
Sequenced Spatio-Temporal Aggregation
in Road Networks

Igor Timko Michael H. Böhlen Johann Gamper
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

{timko, boehlen, gamper}@inf.unibz.it

ABSTRACT
Many applications of spatio-temporal databases require support for
sequenced spatio-temporal (SST) aggregation, e.g., when analyz-
ing traffic density in a city. Conceptually, an SST aggregation pro-
duces one aggregate value for each point in time and space.

This paper is the first to propose a method to efficiently evaluate
SST aggregation queries for the COUNT, SUM, and AVG aggrega-
tion functions. Based on a discrete time model and a discrete, 1.5
dimensional space model that represents a road network, we gener-
alize the concept of (temporal) constant intervals towards constant
rectangles that represent maximal rectangles in the space-time do-
main over which the aggregation result is constant. We propose a
new data structure, termed SST-tree, which extends the Balanced
Tree for one-dimensional temporal aggregation towards the sup-
port for two-dimensional, spatio-temporal aggregation. The main
feature of the Balanced Tree to store constant intervals in a com-
pact way by using two counters is extended towards a compact rep-
resentation of constant rectangles in the space-time domain. We
propose and evaluate two variants of the SST-tree. The SSTT-tree
and SSTH-tree use trees and hashmaps to manage spacestamps, re-
spectively. Our experiments show that both solutions outperform a
brute force approach in terms of memory and time. The SSTH-tree
is more efficient in terms of memory, whereas the SSTT-tree is more
efficient in terms of time.

1. INTRODUCTION
Spatio-temporal databases are becoming more and more popu-

lar in various application domains, including traffic data analysis.
The proliferation of Global Positioning System (GPS) technology
facilitates the tracking of car positions, and huge amounts of traffic
data is collected. Commercially available tracking systems oper-
ate according to the following scenario [12]. Each car is equipped
with a GPS receiver and periodically sends its position and current
timestamp to a central server.

In such an application scenario,sequenced spatio-temporal
(SST) aggregationcan be used to obtain a summary of the traffic
density in a city/region. Conceptually, an SST aggregation pro-
duces one aggregate value for each point in time and space. Con-
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(a) 5:00PM – 5:10PM

(b) 5:11PM – 5:15PM

Figure 1: Road Traffic Analysis: “For each road, what is the
number of cars at each point in time (between 5:00PM and
5:15PM) and space (position on road network)?”

sider the following example query: “For each road, what is the
number of cars at each point in time and space?”. Figure 11 illus-
trates a typical result of this query, evaluated on data from the city
of Bolzano-Bozen between 5:00PM and 5:15PM. The lines in dif-
ferent shades of gray along road segments indicate the density of
the traffic on that segment, varying from very low traffic (no line)
to moderate traffic (gray line) and jammed traffic (black line).

This paper is the first to formally define SST aggregation and
to present an efficient evaluation algorithm to evaluate SST aggre-

1In order to create this figure, we used a PNG image file produced
by Google Maps.
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gation queries for the COUNT, SUM, and AVG aggregation func-
tions. The algorithm relies on the efficient computation of so-called
constant rectangles, which are the 2D generalization of constant
intervals as used in temporal aggregation [17]. A constant rectan-
gle is defined as a pair of a spatial and a temporal interval such
that an aggregate value is constant at all space-time points inside
the rectangle spanned by the two intervals. For example, in Fig-
ure 1(a) each line segment with a different shade of gray represents
a constant rectangle. All of them have the same temporal interval
[5:00;5:10], but different spatial intervals. One of these rectangle’s
spatial interval is marked as “Corso Italia, [0;100]” and represents
a segment on the street “Corso Italia”, stretching 100 meters from
the beginning of the road. Figure 1(b) shows the traffic density
over the same part of the road network, but during the time period
[5:11;5:15]. Notice that also the spatial extension of the constant
rectangles changed.

To efficiently compute SST aggregates, we propose a data
structure calledSequenced Spatio-Temporal Tree(SST-tree). The
SST-tree is a two-dimensional extension of the Balanced Tree [17].
The main motivation for choosing the Balanced Tree as the starting
point for the new data structure is its efficient handling of dupli-
cate (time) points, which due to the use of a discrete space and
time model are common in GPS logs. Many cars send their posi-
tion updates within the same minute, and many cars might be on
the same 100-meter long road segment. The SST-tree allows to
store spatio-temporal information in a compact way using a mini-
mal set of counters and supporting an efficient evaluation of aggre-
gate functions. We propose two different variants of the SST-tree:
the SSTT-tree, which uses trees to store the spatial information, and
the SSTH-tree, which uses hashmaps to store the spatial informa-
tion.

The evaluation algorithm works in two steps. First, the input tu-
ples are scanned and an SST-tree is constructed. Second, the con-
stant rectangles are computed by traversing the SST-tree. Thereby,
a so-calleddynamic treeis used to collect and compute the spa-
tial component of constant rectangles from the partial information
stored in the SST-tree.

We implemented the new framework for spatio-temporal aggre-
gation on top of the Secondo DBMS [6], and we conducted sev-
eral experiments, mainly to compare the different variants of the
SST-tree. The results of the experiments show that the SSTT-tree
is generally faster, while the SSTH-tree uses less memory. Another,
interesting observation is that hashmaps do not give constant in-
sert/lookup time due to the resize overhead of hashmaps. Our ex-
periments also shows that both SST-tree implementations outper-
form a brute force approach, both in terms of memory and time
usage.

The rest of the paper is structured as follows. Section 2 dis-
cusses preliminaries, including the time and space models, spatio-
temporal uncertainty, and the adopted spatio-temporal data model.
Section 3 discusses related work. In Section 4, we introduce and
formally define the SST aggregation operator. Section 5 presents
basic ideas of query processing, which in Section 6 are progressed
towards the SST-tree as the main data structure for SST query eval-
uation. In Section 7, we present a query evaluation algorithm based
on the SST-tree. Section 8 presents the results of a first experimen-
tal evaluation of our framework. Finally, Section 9 concludes the
paper and points to future work.

2. PRELIMINARIES
We use adiscrete time model. The time line is composed of a fi-

nite sequence of atomictime granules, denoted as∆T . A timestamp
(or time interval) is a convex set of time granules and is represented

asT = [Ts,Tf ), whereTs is its inclusive start point andTf its exclu-
sive finish point. Such a model is well suited for and widely used
in temporal database research [21].

We use adiscrete, 1.5-dimensional space model. The space con-
sists of a road network, i.e., a finite set of roads. Each road is a 1D
line and is divided into a finite sequence of atomic line segments,
termedspace granules. The set of all space granules is referred to
as∆S. A spacestamp (or space interval) is a convex set of space
granules and is represented asS= [Sb,Se), whereSb is its inclusive
beginning position andSe its exclusive ending position. A specific
positionin our space model is represented as a pair(rid,g), where
rid is a road ID andg is a granule number. A 1.5-dimensional
space model is frequently used in location-based services, as con-
tent is typically positioned with respect to a transportation infras-
tructure [10,18].

We assume an application scenario with GPS-based tracking of
car positions [12]. Each car is equipped with a GPS receiver. It
periodically reads its actual position from the receiver and sends a
message that contains the position data and the current time point
to a central server. Typically, a time-based update policy is used,
requiring that each car sends the updates at regular time intervals
(e.g., every 3 seconds).

Example 1.Figure 2(a) illustrates a road with road-ID 1101.
The road is subdivided in 12 space granules, and there are three
measurements for a specific car, reporting that the car was in space
granule 1, space granule 6, and space granule 10. These car posi-
tions are represented as(1101,1), (1101,6), and(1101,10) and are
indicated by solid lines over the corresponding granules.2

Road ID = 11011 2 3 4 5 6 7 8 9 10 11 12

(a) Road and Car Positions

Road ID = 11011 2 3 4 5 6 7 8 9 10 11 12

(b) Spatial Interpolation

Figure 2: Space Model: a Road and Car Positions.

The car messages sent to the server are the source ofspatio-
temporal uncertainty, that is, we do not know how the position
of a car is changing between the measurement points [12]. There-
fore, two consecutive car messages are interpreted as follows: at
any time between the two measurements the car is somewhere be-
tween the two space granules that have been reported (including
the two positions), assuming that a car cannot turn back. In other
words, we do a spatial interpolation and represent the possible car
positions as spatial intervals. Figure 2(b) illustrates this interpola-
tion for the measurements in Figure 2(a). Notice that position 6 is
included in two spatial intervals, because the car may also stop at
this position for a while.

Given the above interpretation of car messages, we represent
a history of car movements in a relational context by aSpatio-
Temporal Data Model(STDM), which has an explicit timestamp
and spacestamp attribute, respectively. An STDM relation schema
is given as(A1, . . . ,Ak,T,S), whereA1, . . . ,Ak are explicit (non-
spatial and non-temporal) attributes,T = [Ts,Tf ) is the valid times-
tamp attribute, andS= [Sb,Se) is the spacestamp attribute. The
product of a space and time interval,S× T, is called spatio-
temporal rectangle. The fact represented by an STDM tuple is valid
during each spatio-temporal granule in the corresponding spatio-
temporal rectangle.
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CID RID T S
r1 1 1101 [1;4) [1;7)
r2 1 1101 [4;7) [6;11)
r3 2 1101 [3;6) [3;8)
r4 2 1101 [6;9) [7;11)
r5 3 1101 [3;6) [6;9)
r6 3 1101 [6;9) [8;11)

(a) Tabular Representation

(b) Graphical Representation

Figure 3: STDM Relation, CARS, Storing Car Movements.

Example 2.Figure 3(a) shows the STDM relation, CARS, that
stores a history of car movements.RID (road ID) andCID (car ID)
are the two explicit attributes, andT andSare the time- and space-
stamp attributes, respectively. The first tuple,r1, represents that
the car with ID 1 is on the road with ID 1101 in the spatio-temporal
rectangle[1;4)× [1;7). The second tuple,r2, stores the position of
the same car in a later time period. Figure 3(b) shows a graphical
representation, where the spatio-temporal rectangles are drawn as
boxes. Spatio-temporal rectangles that represent the same car have
the same border style. We use the CARS relation as a running
example throughout the rest of the paper.2

3. RELATED WORK
Conceptually, a sequenced, spatio-temporal (SST) aggregation

produces one aggregate per spatio-temporal granule. In the follow-
ing discussion, if not stated otherwise, we assume that our 1.5D
space consists of one space line. Thus in total, we have one space
line and one time line (i.e., a 2D plane). This assumption does not
limit the generality, because an SST aggregation query is processed
independently for each space line.

3.1 Spatial Aggregation
Previous research work on spatial aggregation [19, 25] concen-

trates on range (or box) aggregation in a two-dimensional space,
which computes an aggregate function over all spatial objects that
fall into the query region. TheaR-tree[19] is based on the R-
tree [9] and maintains for each R-tree bounding box the total num-
ber of objects (for the COUNT aggregation function) that fall into
that box. This speeds up query processing, because one does not
need to descend the nodes that are totally enclosed by the query
region. The main disadvantage of the aR-tree is that the query cost
depends on the size of the query region: the larger the query re-
gion, the more bounding boxes overlap with it. TheaP-tree[25]
avoids this disadvantage at the expense of extra memory usage. It

transforms spatial objects into objects in the (key, time) plane and
computes then the aggregation results by using the MVB-tree [2].
There is no work on sequenced spatial aggregation.

3.2 Temporal Aggregation
In contrast to the research activities on spatial aggregation, which

largely ignored sequenced aggregation, past work on temporal ag-
gregation investigated both box (range) temporal aggregation and
sequenced temporal aggregation, which conceptually assigns one
aggregate to each temporal granule. A number of methods for one-
dimensional temporal aggregation have been developed [3,13,17].
The main problem tackled by these methods is the efficient compu-
tation of temporal constant intervals (i.e., the maximal time inter-
vals over which the aggregate value remains constant). There is no
work on two-dimensional temporal aggregation.

TheAggregation tree(A-tree) [13] algorithm works in two steps.
First, while scanning the input relation a tree is built in memory.
Each node in the tree represents a time interval and an associated
partial aggregate value. Each level of the tree partitions the entire
timeline. The intervals at the leaf level represent the constant inter-
vals, while the intervals higher up in the tree partition the timeline
at a coarser level. Second, the tree is traversed in depth-first order.
Thereby, the partial aggregate values along a path from the root to a
leaf node are accumulated to produce the aggregation result which
is associated with that leaf node’s constant interval. The A-tree has
two drawbacks. First, if the tuples are sorted by timestamp, the tree
degenerates into a linked list. Second, the tree is large, because all
constant intervals are stored in the leave nodes.

TheBalanced Tree[17] avoids the pitfalls of the A-tree. While
scanning the input tuples, the start and finish time points of the
tuple’s timestamp intervals are sorted by inserting them into a bal-
anced binary search tree. Each node of the tree stores a time point
and two counters, namely the number of tuples that start and finish
at this time point, respectively. Once the tree has been built, it is
traversed in-order to identify the constant intervals. Two consecu-
tive time points define a constant interval. Compared to the A-tree,
the Balanced Tree has always logarithmic insertion time and it is
generally smaller, because only the constant intervals are stored.

TheTMDA operator[3] improves over the A-tree and Balanced
Tree methods in that it consumes less memory on average and still
provides the same running time. This operator computes constant
intervals based on the following observation: if the input relation
is scanned in chronological order (by the tuple’s start time), at any
time point,t, the result tuples that end beforet can be computed.
Hence, as the argument relation is being scanned, result tuples are
produced and old tuples are removed from main memory; only tu-
ples that are valid at timet are kept in memory.

While the above frameworks pursue memory-based solutions of
temporal aggregation, disk-based index structures for temporal ag-
gregation have also been investigated. TheSB-tree[28] supports
1D, sequenced and cumulative temporal aggregation. The tree
maintains a hierarchy of temporal intervals, each one being asso-
ciated with a partial aggregation result. The tree is traversed in
a depth-first order to compute the sequenced aggregation. The
MVSB-tree[29] extends the SB-tree and supports temporal aggre-
gation combined with a key-range predicate over one key dimen-
sion. The MVSB-tree is logically a series of SB-trees, one per
time point. The MVSB-tree efficiently processes dominance-sum
queries. A box query in the (key, time) plane can be reduced to four
dominance-sum queries.
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3.3 Spatio-Temporal Aggregation
Past work on spatio-temporal aggregation [20,23,24] assumes a

2D space model and concentrates on spatio-temporal box aggrega-
tion, which is a generalization of spatial box aggregation. Given a
spatial region and a time interval, an aggregation is computed over
all spatio-temporal objects that are present in that region during that
time interval. There is no work on SST aggregation.

The aRB-tree[20] extends the aR-tree with a temporal dimen-
sion. In an aRB-tree, 2D spatial regions are indexed by an R-tree.
For each bounding box of this R-tree, the time-varying number of
objects that fall into the box is kept in a B-tree [1]. Similarly to the
aR-tree, the aRB-tree speeds up aggregation by storing the number
of objects for bounding intervals of the B-tree. This eliminates the
need to traverse the subtree of nodes that are totally enclosed by
the query region. A disadvantage of the aRB-tree is that it allows
double counting. Double counting means that the same object is
counted twice if it stays in the query region during two time gran-
ules of the query time interval.

Thesketch index[24] avoids double counting. This index mod-
ifies the aRB-tree: instead of the number of objects, the sketch
(compressed representation) of the objects’ IDs is kept for each
B-tree’s bounding interval. However, the sketch index is generally
larger than the aRB-tree. Moreover, the sketch index only answers
queries approximately.

TheAdaptive Multi-Dimensional Histogram(AMH) [23] is an-
other method for approximate box query processing. The 2D space
is divided into a (large) number of cells. A counter for a number of
objects is associated with each cell. For speeding up processing, a
histogram is built over the space. Cells with similar counter values
are put into the same bucket. Thus, each bucket of this histogram
holds a spatial (2D) region and a counter for the number of objects
in this region. The spatial regions do not overlap. As the counter
values of the cells change, the buckets are reorganized.

3.4 Other Issues
Most previous proposals for spatial, temporal, and spatio-

temporal aggregation are not implemented in a DBMS. No
commercial DBMS supports spatio-temporal aggregation. As
for the research prototypes, they provide only limited support.
Domino[26] focuses on spatio-temporal range queries rather than
on aggregation. To the best of our knowledge,Secondo[6] is
the most versatile spatio-temporal DBMS, because it implements
a great number of algorithms for spatio-temporal (moving) ob-
jects [15]. However, Secondo does not have an implementation of
anefficientalgorithm for SST aggregation. We implement our data
structures and algorithms as a module of Secondo, but our imple-
mentation can be easily ported to any other relational DBMS that
supports integer attribute types.

Many past works on spatio-temporal queries for road net-
works [8, 10, 11, 22, 27] adopt the 1.5-dimensional space model,
which is also used in this paper. The general idea is as follows: if
data points (e.g., cars) are never outside a road network, then users
are not interested in the space outside the network; consequently,
we can prune the search space by modeling data and performing
computations in the 1.5D space model instead of the 2D space
model. Recently, the 1.5D space model has been implemented by
a commercial DBMS [14].

4. DEFINING SST AGGREGATION
Informally, sequenced spatio-temporal (SST) aggregationis de-

fined as follows [16]: group the input tuples by spatio-temporal
granules, one group per granule, and apply one or more aggrega-
tion functions to each group. Next, we provide a formal definition

Cnt T S
1 1 [1;3) [1;7)
2 1 [3;4) [1;3)
3 2 [3;4) [3;6)
4 3 [3;4) [6;7)
5 2 [3;4) [7;8)
6 1 [3;4) [8;9)
7 1 [4;6) [3;6)
8 3 [4;6) [6;8)
9 2 [4;6) [8;9)

10 1 [4;6) [9;11)
11 1 [6;7) [6;7)
12 2 [6;7) [7;8)
13 3 [6;7) [8;11)
14 1 [7;9) [7;8)
15 2 [7;9) [8;11)
(a) Tabular Representation

(b) Graphical Representation

Figure 4: Result of SST Aggregation.

of this type of aggregation.

Definition 1. [SST Aggregation]Let Rbe a STDM relation with
schema(A1, . . . ,Ak,T,S), whereA1, . . . ,Ak are explicit attributes,T
is the timestamp attribute, andS is the spacestamp attribute, and let
F = { f1/C1, . . . , fk/Ck} be a set of aggregate functions. Further,
let g ∈ ∆T × ∆S be a spatio-temporal granule andRg = {r | r ∈
R∧ g ∈ r.T × r.S} be the aggregation group ofg that contains all
tuples ofR whose spatio-temporal rectangle containsg. Then the
SST aggregationoperator,GSST[F ]R, is defined as

GSST[F ]R= {x | g∈ ∆T ×∆S∧Rg 6= /0∧

x = ( f1(Rg), . . . , fi(Rg),g.T,g.S)}

The result relation has the schema(C1, . . . ,Ck,T,S). 2

For each spatio-temporal granule,g, the SST aggregation oper-
ator evaluates the aggregate functions,F , over the set of all tuples
that are valid atg (i.e., the tuples that have a spatio-temporal rect-
angle that containsg). Each fi/Ci ∈ F is some aggregate function
that takes an STDM relation as argument and applies aggregation
to one of the relation’s attributes; the aggregation result is stored as
the value of an attributeCi .

To obtain a more compact representation, tuples with adjacent
granules and equal aggregate results are coalesced into maximal
spatio-temporal rectangles, termedconstant rectangles. This is
similar to the concept of constant intervals in 1D temporal aggre-
gation [4], the major difference being that coalescing in 2D is not
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Figure 5: Result of the Brute Force Approach.

unique. That is, the size and the shape of the constant rectangle
depends on the order in which the two dimensions are coalesced.
Though the coalescing step is not included in the above definition
of SST aggregation, throughout the paper we assume coalescing,
first along the spatial dimension and then along the temporal di-
mension.

Thoughout the rest of the paper we assume the COUNT aggrega-
tion function. SUM is a straightforward generalization of COUNT,
and AVG can be computed from SUM and COUNT.

Example 3.Consider the STDM relation in Figure 3 and the fol-
lowing SST query: “At each point in time, what is the number of
cars at each point on the road with road ID 1101?”. This query can
be expressed asGSST[count(∗)/Cnt]CARS. Its result after coalesc-
ing adjacent tuples with identical aggregation results is shown in
Figure 4(a) as an STDM relation. Each tuple represents a constant
rectangle and the number of cars in that rectangle. For example, the
first tuple says that in the rectangle[1;3)× [1;7) the number of cars
in each spatio-temporal granule is equal to 1. Figure 4(b) shows a
graphical illustration of the query result. The spatio-temporal rect-
angles of the result tuples are drawn as boxes with the aggregate
result inside. If temporal coalescing would have been applied be-
fore spatial coalescing, the first result tuple starting in the lower left
corner would be(1, [1,4), [1,3)). 2

5. IDEAS OF SST AGGREGATION QUERY
PROCESSING

5.1 Brute Force
While the evaluation of sequenced one-dimensional aggregation

has been studied quite extensively in the past, to the best of our
knowledge there is no work on the evaluation of sequenced two-
dimensional aggregation. Abrute force approachto evaluate SST
aggregation could be the following: (1) for each temporal granule,
determine the group of all tuples that are valid during that gran-
ule, and (2) for each such group of tuples perform sequenced one-
dimensional aggregation using one of the known spatial or tempo-
ral aggregation frameworks. This brute force approach is obviously
not very efficient, because it runs an aggregation procedure once for
each point in time. Moreover, the result is only coalesced along the
spatial dimension and not along the temporal dimension. Figure 5
shows the result of applying the brute force approach in our running
example. Notice the difference to the intended result as illustrated
in Figure 4.

CID RID T
r1 1 1101 [1;4)
r2 1 1101 [4;7)
r3 2 1101 [3;6)
r4 2 1101 [6;9)
r5 3 1101 [3;6)
r6 3 1101 [6;9)

(a)

4 1/1

1 1/0

3 2/0

7 0/1

6 2/2 9 0/2
(b)

Figure 6: (a) π[CID,RID,T]CARSand (b) its Balanced Tree

5.2 Towards Efficient Query Processing
The basic idea of our approach to process SST aggregation

queries is to conceptually separate the temporal and spatial dimen-
sion, which are orthogonal and can be handled in the same way.
First, we ignore the spatial part of the input tuples and do the tem-
poral sequenced aggregation, computing in this way temporal con-
stant intervals. Second, for each constant temporal interval we de-
termine the group of all tuples that are valid during that interval.
Third, for each group of tuples we ignore the temporal part and do
the spatial sequenced aggregation.

5.2.1 Balanced Tree
for Constant Temporal Intervals

The computation of aggregates over constant temporal intervals
has been studied in the past, and we adopt the Balanced Tree al-
gorithm [17] which works in two steps (the following description
assumes the computation of the COUNT aggregation). First, as the
input tuples are scanned, their start and finish times are extracted
and stored in a Balanced Tree together with two counters: 1) a start
counter that stores the number of tuples thatstart at this time point
and 2) a finish counter that stores the number of tuples thatfinish
at this time point. When all input tuples have been processed, the
tree contains all start and finish points of the tuples, which repre-
sent also the start and finish points of the constant intervals. Sec-
ond, by performing an in-order traversal of the tree, the values of
the counters are combined and the temporal aggregation results are
produced. Whenever a node,v, is visited, the aggregate value is in-
cremented by the value of the start counter and decremented by the
value of the finish counter, yielding a result tuple over the constant
interval that is formed by the time point ofv and the time point of
its successor.

Example 4.Figure 6(b) shows the Balanced Tree for the CARS
relation in Figure 3 after removing the spacestamp attribute, i.e.,
for π[CID,RID,T]CARS in Figure 6(a). The set of distinct start-
ing and finishing time points extracted from the input tuples is
{1,3,4,6,7,9}. Each of these time points is stored in a separate
node together with the associated start- and finish counter. For in-
stance, two tuples start and two tuples finish at time 6. The in-order
traversal starts at the node with time 1 (the smallest time point in
the tree) and an initial aggregate value of 0. The aggregate value is
now incremented by 1 (value of start counter) and decremented by
0 (value of finish counter), yielding the aggregate value 1. Thus,
the first result tuple is(1, [1,3)). Next, the node with time 3 is vis-
ited. Incrementing the aggregate value by 2 and decrementing by
0, yields the second result tuple(3, [3,4)). Overall, the following
constant temporal intervals are produced:[1;3), [3;4), [4;6), [6;7),
and[7;9) with the associated aggregate values.2
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5.2.2 Naively Extended Balanced Tree
In a first, naive extension of the Balanced Tree for 2D spatio-

temporal aggregation we substitute the counters in the nodes by the
set of all tuples that are valid at the node’s time point (and conse-
quently are valid throughout the constant interval that starts at the
node’s time point). In fact, for the count aggregation as in the run-
ning example, it is sufficient to store the spatial intervals of these
tuples. When a node,v, is visited during the traversal of the tree,
instead of accumulating the counters, the sequenced spatial aggre-
gation over all tuples that are stored inv is computed. Obviously,
the same Balanced Tree algorithm can be applied for the spatial
aggregation as well.

Example 5.The Naively Extended Balanced Tree of the CARS
relation is shown in Figure 7. Each node stores a time point and the
set of spatial intervals that are extracted from all input tuples that
are valid at the node’s time point. For example, the spacestamps
[1;7), [3;8), and[6;9) are extracted from the tuplesr1, r3, andr5
and associated with time 3. The tree traversal begins at the node
with time 1, which has associated a single spatial interval,[1,7).
The spatial aggregation over this interval yields the spatial result
tuple (1, [1;7)), which is then combined with the constant tempo-
ral interval,[1,3), to produce the first result tuple,(1, [1;3), [1;7)).
Next, the node with time 3 is visited. The processing of the asso-
ciated space intervals produces five constant space intervals with
aggregate values, which in combination with the constant temporal
interval [3,4) produce the result tuples 2–6 in Figure 4.2

4 {[3;8), [6;9), [6;11)}

1 {[1;7)}

3 {[1;7), [3;8), [6;9)}

7 {[7;11), [8;11)}

6 {[6;11), [7;11], [8;11]} 9

Figure 7: The Naively Extended Balanced Tree.

5.2.3 Optimizations
Obviously, the Naively Extended Balanced Tree is rather ineffi-

cient, and we can think of several optimizations:

1. First, each aggregation group over a constant time interval
shares some tuples with the aggregation group of the preced-
ing and/or next constant interval. For instance, in Figure 7
the nodes with time point 3 and 4 share the two space in-
tervals[3;8) and[6;9). Therefore, an incremental approach
can be applied to store only those tuples that start and finish
at the node’s time point (e.g., only the space intervals[6;11)
and[1;7) need to be stored at the node with time 4).

2. Second, we can adopt the same idea as in the Balanced Tree
to obtain a more compact representation, namely to store
space points instead of space intervals and to store each dis-
tinct space position only once together with four counters.
Two counters indicate how many space intervals begin and
end at this position for the tuples that start at this time point.
The other two counters record the same information for the
tuples that finish at this time point. For example, in Fig-
ure 7 at the node with time point 6, compared to the previous
node (time point 4), two new space intervals appear,[7;11)
and[8;11). These intervals store the finish position, 11, two
times. This can be avoided by storing it only once together

with the information that two tuples are finishing at that po-
sition. In this paper we will advance this idea even further
by reducing the two begin counters to only one counter that
stores the difference between the original counters. The same
reduction is possible for the two end counters.

In Section 6, we explore these optimizations and introduce a data
structure that supports a more efficient evaluation of SST aggrega-
tion.

6. THE SST-TREE
In this section, we present a data structure, called the SST-tree,

that supports an efficient evaluation of SST aggregation queries. In
Section 6.1, we define a generic version of the SST-tree. In Sec-
tions 6.2 and 6.3, we describe two variants of the SST-tree, which
differ in how tree nodes are implemented.

6.1 General Definition
The Sequenced Spatio-Temporal Tree(SST-tree) extends the

Balanced Tree and applies the two optimizations mentioned in Sec-
tion 5.2.3. The main difference is that instead of storing time
points with counters, the SST-tree stores both time points and space
points, and the space points are associated with counters. By com-
bining these pieces of information the constant spatio-temporal
rectangles and the associated aggregation value can be computed.

The first optimization concerns the removal of redundant spatial
intervals in the tree nodes. Instead of storing at a node with time
t the spatial intervals of all tuples that are valid at timet, we store
only the spatial intervals of those tuples that start and finish at time
t. Thereby, it is important to distinguish these two sets of tuples.

Example 6.Figure 8 shows the naively extended balanced tree
after applying the first optimization step. For instance, the spa-
tial interval [1,7) produced by tupler1 can be removed from the
node with time 3, sincer1 starts at time 1 and finishes at time 4.
Thus, the node becomes(3,{[3;8), [6;9)}/{}), stating that two tu-
ples with spatial intervals[3;8) and [6;9) start at time 3 and that
no tuple finishes. Similar, the node at time 4 can be reduced to
(4,{[6;11)}/{[1;7)}).

4 {[6;11)}/{[1;7)}

1 {[1;7)}/{}

3 {[3;8), [6;9)}/{}

7 {}/{[6;11)}

6 {[7;11), [8;11)}/{[3;8), [6;9)} 9 {}/{[7,11), [8;11)}

Figure 8: The Naively Extended Balanced Tree after Optimiza-
tion 1.

To recover the removed space intervals for the computation of
aggregate values, the traversal of the tree requires a dynamic data
structure to keep track of the tuples that started before and to re-
move them when they finish. This leads to an incremental compu-
tation of the result tuples in chronological order.

The second optimization is to replace the spatial intervals in the
nodes of the Naively Extended Balanced Tree by the begin and end
points of the intervals together with counters, similar to what the
Balanced Tree is doing for the one-dimensional case. Thus, we
extend the idea of the Balanced Tree for the two-dimensional case,
where we have to compute constant (spatio-temporal) rectangles
instead of constant intervals. Recall that a node with timet in the
1D Balanced Tree stores two counters that store the cardinality of
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Figure 9: Graphical Illustration of the Groups of Tuples.

the following two sets:

Gs(R, t) = {r | r ∈R∧ r.Ts = t}

G f (R, t) = {r | r ∈R∧ r.Tf = t}

That is, the set of all tuples that start att (the start counter) and the
set of all tuples that finish att (the finish counter).

Computing constant rectangles in 2D can conceptually be seen
as computing constant intervals along both dimensions and then
combining corresponding intervals. Therefore, we need a counter
for each combination of the two dimensions, i.e.,

{

Ts
Tf

}

×

{

Sb
Se

}

The following Definition 2 specifies the corresponding groups of
tuples.

Definition 2. [Tuple groups]Let R be an STDM relation with
schema(A1, . . . ,Ak,T,S), whereA1, . . . ,Ak are the explicit (non-
temporal and non-spatial) attributes,T is the timestamp attribute,
andS is the spacestamp attribute. Further, lett be a temporal gran-
ule andsbe a spatial granule. Then we define the following groups
of tuples fort ands:

Gs,b(R, t,s) = {r | r ∈R∧ r.Ts = t ∧ r.Sb = s}

Gs,e(R, t,s) = {r | r ∈R∧ r.Ts = t ∧ r.Se = s}

G f ,b(R, t,s) = {r | r ∈R∧ r.Tf = t ∧ r.Sb = s}

G f ,e(R, t,s) = {r | r ∈R∧ r.Tf = t ∧ r.Se = s}

2

The four groups correspond to the four corners of a spatio-
temporal rectangle. This is graphically illustrated in Figure 9. The
small black rectangle represents the spatio-temporal granule(t,s).
The large boxes indicate the spatio-temporal rectangles that are col-
lected in the four groups. For instance, the box with solid lines rep-
resents the first group,Gs,b(R, t,s), that contains all tuples fromR
that start at time pointt and begin at space points, that is, for which
the spatio-temporal granule(t,s) forms the lower-left corner in the
spatio-temporal rectangle.

Example 7.Consider the CARS relation in Figure 3. The four
groups for the time granule 3 and space granule 6 are computed as
follows: Gs,b(CARS,3,6) = {r5} and the other three groups are

empty. For time granule 6 and space granule 8 we get the following
groups:Gs,b(CARS,6,8) = {r6}, G f ,e(CARS,6,8) = {r3}, while
the other two groups are empty.2

The four groups introduced above form the basis for the in-
cremental computation of the aggregate values. For each spatio-
temporal granule in the SST-tree, the cardinality of these groups is
stored as a counter, which during the traversal of the tree are com-
bined to compute the result tuples.

A further reduction of the data that needs to be stored with each
node is possible. Instead of storing all four counters, we pairwise
combine these counters and store only the difference. This reduc-
tion is applied in the following definition of an SST-tree.

Definition 3. [SST-tree]Let R be an STDM relation with
schema(A1, . . . ,Ak,T,S), whereA1, . . . ,Ak are the explicit (non-
temporal and non-spatial) attributes,T is the timestamp attribute,
andS is a spacestamp attribute. Further, letPT = {t | r ∈ R∧ (t =
r.Ts∨ t = r.Tf )} be the set of all start and finish time points inR
andPS = {s | r ∈ R∧ (s= r.Sb∨ s= r.Se)} be the set of all begin
and end space points inR. Then, anSST-treefor relationR is a
balanced binary search tree. A node in the tree stores a pair(t,St),
wheret ∈ PT is the node’s key and represents a start/finish time
point andSt is a set of space positions together with two counters
and is defined as

St = {(s,cntb,cnte)|s∈ PS∧

cntb = |Gs,b(R, t,s)|− |G f ,b(R, t,s)|∧

cnte = |Gs,e(R, t,s)|− |G f ,e(R, t,s)|}

2

Thus, an SST-tree has a node for each distinct (start or finish)
time point in relationR. Each node that represents a specific time
point, t, stores a set,St , of triples of the form(s,cntb,cnte), where
cntb andcnte are two counters.cntb is the difference between two
numbers: (1) the number of tuples thatbeginat positions andstart
at timet and (2) the number of tuples thatbeginat positions and
finish at timet. cnte is also the difference between two numbers:
(1) the number of tuples thatendat positions andstart at timet
and (2) the number of tuples thatend at positions and finish at
time t. Different from the one-dimensional Balanced Tree, here the
counters might have negative values.

Example 8.Figure 10 illustrates the SST-tree for the CARS re-
lation. Notice the difference to the tree in Figure 8. The spatial
intervals are replaced by a space position, representing the begin-
ning and ending positions of the intervals, and two counters. For
instance, the root node with time point 4 stores a set of four space
points and associated counters. The pair(1,−1/0) states that 1)
the difference between the number of tuples that begin at position 1
and start at time 4 and the number of tuples that begin at position 1
and finish at time 4 is−1 and 2) the difference between the number
of tuples that end at position 1 and start at time 4 and the number
of tuples that end at position 1 and finish at time 4 is 0.2

4 {(1,−1/0),(6,1/0),(7,0/−1),(11,0/1}

1 {(1,1/0),(7,0/1)}

3 {(3,1/0),(6,1/0),(8,0/1),(9,0/1)}

7 {. . .}

6 {. . .} 9 {(7,−1/0),(8,−1/0),(11,0/−2)}

Figure 10: SST-tree.

In the following, we introduce two different techniques to effi-
ciently implement the space points and associated counters in an
SST-tree.

54



6.2 SST-tree with Tree-Based Nodes
In a SST-tree with Tree-Based Nodes (SSTT-tree), the informa-

tion about tuples that start or finish at a node is stored in this node’s
spacestamp tree. Thus, a node contains one time point and one tree.

Definition 4. [SSTT-tree] Let R be an STDM relation with
schema(A1, . . . ,Ak,T,S). An SSTT-tree for relation R is defined
as an SST-tree, where each node,(t,St), uses a balanced binary
search tree, termedspacestamp tree, to store the set,St , of space
positions and counters. A node of the spacestamp tree is given as
(s,cntb,cnte), wheres is the node’s key.2

Example 9.Figure 11 depicts an SSTT-tree that contains infor-
mation about the relation, CARS, from Figure 3. For each node, a
number denotes its time point and a string indicates its spacestamp
tree pointer. In the figure, we can see the spacestamp trees,T3
andT9, of the nodes with time points 3 and 9, respectively. This
SSTT-tree corresponds to the SST-tree from Figure 10.2

4 T4

1 T1

3

6 1/0

3 1/0 8 0/1

9 0/1

7 T7

6 T6 9
8 -1/0

7 -1/0 11 0/-2

Figure 11: SSTT-tree.

6.3 SST-Tree with Hashmap-Based Nodes
An important characteristics of the SST-tree is that the space po-

sitions and associated counters are not directly used for the com-
putation of the aggregate functions, but are inserted into a dynamic
tree during the traversal of the SST-tree. The crucial part during the
construction of the SST-tree is to efficiently group identical space
positions and to update the associated counters. The order in which
the space positions and counters are stored is irrelevant. Therefore,
an interesting alternative to the SSTT-tree with a logarithmic inser-
tion time, is to use hashmaps with a constant insertion time.

Definition 5. [SSTH-tree] Let R be an STDM relation with
schema(A1, . . . ,Ak,T,S). An SSTH-tree for relation R is defined
as an SST-tree, where each node,(t,St), uses a hashmap, termed
spacestamp hashmap, to store the set,St , of space positions and
counters. An entry of the hashmap is given as(s,cntb,cnte), where
s is the entry’s key.2

Example 10.Figure 12 depicts the SSTH-tree for our running ex-
ample. Each node contains a hashmap to store the spatial points and
counters.2

7. AGGREGATION ALGORITHM
In this section, we describe our algorithm for sequenced spatio-

temporal aggregation that uses the SST-tree defined in Section 6.

4 H4

1 H1

3
3 1/0
8 0/1
6 1/0
9 0/1

7 H7

6 H6 9
8 -1/0
11 0/-2
7 -1/0

Figure 12: SSTH-tree.

7.1 Top-Level Algorithm
The overview of our aggregation procedure is presented in Al-

gorithm 1. The procedure takes an STDM relation,R, as input and
outputs the aggregation result as an STDM relation,Z. The algo-
rithm iterates through the set of road IDs of the input relation (“for
each” loop in lines 2–5). For each road,rid , it does two main steps.
During the first step it scans the set of tuples of the input relation
that containrid and builds an SST-tree,T. For each tuple, its times-
tamp and spacestamp is extracted and inserted into the SST-tree.
During the second step it computes the constant rectangles and the
aggregation results.

Input : STDM relationR
Output : STDM relationZ
Z← /0;1

foreach road-ID rid ∈ π[RID]Rdo2

T← LOADTREE(σ [RID = rid ]R);3

Zrid ←{rid}×COMPUTECONSTRECT(T);4

Z← Z∪Zrid ;5

return Z;6

Algorithm 1: Algorithm SSTAGG.

Input : STDM relationR
Output : SSTT-treeT

T← empty SSTT-tree;1

foreach r ∈ Rdo2

tn← GETNODE(T, r.Ts) ;3

sn← GETNODE(tn.T, r.Sb) ;4

sn.cntb ++ ;5

sn← GETNODE(tn.T, r.Se) ;6

sn.cnte++ ;7

tn← GETNODE(T, r.Tf ) ;8

sn← GETNODE(tn.T, r.Sb) ;9

sn.cntb−− ;10

sn← GETNODE(tn.T, r.Se) ;11

sn.cnte−− ;12

return T;13

Algorithm 2 : LOADTREE

7.2 Loading an SST-Tree
Algorithm 2 presents the algorithmLOADTREE for constructing

an SSTT-tree,T, from an STDM input relation,R. Here we assume
the use of a tree to store the spatial part, however, the algorithm can
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easily be adopted for the SSTH-tree that instead uses hashmaps for
the spatial part.

After initializing an empty SSTT-tree, the algorithm iterates
through the tuples of the input relation,R. For each tuple,r ∈ R,
we extract the start/finish time point and the begin/end positions
and update the tree accordingly. First, we process the tuple’s start
time, r.Ts. The functionGETNODE() retrieves fromT the node,tn,
with key value equal tor.Ts; if no such node exists, a new node,
(r.Ts,T /0), with an empty spatial tree is created and inserted intoT.
Then the spatial tree of nodetn is updated. More specifically, the
node with key value equal to the begin position,r.Sb, and the node
with key value equal to the end position,r.Se, are retrieved and the
two counters are incremented (lines 4–7). If the nodes are not yet
in the tree, the functionGETNODE creates and inserts a new node,
(r.Sb,0,0), where the two counters are initialized to 0. Second, the
tuple’s finish time,r.Tf , is processed in a similar way. The only
difference is that now the counters are decremented to represent
the fact that the tuple is finishing.

Example 11.Figure 13 depicts the SSTT-tree after processing
the first tuple,r1, of Figure 3, which is valid during the spatio-
temporal rectangle[1;4)× [1;7). The SSTT-tree has two nodes,
representingr1’s start and finish point, respectively. Each of these
nodes stores a tree with space points and counters. InT4 there are
two nodes, with keys 1 and 7, because the spatial interval ofr1 be-
gins at 1 and ends at 7. The begin and end counts of the node with
key 7 are 0 and -1 respectively, because at time 4 no tuples begin-
ning with 7 are added, but one tuple finishing with 7 is removed.
2

1
1 1/0

7 0/1

4
1 -1/0

7 0/-1

Figure 13: SSTT-tree after Inserting Tuple r1.

7.3 Computing Constant Rectangles
Algorithm 3 shows the algorithmCOMPUTECONSTRECT that

takes as input an SSTT-tree and returns the final aggregation result.
To compute the constant rectangles of the result tuples, a dynamic
tree is used and continuosly updated as the algorithm traverses the
SSTT-tree.

Basically, we use the dynamic tree for computing the spatial
components of constant rectangles (the details are given shortly).
We implement the dynamic tree as a Balanced Tree extended with a
node deletion algorithm. Specifically, a dynamic tree node contains
a space point, a begin count, and an end count. The information in
the node tells how many tuples begin and end at the node’s space
point.

The main loop of the algorithm uses an in-order tree traversal to
process the nodes in chronological order. For each node,tn, two
steps are performed. First, the dynamic tree,Tdyn, is updated with
the information from the spacestamp tree,tn.T. That is, for each
node intn.T the corresponding node inTdyn is retrieved and the two
counters are updated. If there is no node with space positionsn.s in

Input : SSTT-treeT

Output : STDM relationZ
Z← /0 ;1

Tdyn← empty tree;2

foreach pair of consecutive nodes(tn, tn′) ∈ T in in-order do3

/* Update the dynamic tree */
foreachsn∈ tn.T do4

dn← GETNODE(Tdyn,sn.s);5

dn.cntb = dn.cntb +sn.cntb ;6

dn.cnte = dn.cnte+sn.cnte ;7

if dn.cntb = 0∧dn.dnte = 0 then8

Deletedn fromTdyn;9

/* Traverse the dynamic tree */
cnt← 0 ;10

foreach pair of consecutive nodes(dn,dn′) ∈ Tdyn in11

in-order do
cnt← cnt+dn.cntb−dn.cnte ;12

Z← Z∪{(cnt, [tn.t, tn′.t), [dn.s,dn′.s))} ;13

return Z;14

Algorithm 3 : COMPUTECONSTRECT

the dynamic tree, a new node,(sn.s,0,0), with the counters initial-
ized to 0 is inserted. Since the counters ofsnmight contain negative
values, the counters in the dynamic tree node might become 0. If
both counters of a node inTdyn are equal to 0, the node can be
deleted, since there is no new constant rectangle at this point. The
second step traverses the dynamic tree in-order and computes the
result tuples. The temporal part of the constant rectangle is fixed
and determined by the time points of the two consecutive nodes,
tn andtn′. The spatial part of the constant intervals as well as the
aggregate results are determined while traversing the dynamic tree.

Example 12.Figure 14 depicts the evolution of the dynamic tree
together with the produced result tuples. New nodes or updated
nodes as well as new result tuples are displayed with a gray back-
ground. Figure 14(a) illustrates the situation after processing the
first node of the SSTT-tree, which represents time point 1. The dy-
namic tree contains two nodes with space points 1 and 7, which
have been inserted as new nodes. Next, the dynamic tree is tra-
versed, producing a single result tuple. Figure 14(b) depicts the
situtation after processing the second node of the SSTT-tree, which
represents time point 3. The associated spacestamp tree contains
four nodes with space positions 3, 6, 8, and 9, respectively. Since
neither of these nodes is yet in the dynamic tree, new nodes with
these positions as key are inserted. Traversing the dynamic tree
now produces five new result tuples. Figure 14(c) depicts the dy-
namic tree after the third iteration of the loop, when the node with
time point 4 is processed. The begin counter for space position 6
is incremented, the counts for the position 1 and 7 is decremented,
and a new node with position 11 is inserted. Since now the counts
for 1 and 7 are equal to 0, these two nodes are removed from the
dynamic tree. Traversing now the dynamic tree generates four new
result tuples.2

The discussion above assumed that the SST-tree is implemented
as the SSTT-tree. If we have the SSTH-tree instead, we do the same,
only using spacestamp hashmaps instead of spacestamp trees.

8. EXPERIMENTS
In this section, we experimentally compare the SSTT-tree defined

in Section 6.2, the SSTH-tree defined in Section 6.3, and the brute
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1 1/0

7 0/1

Cnt T S
1 [1;3) [1;7)

(a) after processing 1 node

6 1/0

3 1/0

1 1/0

8 0/1

7 0/1 9 0/1

Cnt T S
1 [1;3) [1;7)
1 [3;4) [1;3)
2 [3;4) [3;6)
3 [3;4) [6;7)
2 [3;4) [7;8)
1 [3;4) [8;9)

(b) after processing 2 nodes

8 0/1

6 2/0

3 1/0

9 0/1

11 0/1

Cnt T S
1 [1;3) [1;7)
1 [3;4) [1;3)
2 [3;4) [3;6)
3 [3;4) [6;7)
2 [3;4) [7;8)
1 [3;4) [8;9)
1 [4;6) [3;6)
3 [4;6) [6;8)
2 [4;6) [8;9)
1 [4;6) [9;11)

(c) after processing 3 nodes

Figure 14: Evolution of the Dynamic Tree and Result Tuples.

force approach described in Section 5.1 (implemented as a set of
Balanced Trees, one per time granule).

We compare two implementations of the SSTH-tree; the first one
uses Google’ssparse hashmapand the second one uses Google’s
dense hashmap. In short, the sparse hashmap is optimized for
memory (an empty bucket occupies almost no space), while the
dense hashmap is optimized for speed (a key is stored in each empty
bucket). Both types of hashmap useinternal probing(i.e., only one
entry per bucket). For details, see [7].

We compare main memory based versions of our data struc-
tures. The data structures are loaded with data from STDM rela-
tions stored on disk.

We ran our experiments on a machine with Intel 1.66 GHz CPU
and 1 GB RAM, under Ubuntu Linux 8.04. We implement our
algorithms in C++ as algebra operators (i.e., user-defined functions)
of the Secondo spatio-temporal database management system [6].

For our experiments, we use 10 different STDM relations. The
schema of the relations is the schema of the example input relation
from Figure 3 (i.e.,(CID:int, RID:int, T:int, S:int)). The relations
are derived from the data generated with Brinkhoff’s generator of
moving objects [5]. Specifically, we simulate GPS logs of cars in
the road network of Oldenburg, Germany. The number of roads in
the network is around 7K. The number of cars per relation varies
from 3K to 30K, with a step of 3K. Each relation contains the fixed
number of distinct time points (100), while the number of distinct
space points varies and is proportional to the number of tuples.
Each tuple’s temporal validity interval is 3 granules long. This rel-
atively short interval is agood casefor the brute force approach,
because this approach considerseachgranule from the interval.

Figures 15–18 show results for Algorithm 1, issued to the 10
input relations. The marks on the X axis indicate the number of
tuples in each relation.
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Figure 15: Load time (Algorithm 2)
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Figure 16: Traversal time (Algorithm 3)

8.1 Time

8.1.1 Loading Time
Figure 15 compares the time used for loading an SST-tree (Al-

gorithm 2) or Balanced Trees for the brute force approach.
As expected, the brute force approach is slow, because per tu-

ple we do 2∗ n space point lookups and up to 2∗ n space point
inserts, wheren is the length of the tuple’s temporal validity in-
terval. As mentioned above, in our experiments, for each tuple,
n = 3, so 2∗n = 6. Other approaches do 4 space point lookups and
up to 4 space point inserts per tuple. This number isindependent
from the temporal validity interval’s length. Thus, for larger values
of n, the brute force approach will become even slower, while the
performance of the other approaches will not be affected.

Next, one could expect that the SSTH-tree is faster than the
SSTT-tree since hashmaps have constant insert/lookup time. Sur-
prisingly, the SSTH-tree performs worse than the SSTT-tree (e.g.,
by 11% on average for the dense hashmap-based SSTH-tree). The
reason for this is an overhead of Google’s hashmap implementa-
tion: because of the internal probing, a Google’s hashmap is resized
(doubled in size) when half of its buckets are full. This is imple-
mented by copying the data into a new, larger hashmap. The sparse
hashmap has additional overhead related to memory-management.
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Figure 17: Total (load + traversal) time (Algorithm 1)

8.1.2 Traversal Time
Figure 16 compares the time used for computing constant rectan-

gles from a loaded SST-tree (Algorithm 3) or from a set of loaded
Balance Trees for the brute force approach. Basically, this is done
by traversing the data structures.

All the methods have approximately the same speed. The
SSTH-tree is a little bit slower that the SSTT-tree, because the
Google’s hashmap iterators are relatively slow.

Surprisingly, the brute force approach demonstrates the same
speed as the other methods. The reason for this is that the brute
force approach does not insert space points into the dynamic tree,
but simply traverses each of its Balanced Trees. However, this sim-
plified algorithm produces a larger, uncoalesced output relation (cf.
Figure 5). For example, the output relation for the leftmost input
relation in Figure 16 contains 305K and 255K tuples, for the brute
force and SST-tree method, respectively. Moreover, as discussed
before, in our experiments, tuples have relatively short temporal va-
lidity intervals, which is a good case for the brute force approach.
We expect that for longer intervals the performance of the brute
force approach deteriorates. Other approaches do not depend on
the length of the temporal validity interval.

8.1.3 Total Time
Figure 17 shows the total time, used for loading an SST-tree or a

set of Balanced Trees first and then computing constant rectangles
from it (Algorithm 1). Thus, the times in Figure 17 are obtained
by adding together the corresponding times from Figure 15 and
Figure 16.

8.2 Memory
Figure 18 compares the RAM used by the SST-tree or by the set

of Balanced Trees for the brute force approach. Specifically, given
an input relation, we measure the memory usage for each group of
tuples (each road) and then compute the maximum.

The brute force approach is the most inefficient, because for each
tuple from the input relation it stores the tuple’s space pointsn
times, wheren is the length of this tuple’s temporal validity in-
terval. In addition, space points are stored in tree nodes, which
have significant node pointer overhead. Specifically, for each space
point, we need 28 bytes: 16 bytes for the data (key pointer, key
value (space point), begin count, and end count) and 12 bytes for
node pointers (left, right, and parent).

The SSTT-tree is more efficient. However, there is still the node
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pointer overhead. For each space point, it uses 28 Bytes: 16 Bytes
for the data (key pointer, key value (space point), begin count, and
end count) and 12 Bytes for node pointers (left, right, and parent).
Thus, the constant overhead per space point is 12 Bytes.

A dense hashmap-based SSTH-tree node is more efficient in
terms of memory than the SSTT-tree. It uses 16 Bytes for a filled
bucket (key pointer, key value (space point), begin count, and end
count) and 4 Bytes for an empty bucket (“empty” key). Thus, the
average overhead per space point is 4∗ ne

nf
Bytes, wherene is the

number of empty buckets andnf is the number of filled buckets.
The maximum overhead is when a hashmap has just resized and
75% of buckets are empty. Thus, the maximum overhead per space
point reaches the overhead of the SSTT-tree (i.e., 12 Bytes), but
most of the time it is smaller.

A sparse hashmap-based SSTH-tree node is the most efficient in
terms of memory. It uses 16 Bytes per filled bucket and only 2 bits
per empty bucket. Thus, there is almost no overhead. For every
input relation, the sparse hashmap-based SST-tree uses less than
50% of memory needed by the brute force approach.

From Figure 18, we can see that both SSTT-tree and
SSTH-tree scale well in terms of main memory consumption. The
brute force approach is much less scalable, because it depends on
the length of the tuples’ validity interval.

8.3 Conclusions
We draw the following conclusions from our experimental re-

sults. The brute force approach consumes a lot of memory and is
not so fast, even when the length of the tuples’ temporal validity
intervals is short (i.e., even in a good case). For these reasons, it
should not be used. As for the other methods, there is a trade-off
between the speed and the main memory usage. The SSTT-tree is
relatively inefficient in terms of memory, but it is the fastest. The
sparse hashmap-based SSTH-tree is very memory efficient, but it is
the slowest. The dense hashmap-based SSTH-tree is somewhere in
the middle: it is a little bit slower than the SSTT-tree, but at the same
time it uses a little bit less memory.

Note that the insert time of hashmaps is not constant. The hash-
map resize overhead is quite significant and linear to the size of a
hashmap.

9. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, this paper is the first to propose an

efficient method for the evaluation ofsequenced, spatio-temporal
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aggregationqueries. It is based on a new data structure, called
SST-tree, that efficiently stores information about a spatio-temporal
input relation, which then allows to compute the aggregation results
including the constant rectangles of the result tuples by an in-order
traversal of the tree. We consider two variants of SST-tree imple-
mentation. Each variant has its strengths: our experiments show
that the SSTT-tree is generally faster, while the SSTH-tree uses less
memory. We provide an efficient algorithm that implements this
two-step method: first it scans the input relation and builds the
SST-tree, followed by a tree traversal to compute the result rela-
tion. The experiments show that the new method is more memory-
efficient and (almost always) more time-efficient than a brute force
approach. The current implementation uses the Secondo DBMS,
but it is general enough to be ported to any relational DBMS.

Future work includes the following aspects. The current method
works for COUNT, SUM, and AVG aggregation functions. We will
extend our method for other aggregation functions (e.g., MIN and
MAX). The current method performs precise aggregation (i.e., a set
of spatio-temporal granules is coalesced only if we have exactly the
same aggregate value for each granule from the set). We will ex-
tend our method for approximate aggregation (i.e., a set of spatio-
temporal granules is coalesced if the aggregate value of each gran-
ule from the set falls into some range). Then, the order in which
dimensions are processed is now fixed: the time points are always
loaded into the first level of the SST-tree and the space points - into
the second level. We would like to come up with a cost model that
would tell which dimension should come first. In addition, we will
run experiments on real-world GPS logs and provide a disk-based
implementation of the method.

10. REFERENCES
[1] R. Bayer. Binary b-trees for virtual memory. InACM

SIGFIDET, pages 219–235, 1971.
[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer. An asymptotically optimal multiversion b-tree.
VLDB J., 5(4):264–275, 1996.

[3] M. H. Böhlen, J. Gamper, and C. S. Jensen.
Multi-dimensional aggregation for temporal data. InEDBT,
pages 257–275, 2006.

[4] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing
in Temporal Databases. InVLDB, pages 180–191, 1996.

[5] T. Brinkhoff. A framework for generating network-based
moving objects.GeoInformatica, 6(2):153–180, 2002.

[6] S. Dieker and R. H. Güting. Plug and play with query
algebras: SECONDO – a generic DBMS development
environment. InIDEAS, pages 380–392, 2000.

[7] Google. Google’s sparsehash project.
http://code.google.com/p/google-sparsehash/. Current as of
December 12, 2008.

[8] R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and
querying moving objects in networks.VLDB J.,
15(2):165–190, 2006.

[9] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InSIGMOD Conference, pages 47–57, 1984.

[10] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and
I. Timko. Integrated data management for mobile services in
the real world. InVLDB, pages 1019–1030, 2003.

[11] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko.
Nearest neighbor queries in road networks. InGIS, pages
1–8, 2003.

[12] C. S. Jensen, K.-J. Lee, S. Pakalnis, and S. Šaltenis.
Advanced tracking of vehicles. InEuropean Congress and

Exhibition on ITS, page 12 pages, 2005.
[13] N. Kline and R. T. Snodgrass. Computing temporal

aggregates. InICDE, pages 222–231, 1995.
[14] R. Kothuri, A. Godfrind, and E. Beinat.Pro Oracle Spatial.

Apress, 2004.
[15] J. A. C. Lema, L. Forlizzi, R. H. Güting, E. Nardelli, and

M. Schneider. Algorithms for moving objects databases.
Comput. J., 46(6):680–712, 2003.

[16] I. F. V. Lopez, R. T. Snodgrass, and B. Moon. Spatiotemporal
aggregate computation: A survey.IEEE Transactions on
Knowledge and Data Engineering, 17(2):271–286, 2005.

[17] B. Moon, I. F. V. López, and V. Immanuel. Efficient
algorithms for large-scale temporal aggregation.IEEE Trans.
Knowl. Data Eng., 15(3):744–759, 2003.

[18] NCHRP.A Generic Data Model for Linear Referencing
Systems. Transportation Research Board, Washington, DC,
USA, 1997.

[19] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. InSSTD, pages
443–459, 2001.

[20] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing
spatio-temporal data warehouses. InICDE, pages 166–175,
2002.

[21] R. T. Snodgrass, editor.The TSQL2 Temporal Query
Language. Kluwer, 1995.

[22] L. Speicys and C. S. Jensen. Enabling location-based
services - multi-graph representation of transportation
networks.GeoInformatica, 12(2):219–253, 2008.

[23] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the
past, the present, and the future in spatio-temporal databases.
In ICDE, pages 202–213, 2004.

[24] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.
Spatio-temporal aggregation using sketches. InICDE, pages
214–226, 2004.

[25] Y. Tao, D. Papadias, and J. Zhang. Aggregate processing of
planar points. InEDBT, pages 682–700, 2002.

[26] O. Wolfson, H. Cao, H. Lin, G. Trajcevski, F. Zhang, and
N. Rishe. Management of dynamic location information in
domino. InEDBT, pages 769–771, 2002.

[27] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the position of
moving objects. InICDE, pages 588–596, 1998.

[28] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. InICDE, pages 51–60,
2001.

[29] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and
B. Seeger. On computing temporal aggregates with range
predicates.ACM Trans. Database Syst., 33(2), 2008.

59


