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ABSTRACT sources. Examples include the biological Web, GIS datasets and

There has been an explosion of hyperlinked data in many domaFHE,ir metadata, bibliographic data sources, healthcare data, desktop
e.g., the biological Web. Expressive query languages and eﬁecﬂ and Intranets. Such graphs have S|gn|f|cant differences from the
ranking techniques are required to convert this data into browsat§}§neral Web graph. Each of the data entries or documents contains
knowledge. We propose the Graph Information Discovery (GIB9Me specific typed knowledge, e.g., information on genes and
framework to support sophisticated user queries on a rich webR§pteins for the biological Web. Thus, this graph has an underlying
annotated and hyperlinked data entries, where query answers negaema graph. Users of sutyiped websvant answers to queries

to be ranked in terms of some customized ranking criteria, e @t are meaningful to them and go beyond traditional Information
PageRank or ObjectRank. GID has a data model that included*§trieval (IR) keyword queries. These users have sophisticated
schema graph and a data graph, and an intuitive query interfad@formation needs, which require both customization ~and
The GID framework allows users to easily formulate querk],;gersonahzatlon, when ranking query result;. For example,ablologlst
consisting of sequences of hard filters (selection predicates) and S§#¥ Only want to retrieve protein data entries from SwissProt, or she
filters (ranking criteria); it can also be combined with othefM@y D€ interested in discovering the associations between a
specialized graph query languages to enhance their rankifgrticular drug and a disease by following the links among
capabilities. GID queries have a well-defined semantics and diePlications that are linked to proteins and vice versa..

implemented by a set of physical operators, each of which produces The challenges to query answering in this rich web of entities

a ranked result graph. We discuss rewriting opportunities to provigg:jude supporting users to retrieve meaningful answers, given the
an efficient evaluation of GID queries. Soft filters are a key featyiger's preferences, rather than just retrieving relevant data entries.
of GID and they are implemented using authority flow rankinghe Graph Information Discovery (GID) framework must support a

techniques; these are query dependent rankings and are expensignile yet flexible query interface where a user can easily pose a
compute at runtime. We present approximate optimizatigBmplex query. Ranking of answers must reflect the semantics of this
techniques for GID soft filter queries based on the properties g¢h Web and the user's personal perspective. GID queries must be
random walks, and using novel path-length-bound and grapfteractive and support the exploratory discovery process. Hence,

sampling approximation techniques. We experimentally validate QHey must support formal semantics so that queries can be optimized
optimization techniques on large biological and bibliographigng evaluated efficiently.

datasets. Our techniques can produce high quality (Top K) answers o . . .
with a savings of up to an order of magnitude, in comparison to the The limitations of many prior solutions are that they typically

evaluation time for the exact solution. converge on the extremes of query complexity, i.e., plain keyword or
complex queries, with few solutions in between, or they fail to
Categories and Subject Descriptors consider ranking. Web search [11, 12, 14, 22, 23] employs excellent
H.3.3 [Information Search and Retrieval ranking techniques but have limited search capability. The keyword
General Terms search paradigm of Web search has also been adapted to structured

databases [3, 5, 6, 16, 29]. On the other hand, there are a variety of
extensions of SQL for Web graphs (WebSQL [21], W3QL [20],
Keywords WebOQL [4], StruQL[12]) and RDF graphs (SPARQL [28)]).
soft filters, hard filters, authority flow ranking, ObjectRank. However, none of these languages provide customized ranking
techniques. The approach in [24] is an excellent start towards
1. INTRODUCTION ) ) incorporating ranking in structured Web queries. They provide an
Consider a rich web of annotated data entries (objects) \jRderlying algebra and optimization; however, they do not support
Internet accessible sources with hyperlinks to entries in othgy interface that allows users (scientists in the case of the scientific

b) to intuitively write useful complex queries, nor do they support
t
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GNPR )

EntrezGene /D= “7916”,
Name="HLA-B-Associated
transcript 27, Organism=
“HomoSapiens”,
Description = “A cluster of
genes..TNF.. Human...”

EntrezGene /D= “7920”,
Name="HLA-B-Associated
transcript 57, Organism=
“HomoSapiens”,
Description = “A cluster of
genes, BAT1-
BATS5....TNF....human”

EntrezProtein
ID="179339", Definition =
”"HLA-B-associated
transcript 2",
Organism="HomoSapiens”
, Features="region...”.

OMIM /D = “142590 ~,
Description = “HLA-B-Associated

transcript 3. By chromosome
walking with overlapping.......”

GN-PM
GN-PR

A
PR-PM

EntrezProtein
ID="4337110", Definition =
"BAT2", Organism =
"HomoSapiens”,
Features="source..region...”

GN-NU <

EntrezNucleotide /D=
“4337095”, Defintion
=“Homo sapiens MSH55
gene..”, Organism=
“HomoSapiens”,

OMIM OMID = “142580 ”,
Description = “HLA-B-
Associated transcript 2. From
cDNA clones, determined the
complete seq.......”

J OM-PM

PubMed PMID = “2156268”,
Authors="J. Banerji, A. J. Sands,
J.L. Strominger, T. Spies” Title=“A
gene pair from the human major
histocompatibility complex...”
Descrr'ptr’orl= “A large number of ...”

PRPM_m P

PubMed PMID = “14656967”
Authors="T. Xie, L. Rowen, B.
Aquado, M.E. Ahearn..”
y Title="Analysis of the gene-dense
major histocompatibility
complex...” Description="In
mammals, the Major

NU-PM

Description = “Maijor ....." Histocompatibility....”

Figure. 1 Sample Data Graph for a Biological Dataset.

mechanism (if any) should be used for each leg of the query.presents related work. Section 5 presents the algebra and Section
Furthermore, NAGA uses expensive reasoning algorithms, which6 discusses authority flow techniques used to implement soft
may not scale to very large datasets like PubMed, whereas GlDfilters and their efficient evaluation. Section 7 presents the GID
relies on a suite of scalable approximation and optimization optimizer and its execution. Section 8 presents the quality and
techniques. We show in Section 4 that our framework can performance experiments. Finally, Section 9 presents our
complement such prior research and extend it with support forconclusions and future work.

sophisticated queries and ranking. > DATA MODEL

This paper addresses the challenges of expressing and  ne GID framework views a database as a labeled graph; this
answering sophisticated user queries on typed graphs. We foCug,nres both relational and XML databases. It includes a data
on a web of annotated data entries from biological data sources;q a schema graph. The data gr&pB(Vo,Ep) is a labeled
for our running e)_<amples_ and egperiments. Howev_er, the genericyirected graph where every node (objachas a typé.(v), a set
GID framework is applicable in multiple domains; we use a . A of attributes with attribute valug(v),...,A(v) and a set
bibliographic data as a second evaluation domain in our c(v) of keywords. For example, the node “PMID 14656967" of
experiments. The GID framework has the following features and Figure 1 has type “PubMed” and attributes “Title” and “Authors”
capabilities: and the set of keywords includes {*mammals”,

«  Given a typed graph, GID provides a user interface to specify “histocompatibility”, ...}. _ _ _
a combination of hard and soft filters; the latter incorporate The schema grap8QVs, E9) (Figure 2) is a directed graph
ranking in an intuitive manner. GID emulates domain graph that describes the structure of a data gfagh Every noder and
query languages such as IgQ§PR [25] and filter queries in every edge= have an associated typ@jorA(e), resp_ectl\{ely. For
PubMed [1]. GID can be combined with more general graph instance, the “Entrez Gene” to “PubMed” edge in Figure 2 has
languages to support complex queries. type “GN-PM”. We say thz_it a data_ graDIG_(VD,ED) c_onforms to

. . . a schema grapBQVsEy) if there is a unique assignmeytof

. Fllter.s are implemented by an underlying closed algebra of data-graph nodes to schema-graph nodes and a consistent
physical operators. Each operator produces a ranked graprhssignment of edges as follows:

and GID operators can be combined. The properties of the 1. for eachvVp there is au(v) (Vs such that (v)=2(u(v)):
operators are used to determine the relevant query rewriting 2. for every edgel]E, from nodeu to nodev there is an’edge
. D

rules. u(e)JEsthat goes froma(u) to u(v) andi(e) = A(u(e)).
¢ GID soft filters are implemented using authority flow based 1

rankjng; they are query depenqlent and must be compgteo! at ‘ Entre'z conGtﬁi_",\fl(im:“) Entrez
runtime. Two novel approximation techniques are studied in =4 LNucleotide |, .0y Gene -
order to achieve interactive query response times. One is a g; PM-PM A g
path-length-bound technique, where only paths of limited O cites (m:n) cites (m:n 25
length are considered. The second is a graph-sampling % NU-PM—>| PubMed [«GN-PM c|>§
approximation technique, where sampling over a Bayesian © Entrez

network is used to create sampled graphs and estimate the Protein [PR-PM- LOM-PM- OMIM

cites (m:n) cites (m:n)

ranking scores.

¢ GID queries were evaluated on biological and bibliographic
datasets. We show that our approximation methods achieve
execution time reductions of up to an order of magnitude, 3. GlD.Ql.J.ERY LANGUAGE ) o
with negligible degradation of the Tdpanswer’s quality (in The intuition of the GI.D frame\(vork is the appllcatlon.of a
comparison to the exact ranking). This allows GID to support sequence of hard and soft filters. A filter generally takes as input a
an exploratory framework. ranked graph and outputs a ranked subgraph of the input graph. A

The paper is organized as follows: Section 2 presents theh?]frg'g:;':oﬁts%?e:o recllvrirggzt?ars]%we nodes in a Boolean manner
data model. Section 3 describes the query language. Section Y P 9.

Figure. 2 Subset of Schema Graph for a Biological Dataset.
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3.1 GID Query Syntax
Given a data grapbPG and a schema graj@G a queryq is
a sequence=[r;>...>r] of filters r;. We use the “>” symbol to

$EntrezGen®/EntrezProtein, false, fal¥ereturns all EntrezGene
objects that point to an EntrezProtein object.

denote a total order between the filters and this represents 3.2 GID Query Semantics

pipelining of the output of one filter as input to the next. The

To define the semantics of GID queries, we first define a

results of a query, which are usually (see exception below) thescore assignment functipScorefor a data grapG(Vp,Ep) to
nodes of the graph output by the last filter, are referred to aspe a mapping of node&IV; to real valuesScordv) in [0,1]. A

target objects A query may also specify the numberof the
requested top-results. A filterr={R,N,$ is the following 3-
tuple:

(1) The selection conditioR as follows:

A keywords Boolean (OR, AND, NOT) expressi&h
e.g.,Keywords = “cancer” AND “breast”
An attribute value pairayv, e.g.,
comparative..”

AtypeT, e.g.,Type ={EntrezGeng

A Path expressioR, e.g.,Path = EntrezGenéPubMed
or Path = EntrezGengKeywords= “tnf” ] / PubMed
[author="Michael].

title “A

(2) A BooleanN; the value=true means thaits negated.
(3) A BooleanS; a value=true means thaisrsoft.

GID does not support soft filter§£true), whereR is a path
expression, or negated soft filtetd=true and S=true) since the
semantics are unintuitive. Path expresstomay contain types,
unidirectional single step navigational operators (/), multi-step
navigational operators (//), and type wildcards (*). Notice that
“Pathr, “Keyword$ and “Typé€ are reserved words in GID. GID
does not support a combination of selection conditions (keyword

expression, attribute value pair, type or path expression) within a

single filter, in order to simplify the implementation and
optimization process.

Example1: A biologist’s exploration is as follows: Starting from
genes in Entrez Gene she follows links to Entrez Protein and the
to PubMed; her target objects are a set of papers in PubMed. Sh

wants to rank these papers by their importance/relevance to the

word “human”. The following expresses her needs

g, = [{ Path= EntrezGene/EntrezProtein/PubMed, false, false
>{Keywords“human”, false, trué
>{Type=PubMed, false, fal§p.

The first hard filter creates a subgraph of paths from genes in
Entrez to proteins to PubMed publications. The second, soft filter
provides a “goodness” rankingto be discussed belypvwith
respect to the keyword “human”, and the last, hard filter
identifies the “target objects” - publications from PubMed — in
the result]

The most simple and intuitive GID query for novice users is
to specify a set of hard filters{...,; } and a single soft filters.
This can have a default interpretationgof{r,...,;} > rsor asq
= rg >{ry,...,x} depending on the application semantics. The
specific ordering of the hard filters{...,r} is not important as
long as they do not include Path filters as shown in Section 5.2.

Target Objects:As mentioned above, we assume by default that

n
€

unit score assignmenScorg,, assignsScorgn(v)=1 to every
v/ Mp. The input of a filter is a pair G;,,Scorg,) of a data graph
Gi, and a scores assignmedtore, for G;,. Similarly, the output
is a pair GounScorg,y), whereG,,; is a subgraph dg;,. Applying
the filter is as follows:r(Gi,Scorg,)=(Goui Scorg,y)-

Given a GID querg=[r;>r,>...>r,.>r,] on the data graph
DG=(Vp,Ep) the result  Gg,Scorg) of ¢ is
Mm(Fmea(-..(r2(r2(DG, Scorgnp))...)).

During query evaluation, filters are applied in the order
indicated in the query. Note that the unit score assignment is used
for the first filterr,. Alternative initial scores are possible, e.g., the
global score of a node computed by a method like PageRank [23].
Each filter may change the scores of the data graph. This may also
eliminate nodes and edges as explained next. Applying ffitiar
graphDG is as follows:

Eachv in DG is assigned a scogeordv) in [0.0,1.0].

When nodev is assignedcorgv)=0, then the node and its
incident edges are removed. For example, applying
{Keywords*human”, false, fals¢ removes all nodes and
incident edges in grapB;, that do not contain the keyword
“human” to creat&s,,; .

Given the result IGg,Score) of g, where DGr=(Vg,ERr),
GID will display a list of the nodeg of Vg ranked by decreasing
Scorg(v) values.

Hard filters are used to eliminate nodes (and their incident edges)
of G;,. The filter is evaluated as a Boolean and may assign score 0
to some nodes. The score is unchanged for the rest of the nodes.
Consider the following filter={ R,false,falsg

1. If Ris a keyword expressiok (or simply a keyword),
Scorg(v)=0 if v does not satisfyE, else Scorg,(v) =

Scorg,(V).

2. If Ris a attribute value paav, thenScorg(v)=0 if nodev

does not satisfgy, elseScorg,(Vv) = Score,(V).

If Ris a typeT, thenScorg,(v)=0 if v is not of typeT, else
Scorg(v)=Scorg,(v).

4. If Ris a pathP, thenScorg,(v)=0 for nodes not contained in

a path of type PelseScorg,(v)=Scoreg,(v).
The opposite scores are assigned {fR,true,falsg¢

Soft filters rank a result subgraph and are inherently fuzzy.
SupposeR is a keywordw or keyword expressiorkg, then,
applyingr results in the following score:

Scorg(v)=f(Scorg,(v),Scorg(v))

all the objects of the resulting subgraph of the query are output top<Scorg(v)<1 is the score assigned tdyr. Score(v) shows how
the user. Alternatively, the $ sign is used to select a more fine-«good” v is, given the grapks,,. GID does not specify the exact

grained group of target objects. For instangge,= [{Path =
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semantics or computation of these sc@esre(v) for soft filters.
Various approaches are possible including authority flow (Section



6), IR scoring [27], path count [18], keyword proximity [13, 17], express a need for general join operations, recursion, etc. as found
minimum distance from the keyword nodes and so on. Note thatin [24]. GID soft filters are more general than the ranking
Scorg(v) must be positive (non-zero) and must not depend on theoperators in [24]. GID soft filters are evaluated against the whole
input score assignme®tcoreg,(v). This important assumption, the input subgraph (e.g., ObjectRank) instead of just relying on the
non-pruning order-free assumptidor soft filters, is needed to  properties of each individual node as is done in [24]. This
obtain useful rewriting axioms. This assumption is reasonable toproperty is the key to intuitive GID user query interface.

implement since a small epsilon value can be assigned to node
instead of O if they are completely irrelevant Ro We use a
combining function f(e.g., product or min). In principle, any
combining function may be used. However, a monotone function
is usually more intuitive and also allows pipelining and fast
computation of the top results [10]. In order to maintain the
Scordv) in [0.0,1.0], we normalize th8corégv) after application

of each filter.

]S:'xample 2: This example shows that the GID query language
allows expressing complex queries in an intuitive way; no query
language was proposed in [24]. Consider the following sample
query from [24]: “Generate a list of universities with whom
Stanford researchers working on ‘Mobile networking’
collaborate”. A sequence of instructions corresponding to this
query is presented in [24]Let S be a weighted set consisting of
all the pages in the stanford.edu domain that contain the phrase
Example 1 (cont'd): Figure 3 shows the query evaluation of 'Mobile networking’. The weight of a page in S is equal to the
query g given the input data graph DG of Figuite We assume normalized sum of its PageRank and text search ranks. Compute
initial unit scores assignment Scgge We also assume a simple R, the set of all the “.edu” domain@xcept stanford. eduo

soft filter scoring function with Scafg)=0.5 if a node does not  which pages in S point. For each domain in R, assign a weight
contains the term and Scef@=1 otherwise. The combining equal to the sum of the weights of all the pages in S that point to

function f is summation! that domain. List the top-10 domains in R in descending order of
their weights[24]. Creating the algebraic execution plan for this

4. RELATED RESEARCH query (Figure 8 of [24]) requires significant training.

Meeting target user needsWe interviewed biomedical domain In contrast, the hard and soft filters of GID can express this

experts and examined popular search tools. When asked tqery in the following sequential and straightforward manner:

describe the selection of target objects (results) that are document Keywords"™ falsetrue}>{ IRFilter("Mobile Networking),

in PubMed, these users chose progressive filtering of the objectsgy g trug) > {Path=WebpagHJRL="stanford.edi AND

see PubMed filter queries [1]. They also requested simple Keywords= "Mobile networkintj/$WebpagfURL=".edu AND
navigational paths. PubMed supports filters in a limited manner; g » "stanford.edli$, false falsg> {URL="stanford.edl
users can select a set of predefined filters (hard filters in OUrtaise truel]. '

terminology), e.g., filter the publications that cite MEDLINEplus

articles. In [29], we conducted user experiments that show the For this query, we first initialize the graph nodes with global
benefits of soft filters for this domain. We note that the real test of PageRank scores (empty keywords expression in first soft filter).
the GID framework will be a friendly graphical user interface and For computing the textrank (IRscores), we need to introduce the
user evaluation studies; this is included in our future work. IR soft filter. Thecombining functionf is summation that adds
extranks and pageranks. Notice that the last filter is a soft filter
model. The GID model is much simpler compared to RDF, yet it at gomﬁgutgs (tjhe flnallscgres fo;.each web padge a\r;\? outputs the
can capture much of the knowiedge used by a scientist in thef B0 SN0 LR L R 200 I s of the
process of literature based discovery (LBD) on the Web. NAGA ) . ) :

[19] has a similar labeled directed multi-graph data model. nodesiln the input graph as the weights in the base set for the
However, they may have significant overhead in determining the authority flow execution algorithm.

confidence of facts and relationships of the RDFS graph. There has been significant work on query languages for the
Web and search engines ranging from keywords based languages
to query languages for semi-structured data, to graph query
languages; a detailed comparison is in the extended version [30].

confidence-based edge weights that reflect the estimated accuracggrrn ulséirs uvgr]icésret?grglgegeer?;tg?segncljap;nuzge sfzerﬁ:ﬁistignéi
of the extraction process and trust in the source. In contrast, GID. piex g ' p 9

allows the user to specify what ranking mechanism (if any) should incorporated in a §traightforward manner into a Ianguage such as
be used for each leg of the query. GID supports authority flow SPARQL. Alternatively, more complex path expressions or other

based ranking and the authority weights can be personalized. Thi e*a(gzn?cl)g)pf;ﬁto;s (i:gsbiolgccl)époratgsl.;gtc;rtlge c(;:]D Slanggig%
is well suited to scientists whose value for specific domain . xp . p X quenes upp
knowledge may vary depending on the task. powerful inference mechanism; however, this may not scale well

to large graphs and an interactive discovery process.

A second aspect of user needs is the richness of the dat

A third aspect of user needs is personalized ranking. NAGA
does not support query-customized ranking. That is, a fixed
ranking function is applied to the final results, based on

Expressive power:GID is clearly more powerful than the current

PubMed language which only supports hard filters and has noo. ALGEBRA FOR GID

ranking capability. Research by Raghavan and Garcia-Molina [24] We present a closed algebra where the algebraic operators
studies an expressive graph algebra and query operators. The Glbave a one-to-one correspondence to the filters of Section 3. A
language can support the “linear” plans of this algebra. The “tree” binary Combineoperator is introduced to combine scores. Each
plans were not considered since they cannot be supported by &unary) operator, with the exception @dmbine accepts as input

simple user language. While users wanted navigation, they did no@ pair of data graph and score assignmé,(Scorg and
produces the pair DG, Scoréd), where DG=(Vp,Ep) and
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{Path=FntrezGene/EntrezProtein/ Intermediate Data Graph 1

{keywords="“human”, false,

PubMed, ! 1 1 ! true}
Jalse, false } i EntrezProtein H PubMed R ‘ | Filter 2
Filter 1 —N ID=179339 PMID — 2156268 '$_> (soft term filter)
Input Data Graph | (hard path filter) | ™ EntrezProtein PubMed | |
(Figurel) | TD=4337110” PMID = “14656967" ||
I
i 1 1 |
_____Resultgraph Intermediate DataGraph2 4 _____
} 2 | (type—PubMed, false, false} ! 1.5 2 |
1| PubMed ! ) ! Pntre@en EntrezProtein PubMed !
| PMID = 2156268 | 4 Filter 3 “— s ID=<179339" PMID — “2156268” | |
i i (hard type filter) i = i
'l PubMed i 1 EntrezProtein PubMed |
U PMID — “14656967" | | ! ID=<4337110" PMID — “14656967" |1
1 15 ! o s bs o
Figure. 3 Sample semantic query evaluation.
DG'=(Vp',Ep). Further,Vy' O Vp andEpy'0 Ep. . If E=E1 OR E2 ScoreFunctio(DG,E, =
DD D D D D

ScoreFunctio(DG,E1,y+ ScoreFunctio(DG,E2,V.

« If E=E1 AND E2 ScoreFunctio(DGE,) =
ScoreFunctiofDG,E1,y . ScoreFunctiofDG,E2,V.

5.1 Operators
1. HardeExpgDG,Score,E - (DG',Scoré) whereE is a Boolean
expression over keywords, such thét, ={v | v 7V, and

satisfv,B)}, Ep'={e=(u,y) | elEp and u,vO Vp'} and the o If E=not(El1), ScoreFunctiofDG,E\) = 1 -

Boolean predicatsatisfy.,.) is defined by induction oveE ScoreFunctio(DG,E1,Y).

as follows: ' .

« If Eis a termgsatisfyv,E)=true if v contains the terr, « If E is a term w, ScoreFunctio(DGEV) =
falseotherwise. ScoreFunctio(DG w,v).

« If E=El Op E2 salisfyv,B)=satisfy(v,E]) Op Once ScoreFunctioris executed, the scor&corg(v) of the

satisfy{v,E2.

« If E = not E1), satisfyv,E)= not(satisfyv,ED). The
score of each nodelVp' remains the same, i.e.,
Scoré(v)=ScorgV).

2. HardAttributdDG,Score,ay — (DG',Scoré) whereav is an
attribute value pair, such thayy’ ={v | v J Vp, and 6.

nodes in DG are updated as follows:Scorgv) =
ScoreFunctiofDG,E,J). Note that Scorg(v) is the Scorg(Vv)
described in Section 3.2, that is, the score assigned by the soft
filter. This score will then be combined with the previous nodes
scoresScore(v) using th€ombineoperator below.

CombinéDG1,Scorel,DG2,Scorep,f - (DG',Scoré)

like

satisfy{v,aV)}, Ep={e=(u,\) | eJEp and u,v] Vp'} and the
Boolean predicatesatisfyv,E)=true if v contains the
corresponding value for the attribute specificid)se
otherwise. Notice that we overload the satisfy predicate.

HardTypéDG,Score,J- (DG’ Scoré) whereT is a set of
types (nodes of the schema graphy,={v | vO Vp and [/t
OT and O t}, Ep={e=(u,V) | eO Ep and uv Vp'}. The
score of each node /7 Vp' remains the same, i.e.,
Scorg(v)=ScorgV).

where f(scorel,scoreR is a combining function
product. For every node in the union BG1 and DG2,
Scordv) = f(Scorelv),Score?v)). Given DG=(Vp1,Ep1)
and DG=(Vp,,Epy), the gaphDG= (Vp', By is defined
as bllows: Vp' ={v | v 7 Vp; O Vp, and Scorgv)>0.0},
Ep'={e=(u,v) | e JEp; O Epy and u,v7Vp'}.

Example 1(contd): Figure 4 shows an execution plan for query
gl. We use (f.)=SUM(.,.) as the combining function (other
combining functions are possible as explained above) and

ObjectRank as the ScoreFunctiaon .

HardPath(DG,Score,P— (DG’ Scoré) where P is a path
expression,Vp' = {v | v [J Vp and satisfyPattv,P)},

Ep={e=(u,v) | e [J Ep and u,v 7 Vp%}, the Boolean
predicatesatisfyPatliv,P) is true if v is part of a patlp that
satisfiesP; false otherwise. The score of each nod&/ Vp'
remains the same, i.&core(v)=ScorgVv).

SoftExDG, Score, E, ScoreFunctipn- (DG’ Scoré
where E is a Boolean expression over keywords, and
ScoreFunctionis a function such that, giveB and DG,
maps each node to a scoreScoreFunctio(DG,E,) in
[0.0,1.0] ((0.0,1.0] given the non-pruning assumption for
soft filters). Alternatives for ScoreFunction include
ObjectRank, path count, MinDistance, keyword proximity
and so on, as discussed in Section 3.2. The score for E is
computed as follows:
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Due to space limitations we do not describe the operators to

handle negationN=true) in the filters.

<DGp, Scoreg

HardType(DG3,
Score3,PubMed)

DG3, Score3

Combine(DG1,Score1,
DG2, Score2, SUM)

r

DG2, Score2

SoftExp(DG1,Score1,
"human”,ObjectRank)
T DG, Scorel
HardPath(DG, Score,
EntrezGene/
EntrezProtein/PubMed)

<DG1, Scorel*

DG, S&)re,,,,,,
Figure. 4 Execution plan for queryql.



5.2 Axioms directions and not only in the direction that appears in the schema.
For example, an Entrez Gene passes its authority to the PubMed
paper it is associated with and vice versa. Notice however, that the
authority flow in each direction (defined by the authority transfer

rate) may not be the same. For example, a PubMed paper that is
cited by important papers is clearly important but citing important

PubMed papers does not make a paper important. In Figure 5,
Theorem 1 Let H, H; be hard filters and ;5§ be soft filters. The different rates could be assigned to different edge types to achieve

In this section we present the rewriting rules for GID queries,
assuming any implementation for the soft filters, i.e., any
definition of ScoreFunctionThese rules will be applied together
with the approximations (to be shown in Section 6). Consider the
following theorems (without proof):

with the current scores is commutative (e.g., product, sum, max).

following properties hold: personalized authority flow rankings.
1. The commutative property of non-pattard filters H; > H;
< Hj>H. U — E' 't """""""" I;"t'
o 1 | ntrez [——0.2: ntrez
2. The.commutatlve property of soft fllFers‘SS = §>8. | Nucleotide | - — 09 o] Gene
3. Theidempotence property of hard filters HH; = H; : Ty roea-O0-—— & | —
The proof is straightforward and relies on the following: The soft = & = yo2—%e g' s :
filters are non-pruning and always assign a non-zero score. The | T = TP o
e ; : ) ; i — ubMed L1 | » =
combining functionf which combines the scores of a soft filter : |
|
L

II 't -
Entrez |—0.2 :: 0.2

. ) Protein |« -02--J L __02 OMIM
Theorem 2: The rewritings of Theorem 1 can be applied to any

subsequence of a query.[] Figure. 5 Authority Transfer Schema Graph for Biological
For example, iQ = §>H;>H,>S, whereH; and§ are hard and Database.
soft filters respectively, then using the commutative property of

hard filters we can rewrit® asS;>H,>H>S,. Authority Transfer Data Graph . Given a data grapDG(Vp,Ep)

that conforms to an authority transfer schema gie®®V+sEr9),

6. GID SOFT FILTER COMPUTED BY we can derive an authority transtr data graptG(Vyp,Emp) as
follows. For every edge = (U—V) Ep, the authority transfer
AUTHORITY FLOW data graph has two edgds (U—v) ande% = (v—U). The edges'

GID soft fiters will typically be the most expensive ,nqeb are annotated with authority transfer ratés) and a(€).
operators since the popular authority-flow based ranking ]

techniques used by most soft filters are well known to be Assuming that is oftypeeS,then
expensive for relatively large data graphs. PageRank [23] and

ObjectRank [5], rely on pre-computing and indexing global or a(el) if OutDeg(ue')>0
keyword-specific rankings. Given that the GID framework is ae') = OutDeg(u.ef)’ e

meant to be interactive and exploratory, we aggressively optimize 0, if OutDeg(ue’) =0

the evaluation of authority-flow soft filters. We first provide an (1)

overview of some ranking metrics. We then discuss two

approximation techniques. OutDeguey)

where,

f
: : of type €s . The authority transfer ratge”) is defined similarly.
6.1 Authorlty Flow Rankmg Figure 6 illustrates the authority transfer data graph that

corresponds to the data graph of Figure 1 and the authority
transfer schema graph of Figure 5. Each edge is annotated with its
authority transfer rate. Notice that the sum of authority transfer
Authority Transfer Schema Graph. From the schema graph rates of outgoing edges of nodeof type x(u) in the authority
SQVsEJ, we create the authority transfer schema graph transfer data graph may be less than the sum of authority transfer
TSQVrsErg to reflect the authority flow through the edges of the rates of outgoing edges ofu) in the schema graph, ufdoes not

is the number of outgoing edges fram

The ObjectRank score of a nodgiven a keywordwv is the
probability that a random surfer starting from a node that contains
w (the base set) will be atat a given time.

graph. In particular, for each edgg (u—V) of Eg, two authority have all types of edges.
f b -
transfer edges®s = (u—v) and €S = (v—u) are created. The _ W OMIM /D="142590 " ‘
two edges carry the type of the schema graph edge and, in 02 0.1 (?2\\ T
addition, each one is annotated with a (potentially different) %‘Hg% 02 0.2 ~ 0" o
=L T T —— = PubMed
_ f b _ — — o Tuollee .
authority transfer rate @ (€s) and?(€s) respectively. We say ~ Qm 02 027AID="2156268
that a data graptonformsto an authority transfer schema graph if EntrezGene ~d % '0-2 —
it conforms to the corresponding schema graph. The transfer rates | /D= 7920 ] ID = “14656967"
can be determined manually by a domain expert [5] on a trial and 0.2 ',‘,“0.2 02 _—= Jo1
= 02/70.

error basis, while [29] present techniques that allow this task to be‘ EntrezNucleotide = 02
done automatically based on the user’s feedback. ID="743370957 OMIM D = 142580 * |

Figure 5 shows the authority transfer schema graph that
corresponds to the schema graph of Figure 2 (the edge types are
omitted). The motivation for defining two edges for each edge of
the schema graph is that authority potentially flows in both

Figure. 6 Authority transfer data graph for Biological
database.
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ObjectRank computation. Consider a single keyword (w) query layered graptRG=(V,q,Eg) of k layers is defined by a transition

and the authority transfer data grapPG(Vip,Erp). A surfer matrix Ay and an initial ranking vectd®™:
starts from a nodes; of the base sefw) (nodes inVyp that -
containw), and at each step she follows an edge with probability R= A, IR = ( Ag)R™ 3)
d or gets bored and jumps to a nodé&s{w) with probability 1 - 9 D 9
d. The ObjectRank value of is the probability that at a given
point in time, the surfer is at. The ObjectRank scores vectSr The transition matrix Ay, where, aig(€) is the authority
= [rvy),...r%vy)]" given keyword queryw, wheren=|Vp|, is transfer rate of edge between nodes and v of typeU andV,
defined as follows: respectively, in adjacent layeps and . The QutDedu,V), the
w _ w . @-d) outdegree of node to nodes of the typ¥, is limited to nodes and
r* =dAr" + m o edges in the layered graph as follows:
2
whereA is an x n matrix with A; = o(e) if there is an edge(v; — Agluv = {Cng(e, i _ == V08
v)) in Erp and 0 otherwised is the damping factor which controls 0 otherwise 4)

the base set importance asct [s, . 5 ., s]" is the base set

vector wheres is 1 if v, U S(w) and 0 otherwise. [29] presents a ; ; ; e
variant of ObjectRank called ObjectRank2, where the random6'2 ApprOX|mat|on Technlques to EffICIently

surfer jumps to different nodes of the base set with different Evaluate Authority-Flow based Soft Filters

probabilities, proportional to their query-specific IR score. All We present two techniques to achieve fast, high quality
optimizations described below equally apply for ObjectRank and approximate rankings. Each of these two techniques is more
ObjectRank2. effective in different settings. Theath-length-boundechnique

) ) considers paths with an upper bound on the length, in computing
Layered Graph ObjectRank (IgOR): The class of GID queries  aythority flow. The approximation is effective in evaluating a

with a hard path filter followed by a soft term filter is very useful gingle authority-flow soft filter (Section 6.2.1) and can be applied
and expressive. [25] proposed the IgOR ranking, a variant ofy, 3 sequence of soft filters. Thgraph-sampling technigue
ObjectRank, to answer such queries. These queries applyyropapilistically selects a subset of the paths using a Bayesian
authority flow ranking on an acyclic directddyered graph network. It is applied to approximating IgOR queries (introduced

produced by the hard path filter. in [25]), which are equivalent to a hard path hard filter followed
Example 3 Consider the following GID query{{Path = by an authority-flow soft filter (Section 6.2.2). This
EntrezGene/EntrezProtein/$PubMed$,  false, falsp > approximation is |nd|spensab!e when the _data graph is large. In
{Keywords“aging” OR “cancer”), false, trug]. First, the hard both techniques, the complexity of evaluating a query is reduced,
filter creates a layered graph of paths satisfying the path Py minimizing the number of nodes visited during query
expression EntrezGene/EntrezProtein /PubM&igure 7). A execution time.

layered graph is a DAG comprised of layers; each layer has data . . .

entries of one or more types, which have only edges to datab.2.1 Approximate a Soft Filter with Path-Length-

entries in the next layer of the graph. The data entries in the lastBound Technique:

layer, which are returned by the query, are called the target A path-length-boundechnique is applied to approximate the

objects. For simplicity we assume that each layer is composed ofevaluation of an authority-flow soft filter. The key idea is to

data entries of one type. Next, the soft filter executes ObjectRankevaluate ObjectRank on a subgrapPG'(Vrp',Erp’) of TDG

on the layered graph for the keyword expression “aging” OR (V;p,Erp). TDG'is created by first selecting all nodég,’, O Vrp

“cancer”. The target objects(PubMed objecls are ranked  with distance up td/ from the base set (the nodes that contain the

according to their ObjectRank value. keywords of the soft filter), wher# is the radius constant
Layer 1 Layer 2 Layer 3 usually set to a number between 2 and 4 in our datasets. We add

the edgesrp’ O Exp that connect nodes Myp'. Figure 8 shows

the detailed steps of this optimization.

1. Let g=[r,] be a query conposed of a single
soft filter r,

2. Let w be the keyword expression of r_.

3. Initialize TDG with the set of nodes in TDG

4

satisfying w.

Entrez Gene Entrez Protein PubMed A . . . .
. Repeat until user is satisfied with current
i results’ quality {
Figure. 7 Layered Graph. 5. Do one step of breadth-first search in
A key point of IgOR is that the authority flows between TDG and add each newy accessed node.
objects in the layered graph are only determined by the scores o & Exit loop, if no new nodes are added.
h ts of each object in the previous layer of the graph, ang L Execute Cbject Rank on TDG.
the paren | p y grapn, 8. Qut put top-k objects. }

the incoming authority transfer rates. IgOR is defined as follows:
The ranking vectoR of the target objects in the last layer of the

Figure. 8 Approximate Single Authority-Flow Soft Filter.
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In order to guarantee interactive response times, we start with pattconfidence level in the relative erroe of computing an
length M=1 and progressively increase it to improve the results approximation of IgOR inRG is at leastd, the Chernoff-
quality, in the spirit_of [15] until the user is satisfied Wit_h the Hoeffding’s bound yields an upper bound on the number of times
current results’ quality. To further accelerate the execution, we the Direct Sampling process needs to be evaluated, i.e., an upper
reuse the ObjectRank values of the previous iteration. Note thathound on the sizen of {RG....,RG". Details of the Direct

this algorithm is applicable for a sequence of soft queries, by Sampling process and the bounds are in the extended version
merging their base sets (node weights are added if ObjectRank330].

[29] is used, which has weighted base set).

. _ 7. GID OPTIMIZER AND EXECUTION

6.2.2 Approximate IgOR: {Hard Path Filter} > {Soft We present an overview of the GID optimizer and execution
Filter} with a Graph-Sampling Technique: engine, to illustrate how the rewriting rules of Section 5 and the

A graph-sampling technigque can be applied to approximate approximation techniques of Section 6 are applied together to
IgOR on a query comprising a hard path filter followed by a soft achieve interactive response times for GID queries. ObjectRank is
filter. Given a layered graptRG=(Vj,Eg), the problem of used to implement the soft filters. The GID system works on top
approximating IgOR foRG is reduced to estimating a subgraph of relational DBMS, which stores the data graph.
RG of RG, so that with high confidence (at le@tthe relative
error of computing an approximation of IJORR®' is €. First, a
set {RG,...RG™ of independent and identically distributed
subgraphs oRG s generated. TheRG' is computed as the union
of the m subgraphs. EactRG is generated using a Direct
Sampling technique over a Bayesian network [26] that encodes all
the navigational information encoded RG and in the transition
matrix Ay. Finally, an approximation of IgOR is computed in
RG.
A Bayesian networBN=(Vg,Ep) is built as follows:

Precomputation: Precomputation is required to achieve exact and
timely query answering. (1) We build an ObjectRank index which
stores the ObjectRank score for each pair of a keyword and an
object. A threshold is used to avoid storing objects with very
small scores. (2) Full-text indexes are created for all text attributes
and keyword, as well as indexes on the primary keys of the
relations. However, if the query does not allow the use of
precomputed structures (e.g., the soft filter follows a hard filter),
then the approximation techniques of Section 6 are employed.

) ] ) ) Query time: The GID optimizer accepts an input GID query and
* BNandRGare homomorphically equivalent, i.e., there is a produces an execution plan. In particular, the following rewritings
mappingf: VB — V|g, such that,f(u),f(V)) O E|g iff (U,V) 0O EB~ are pOSSib'e:
¢ Nodes inVp correspond to discrete random variables that
represent if a node is visited or not, i¥3,= {X | X takes the
value 1 (true) if the nodeX is visited and 0 (false)
otherwise}.

Select a physical implementation for each GID algebra
operator. Table 1 shows the available physical operators for
the GID algebra operators. Note that the path-length
approximation is identified as a possible implementation for
»  Each nodeX of Vg has a conditional probability distribution: SoftExp.

2. Change the order of operators using the rewriting potential of

Pr(X | Parenty X)) = Z(a( FCY)), £(X) 0v)) the axioms of Section 5.2.

j=1 5
) . ®) . 3. Insert the Combine operator to support eaclSoftExp
where,Y; is the value of the random variable that representp the operator.

th parent of the nodX in the previous layer of the network, and _ _
a(f(Y),f(X)) corresponds to the authority transfer rate of edge 4. Replace a subsequence of operators with an equivalent

(f(Y;),f(X)) in the layered graph, and is seen as the probability to “superoperator”. Only one such superoperator is currently
move froij to nodeX in the network. Thus, the conditional |mplemented as shown in the last line of Table 1. It replaces
probability distribution of a nodeX represents the collective (HardPath> SoftExp)and is implemented using the graph-
probability thatX is visited by a random surfer, which starts from sampling approximation of Section 6.2.2.

the objects in the first layer of the layered graph. Finally, the Note that we only consider linear plans in this version of

probability of the nodes in the first layer of the network GID optimizer. This is a natural choice given the linear nature of

corresponds to a score t_hat |nd|c_at_es how good each object is W'”Execution of GID operators. We will relax this restriction as more
respect to the keywords in the original query. capabilities are added to the GID algebra.

Direct Sampling is performed using the Bayesian Network - .
and the topological ordering of the layered graph to generate each We use some ru!es-of-thumb as indicated in Fhe last column
subgraphRG. Once an iteratiori of the Direct Sampling is of Tabl_e 1 to determine Wh'Ch. physical opera_tor IS prefe_rred _by
finalized, the sampled layered graRfs=(V',,E),) is created. The the optimizer for each algebraic operator. Again, fine-tuning wil
conditional probability of each node in the last layer of each be conducted_ln future VErsions in order to avoid using an m_dex
subgrathG‘ corresponds to an approximated value of IgOR. for n(_)n-se!ectlve hard filters. Also note that the Graph-Sampling
After all the subgraph®G,...,RG" are computed, an estimate algorithm is alyvays usec_i fdflardPa_th>SoftExpsubsequences._
RG is obtained as the union of these subgraphs. The When re-ordering hard filters, we first apply the more-selective

approximation of IgOR in the grapRG' is computed as the filters (if these statistics are known). In the future, we plan to
average of the approximated IgOR values of target objects in themt(ta_gr_ate tour E”?) t?pt'g"zgr. with the relational cost-based
subgraphsRG',...,RG". To achieve an estimaRG so that the optimizer to maxe betier decisions.
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Table 1. Physical Implementation of GID Algebra Operators.

Algebra Operator Physical Operator Requirements/Conditions for Selecting
HardExp Index Lookup Full-Text Index Available/Always if available
On-the-fly None
HardPath Index Lookup (not supported currently) Path Indexes Available/Always if available
On-the-fly None
HardType Table Scan Separate objects table for each type/Always if available
On-the-fly None
HardAttribute Index Lookup B+-tree index on this attribute available/Always if
available
On-the-fly None
ObjectRank index lookup ObjectRank index available. Should be First filter of
SoftExp query/Always if available
Path-Length-Bound Approximation None
(Progressively increase path length)
Combine On-the-fly None
HardPath> SoftExp Graph-Sampling None/Always used for this sequence of operators
We illustrate how the optimizer creates a plan for three key The biological datasets were created following an experimental
template queries involving the expensive soft filters. protocol that start from annotated gene records in public Web

accessible sources, and follow hyperlinks, to reach publications in
PubMed. A subset of the schema of DS3 and DS7 is in Figure 2.
'DS7 follows less hyperlinks and visits less sources; hence it
creates a smaller graph. We use the larger graph DS3 to
experiment with the graph-sampling approximation. We shredded
the downloaded DBLP file [2] into the relational schema shown

a. If the query begins with a keywo®bftExp the precomputed
ObjectRank index is used to evaluate the filter. For instance
for query {Keywords“TP53", false, trug¢ > {Path =
EntrezGene/PubMed, false, fdlse the precomputed
ObjectRank index of keywordl'P53' is used to evaluate the

soft filter. in Figure 9.

b. If the query starts with alardPath filter followed by a
keyword  SoftExp  filter,  e.qg. Rath = Table 2. Datasets
EntrezProtein/PubMed, false, false > {Keywords Name #nodes #edges Size (MB)
=“cancer”, false, true},we replace this subsequence with the DS7 699,199 3,533,756 2,184
superoperator and introduce tf@ombine operator. Our DBLP 876,110 4,166,626 3,950
experiments will show that this superoperator and the graph- DS3 28,351,615 10,014,869 5,978
sampling approximation of Section 6.2.2 are essential when m:n
the data graph is large. cites

has

c. If a hard filter (excluding &ardPath filter) is followed by a Conference }%ncj Year }%ﬂ Paper % Author ‘
keyword SoftExp filter,e.g.,{Keywords= “TP53", false, ’ ’ ’

falsg > {Keywords:“cancer",_false, true}_ - thgn we gpply Figure. 9 The DBLP schema graph.

the path-le_ngth-bound tecljmque descrlbeq n S_ectlon 6'.2'1'Evaluation Metrics: We evaluate both quality and performance.

W? start with path Iength_'l—l_and pro_gressnvely Increase it (1) The quality of the ranking is with respect to the exact ranking.

to improve the result quality, in the spirit of [15]. For the approximation techniques presented in Sections 6.2.1 and

Clearly, it is not always possible to compute accurate results 6.2.2, we measure the quality of the approximation using a
in interactive time for some complex queries, e.g., for a long normalized topk Spearman’s rho with ties [7, 8, 9]. Letando;
alternating sequence of hard/soft filters. However, such queriesbe 2 topk lists. The set of results in ties is calledacket The

are typically unintuitive. ranked list of results, then can be viewed as ranked buBkets
B,,.....B,. The position of buckeB;, denotedpogB;) is the
8. EXPERIMENTAL RESULTS average location within buck&;. We assigns(x)=pogB) where

o(x) is the rank of resultx and B is the bucket ok. p is the
Spearman’s rho metric, which is a normalized distance measure
that lies in the interval [0, 1] defined as follows:

Our experiments focus on the evaluation time performance
and the quality of producing approximate answers in the
interactive GID framework. We do not compare with other

systems. The framework of [24] is not targeted for online K ) )R
computation. They report on the evaluation times foreaact [Zl o, (i) =0, ()] J
computation (in a warehouse environment) and the execution p(o,,0,)= -

« . 172
times that they report are in many hundreds of seconds. Other (cx (k+1)* (2k + 1) 73) (6)

graph query languages, e.g., SPARQL, do not provide theyhere we usec+l as the penalty constant [9]. Note that the
sophisticated ranking which is the key to GID framework and SO yanominator of Equation 6 is used for normalization.

the comparison would not be meaningful.

(2) We also report on runtime performance. The experiments were
Datasets We use three real datasets (Table 2). DS3 and DS7 arg,gjuated on a Solaris machine with Sparcvd 1281 MHz

two biological datasets while DBLP is a bibliographical dataset.
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processor and 16GB of RAM. All algorithms were implemented 8 2 Evaluate Graph-SampIing Technique

in Java (JDK version 1.5.0_12). Oracle DBMS (version 10g We evaluate the effectiveness of the approximate IgOR
Enterprise Edition Release 10.2.0.1.0) was used to store thgatric using the Bayesian network and graph-sampling (Section
database and JDBC was used to connect to the database Syste@l.; 7) on the DS3 and DBLP datasets. (DS7 results are similar
We rep_ort on the e_xecution time for successive iterations of the ;4 omitted). We consider 30 queries of the query template (b) in
approximation algorithm. Section 7. The sample queries for DS3 are as folloWatH =
EntrezGene/*/PubMed, false, fa}se Keyword Soft FilterTable

3 reports on the parameter settings for some queries in DSS3,
including the size of the subgraph after evaluating the hard path
filter and the number of target objects (see [30] for sample queries
over DBLP).

8.1 Evaluate Path-Length-Bound Technique
We evaluate the effectiveness of the path-length-bound

optimization technique described in Section 6.2.1 on query
template (c) of Section 7 as followdard Filter > Keyword Soft
Filter. We conducted these experiments on the DS7 and DBLP
datasets. We did not use DS3 because this approximation A key success factor in sampling is to reach gudden
technique was not scalable to the large DS3 dataset, as the valuebjects For these queries, we identified thelden objectss the
of the radius constant, M,increased. Table 4 presents the objects in PubMed whose normalized score was greater than some
parameter settings of some sample queries of this template used ithreshold (see [30] for more details). To compute the exact IgOR
experiments over DS7 (see [30] for sample queries over DBLP). metric for a given query, the entire layered graph is loaded in
Th e d his loaded i The datab . memory. The database is contacted to construct the layered graph

e entire data graph IS foade Into memory. 1he ata aS€ 159nd to find the base set of the query. Then, the IgOR is computed
then consulted only to find the base set (with their IR scores usmgby traversing the whole layered graph. To compute the graph-
oracle 'me”"?d'aco”ta".“.)) of each guery. We optimize the sampling for a given query, the entire layered graph is also loaded
query exgcutlon by av0|d|ng_ the explicit creation of a subgraph. into main memory to build the Bayesian network. Then, the
To do th_|s, we reuse the original DBLP or DS7 database g.raphapproximated IgOR is computed by following the direct sampling
(already in memory) and mark the nodes in the subgraph using 3method in which a node in the network is visited depending on
Bo;)leanh I;or ”examplet,hwe mtark all noﬁezf;:la;’ a_:_?] part of thethe conditional probability distribution of the node. Assuming that
subgraph tue' while ne rest are markedialse. en we I(golden objectdhave a relatively high probability of being visited

ex_ecute |tk:ﬁ path-l;ngth-go%nd atlﬁptroximatic:nfg: Oblj)ectRin during the sampling, we optimize the query execution by avoiding
using only those nodes and edges that are part ot the subgrapn. traversing the whole layered graph and visiting only nodes that

The total execution time is measured for the following conduce to thgolden object®f the query.
stages: (i) creating the subgraph for the keyword hard filter and

(i) executing the keyword soft filter (ObjectRank) on the Lo : : L
- . .~ queries in DS3 and Figure 12(b) reports time over 30 queries in

subgraph. Figures 10(a) and 10(b) show the execution time ) L : :

averaged over 20 queries, for the DBLP and DS7 datasetspBLP' Graph-sampling is executed for 1 to 7 iterations where

i . - . i corresponds to the number of sampled layered grég@s
respectively, for increasing values of the radlu_s consmm,n(_'j a (Section 6.2.2). The total execution time corresponds to the time
convergence threshold of 0.0001. To provide a baseline, we

tion ti ith th t soluti th O Iof creating the layered graph and the base set and computing

Coobmp‘;‘;f Oll(" elxec_ttjhlon Ime V\tll d € ex?r(]: Sgli'on -b € orrllglnﬁa approximate IgOR on the layered graph. We first observe that

Jectrank algonithm  executed over [he dala subgrapn a erdespite DS3 being a very large dataset, the execution times of
application of the hard filer. This is equivalent to setfindgo oc.

Note the sianificant tion time for th ¢ soluti 20 approximate IgOR range from 1 to 2 seconds and show up to an
ote the significant execution time for the exact solution (over order of magnitude improvement over the exact computation. This

second_s) for DB.LP when C?Wpared to DS7 dataset is due to Itsimprovement suggests that this sampling method will be the key
larger size and high connectivity. to success of the GID exploratory framework. These savings are
We note that in the GID exploratory framework, we can mMmaintained over additional iterations, in particular for the large
iteratively provide answers to users. Thus, Nobwalues of 1 and dataset DS3. The savings for the smaller DBLP dataset are also
2, we can provide answers after a relatively short delay (in Figuresignificant after multiple iterations.
10 each bar for varyiny1=1, 2, 3, 4 represents the delay time
while M=cwo represents the total execution time). Figures 11(a) and
11(b) show the quality of the results using the koppearman’s
rho metric for the DBLP and DS7 datasets, respectively. Each
group of results is for varyinp-kand each bar is for varyirlg.
As the radius constaM increases, the performance degrades and
the quality improves (lower value of Spearman’s rho metric) since
a larger subgraph is used for ObjectRank execution. There is
clearly a trade-off; for loweM we have lower delay but also
lower quality. Notice that in both datasets, k=2, we achieve a
good tradeoff of quality and performance (higher quality for a
relatively shorter delay time), when comparedMel, 3, or 4.
There is a small improvement in quality (lower value of
Spearman’s rho metric) for Top-500 and Top-1000 in both
datasets. This is because of the large number of ties towards th
end of these tojists.

Figure 12(a) reports the average execution time over 3R top-

Figure 13 reports the normalized Spearman’s rho for the
queries in DS3 and DBLP. We group the queries into three groups
of ten queries according to the numbergofden objectsvhose
normalized score is greater or equal than 0.7. The Top-1 group
comprised of queries with one golden object; the Top-3 group
with three golden objects and Top-4 group with four golden
objects. We report on the average normalized Spearman’s rho
values over 10 queries of each group. As can be seen, the graph-
sampling technique is able to rank the tombjects in the
sampled layered graphRG in an order close to the exact
solution. Additionally, we have studied precision and recall of the
topk objects in the sampled layered gragt@ with respect to
the exact golden objects (Table 5). We have observed that after
i=3 iterations, graph-sampling is able to produce almost 90% of
fhe golden objects in all the queries. These results indicate that the
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Figure. 11 Quality Experiments of Path-Length-Bound Technique.
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Figure. 13 Quality experiments of Graph-Sampling Technique
Table 3. Sample Queries of query template (b) of Section 7 over DS3

Path Filter | Soft Filter Target Objects for different values of i
Selectivity Base set Target Objects and Top-k for Exact IgOR

GID DS3 Query (:A)nodes, size i1 | i=2 | i=3 | i=5 | i=7 Exact

Ooedged (nodey IgOR
{Path=EntrezGene/*/PubMedalse, false} > Keywords=tancer”, false, true} 0.08% ,0.68% 1214 5 114 150 244 339  (38397,1
{PatheEntrezGene/*/PubMedalse, false} > KeywordsZaging”, false, true} 0.08%,0.62% 111 30 48 62 105 139  (13948,6)
{Path=EntrezGene/*/PubMedalse, false} > KeywordsZdiabetes”, false, true} 0.08%,0.68% 389 61 118 155 227 385 (21558,1)
{Path=EntrezGene/*/PubMedalse, false} > KeywordsZmetastasis”, false, true} | 0.08%,0.68% 137 24 44 88 126 12 (15187,4)
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Table 4. Sample Queries of query

template (c) of Section 7 over DS7

Hard Filter Soft Filter Subgraph size¢nodes/edges& Object Rank Iterations performed until
Selectivity Base set convergencdin parenthesis for different values of M
GID DS7 Quer 9 size .
Query ((,//(fe“g;:;’ (noded M=1 M=2 M=3 M=4 M= Optimal
{{;é’p“toﬁ(‘j‘gf"h‘:gtg"s'f:éifsa}'sgl; 66.77% , 2084 3984/2708 | 6538/8172 | 12002/16639| 20469/25347| 42082/38252 | 466861 /660107
yw 'true} ’ ' 18.68% 3) 3) 3) 3) (4) FinalM=13 4)
{Type=PubMed true, false} > 33.2206. 2. 95% 18143 18143/138 | 18281/42278| 60421/42286| 60429/42744| 60887/42744 | 232338/104422
{Keywords=human”, false, true} ) P &I (4) (6) (2) (2) (6) FinalM=5 (6)
{Keywords=proteir’, false, false} 22 58% 6.24% 19639 19639/10356| 28167/17388| 35199/21141| 38952/22581| 41337/23526 157882/220773
> {Keywords=tumor”, false, true} ) ) et (4) 3) 3) (©) (4) FinalIM=11 4
{Keywords=tnf", false, false} > 7.62%. 0.94% 2794 2794/757 3470/1273 3986/1534 4247/1683 4521/1808 53307/33442
{Keywords=tancer”, false, true} s 3) 3) 3) 3) (3) FinalM=8 (4)

Table 5. Quality of Graph-Sampling Technique-Precision/Recall w.r.t. exact Golden Objects

Dataset Precision Recall |
i=1 [i=2 [i=3 [i=5 [i=7 |i=1 | i=2 | i=3 | i=5 | i=7 |
DBLP | 042 | 050 | 063| 074 0.84| 076 088 091 096 0.p7
DS3 |051| 049 051| 051 0517 070 072 080 086 0.6

graph-sampling technique successfully achieves our optimizatio
goal of minimizing the number of visited nodes during query
execution time.

9. CONCLUSIONS AND FUTURE WORK

We presented a simple and extensible framework for querying

n[10] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for
Middleware. PODS,2001.

[11] G. Feng, T.Y. Liu, Y. Wang, Y. Bao, Z. Ma, X. Zhang, W.Y. Ma:
“AggregateRank: Bringing order to web sites”. SIGIR, 2006.

[12] M.Fernandez, D. Florescu, A. Levy, D. Suciu: A query language for
aweb site management system. SIGMOD Record 1997.

typed data graphs. An intuitive query language of soft and hard [13] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H. Garcia-

filters was presented along with an underlying closed algebra of

physical operators and a set of rewriting rules. We then focuse
on soft filters computed by authority flow mechanisms, and
proposed approximate optimization techniques.
feasibility of our techniques

in supporting an interactive,

exploratory and high-quality discovery process. In the future we

will consider alternative implementations for the soft filters, in
addition to authority flow ranking.

ACKNOWLEDGEMENTS

Experiments
performed over large real and synthetic graphs show the

Molina: “Proximity Search in Databases”. VLDB, 1998.

[14] T. Haveliwala: “Topic-Sensitive PageRank”. WWW, 2002.

[15] J. Hellerstein, P. Haas, and H. J. Wang. Online aggregation.
SIGMOD Rec. 26, 2 (Jun. 1997), 171-182.

[16] V. Hristidis and Y. Papakonstantinou: “DISCOVER: Keyword
Search in Relational Databases”, VLDB, 2002.

[17] V. Hiristidis, Y. Papakonstantinou and A. Balmin: “Keyword
Proximity Search on XML Graphs”, IEEE ICDE, 2003.

[18] L. Katz: “A New Status Index derived from Sociometric Analysis”.
Psychometrika, 1953, vol. 18, issue 1.

[19] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, G. Weikum:
NAGA: Searching and Ranking Knowledge. ICDE 2008: 953-962.

d

This research was partially supported by the National Science[20] D. Konopnicki, O. Shmueli: W3QS: A query system for the World

Foundation under Grants 11S-0430915, 11S-0534530 and IIS-

0811922. M.E. Vidal is partially funded by USB-DID grants.

Ramakrishna is supported by the Dissertation Year Fellowship

from Florida International University.

10. REFERENCES

[1] http://www.ncbi.nim.nih.gov/sites/entrez, 2008.

[2] http://dblp.uni-trier.de/xml/

[3] S. Agrawal, S. Chaudhuri and G. Das: “DBXplorer: A System for
Keyword-Based Search Over Relational Databases”, IEEE ICDE
2002.

G. Arocena, A. Mendelzon: WebOQL: Restructuring documents,
databases and webs. ICDE 1998.

A. Balmin, V. Hristidis and Y. Papakonstantinou: “Authority-Based
Keyword Queries in Databases using ObjectRank”. VLDB 2004.

G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and S.Sudarshan
“Keyword Searching and Browsing in Databases using BANKS”,
IEEE ICDE, 2002.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee:
“Comparing and Aggregating rankings with Ties”. PODS, 2004.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee:
“Comparing Partial Rankings”. SIDMA, 2006, vol. 20, No. 3.

R. Fagin, R. Kumar, D. Sivakumar: “Comparing Top-k lists”.
SODA, 2003.

[4]
[5]
[6]

[7]
(8]
[9]

564

Wide Web. VLDB 1995.

[21] A. Mendelzon, G. Mihalia, T. Milo: Querying the World Wide Web.
Jaurnal on Digital Libraries 1(1):54-67, 1997.

[22] L. Nie, B. D. Davison and X. Qi: “Topical link analysis for web
sarch”. SIGIR, 2006.

[23] L. Page, S. Brin, R. Motwani and T. Winograd: “The pagerank
citation ranking: Bringing order to the web”, Technical report,
Stanford University, 1998.

[24] S. Raghavan, H. Garcia-Molina: “Complex Queries over Web
Repositories”. VLDB, 2003.

[25] L. Raschid, Y. Wu, W.J. Lee, M.E. Vidal, P. Tsaparas, P.
Srinivasan, A.K. Sehgal: “Ranking target objects of navigational
queries”. ACM WIDM, 2006.

[26] S. Russell and P.Norvig: “Artificial Intelligence: A modern
approach. Second Edition. Princeton Hall. 2003.

[27] A. Singhal: “Modern Information Retrieval: A Brief Overview”.
Google, IEEE Data Eng. Bull, 2001.

[28] SPARQL: Query Language for RDF: http://www.w3.org/TR/rdf-
spargl-query/

[29] R. Varadarajan, V. Hristidis, L. Raschid: Explaining and
Reformulating Authority Flow Queries. IEEE ICDE, 2008.

[30] R. Varadarajan, V. Hristidis, L. Raschid, M. Vidal, L. Lbanez and
H. Drumond: Flexible and Efficient Querying and Ranking of
Hyperlinked Data Source (extended version).
http://dbir.cs.fiu.edu/WebSearch/GID.pdf.

1






