5, where two graphs G1 and
G2 in Figure 1 are indexed. Different with ADI structure, all
edges which are indexed by their labels in the edge table are
ordered and numbered. The index of each edge in a graph is
unique and can be used to identify an edge uniquely. Except
for this little difference, the edge table and graph-ids list in
ADI++ structure are identical to that in ADI structure.
However, we exploit a different structure to store the adja-
cency information of edges. Each input graph corresponds
to an edge block, and edges in a graph are stored as a vector
of edges in an edge block, but not a linked list.

First, vertices and edges in a single graph are ordered
separately. The order used here can be any one user pre-
ferred. In this paper, we order vertices and edges according
to the order in which they are scanned from this graph. Note
that, vertex index starts with 0, while edge index starts with
1. The reason for this difference is because a special edge

522

0 (A ,x, B)

1 (A ,y, C)

2 (A ,y, D)

3 (B, x, C)

4 (C, x, D)

5 (C, z, D)

6 (D, z, D)

0 1 2 4 0

0 2 3 -4 1

0 4 1 -6 2

1 2 -1 5 3

2 3 6 0 5

2 4 -2 -3 4

0 1 2 4 0

0 2 3 -4 1

0 4 1 -6 2

1 2 -1 5 3

2 3 -2 6 5

3 4 -5 -3 6

G1

G2

G1

G2

G1

G1

G2

G1

G2

G2

Edge Table Graph-IDs Edge Blocks
Edge Block One

Edge Block Two

e1

e2

e3

e4

e5

e6

e1

e2

e3

e4

e5

e6

G1

G2

Figure 5: The ADI++ Structure for G1 and G2 in

Figure 1

with index 0 is introduced to indicate an empty edge. For
instance, the numbers near each vertex of G1 and G2 in
Figure 1 is the order in which the vertices are scanned. Sec-
ond, each edge in edge blocks is represented by a 5-tuple
〈sn, en, sl, el, i〉, where sn is the start vertex index, en is the
end vertex index and sn < en, i is the index of this edge in
the edge table, sl is the index of next edge which contains
the vertex sn. If no such a next edge exists, sl will be the
index of the first edge in this edge block which contains the
vertex sn; if no other edge contains this vertex sn, sl will be
0. Moreover, if the start vertex of the edge which contains
vertex sn is sn, sl will be positive; otherwise sl will be neg-
ative. The same method can be used to calculate the value
of el. The only difference is that el focuses on the vertex
en. For example, taking into account the edge 〈A, y, C〉 con-
necting vertices 0 and 2 in G1, then sn = 0 and se = 2. The
index of 〈A,y,C〉 in the edge table is 1, then i = 1. Because
the third edge e3 = 〈0,4,1,-6,2〉 in the first block of Figure 5
is the first next edge containing the vertex 0 as its start ver-
tex, thus sl = 3. Meanwhile, the first next edge containing
vertex 2 is the forth edge e4 = 〈1,2,-1,5,3〉 of which vertex 2
is its end vertex, thus el=−4. Therefore, the tuple for edge
e2 is 〈0,2,3,-4,1〉. The construction of ADI++ structure is
trivial and users can implement it easily. Hereby, the con-
struction of ADI++ structure will not be described here due
to the page limitation.

Comparing with ADI, in terms of storage, only one more
cell3 is needed in ADI++ than ADI for each edge in edge
blocks. In terms of usage, besides preserving all advan-
tages of ADI, ADI++ can provide more functions. First,
in ADI++, once given an edge index in an edge block, the
vertex labels and edge label of this edge can be easily identi-
fied due to the introduction of i. But this operation cannot
be accomplished in ADI. Second, edges sharing the com-
mon vertex are “linked” as a cycle in ADI++. Thus, we
can enumerated all the edges sharing the common vertex
through any edge in this cycle. But in ADI, this can be
accomplished only by providing the first edge in the linked
list. Third, edges are represented by 5-tuples consisting of 5
integers, it is easier and more convenient either to store on

3Note here a cell may correspond to one space unit for stor-
ing an integer data type or a long integer type depending on
the concrete implementation

the disk or to be held in main memory than using linked list.
At last, ADI++ can be used to assist in solving (sub)graph
isomorphism checking problem which will be illustrated in
the following.

3.3.3 Solving Subgraph Isomorphism using ADI++
Although minimum DFS code can uniquely represent a

graph and can be used to determine graph isomorphism ef-
ficiently, it cannot be applied to determine subgraph iso-
morphism. For example, node 24 in Figure 3 is a proper-
subgraph of node 4, but their minimum DFS codes are quite
different and we cannot determine the subgraph isomor-
phism relationship between them by their minimum DFS
codes. In general, subgraph isomorphism problem is NP-
Complete. It will take an unacceptable time to determine
subgraph isomorphism relationship between two graph. For-
tunately, ADI++ structure can facilitate this problem.

For any subgraph pattern, one of its instance in an input
graph corresponds to a set of edges in its corresponding edge
block. Since all edges in an edge block are numbered with
unique numbers, each instance can be represented by a set
of edge indexes, i.e., a set of integers. And then, we can get
the following two lemmas.

Lemma 3.5. Given a graph pattern G, let T (G) be the
set of instances of G in the input graph database, E(t) be
the set of edge indices of the instance t, and I(t) be the
graph index in which t resides. Another graph pattern G′ is
subgraph isomorphic to G iff ∀ t ∈ T (G) and ∃ t′ ∈ T (G′)
s.t. E(t′) ⊆ E(t) and I(t) = I(t′).

Lemma 3.6. For two graph patterns G and G′, if ∃ t ∈
T (G) and ∃ t′ ∈ T (G′) s.t. E(t′) ⊆ E(t) and I(t) = I(t′),
G′ is subgraph isomorphic to G.

The above two lemmas are straightforward and their proofs
are simple, so we omit them here. Nevertheless, these two
simple lemmas provide a significant help to subgraph iso-
morphism checking. Assume s ∈ R, ts is an instance of s and
p is a new generator candidate which will be inserted into R.
On the one hand, if p < s, according to Lemma 3.5, there
must exist t ∈ T (p) s.t. E(t) ⊂ E(ts) and I(t) = I(ts); oth-
erwise, p is not a proper-subgraph of s. On the other hand,
if there exists t ∈ T (p) s.t. E(t) ⊂ E(ts) and I(t) = I(ts),
p must be a proper-subgraph of s according to Lemma 3.6.
From the above analysis we can know that for each element
in R, one instance’s information(edge indices and graph in-
dex in which it resides) is adequate to determine whether
this element is a proper-supergraph of a new generator can-
didate or not. Therefore, maintaining one instance’s infor-
mation for each element in R makes subgraph isomorphism
checking easier and more efficient. Moreover, this mainte-
nance does not consume too much space because the number
of elements in R would be not too large and for each element
only m + 1 integers need to be maintained where m is the
edge number of the corresponding element.

Further more, non-minimum pruning, i.e. p 6= min(p),
is a very significant pruning technique in gSpan[27] which
avoids many redundant parts of search space. However,
computing minimum DFS code for a graph is quite expen-
sive. With the help of ADI++, this pruning technique would
become more efficient. According to DFS code tree enumer-
ation framework, if p 6= min(p), the graph min(p) must be
enumerated before p. Essentially, the function of p 6= min(p)

523

is to determine whether p is graph isomorphic to a graph
enumerated before. Because graph isomorphism is a special
case of subgraph isomorphism, ADI++ structure also can
be used to improve the efficiency of non-minimum pruning
technique in gSpan. Due to the page limitation, it will not
be discussed further.

3.4 TheFogger Algorithm
By integrating the DFS code tree enumeration framework,

two pruning techniques and the generator checking scheme
introduced in previous subsections, we present the first solu-
tion, Fogger, for mining the complete set of frequent graph
generators from graph databases.

Before running Fogger shown in Algorithm 1, we first
compute the set of frequent edges from the input graph
database, and remove the infrequent ones. This procedure
can reduce the size of input graphs significantly when min sup
is high. After this preprocess, we use Fogger to mine the
complete set of frequent graph generators. For the current
subgraph pattern p, we first compute the extensible edge
set Ex(p) and their conditional supports(line 1). Accord-
ing to the Apriori property of frequent subgraph patterns,
the edges in Ex(g) whose conditional supports are less than
min sup can be removed (line 2). After then, the backward
edge pruning technique can be applied to delete edges in
Ex(p) that are extesible edges for each instance of p (lines
3-4). Furthermore, if p is a pruning candidate, the forward
edge pruning technique can be applied to remove the forward
edge e in Ex(p) which does not start from the rightmost ver-
tex of p(lines 6-7). For each edge e remained in Ex(p), if p�e
is not a minimum DFS code, p � e can be ignored according
to the nonminimum-pruning technique(lines 10-11). If e’s
conditional support is less than sup(p), we insert the pat-
tern p � e to the generator candidate set rs and remove the
proper-supergraph patterns of p�e with support sup(p�e) in
rs(lines 13-14). After this, we invoke the Fogger(D, p � e,
min sup, rs) recursively to continue the enumeration(line
16). After the enumeration finished, the elements remained
in rs is the complete set of frequent graph generators in the
input graph database.

Algorithm 1 Fogger(D, p, min sup, rs)

Input: D-the input graph database; p-the subgraph pattern be-
ing inspected, min sup-the minimum support threshold; rs-
the set of generator candidate

1. Compute Ex(p) and their conditional supports;
2. Remove edges in Ex(p) s.t. sup(e|p) < min sup;
3. if e ∈ Ex(p) is a backward edge for each instance of p then

4. remove e from Ex(p);
5. end if

6. if p is a pruning candidate and e ∈ Ex(p) is a forward edge
which does not start from the rightmost vertex of p then

7. remove e from Ex(p);
8. end if

9. for each edge e remained in Ex(p) do

10. if p � e 6= min(p � e) then

11. continue;
12. end if

13. if sup(e|p) < sup(p) then

14. insert p � e into rs according to the generator checking
scheme;

15. end if

16. invoke Fogger(D, p � e, min sup, rs);
17. end for

4. EXPERIMENTAL RESULTS
We conducted a comprehensive performance study to eval-

uate various aspects of algorithm Fogger. All algorithms
were implemented in C++ using STL, and all experiments
were performed on a PC running Fedora 8 Linux and with an
AMD Sempron 1.8GHz CPU and 1G MB of main memory
installed.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 6 7 8 9 10

N
um

be
r

of
 R

es
ul

ts

Minimum Relative Support Threshold(%)

Generator
Closed Subgraph

(a) # patterns

 6

 7

 8

 9

 10

 11

 12

 5 6 7 8 9 10

A
ve

ra
ge

 S
iz

e
of

 R
es

ul
ts

Minimum Relative Support Threshold(%)

Generator
Closed Subgraph

(b) Average pattern size

Figure 6: Graph Generators vs. Closed Sub-

graphs(CA)

In the experiments, we used a variety of real and syn-
thetic datasets to evaluate the Fogger algorithm. The
first two real datasets, CA and CM, were derived from the
AIDS antivirus screen compound database from the DTP
in NCI/NIH which has been widely used in many previous
studies [26, 24, 9]. CA contains 422 confirmed active chem-
ical compounds, while CM contains 1081 confirmed moder-
ately active chemical compounds. The third real dataset is
“0.96-STOCK” which was generated from the stocks’ daily
price according to the correlation coefficient of 0.96. More
descriptions about the STOCK dataset can be found in [24].
Meanwhile, the synthetic datasets were generated by a pack-
age provided by Kuramochi and Karypis. The parameters in
generating synthetic datasets are the same as those in [13],
and we set D = 10k, T = 40, i = 10, L = 200, E = 200,
and V = 200 as the default values if not explicitly stated.
Thus, a dataset generated by the default values contains
10k graphs, the average graph size is 40, the average size of
frequent subgraphs is 10, and the number of potential fre-
quent subgraphs, the number of edge labels, and the number
vertex labels are 200, 200, and 200, respectively.

4.1 Graph Generators vs. Closed Subgraphs
To our best knowledge, Fogger is the first graph gener-

ator mining algorithm, thus, we cannot find a competitive

524

 2

 4

 6

 8

 10

 12

 14

 10 12 14 16 18 20

R
u

n
tim

e
(s

e
c)

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

RAW

(a) CA

 0.1

 1

 10

 100

 1000

 50 51 52 53 54 55 56 57 58

R
un

tim
e(

se
c)

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

(b) STOCK

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 5 6 7 8 9 10

R
u

n
tim

e
(s

e
c)

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

RAW

(c) SYNTHETIC

Figure 7: Effectiveness Test of Pruning Techniques (Runtime)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 10 12 14 16 18 20

N
um

be
r

of
 E

nu
m

er
at

ed
 S

ub
gr

ap
hs

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

RAW

(a) CA

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 50 51 52 53 54 55 56 57 58

N
um

be
r

of
 E

nu
m

er
at

ed
 S

ub
gr

ap
hs

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

(b) STOCK

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 6 7 8 9 10

N
um

be
r

of
 E

nu
m

er
at

ed
 S

ub
gr

ap
hs

Minimum Relative Support Threshold(%)

Fogger
FEP
BEP

RAW

(c) SYNTHETIC

Figure 8: Effectiveness Test of Pruning Tech. (# enumeration)

algorithm which performs the same task in order for compar-
ison with Fogger. However, as the set of graph generators
and closed subgraphs are two representative types of sub-
graph patterns which can form equivalence classes, it will be
interesting if we compare their average size and number of
patterns4. In the experiments, we used the latest version of
CloseGraph package [26] for mining closed subgraphs. Since
the current implementation of CloseGraph only accepts in-
put graphs and generates patterns with a maximum size of
254 edges and 254 vertices, we conducted comparison ex-
periments on real dataset CA only. Figure 6 shows their
comparison results. From Figure 6(a) we see that the num-
ber of graph generators is slightly greater than that of closed
subgraphs, while from Figure 6(b), we see the average size
of graph generators is smaller than the average size of closed
subgraphs.

4.2 Evaluation of Pruning Techniques
We then evaluated the effectiveness of the pruning tech-

niques and the efficiency of Fogger on various datasets.
Figures 7 and 8 compare the runtime and the number of
enumerated subgraphs under conditions with different com-
binations of pruning techniques on CA, STOCK and the
synthetic datasets. For instance, the caption “BEP” denotes
a variant of Fogger which applies backward edge pruning

4As shown in Figure 6, graph generator mining and closed
subgraph mining output a quite different result set, thus,
their efficiency is not comparable. However, our perfor-
mance study shows that Fogger and CloseGraph have com-
parable performance. Due to limited space, we omit it from
the paper.

only, “FEP” denotes a variant of Fogger which applies
forward edge pruning only, and “Raw” denotes a variant of
Fogger without applying any pruning techniques. From
Figure 7, we see that these two pruning techniques are very
effective in improving the efficiency, and from Figure 8 we
can observe that both of these two pruning techniques are
also effective in pruning the unpromising parts of search
space. Note that because Raw takes a rather long time to
finish on dataset STOCK, the experimental results of Raw
for dataset STOCK are not shown in the corresponding fig-
ures.

Furthermore, for the CA dataset we observe that the for-
ward pruning technique plays a significant role both in prun-
ing the unpromising parts of search space and improving
the efficiency. While for the STOCK dataset, the backward
pruning performs well. This difference is caused by the char-
acteristics of the input datasets. We examined the results
obtained from the different datasets. Most of the generators
discovered from CA dataset are tree structures which do not
contain backward edges; while for the STOCK dataset, most
of the results contain cycles, namely, many backward edges
exist in the discovered generators. Moreover, we can observe
the fact that the lower the minimum support threshold, the
more effective these two pruning techniques, which validates
the effectiveness of the newly proposed pruning techniques.

4.3 Scalability of FOGGER
Meanwhile, an extensive scalability study was also con-

ducted in terms of the base size on both real and synthetic
datasets. We first replicated the CA and STOCK datasets

525

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8

R
u

n
tim

e
(s

e
c)

Replication Factor

20%
30%
40%

(a) CA

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

R
un

tim
e(

se
c)

Replication Factor

50%
60%
70%

(b) STOCK

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

R
u

n
tim

e
(s

e
c)

Graph Database Cardinality(10K)

2%
4%
6%

(c) SYNTHETIC

Figure 9: Scalability Test

from 1 to 8 times and ran Fogger with three different min-
imum relative supports. As shown in Figure 9(a) and Fig-
ure 9(b), it is evident that Fogger shows linear scalabil-
ity in runtime against the number of input graphs for the
STOCK and CA datasets. By varing the base size from 10k
to 80k, a series of synthetic datasets were produced. We get
the runtime of Fogger with three different minimum rel-
ative supports of 2%, 4% and 6% as shown in Figure 9(c).
Similarly, Fogger shows good scalability in runtime against
the base size of synthetic datasets. Therefore, Fogger has
a good scalability in terms of the base size.

4.4 Evaluation of Graph Generator-based Clas-
sification Model

One typical application of Fogger algorithm is to se-
lect a subset of high quality graph generators discovered
by Fogger and use them as features to build classifica-
tion models. As the graph generators of the same equiv-
alence class have the same support and confidence, they
have a similar power from the classification point of view,
we only randomly retained one generator for each equiva-
lence class. For each selected graph generator we first com-
puted its confidence w.r.t. each class label, used the highest
one as its confidence and ranked the graph generators in
their confidence descending order, and for the graph gen-
erators with the same confidence, we further ranked them
in support descending order. We then applied the sequen-
tial covering paradigm to select a set of high confidence
graph generators. This procedure of feature selection is
the same as the one used in association classifier CBA. Fi-
nally we built two classification models based on the selected
graph generators. The first one is the associative classifica-
tion rule based CBA-like classifier. The second one is the
SVM. For SVM, we adopted the LIBSVM implementation
(see http://www.csie.ntu.tw/∼cjlin/libsvm). In the experi-

ments, we used the RBF kernel function (i.e., e(−γ∗|u−v|2)),
and other parameter values were set as follows: svm type
(type of SVM) is ν-SVC, ν (the parameter ν of ν-SVC)
equals 0.1, γ (i.e., γ in kernel function) equals 0.5, ε (i.e.,
the tolerance of termination criterion) equals 0.0001. We ap-
plied the same procedure to choose a set of closed subgraphs
as features to feed CBA and SVM and build another two
classifiers. We merged the chemical compound datasets CA
and CM into one, which contains 422 input graphs labeled
as CA and 1081 input graphs labeled as CM. We evaluated
various classifiers based on 10-fold cross validation.

Table 2 shows the classification accuracy comparison of
graph generator based classifiers and closed subgraph-based
classifiers. In the experiments, we varied the minimum sup-
port from 30% to 10% and ran Fogger and CloseGraph on
the training dataset and used the method described above to
find a set of graph generators and a set of closed subgraphs,
which can be further used to build CBA and SVM classifiers
respectively. The experimental results in Table 2 show that
the graph generator based classifiers have almost the same
accuracy as the corresponding closed subgraph based clas-
sifiers. Since for each equivalence class of patterns, we only
randomly retained one pattern, thus, we get the same num-
ber of graph generators as that of closed subgraphs which
are used for building classification model. Table 1 compares
average generator size (i.e., average number of edges) with
average closed subgraph size. We see that the average size
of graph generators is much smaller than that of closed sub-
graphs. As graph classification testing involves subgraph
isomorphism checking, the smaller the graph patterns, the
faster the subgraph isomorphism checking, thus graph gen-
erator based models is more efficient than closed subgraph
based models in terms of classification testing. This depicts
an advantage of graph generator mining over closed sub-
graph mining from the graph classification point of view.

5. RELATED WORK
Frequent subgraph mining has been widely studied and

many efficient algorithms have been proposed [23, 32, 21,
18, 20, 30, 9]. AGM[11], FSG[12] and gSpan[27] are three
typical algorithms for mining the complete set of frequent
subgraphs. Due to the exponential number of frequent sub-
graphs, attention has been paid to closed subgraphs[26, 29,
24, 31] and maximal subgraphs[10, 19, 17] to reduce the
number of results. Yan et al. [26] first proposed an efficient
algorithm, CloseGraph, to mine frequent closed subgraph
patterns which not only dramatically reduces the unneces-
sary subgraphs to be generated but also substantially im-
proves the efficiency of mining process in the presence of
large graph patterns. Subsequently, efficient algorithms(e.g.,
CloseCut and Splat [29], CLAN[24], Cocian[31]), are pro-
posed for mining closed subgraphs which satisfy some spe-
cific connectivity constraints such as cliques and quasi-cliques.
Meanwhile, efficient algorithms(e.g., SPIN[10] and Margin[19])
are also introduced to mine maximal frequent subgraphs.
However, to our best knowledge, no attention has been paid
to the discovery of frequent graph generators.

526

Table 1: Average size comparison: graph generators vs. closed subgraphs (i.e., # edges)

.
min sup # graph Avg. graph # closed Avg. closed

generators generator size subgraphs subgraph size

30% 55 2.74 55 5.36
25% 63 3.11 63 5.79
20% 80 3.47 80 6.11
15% 95 4.07 95 7.12
10% 113 4.64 113 9.33

Avg. 81.2 3.606 81.2 6.742

Table 2: Classification accuracy comparison of graph generator based classifiers and closed subgraph-based

classifiers.
min sup generator closed graph generator closed graph

based CBA based CBA based SVM based SVM

30% 81.1 81.2 81.7 82.2
25% 83.2 83.3 83.4 83.8
20% 85.5 85.7 86.4 86.8
15% 86.7 86.6 87.2 87.3
10% 82.8 82.1 83.5 83.7

Avg. 83.86 83.78 84.44 84.76

While in another community of itemset mining, itemset
generator has been widely studied[2, 1, 14]. Jinyan Li et
al. [14] has proposed an efficient algorithm Gr-growth to
mine frequent itemset generators. Unfortunately, the Apri-
ori property no longer holds for graph generators. There-
fore, effective pruning techniques devised for frequent item-
set generator mining based on this nice property cannot be
applied to graph generator mining, which makes graph gen-
erator mining a quite challenging task. So far, we are not
aware of any previous work on mining graph generators.

6. CONCLUSION AND DISCUSSION
In this paper, we have introduced the problem of mining

frequent connected graph generators from graph databases.
We presented a novel algorithm, Fogger, which efficiently
mines frequent connected graph generators. Two pruning
techniques, backward edge pruning and forward edge prun-
ing, are used in the algorithm to reduce the search space
and to improve the computational efficiency. In addition,
an underlying index structure, ADI++, is proposed to ac-
celerate the subgraph isomorphism checking operation. We
used a variety of real and synthetic datasets to study the
performance of the Fogger algorithm. Experimental study
confirms that Fogger is efficient and scalable in terms of
the base size of input databases. The results in classifying
chemical compounds demonstrate the advantages of graph
generator-based models over closed subgraph-based models
from the graph classification point of view.

Currently, Fogger can only mine connected graph pat-
terns but not disconnected. In future, we plan to devise
disk-based algorithms for mining disconnected graph pat-
terns. In addition, we plan to explore the graph generator-
based graph classification problem in wide applications.

Acknowledgement
The authors are grateful to Dr. Michihiro Kuramochi, Prof.
George Karypis, Dr. Xifeng Yan and Prof. Jiawei Han for
providing us the graph dataset generator, the AIDS databases,
and the CloseGraph package.

7. REFERENCES
[1] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and

L. Lakhal. Mining minimal non-redundant association
rules using frequent closed itemsets. In CL ’00:
Proceedings of the First International Conference on
Computational Logic, pages 972–986, London, UK,
2000. Springer-Verlag.

[2] J.-F. Boulicaut, A. Bykowski, and C. Rigotti.
Approximation of frequency queris by means of
free-sets. In PKDD ’00: Proceedings of the 4th
European Conference on Principles of Data Mining
and Knowledge Discovery, pages 75–85, London, UK,
2000. Springer-Verlag.

[3] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index:
towards verification-free query processing on graph
databases. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on
Management of data, pages 857–872, Beijing, China,
2007. ACM.

[4] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1997. Translator-C. Franzke.

[5] Q. Gao, M. Li, and P. Vitányi. Applying mdl to learn
best model granularity. Artificial Intelligence,
121(1-2):1–29, 2000.

[6] P. D. Grünwald, I. J. Myung, and M. A. Pitt.
Advances in Minimum Description Length: Theory
and Applications (Neural Information Processing).
The MIT Press, 2005.

[7] P. Grünwald. A tutorial introduction to the minimum
description length principle. The Computing Research
Repository, math.ST/0406077, 2004.

[8] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou.
Mining coherent dense subgraphs across massive
biological networks for functional discovery.
Bioinformatics, 21(1):213–221, 2005.

[9] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
ICDM ’03: Proceedings of the Third IEEE

527

International Conference on Data Mining, page 549,
Washington, DC, USA, 2003. IEEE Computer Society.

[10] J. Huan, W. Wang, J. Prins, and J. Yang. Spin:
mining maximal frequent subgraphs from graph
databases. In KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 581–586, Seattle,
WA, USA, 2004. ACM.

[11] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In PKDD ’00:
Proceedings of the 4th European Conference on
Principles of Data Mining and Knowledge Discovery,
pages 13–23, London, UK, 2000. Springer-Verlag.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM ’01: Proceedings of the 2001 IEEE
International Conference on Data Mining, pages
313–320, Washington, DC, USA, 2001. IEEE
Computer Society.

[13] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph*. Data Mining and
Knowledge Discovery, 11(3):243–271, 2005.

[14] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum
description length principle: Generators are preferable
to closed patterns. In AAAI ’06, Proceedings of the
Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Application
of Artificial Intelligence. AAAI Press, 2006.

[15] M. Li and P. Vitányi. An introduction to Kolmogorov
complexity and its applications (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[16] J. Rissanen. Modelling by the shortest data
description. Automatica, 14:465–471, 1978.

[17] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining
maximal quasi-bicliques to co-cluster stocks and
financial ratios for value investment. In ICDM ’06:
Proceedings of the Sixth International Conference on
Data Mining, pages 1059–1063, Washington, DC,
USA, 2006. IEEE Computer Society.

[18] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In KDD ’07: Proceedings of the
13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 687–696,
San Jose, California, USA, 2007. ACM.

[19] L. T. Thomas, S. R. Valluri, and K. Karlapalem.
Margin: Maximal frequent subgraph mining. In ICDM
’06: Proceedings of the Sixth International Conference
on Data Mining, pages 1097–1101, Washington, DC,
USA, 2006. IEEE Computer Society.

[20] R. M. H. Ting and J. Bailey. Mining minimal contrast
subgraph patterns. In SDM’06: Proceedings of the
Sixth SIAM International Conference on Data Mining,
Bethesda, MD, USA, 2006. SIAM.

[21] H. Tong, C. Faloutsos, and Y. Koren. Fast
direction-aware proximity for graph mining. In KDD
’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 747–756, San Jose, California,
USA, 2007. ACM.

[22] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi.

Scalable mining of large disk-based graph databases.
In KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 581–586, Seattle, WA, USA, 2004.
ACM.

[23] J. Wang, W. Hsu, M. L. Lee, and C. Sheng. A
partition-based approach to graph mining. In ICDE
’06: Proceedings of the 22nd International Conference
on Data Engineering, page 74, Atlanta, USA, 2006.
IEEE Computer Society.

[24] J. Wang, Z. Zeng, and L. Zhou. Clan:an algorithm for
mining closed cliques from large dense graph
databases. In ICDE ’06: Proceedings of the 22nd
International Conference on Data Engineering,
page 73, Atlanta, USA, 2006. IEEE Computer Society.

[25] D. Williams, J. Huan, and W. Wang. Graph database
indexing using structured graph decomposition. In
ICDE ’07, IEEE 23rd International Conference on
Data Engineering, pages 976–985, Istanbul, Turkey,
2007.

[26] X. Yan and J. H. and. Closegraph: mining closed
frequent graph patterns. In KDD ’03: Proceedings of
the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 286–295,
Washington, D.C., 2003. ACM.

[27] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM ’02: Proceedings of the 2002
IEEE International Conference on Data Mining
(ICDM’02), page 721, Washington, DC, USA, 2002.
IEEE Computer Society.

[28] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 335–346,
Paris, France, 2004. ACM.

[29] X. Yan, X. J. Zhou, and J. Han. Mining closed
relational graphs with connectivity constraints. In
KDD ’05: Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 324–333, Chicago, Illinois, USA,
2005. ACM.

[30] M. J. Zaki. Efficiently mining frequent trees in a
forest. In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 71–80, Edmonton,
Alberta, Canada, 2002. ACM.

[31] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent
closed quasi-clique discovery from large dense graph
databases. In KDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 797–802,
Philadelphia, PA, USA, 2006. ACM.

[32] S. Zhang, J. Yang, and V. Cheedella. Monkey:
Approximate graph mining based on spanning trees.
In ICDE ’07, IEEE 23rd International Conference on
Data Engineering, pages 1247–1249, Istanbul, Turkey,
2007.

[33] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree
+ delta <= graph. In VLDB ’07: Proceedings of the
33rd international conference on Very large data
bases, pages 938–949, Vienna, Austria, 2007. VLDB
Endowment.

528

