Sequenced Spatio-Temporal Aggregation
in Road Networks

Igor Timko Michael H. Béhlen Johann Gamper
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

{timko, boehlen, gamper}@inf.unibz.it

ABSTRACT

Many applications of spatio-temporal databases require support for
sequenced spatio-temporal (SST) aggregation, e.g., when analyz-
ing traffic density in a city. Conceptually, an SST aggregation pro-

duces one aggregate value for each point in time and space. Viale Diizg A

This paper is the first to propose a method to efficiently evaluate « _ L

SST aggregation queries for the COUNT, SUM, and AVG aggrega-
tion functions. Based on a discrete time model and a discrete, 1.5
dimensional space model that represents a road network, we gener- H
alize the concept of (temporal) constant intervals towards constant E
rectangles that represent maximal rectangles in the space-time do-_ | ;i ' A
main over which the aggregation result is constant. We propose a ™ - 4
new data structure, termed SST-tree, which extends the Balanced ===
Tree for one-dimensional temporal aggregation towards the sup-
port for two-dimensional, spatio-temporal aggregation. The main

o

%L‘
L
%ﬁ
0y p e
[adn sl
] L4]
I I
| | y
4

&
H
3
%
&
3
g

Corso ltalia,
[0;100]

3 ‘. LN / A
(a) 5:00PM — 5:10PM

feature of the Balanced Tree to store constant intervals in a com- — T = 5 o
pact way by using two counters is extended towards a compact rep- & ,’ T | B ;
resentation of constant rectangles in the space-time domain. We ; / *’;., g Eas
propose and evaluate two variants of the SST-tree. The-B8&F \ =~ IE §

and SStltree use trees and hashmaps to manage spacestamps, re
spectively. Our experiments show that both solutions outperform a h el A
brute force approach in terms of memory and time. The'8&® ¢ _ o

is more efficient in terms of memory, whereas the $8de is more Jj L =
efficient in terms of time. %

1. INTRODUCTION -

Spatio-temporal databases are becoming more and more popu-®&* ;
lar in various application domains, including traffic data analysis.
The proliferation of Global Positioning System (GPS) technology ol
facilitates the tracking of car positions, and huge amounts of traffic (b) 5:11PM — 5:15PM
data is collected. Commercially available tracking systems oper-
ate according to the following scenario [12]. Each car is equipped Figure 1: Road Traffic Analysis: “For each road, what is the
v_vith a GPS receiver and periodically sends its position and current number of cars at each point in time (between’S:OOPM and
timestamp to a cent_ral SEerver. . . 5:15PM) and space (position on road network)?”

In such an application scenarigequenced spatio-temporal
(SST) aggregatioran be used to obtain a summary of the traffic
density in a city/region. Conceptually, an SST aggregation pro- gjger the following example query: “For each road, what is the
duces one aggregate value for each point in time and space. Conyumper of cars at each point in time and space?”. Fighriéus-

trates a typical result of this query, evaluated on data from the city
of Bolzano-Bozen between 5:00PM and 5:15PM. The lines in dif-
o)) o ferent shades of gray along road segments indicate the density of
Permission to copy without fee all or part of this material is granted pro- - ne traffic on that segment, varying from very low traffic (no line)
vided that the copies are not made or distributed for direct commercial ad- to moderate traffic (gray line) and jammed traffic (black line).

vantage, the ACM copyright notice and the title of the publication and its . . . - -
g pyrd b This paper is the first to formally define SST aggregation and

date appear, and notice is given that copying is by permission of the ACM. hk ; -
To copy otherwise, or to republish, to post on servers or to redistribute to t0 present an efficient evaluation algorithm to evaluate SST aggre-

lists, requires a fee and/or special permissions from the publisher, ACM. 1 — . .
EDBT 2009 March 24-26, 2009, Saint Petersburg, Russia. In order to create this figure, we used a PNG image file produced
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00 by Google Maps.

48

gation queries for the COUNT, SUM, and AVG aggregation func- asT = [Ts, Tt), whereTs is its inclusive start point andk its exclu-
tions. The algorithm relies on the efficient computation of so-called sive finish point. Such a model is well suited for and widely used
constant rectangles, which are the 2D generalization of constant in temporal database research [21].
intervals as used in temporal aggregation [17]. A constant rectan- We use aliscrete, 1.5-dimensional space modehe space con-
gle is defined as a pair of a spatial and a temporal interval such sists of a road network, i.e., a finite set of roads. Each road is a 1D
that an aggregate value is constant at all space-time points insideline and is divided into a finite sequence of atomic line segments,
the rectangle spanned by the two intervals. For example, in Fig- termedspace granules. The set of all space granules is referred to
ure 1(a) each line segment with a different shade of gray representsas AS. A spacestamp (or space interval) is a convex set of space
a constant rectangle. All of them have the same temporal interval granules and is represented3s [S,, &), whereS, is its inclusive
[5:00;5:10], but different spatial intervals. One of these rectangle’s beginning position an& its exclusive ending position. A specific
spatial interval is marked as “Corso ltalia, [0;100]" and represents positionin our space model is represented as a (ér,g), where
a segment on the street “Corso Italia”, stretching 100 meters from rid is a road ID andg is a granule number. A 1.5-dimensional
the beginning of the road. Figure 1(b) shows the traffic density space model is frequently used in location-based services, as con-
over the same part of the road network, but during the time period tent is typically positioned with respect to a transportation infras-
[5:11;5:15]. Notice that also the spatial extension of the constant tructure [10, 18].
rectangles changed. We assume an application scenario with GPS-based tracking of

To efficiently compute SST aggregates, we propose a datacar positions [12]. Each car is equipped with a GPS receiver. It
structure calledsequenced Spatio-Temporal T&ST-tree). The periodically reads its actual position from the receiver and sends a
SST-tree is a two-dimensional extension of the Balanced Tree [17]. message that contains the position data and the current time point
The main motivation for choosing the Balanced Tree as the starting to a central server. Typically, a time-based update policy is used,
point for the new data structure is its efficient handling of dupli- requiring that each car sends the updates at regular time intervals
cate (time) points, which due to the use of a discrete space and(e.g., every 3 seconds).
time model are common in GPS logs. Many cars send their posi-
tion updates within the same minute, and many cars might be on Example 1.Figure 2(a) illustrates a road with road-ID 1101.
the same 100-meter long road segment. The SST-tree allows toThe road is subdivided in 12 space granules, and there are three
store spatio-temporal information in a compact way using a mini- measurements for a specific car, reporting that the car was in space
mal set of counters and supporting an efficient evaluation of aggre- granule 1, space granule 6, and space granule 10. These car posi-
gate functions. We propose two different variants of the SST-tree: tions are represented k101 1), (1101 6), and(1101 10) and are
the SSTtree, which uses trees to store the spatial information, and indicated by solid lines over the corresponding granues.
the SStltree, which uses hashmaps to store the spatial informa-
tion.

The evaluation algorithm works in two steps. First, the input tu- —— — — =
ples are scanned and an SST-tree is constructed. Second, the con-| 12T 3T aTsT 6T 718l ol 1d 11 13 RoadID=1101
stant rectangles are computed by traversing the SST-tree. Thereby,
a so-calleddynamic treeis used to collect and compute the spa- —_—
tial component of constant rectangles from the partial information 11 21 31 41 51 61 71 8l ol 1d 14 12 RoadID=1101
stored in the SST-tree. (b) Spatial Interpolation

We implemented the new framework for spatio-temporal aggre-
gation on top of the Secondo DBMS [6], and we conducted sev-
eral experiments, mainly to compare the different variants of the
SST-tree. The results of the experiments show that the' 888
S roeing omsenton 1 et hecmane db hor v conaiantin- STl uncertantytha s, we do not know how the posiion

. . of a car is changing between the measurement points [12]. There-

sert/lookup time due to the resize overhead of hashmaps. Our ex-

eriments also shows that both SST-tree implementations out er_fore, two consecutive car messages are interpreted as follows: at
p . P P any time between the two measurements the car is somewhere be-
form a brute force approach, both in terms of memory and time

tween the two space granules that have been reported (including
usage. s .
. . . the two positions), assuming that a car cannot turn back. In other
The rest of the paper is structured as follows. Section 2 dis- I . .
words, we do a spatial interpolation and represent the possible car

fg;sisr;;rj::ggzirfts' ;nncéut(:]ggége ttggi agt(ijo-st%ifeorpa?%ee:tsé rsnp:g:l'positions as spatial intervals. Figure 2(b) illustrates this interpola-
P % P P P ‘tion for the measurements in Figure 2(a). Notice that position 6 is

Section 3 discusses related work. In Section 4, we introduce and. . I
. : . included in two spatial intervals, because the car may also stop at
formally define the SST aggregation operator. Section 5 presents his position for a while
basic ideas of query processing, which in Section 6 are progressedt p e .
towards the SST-tree as the main data structure for SST query eval- Given the above interpretation of car messages, we represent
) . . query a history of car movements in a relational context bgatio-
uation. In Section 7, we present a query evaluation algorithm based

on the SST-tree. Section 8 presents the results of a first experimen-Temporal Data Mode{STDM), which has an explicit imestamp

tal evaluation of our framework. Finally, Section 9 concludes the and spacestamp attribute, respectively. An STDM relation schema

. is given as(Aq,...,A T,S), whereAq,...,A¢ are explicit (non-
paper and points to future work. spatial and non-temporal) attributds= [Ts, T) is the valid times-

tamp attribute, an = [S,,S) is the spacestamp attribute. The

(a) Road and Car Positions

Figure 2: Space Model: a Road and Car Positions.

The car messages sent to the server are the sourspatib-

2. PRELIMINARIES product of a space and time intervé,x T, is called spatio-
We use aiscrete time modelThe time line is composed of afi- temporal rectangleThe fact represented by an STDM tuple is valid
nite sequence of atomiitne granules, denoted &3 . A timestamp during each spatio-temporal granule in the corresponding spatio-

(or time interval) is a convex set of time granules and is representedtemporal rectangle.

49

CD|RID| T S transforms spatial objects into objects in the (key, time) plane and

rif 1 1101 ([L4) | [17) computes then the aggregation results by using the MVB-tree [2].
rz| 1 |1101]| [47) | [6:11) There is no work on sequenced spatial aggregation.
r3 2 1101 | [3;6) | [3;8)
4| 2 |1101] [6:9) | [7:10)
fg 2 ﬁgi Eg:g; [[86:191)) 3.2 Temporal Aggregation
r ; : - . . .

(@ Tabular Representation In contrast to the research activities on spatial aggregation, which

largely ignored sequenced aggregation, past work on temporal ag-
gregation investigated both box (range) temporal aggregation and
sequenced temporal aggregation, which conceptually assigns one
aggregate to each temporal granule. A number of methods for one-
dimensional temporal aggregation have been developed [3,13,17].
The main problem tackled by these methods is the efficient compu-
tation of temporal constant intervals (i.e., the maximal time inter-
vals over which the aggregate value remains constant). There is no
work on two-dimensional temporal aggregation.

TheAggregation treg¢A-tree) [13] algorithm works in two steps.
First, while scanning the input relation a tree is built in memory.
Each node in the tree represents a time interval and an associated
partial aggregate value. Each level of the tree partitions the entire
timeline. The intervals at the leaf level represent the constant inter-
vals, while the intervals higher up in the tree partition the timeline
at a coarser level. Second, the tree is traversed in depth-first order.

Time

A a a
ol =N

N|W|Bh|lO|®O|N| | ©

-

TT2T3T4T5T6 17 T8 g ol iT1z] SPace (Position)

(b) Graphical Representation Thereby, the partial aggregate values along a path from the root to a
leaf node are accumulated to produce the aggregation result which
Figure 3: STDM Relation, CARS, Storing Car Movements. is associated with that leaf node’s constant interval. The A-tree has

two drawbacks. First, if the tuples are sorted by timestamp, the tree
degenerates into a linked list. Second, the tree is large, because all
Example 2.Figure 3(a) shows the STDM relation, CARS, that constant intervals are stored in the leave nodes.
stores a history of car movemengiD (road ID) andCID (car ID) TheBalanced Tred17] avoids the pitfalls of the A-tree. While
are the two explicit attributes, arfdandSare the time- and space- scanning the input tuples, the start and finish time points of the
stamp attributes, respectively. The first tupi&, represents that tuple’s timestamp intervals are sorted by inserting them into a bal-
the car with ID 1 is on the road with ID 1101 in the spatio-temporal anced binary search tree. Each node of the tree stores a time point
rectanglg1;4) x [1;7). The second tuple2, stores the position of and two counters, namely the number of tuples that start and finish
the same car in a later time period. Figure 3(b) shows a graphical at this time point, respectively. Once the tree has been built, it is
representation, where the spatio-temporal rectangles are drawn asraversed in-order to identify the constant intervals. Two consecu-
boxes. Spatio-temporal rectangles that represent the same car havive time points define a constant interval. Compared to the A-tree,
the same border style. We use the CARS relation as a runningthe Balanced Tree has always logarithmic insertion time and it is
example throughout the rest of the paper. generally smaller, because only the constant intervals are stored.
The TMDA operator[3] improves over the A-tree and Balanced

Tree methods in that it consumes less memory on average and still

3. RELATED WORK provides the same running time. This operator computes constant
Conceptually, a sequenced, spatio-temporal (SST) aggregationintervals based on the following observation: if the input relation

produces one aggregate per spatio-temporal granule. In the follow-IS scanned in chronological order (by the tuple’s start time), at any
ing discussion, if not stated otherwise, we assume that our 1.5D fime point,t, the result tuples that end befarean be computed.
space consists of one space line. Thus in total, we have one spacé&lence, as the argument relation is being scanned, result tuples are
line and one time line (i.e., a 2D plane). This assumption does not Produced and old tuples are removed from main memory; only tu-
limit the generality, because an SST aggregation query is processed/es that are valid at timeare kept in memory.

independently for each space line. While the above frameworks pursue memory-based solutions of
. . temporal aggregation, disk-based index structures for temporal ag-
3.1 Spatial Aggregation gregation have also been investigated. Bietree[28] supports

Previous research work on spatial aggregation [19, 25] concen- 1D, sequenced and cumulative temporal aggregation. The tree
trates on range (or box) aggregation in a two-dimensional space,Maintains a hierarchy of temporal intervals, each one being asso-
which computes an aggregate function over all spatial objects thatciated with a partial aggregation result. The tree is traversed in
fall into the query region. ThaR-tree[19] is based on the R- & depth-first order to compute the sequenced aggregation. The
tree [9] and maintains for each R-tree bounding box the total num- MVSB-treg29] extends the SB-tree and supports temporal aggre-
ber of objects (for the COUNT aggregation function) that fall into gation combined with a key-range predicate over one key dimen-
that box. This speeds up query processing, because one does nciion. The MVSB-tree is logically a series of SB-trees, one per
need to descend the nodes that are totally enclosed by the queryjime point. The MVSB-tree efficiently processes dominance-sum
region. The main disadvantage of the aR-tree is that the query costdueries. A box query in the (key, time) plane can be reduced to four
depends on the size of the query region: the larger the query re-dominance-sum queries.
gion, the more bounding boxes overlap with it. Tdie-tree[25]
avoids this disadvantage at the expense of extra memory usage. It

50

3.3 Spatio-Temporal Aggregation Cnt)] T S

Past work on spatio-temporal aggregation [20, 23, 24] assumes a % 1 %3 Hg
2D space model and concentrates on spatio-temporal box aggrega- 3| 2 [3j4) [3Z6)
tion, which is a generalization of spatial box aggregation. Given a 4l 3 [314) [6:7)
spatial region and a time interval, an aggregation is computed over ! !

. . ; s : 51 2 | 34| [7:8)

all spatio-temporal objects that are present in that region during that 6| 1 |34 | [89
time interval. There is no work on SST aggregation. ! !

. . 71 1 | [46)] [3:6)

The aRB-tree[20] extends the aR-tree with a temporal dimen- s| 3 | a6 | [69)
sion. In an aRB-tree, 2D spatial regions are indexed by an R-tree. ! !

. . . . 91 2 | [46)] [89)
For each bounding box of this R-tree, the time-varying number of ! .

.) . ; s 10| 1 | [46)]| [9;11)
objects that fall into the box is kept in a B-tree [1]. Similarly to the 1| 1 |67 67
aR-tree, the aRB-tree speeds up aggregation by storing the number ! !

. =t R 121 2 | [67)| [7:8)

of objects for bounding intervals of the B-tree. This eliminates the 13| 3 | [67) | [8:11)
need to traverse the subtree of nodes that are totally enclosed by ! iy

. X . : 14 1 | [7;9 | [7:8)

the query region. A disadvantage of the aRB-tree is that it allows 15| 2 | [79) | [8:12)
double counting. Double counting means that the same object is - -

counted twice if it stays in the query region during two time gran- (a) Tabular Representation

ules of the query time interval. Time

The sketch indexf24] avoids double counting. This index mod-
ifies the aRB-tree: instead of the number of objects, the sketch
(compressed representation) of the objects’ IDs is kept for each
B-tree’s bounding interval. However, the sketch index is generally
larger than the aRB-tree. Moreover, the sketch index only answers
queries approximately.

The Adaptive Multi-Dimensional HistograifAMH) [23] is an-
other method for approximate box query processing. The 2D space
is divided into a (large) number of cells. A counter for a number of
objects is associated with each cell. For speeding up processing, a
histogram is built over the space. Cells with similar counter values
are put into the same bucket. Thus, each bucket of this histogram
holds a spatial (2D) region and a counter for the number of objects
in this region. The spatial regions do not overlap. As the counter 11213T4l5T6T7TaToT10l11T12]
values of the cells change, the buckets are reorganized. (b) Graphical Representation

3.4 Other Issues

Most previous proposals for spatial, temporal, and spatio-
temporal aggregation are not implemented in a DBMS. No _)
commercial DBMS supports spatio-temporal aggregation. As Of this type of aggregation.

for the research prototypes, they provide only limited support. Definition 1. [SST Aggregatiolet R be a STDM relation with
Domino[26] focuses on spatio-temporal range queries rather than schemdA; A, T,S), whereA, A, are explicit attributesT
on aggregation. To the best of our knowled@scondo[6] is Ay o

i) o is the timestamp attribute, ai®ls the spacestamp attribute, and let
the most versatile spatio-temporal DBMS, because it implements F = {f1/C1...., f/C} be a set of aggregate functions. Further,
a great number of algorithms for spatio-temporal (moving) ob- let g e AT X’As’ be a spatio-temporal granule aRg = {r | r €
Jects .[1.5]' Howgver, Secondo does not have an implementation OfR/\g e r.T xr.S} be the aggregation group gfthat contains all
anefficientalgorithm for SST aggregation. We implement our.data tuples ofR whose spatio-temporal rectangle containsThen the
structures and algorithms as a module of Secondo, but our |mpIe-SST aggregatiooperatorSSS{F]R, is defined as
mentation can be easily ported to any other relational DBMS that
supports integer attribute types. GSSTFIR= {x| g€ AT x ASARg# OA

Many past works on spatio-temporal queries for road net- x= (f1(Ryg),- .-, fi(Rg),0.T,0.9)}
works [8, 10, 11, 22, 27] adopt the 1.5-dimensional space model,
which is also used in this paper. The general idea is as follows: if The result relation has the schei@,...,C, T,S). O

data poipts (e.0., cgrs) are never out§ide a road network, then users g aach spatio-temporal granutg,the SST aggregation oper-
are not interested in the space outside the network; consequently ior evaluates the aggregate functidrspver the set of all tuples

we can prune the search space by modeling data and performingy,at are valid ag (i.e., the tuples that have a spatio-temporal rect-
computations in the 1.5D space model instead o_f the 2D SPaceangle that containg). Eachf, /C; € F is some aggregate function
model. Recently, the 1.5D space model has been implemented byt takes an STDM relation as argument and applies aggregation
a commercial DBMS [14]. to one of the relation’s attributes; the aggregation result is stored as
the value of an attribut€;.
4. DEFINING SST AGGREGATION To obtain a more compact representation, tuples with adjacent
Informally, sequenced spatio-temporal (SST) aggregaisote- granules and equal aggregate results are coalesced into maximal
fined as follows [16]: group the input tuples by spatio-temporal spatio-temporal rectangles, termednstant rectangles. This is
granules, one group per granule, and apply one or more aggregasimilar to the concept of constant intervals in 1D temporal aggre-
tion functions to each group. Next, we provide a formal definition gation [4], the major difference being that coalescing in 2D is not

—_

N
il Bl B Bl BN Bl N el BN R Bl |

Space (Position)

Figure 4: Result of SST Aggregation.

51

Time

12] CO[RD | T

al rl [1 | 1101 [L9) AN

10 r2| 1 |1101| [4;7) [7]0/1

3] 3| 2 | 1101 [3:6) \ VRN

8] 112 ra| 2 | 1101} [6:9) [3[2/0] [6]2/2] [9]0/2]
= 1 5| 3 | 1101 [3:6))

] s 6| 3 | 1101 [6:9)

5 1 2] 1 @

2 1 2] 1 , _ ,

3l 1 2 21 Figure 6: (a) m{CID,RID, TJCARSand (b) its Balanced Tree
2 1

e rs oo Shace (Posiion 5.2 Towards Efficient Query Processing

The basic idea of our approach to process SST aggregation
queries is to conceptually separate the temporal and spatial dimen-
sion, which are orthogonal and can be handled in the same way.
First, we ignore the spatial part of the input tuples and do the tem-
unique. That is, the size and the shape of the constant rectangleporal sequenced aggregation, computing in this way temporal con-
depends on the order in which the two dimensions are coalesced.stant intervals. Second, for each constant temporal interval we de-
Though the coalescing step is not included in the above definition termine the group of all tuples that are valid during that interval.
of SST aggregation, throughout the paper we assume coalescingThird, for each group of tuples we ignore the temporal part and do
first along the spatial dimension and then along the temporal di- the spatial sequenced aggregation.
mension.

Thoughout the rest of the paper we assume the COUNT aggrega- 5.2.1 Balanced Tree
tion function. SUM is a straightforward generalization of COUNT, for Constant Temporal Intervals
and AVG can be computed from SUM and COUNT. The computation of aggregates over constant temporal intervals
has been studied in the past, and we adopt the Balanced Tree al-
gorithm [17] which works in two steps (the following description
assumes the computation of the COUNT aggregation). First, as the
input tuples are scanned, their start and finish times are extracted
and stored in a Balanced Tree together with two counters: 1) a start

Figure 5: Result of the Brute Force Approach.

Example 3.Consider the STDM relation in Figure 3 and the fol-
lowing SST query: “At each point in time, what is the number of
cars at each point on the road with road ID 11017This query can
be expressed &> >Tcount(x)/Cnt]CARS. Its result after coalesc-

ing adjacent tuples with identical aggregation results is shown in L !
. X counter that stores the number of tuples #tattat this time point
Figure 4(a) as an STDM relation. Each tuple represents a constantand 2) a finish counter that stores the number of tuplesfiish

rectangle and the number of cars in that rectangle. For example, the e : ;
) . . at this time point. When all input tuples have been processed, the
firsttuple says that in the rectanglis) x 1, 7) the number of cars tree contains all start and finish points of the tuples, which repre
in each spatio-temporal granule is equal to 1. Figure 4(b) shows a - P pies, P

o=k : ' sent also the start and finish points of the constant intervals. Sec-
graphical illustration of the query result. The spatio-temporal rect-

angles of the result tuples are drawn as boxes with the aggregateond’ by performing an in-order traversal of the tree, the values of

result inside. If temporal coalescing would have been applied be- the counters are combined and the temporal aggregation results are

fore spatial coalescing, the first result tuple starting in the lower left produced. Whenever a nodgjs visited, the aggregate value is in-
corner would be1,[1,4), [1,3)). O cremented by the value of the start counter and decremented by the

value of the finish counter, yielding a result tuple over the constant
interval that is formed by the time point @fand the time point of

5. IDEAS OF SST AGGREGATION QUERY 1o eocsor Y P P

PROCESSING
Example 4.Figure 6(b) shows the Balanced Tree for the CARS
5.1 Brute Force relation in Figure 3 after removing the spacestamp attribute, i.e.,
While the evaluation of sequenced one-dimensional aggregationfor 7T[C|D2 R.ID.,T]C.ARS in Figure 6(a). The set of distinct start-

has been studied quite extensively in the past, to the best of ouring and finishing time points extracted from the input tuples is

dimensional aggregation. Brute force approacito evaluate SST node together with the associated start- and finish counter. For in-
aggregation could be the following: (1) for each temporal granule, stance, two tuples start and two tuples finish at time 6. The in-order
determine the group of all tuples that are valid during that gran- traversal starts at the node with time 1 (the smallest time point in
ule, and (2) for each such group of tuples perform sequenced one-the tree) and an initial aggregate value of 0. The aggregate value is
dimensional aggregation using one of the known spatial or tempo- Now incremented by 1 (value of start counter) and decremented by
ral aggregation frameworks. This brute force approach is obviously 0 (value of finish counter), yielding the aggregate value 1. Thus,
not very efficient, because it runs an aggregation procedure once forthe first result tuple i$1, [1,3)). Next, the node with time 3 is vis-
each point in time. Moreover, the result is only coalesced along the ited. Incrementing the aggregate value by 2 and decrementing by
spatial dimension and not along the temporal dimension. Figure 50, yields the second result tup(8, [3,4)). Overall, the following
shows the result of applying the brute force approach in our running constant temporal intervals are producgd3), [3;4), [4;6), [6;7),
example. Notice the difference to the intended result as illustrated and[7;9) with the associated aggregate valugs.

in Figure 4.

52

5.2.2 Naively Extended Balanced Tree with the information that two tuples are finishing at that po-

In a first, naive extension of the Balanced Tree for 2D spatio- sition. In this paper we will advance this idea even further
temporal aggregation we substitute the counters in the nodes by the by reducing the two begin counters to only one counter that
set of all tuples that are valid at the node’s time point (and conse- stores the difference between the original counters. The same
quently are valid throughout the constant interval that starts at the reduction is possible for the two end counters.

node’s time point). In fact, for the count aggregation as in the run- In Section 6 lore th timizati d introd dat
ning example, it is sufficient to store the spatial intervals of these n Section ©, we explore these optimizations and introduce a data

tuples. When a noda, is visited during the traversal of the tree, §tructure that supports a more efficient evaluation of SST aggrega-

instead of accumulating the counters, the sequenced spatial aggret-'on'
gation over all tuples that are storedviiss computed. Obviously,
the same Balanced Tree algorithm can be applied for the spatialg, THE SST-TREE

aggregation as well. In this section, we present a data structure, called the SST-tree,

that supports an efficient evaluation of SST aggregation queries. In
Section 6.1, we define a generic version of the SST-tree. In Sec-
tions 6.2 and 6.3, we describe two variants of the SST-tree, which
differ in how tree nodes are implemented.

Example 5.The Naively Extended Balanced Tree of the CARS
relation is shown in Figure 7. Each node stores a time point and the
set of spatial intervals that are extracted from all input tuples that
are valid at the node’s time point. For example, the spacestamps
[1;7), [3;8), and[6;9) are extracted from the tuple4,r3, andr5 6.1 General Definition

and associated with time 3. The tree traversal begins at the node .
The Sequenced Spatio-Temporal Tré&ST-tree) extends the

with time 1, which has associated a single spatial interal). . LN - .
The spatial aggregation over this interval yields the spatial result Balanced Tree and applies the two optimizations mentioned in Sec-

tuple (1,[1;7)), which is then combined with the constant tempo- tion 5.2._3. The main difference is that inste_ad of _storing time
ral interval,[1,3), to produce the first result tuplét, [1;3), [1;7)). points with counters, the SST-tree stores both time points and space

Next, the node with time 3 is visited. The processing of the asso- POINts, and the space points are associated with counters. By com-
ciated space intervals produces five constant space intervals with?iNing these pieces of information the constant spatio-temporal

aggregate values, which in combination with the constant temporal ectangles and the associated aggregation value can be computed.
interval[3,4) produce the result tuples 2-6 in Figure. The first optimization concerns the removal of redundant spatial

intervals in the tree nodes. Instead of storing at a node with time
t the spatial intervals of all tuples that are valid at timeve store

[4]{[3:8),6,9).[6,11}] only the spatial intervals of those tuples that start and finish at time
e —_ t. Thereby, it is important to distinguish these two sets of tuples.
S, ({71, 81D}] Example 6.Figure 8 shows the naively extended balanced tree
N\ pd AN after applying the first optimization step. For instance, the spa-
[3[{[1,7),3:8),6;9}] [6][{[6:11),[7:11],[8;11}] [9]] tial interval [1,7) produced by tuplel can be removed from the
node with time 3, sincel starts at time 1 and finishes at time 4.
Figure 7: The Naively Extended Balanced Tree. Thus, the node becomés, {[3;8),[6;9)}/{}), stating that two tu-

ples with spatial interval§3;8) and [6;9) start at time 3 and that
L . no tuple finishes. Similar, the node at time 4 can be reduced to
5.2.3 Optimizations 4,{[6;:1)}/{[L;7)}).
Obviously, the Naively Extended Balanced Tree is rather ineffi-
cient, and we can think of several optimizations:

{61317}

1. First, each aggregation group over a constant time interval - —
shares some tuples with the aggregation group of the preced- 6,10}
ing and/or next constant interval. For instance, in Figure 7 \ _— ~_
the nodes with time point 3 and 4 share the two space in- [B[{[3:8),[6:9}1/{}] [6[{[71D.[8:1)}/{[3:8).[6:9}] [9[{}A7.11),[8:11)}]

tervals[3;8) and[6;9). Therefore, an incremental approach) o
can be applied to store only those tuples that start and finish Figure 8: The Naively Extended Balanced Tree after Optimiza-
at the node’s time point (e.g., only the space inter{@jl41) tion 1.

and[1;7) need to be stored at the node with time 4).))
To recover the removed space intervals for the computation of

2. Second, we can adopt the same idea as in the Balanced Treaggregate values, the traversal of the tree requires a dynamic data
to obtain a more compact representation, namely to store structure to keep track of the tuples that started before and to re-
space points instead of space intervals and to store each dis-move them when they finish. This leads to an incremental compu-
tinct space position only once together with four counters. tation of the result tuples in chronological order.

Two counters indicate how many space intervals begin and The second optimization is to replace the spatial intervals in the
end at this position for the tuples that start at this time point. nodes of the Naively Extended Balanced Tree by the begin and end
The other two counters record the same information for the points of the intervals together with counters, similar to what the
tuples that finish at this time point. For example, in Fig- Balanced Tree is doing for the one-dimensional case. Thus, we
ure 7 at the node with time point 6, compared to the previous extend the idea of the Balanced Tree for the two-dimensional case,
node (time point 4), two new space intervals appgar 1) where we have to compute constant (spatio-temporal) rectangles
and[8;11). These intervals store the finish position, 11, two instead of constant intervals. Recall that a node with tirmethe
times. This can be avoided by storing it only once together 1D Balanced Tree stores two counters that store the cardinality of

53

time

space

Figure 9: Graphical lllustration of the Groups of Tuples.

the following two sets:
Gs(Rt)={r|reRArTs=t}
Gi(Rt)={r|r e RALT; =t}

That is, the set of all tuples that starttgthe start counter) and the
set of all tuples that finish at(the finish counter).

Computing constant rectangles in 2D can conceptually be seen
as computing constant intervals along both dimensions and then

empty. For time granule 6 and space granule 8 we get the following
groups:Gsp(CARS 6,8) = {r6}, G ¢(CARS,6,8) = {r3}, while
the other two groups are empty.

The four groups introduced above form the basis for the in-
cremental computation of the aggregate values. For each spatio-
temporal granule in the SST-tree, the cardinality of these groups is
stored as a counter, which during the traversal of the tree are com-
bined to compute the result tuples.

A further reduction of the data that needs to be stored with each
node is possible. Instead of storing all four counters, we pairwise
combine these counters and store only the difference. This reduc-
tion is applied in the following definition of an SST-tree.

Definition 3. [SST-tree]Let R be an STDM relation with
schema(Aq, ..., A, T,S), whereAy, ..., A are the explicit (non-
temporal and non-spatial) attributés,is the timestamp attribute,
andSis a spacestamp attribute. Further,Pgt={t |1 € RA (t =
rr-Tsvt =r.Tt)} be the set of all start and finish time pointsRn
andPs= {s|r e RA(s=r.§Vs=r.&)} be the set of all begin
and end space points R. Then, anSST-treefor relationR is a
balanced binary search tree. A node in the tree stores &tp&iy,
wheret € Pr is the node’s key and represents a start/finish time
point andS is a set of space positions together with two counters
and is defined as

S = {(s,cny, cni)[s € Ps A
Cntb = |GS,b(R7tvs)| - |Gf,b(R7tvs)| A
cnte = |Gse(Rt,5)| — |Gt e(R,9)[}

combining corresponding intervals. Therefore, we need a counter O

for each combination of the two dimensions, i.e.,

{2

The following Definition 2 specifies the corresponding groups of
tuples.

Definition 2. [Tuple groups]Let R be an STDM relation with
schema(Ay,..., A, T,S), whereAy,..., A are the explicit (non-
temporal and non-spatial) attributés,is the timestamp attribute,
andSis the spacestamp attribute. Furthertlbe a temporal gran-
ule andsbe a spatial granule. Then we define the following groups

of tuples fort ands:
Gsp(Rt,s)={r|reRAILTs=tArL.§ =5}
Gse(Rt,s) ={r|reRALTs=tAr.S =S5}
Gip(Rt,9) ={r|reRALT; =tALg =5}
Gte(Rt,8)={r|r e RALT; =tAr.S =5}

]

The four groups correspond to the four corners of a spatio-
temporal rectangle. This is graphically illustrated in Figure 9. The
small black rectangle represents the spatio-temporal grahse

The large boxes indicate the spatio-temporal rectangles that are col-

lected in the four groups. For instance, the box with solid lines rep-
resents the first groussp(R,t,s), that contains all tuples fromR

that start at time poirttand begin at space poistthat is, for which

the spatio-temporal granulg s) forms the lower-left corner in the
spatio-temporal rectangle.

Example 7.Consider the CARS relation in Figure 3. The four

Thus, an SST-tree has a node for each distinct (start or finish)
time point in relationR. Each node that represents a specific time
point, t, stores a sef}, of triples of the form(s, cnt,, cnte), where
cnt, andcnte are two counterscnt, is the difference between two
numbers: (1) the number of tuples thegginat positions andstart
at timet and (2) the number of tuples thiagginat positions and
finish at timet. cnte is also the difference between two numbers:
(1) the number of tuples th&ndat positions and start at timet
and (2) the number of tuples thahd at positions and finish at
timet. Different from the one-dimensional Balanced Tree, here the
counters might have negative values.

Example 8.Figure 10 illustrates the SST-tree for the CARS re-
lation. Notice the difference to the tree in Figure 8. The spatial
intervals are replaced by a space position, representing the begin-
ning and ending positions of the intervals, and two counters. For
instance, the root node with time point 4 stores a set of four space
points and associated counters. The pajr—1/0) states that 1)
the difference between the number of tuples that begin at position 1
and start at time 4 and the number of tuples that begin at position 1
and finish at time 4 is-1 and 2) the difference between the number
of tuples that end at position 1 and start at time 4 and the number
of tuples that end at position 1 and finish at time 4 i§10.

[#[{(%,—1/0),(6,1/0),(7,0/ 1), 1L 0/1}]

™~ e o~
[3[{(3.1/0).(6.1/0). 8.0/1).(9.0/0} | [6]-J] [S[{(%._%/0).(8._1/0),(AL0/ 2)}]

{(1,2/0).(7.0/1)}

Figure 10: SST-tree.

In the following, we introduce two different techniques to effi-

groups for the time granule 3 and space granule 6 are computed agiently implement the space points and associated counters in an

follows: Gsp(CARS 3,6) = {r5} and the other three groups are

SST-tree.

6.2 SST-tree with Tree-Based Nodes

In a SST-tree with Tree-Based Nodes (38&e), the informa-
tion about tuples that start or finish at a node is stored in this node’s
spacestamp treéhus, a node contains one time point and one tree.

Definition 4. [SSTtree] Let R be an STDM relation with
schema(Ay,...,A, T,S). An SST-tree for relationR is defined
as an SST-tree, where each no@es), uses a balanced binary
search tree, termespacestamp tredo store the setg, of space

positions and counters. A node of the spacestamp tree is given as

(s,cnty, cnte), wheresis the node’s key™

Example 9.Figure 11 depicts an SSiree that contains infor-
mation about the relation, CARS, from Figure 3. For each node, a

1/0
0/1
1/0
0/1

-1/0
0/-2
-1/0

© O 00 W

Figure 12: SSTtree.

number denotes its time point and a string indicates its spacestamp

tree pointer. In the figure, we can see the spacestamp ffé&es,
andT9, of the nodes with time points 3 and 9, respectively. This
SSTtree corresponds to the SST-tree from Figuré10.

[6]170]
[6]-10]
3| [3[1M0] [8]0L 6(Ts||9
[1i[or2
EIA

Figure 11: SST-tree.

6.3 SST-Tree with Hashmap-Based Nodes

An important characteristics of the SST-tree is that the space po-

sitions and associated counters are not directly used for the com-

putation of the aggregate functions, but are inserted into a dynamic
tree during the traversal of the SST-tree. The crucial part during the
construction of the SST-tree is to efficiently group identical space

positions and to update the associated counters. The order in which,

7.1 Top-Level Algorithm

The overview of our aggregation procedure is presented in Al-
gorithm 1. The procedure takes an STDM relatiBnas input and
outputs the aggregation result as an STDM relaté&anThe algo-
rithm iterates through the set of road IDs of the input relation (“for
each” loop in lines 2-5). For each road, it does two main steps.
During the first step it scans the set of tuples of the input relation
that contairrid and builds an SST-tre@, For each tuple, its times-
tamp and spacestamp is extracted and inserted into the SST-tree.
During the second step it computes the constant rectangles and the
aggregation results.

Input: STDM relationR
Output: STDM relationZ
17+« 0;
2 foreachroad-ID rid € mRID]Rdo

3 | T+ LOADTREE(O[RID=rid]|R);

4 | Zjg < {rid} x COMPUTECONSTRECT(T);
5 Z—ZUZiq;

6 return Z;

Algorithm 1: Algorithm SSTAGG.

Input: STDM relationR
Output: SST-treeT

T «— empty SSTtree;
foreachr € Rdo

1

the_space positions ar!d counters are sto_red is irrelt_evan_t. _Thereforeg tn — GETNODE(T,I.Ts) ;
an interesting alternative to the S&fee with a logarithmic inser- 4 | sn— GETNODE(tN.T,1.S,) ;
tion time, is to use hashmaps with a constant insertion time. 5 | snenty -+ ;
o]) 6 | sn«— GETNODE(tn.7,r.&%) ;
Definition 5. [SS'ltree] Let R be an STDM relation with 7 | sncnte+ 4 :
schema(Aq, ..., A, T,S). An SStltree for relationR is defined
as an SST-tree, where each nofteS), uses a hashmap, termed 8 | 1< GETNODE(T,r.Ty) ;
spacestamp hashmafp store the setS, of space positions and ¢ | SN GETNODE(tn.T,r.%) ;
counters. An entry of the hashmap is giver(gent,, cnt), where 10 | Sncnb——;
sis the entry’s keys 11 | sn— GETNODE(tn.7,r.%) ;
12 | sncne——;
Example 10.Figure 12 depicts the S&ttree for our running ex- 13 return T;

ample. Each node contains a hashmap to store the spatial points and

counters.Od

7. AGGREGATION ALGORITHM

Algorithm 2: LOADTREE

7.2 Loading an SST-Tree

Algorithm 2 presents the algorithoODAD TREEfor constructing

In this section, we describe our algorithm for sequenced spatio- an SSTtree,T, from an STDM input relationR. Here we assume
temporal aggregation that uses the SST-tree defined in Section 6. the use of a tree to store the spatial part, however, the algorithm can

55

easily be adopted for the S81ee that instead uses hashmaps for Input: SST-treeT

the spatial part. Output: STDM relationZ
After initializing an empty SS¥tree, the algorithm iterates 1 Z«— 0:
through the tuples of the input relatioR, For each tupler € R, 2 Tgyn— empty tree;
we extract the start/finish time point and the begin/end positions 3 foreach pair of consecutive nodésn,tn’) € T in in-order do
and update the tree accordingly. First, we process the tuple’s start [+ Update the dynamic tree */

time, r.Ts. The functionGETNODE() retrieves fron” the nodetn,

with key value equal ta.Ts; if no such node exists, a new node,
(r.Ts,Tp), with an empty spatial tree is created and inserteddnto
Then the spatial tree of noda is updated. More specifically, the
node with key value equal to the begin positio,, and the node
with key value equal to the end positiar, are retrieved and the
two counters are incremented (lines 4-7). If the nodes are not yet]
in the tree, the functioGETNODE creates and inserts a new node, [+ Traverse the dynamc tree */
(r.$,0,0), where the two counters are initialized to 0. Second, the 10 | cnt—0; . .
tuple’s finish time,r. T, is processed in a similar way. The only 11 | foreach pair of consecutive nodesin,drf) € Tgynin

foreachsne tn.J do
dn«— GETNODE(Tgyn, SNS);
dn.cnt, = dn.cnty +sncnt, ;
dn.cnt = dn.cnt +sncnte ;
if dn.cnt, = 0Adn.dnt = 0then
| Deletednfrom Tgyp;

© 0 N o g b

difference is that now the counters are decremented to represent in-order do
the fact that the tuple is finishing. 12 cnt — cnt+-dn.cnt, —dn.cnte ;
13 Z +— Zu{(cnt, tn.t,tn'.t), [dn.s,dn.s))} ;

Example 11.Figure 13 depicts the SSiree after processing
the first tuple,rl, of Figure 3, which is valid during the spatio-
temporal rectanglél;4) x [1;7). The SSTtree has two nodes,
representingl’s start and finish point, respectively. Each of these

nodes stores a tree with space points and counter$, there are the dynamic tree, a new nod@ns, 0,0), with the counters initial-

two nodes, with keys 1 and 7, because the spatial intervd be- ized to O is inserted. Since the countersiomight contain negative

E('ensfgrleaggfg(_ji ?;87.6-2258?egtl)2?:382n§ (ti(rjwzje]t: ggt{:le Iré%dsewi'gjvalues, the counters in the dynamic tree node might become 0. If
nir¥g with 7 are addedpbut on)e' tuple finishing with 7 is F?emove?j both coun.ters of a r!ode Mayn are equal to 0, the noc!e can be
0 ’ " deleted, since there is no new constant rectangle at this point. The
second step traverses the dynamic tree in-order and computes the
result tuples. The temporal part of the constant rectangle is fixed
and determined by _the time points of the t_wo consecutive nodes,
tn andtn’. The spatial part of the constant intervals as well as the
aggregate results are determined while traversing the dynamic tree.

Example 12.Figure 14 depicts the evolution of the dynamic tree
\ together with the produced result tuples. New nodes or updated
nodes as well as new result tuples are displayed with a gray back-
ground. Figure 14(a) illustrates the situation after processing the
first _node of the S_Sﬁ'tree, which represents time point 1. The dy_-
namic tree contains two nodes with space points 1 and 7, which
have been inserted as new nodes. Next, the dynamic tree is tra-
Figure 13: SST tree after Inserting Tuple rl. versed, producing a single result tuple. Figure 14(b) depicts the
situtation after processing the second node of the'$®€, which
represents time point 3. The associated spacestamp tree contains
7.3 Computing Constant Rectangles four nodes with space positions 3, 6, 8, and 9, respectively. Since
Algorithm 3 shows the algorithneoMPUTECONSTRECT that neither of these nodes is yet in the dynamic tree, new nodes with
takes as input an S3Tree and returns the final aggregation result. these positions as key are inserted. Traversing the dynamic tree
To compute the constant rectangles of the result tuples, a dynamichoW produces five new result tuples. Figure 14(c) depicts the dy-

tree is used and continuosly updated as the algorithm traverses thdamic tree after the third iteration of the loop, when the node with
SST.tree. time point 4 is processed. The begin counter for space position 6

Basically, we use the dynamic tree for computing the spatial IS incremented, the counts for the position 1 and 7 is decremented,

components of constant rectangles (the details are given shortly).and a new node with position 11 is inserted. Since now the counts
We implement the dynamic tree as a Balanced Tree extended with afor 1 and 7 are equal to 0, these two nodes are removed from the
node deletion algorithm. Specifically, a dynamic tree node contains dynamic tree. Traversing now the dynamic tree generates four new
a space point, a begin count, and an end count. The information infesult tuples

the node tells how many tuples begin and end at the node’s space
point.

The main loop of the algorithm uses an in-order tree traversal to
process the nodes in chronological order. For each rtogléwo
steps are performed. First, the dynamic t , Is updated with
the information from the spacestamp traemﬁnThat is, for each 8. EXPERIMENTS
node intn.J the corresponding node Fyyy,is retrieved and the two In this section, we experimentally compare the $8@e defined
counters are updated. If there is no node with space positieim in Section 6.2, the SS¥tree defined in Section 6.3, and the brute

14 return Z;
Algorithm 3: COMPUTECONSTRECT

4

The discussion above assumed that the SST-tree is implemented
as the SSTtree. If we have the SSHree instead, we do the same,
only using spacestamp hashmaps instead of spacestamp trees.

56

Cnt T S > ' Dense éST-H-&rée ljl
N CEONNER)) SR
\ Brute force mmm— 5
(a) after processing 1 node
[6]10] Cnt] T | S H
N T ([ED]| 3
[3[10] [8]O1] 1| [34) | [1:3) 4
/N 2 | [3:4) | [3:6)
[T]10] [7]on) [9]om] | 3 |[34]|[67)
2 | [3:4)|[7:8)
1 | [34) 189
(b) after processing 2 nodes
62 131 205 280 352 430 505
C I’lt T S No of tuples (thousands)
1 1;3 1,7
1 %343 %15 Figure 15: Load time (Algorithm 2)
2 | [34) | [36)
3 | [34)]| [67) = e T —
B 2 | [34) | [79) g
1 [3’4) [8,9) Brute Force
6 2/6 } /1 1 | [46)] 136) |
[e[20][5]on] 3 | [46) | [68)
2 | [46) | [89)
[3]1/0] [11] 0/1 | 1 | [4;6) | [9;11) 0
(c) after processing 3 nodes

Traverse time (secs)

Figure 14: Evolution of the Dynamic Tree and Result Tuples.

force approach described in Section 5.1 (implemented as a set of
Balanced Trees, one per time granule).

We compare two implementations of the $8ee; the first one
uses Google'sparse hashmapnd the second one uses Google’s
dense hashmap In short, the sparse hashmap is optimized for Figure 16: Traversal time (Algorithm 3)
memory (an empty bucket occupies almost no space), while the
dense hashmap is optimized for speed (a key is stored in each empty
bucket). Both types of hashmap usgernal probing(i.e., only one 81 Time
entry per bucket). For details, see [7]. ’

We compare main memory based versions of our data struc- .)
tures. The data structures are loaded with data from STDM rela- 8.1.1 Loading Time
tions stored on disk. Figure 15 compares the time used for loading an SST-tree (Al-

We ran our experiments on a machine with Intel 1.66 GHz CPU gorithm 2) or Balanced Trees for the brute force approach.
and 1 GB RAM, under Ubuntu Linux 8.04. We implement our As expected, the brute force approach is slow, because per tu-
algorithms in C++ as algebra operators (i.e., user-defined functions) ple we do 2« n space point lookups and up tox space point
of the Secondo spatio-temporal database management system [6].inserts, wheren is the length of the tuple’s temporal validity in-

For our experiments, we use 10 different STDM relations. The terval. As mentioned above, in our experiments, for each tuple,
schema of the relations is the schema of the example input relationn = 3, so 2«n = 6. Other approaches do 4 space point lookups and
from Figure 3 (i.e.(CID:int, RID:int, T:int, S:int)). The relations up to 4 space point inserts per tuple. This numbendgpendent
are derived from the data generated with Brinkhoff's generator of from the temporal validity interval's length. Thus, for larger values
moving objects [5]. Specifically, we simulate GPS logs of cars in of n, the brute force approach will become even slower, while the
the road network of Oldenburg, Germany. The number of roads in performance of the other approaches will not be affected.
the network is around 7K. The number of cars per relation varies Next, one could expect that the Stffee is faster than the
from 3K to 30K, with a step of 3K. Each relation contains the fixed SST.tree since hashmaps have constant insert/lookup time. Sur-
number of distinct time points (100), while the number of distinct prisingly, the SSHitree performs worse than the SSiee (e.g.,
space points varies and is proportional to the number of tuples. by 11% on average for the dense hashmap-basediﬁmj. The
Each tuple’s temporal validity interval is 3 granules long. This rel- reason for this is an overhead of Google’s hashmap implementa-
atively short interval is @ood casefor the brute force approach, tion: because of the internal probing, a Google’s hashmap is resized
because this approach consideashgranule from the interval. (doubled in size) when half of its buckets are full. This is imple-

Figures 15-18 show results for Algorithm 1, issued to the 10 mented by copying the data into a new, larger hashmap. The sparse
input relations. The marks on the X axis indicate the number of hashmap has additional overhead related to memory-management.
tuples in each relation.

62 131 205 280 352 430 505 580 656 732
No of tuples (thousands)

57

900

% ' T T T T
Dense SST-H-tree ——
Sparse SST-H-tree

T T T
Dense SST-H-tree C—
Sparse SST-H-tree
45 SST-T-tree
Brute force mumm—

800 | SST-T-tree
Brute force mumm—

40 700

600

Memory (Kbytes)

300

Total (load + traverse) time (secs)

200

100

b

b bk =
205 280 352

62 131 205 280 352 430 505 580 656 732
No of tuples (thousands) No of tuples (thousands)

Figure 17: Total (load + traversal) time (Algorithm 1) Figure 18: RAM

8.1.2 Traversal Time pointer overhead. For each space point, it uses 28 Bytes: 16 Bytes
for the data (key pointer, key value (space point), begin count, and
end count) and 12 Bytes for node pointers (left, right, and parent).
Thus, the constant overhead per space point is 12 Bytes.

A dense hashmap-based $8fe node is more efficient in

terms of memory than the SSfee. It uses 16 Bytes for a filled

The . ; g
bucket (key pointer, key value (space point), begin count, and end

Google’s hashmap iterators are relatively slow. count) and 4 Bytes for an empty bucket (“empty” key). Thus, the

Surprisingly, the brute force approach demonstrates the sameverage overhead per space pglnt '52%4 Bytes, wh.erene is the
speed as the other methods. The reason for this is that the brutglumber of empty buckets amtt is the number of filled buckets.
force approach does not insert space points into the dynamic tree,The maximum overhead is when a hashmap has just resized and
but simply traverses each of its Balanced Trees. However, this sim- /5% of buckets are empty. Thus, the maximum overhead per space
plified algorithm produces a larger, uncoalesced output relation (cf. POint reaches the overhead of the $8®e (i.e., 12 Bytes), but
Figure 5). For example, the output relation for the leftmost input Most of the time itis smaller. . o
relation in Figure 16 contains 305K and 255K tuples, for the brute A sparse hashmap-based $8/e node is the most efficient in
force and SST-tree method, respectively. Moreover, as discussedi€ms of memory. It uses 16 Bytes per filled bucket and only 2 bits
before, in our experiments, tuples have relatively short temporal va- Per émpty bucket. Thus, there is almost no overhead. For every
lidity intervals, which is a good case for the brute force approach. input relation, the sparse hashmap-based SST-tree uses less than
We expect that for longer intervals the performance of the brute 0% of memory needed by the brute force approach.
force approach deteriorates. Other approaches do not depend on From Figure 18, we can see that both 38%e and

Figure 16 compares the time used for computing constant rectan-
gles from a loaded SST-tree (Algorithm 3) or from a set of loaded
Balance Trees for the brute force approach. Basically, this is done
by traversing the data structures.

All the methods have approximately the same speed.
SSTtree is a little bit slower that the S3Tree, because the

the length of the temporal validity interval. SSTHtree scale well in terms of main memory consumption. The
brute force approach is much less scalable, because it depends on
8.1.3 Total Time the length of the tuples’ validity interval.

Figure 17 shows the total time, used for loading an SST-treeorag 3 Conclusions
set of Balanced Trees first and then computing constant rectangles
from it (Algorithm 1). Thus, the times in Figure 17 are obtained
by adding together the corresponding times from Figure 15 an
Figure 16.

We draw the following conclusions from our experimental re-

d sults. The brute force approach consumes a lot of memory and is
not so fast, even when the length of the tuples’ temporal validity
intervals is short (i.e., even in a good case). For these reasons, it

should not be used. As for the other methods, there is a trade-off

8'2_ Memory between the speed and the main memory usage. Thét&&Tis
Figure 18 compares the RAM used by the SST-tree or by the set g|44jyely inefficient in terms of memory, but it is the fastest. The

of Balanced Trees for the brute force approach. Specifically, given sparse hashmap-based $%Ee is very memory efficient, but it is

an input relation, we measure the memory usage for each group ofihe siowest. The dense hashmap-based %@ is somewhere in

tuples (each road) and then compute the maximum. the middle: it is a little bit slower than the SSifee, but at the same
The brute force approach is the most inefficient, because for eachyj e it uses a little bit less memory.
tuple from the input relation it stores the tuple’s space pommts Note that the insert time of hashmaps is not constant. The hash-

times, wheren is the length of this tuple's temporal validity in- a5 resize overhead is quite significant and linear to the size of a
terval. In addition, space points are stored in tree nodes, which hashmap.

have significant node pointer overhead. Specifically, for each space

point, we need 28 bytes: 16 bytes for the data (key pointer, key

value (space point), begin count, and end count) and 12 bytes for9- CONCLUSIONS AND FUTURE WORK

node pointers (left, right, and parent). To the best of our knowledge, this paper is the first to propose an
The SST-tree is more efficient. However, there is still the node efficient method for the evaluation sequenced, spatio-temporal

58

aggregationqueries. It is based on a new data structure, called Exhibition on ITSpage 12 pages, 2005.

SST-tree, that efficiently stores information about a spatio-temporal [13] N. Kline and R. T. Snodgrass. Computing temporal
input relation, which then allows to compute the aggregation results aggregates. IICDE, pages 222-231, 1995.

including the constant rectangles of the result tuples by an in-order [14] R. Kothuri, A. Godfrind, and E. BeinaPro Oracle Spatial
traversal of the tree. We consider two variants of SST-tree imple- Apress, 2004.

mentation. Each variant has its strengths: our experiments show[l5] J. A. C. Lema, L. Forlizzi, R. H. Giiting, E. Nardelli, and

that the SSTtree is generally faster, while the S%ffee uses less M. Schneider. Algorithms for moving objects databases.
memory. We provide an efficient algorithm that implements this Comput. J.46(6):680—712, 2003.

two-step method: first it scans the input relation and builds the [16] I. F. V. Lopez, R. T. Snodgrass, and B. Moon. Spatiotemporal
SST-tree, followed by a tree traversal to compute the result rela- égérégate cc;mp;utétion' A sur\;eEEE Transactions on
tion. The experiments show that the new method is more memory- Knowledge and Data Ehgineering?(Z):271—286 2005.

efficient and (almost alwgys) more tlme-eﬁ|0|ent than a brute force [17] B. Moon, I. F. V. Lépez, and V. Immanuel. Efficient
approach. The current implementation uses the Secondo DBMS, algorithms for large-scale temporal aggregatiGicE Trans
but it is general enough to be ported to any relational DBMS. Knowl. Data Eng, 15(3):744—759, 2003.

Future work includes the following aspects. The current method . . .
; : ; 18] NCHRP.A Generic Data Model for Linear Referencing
orks for COUNT, SUM, and AVG aggregation functions. We will [. .
W ggregation funct " SystemsTransportation Research Board, Washington, DC,

extend our method for other aggregation functions (e.g., MIN and USA 1997
MAX). The current method performs precise aggregation (i.e., a set ' o . -
of spatio-temporal granules is coalesced only if we have exactly the [19] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP

same aggregate value for each granule from the set). We will ex- operations in spatial data warehousesS8TD pages

tend our method for approximate aggregation (i.e., a set of spatio- __ 443-459, 2001. . .
temporal granules is coalesced if the aggregate value of each gran{20] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing
ule from the set falls into some range). Then, the order in which spatio-temporal data warehouseslI@DE, pages 166-175,

dimensions are processed is now fixed: the time points are always 2002 .
loaded into the first level of the SST-tree and the space points - into [21] R. T. Snodgrass, editofhe TSQL2 Temporal Query

the second level. We would like to come up with a cost model that Language Kluwer, 1995.
would tell which dimension should come first. In addition, we will [22] L. Speicys and C. S. Jensen. Enabling location-based
run experiments on real-world GPS logs and provide a disk-based services - multi-graph representation of transportation
implementation of the method. networks.Geolnformatica12(2):219-253, 2008.

[23] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the
10. REFERENCES past, the present, and the future in spatio-temporal databases.

[1] R. Bayer. Binary b-trees for virtual memory. ACM In ICDE, pages 202-213, 2004. .
SIGFIDET, pages 219-235, 1971. [24] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.

[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and Spatio-temporal aggregation using sketche$CIDE, pages
P. Widmayer. An asymptotically optimal multiversion b-tree. 214-226, 2004.) .
VLDB J, 5(4):264-275, 1996. [25] Y. Tao, D. Papadias, and J. Zhang. Aggregate processing of

[3] M. H. Bohlen, J. Gamper, and C. S. Jensen. planar points. IEDBT, pa_ges 682__700' 2_002'
Multi-dimensional aggregation for temporal dataBDBBT, [26] O. Wolfson, H. Cao, H. Lin, G. Trajcevski, F. Zhang, and
pages 257-275, 2006. N. Rishe. Management of dynamic location information in

[4] M. H. Bohlen, R. T. Snodgrass, and M. D. Soo. Coalescing domino. INEDBT, pages 769-771, 2002.
in Temporal Databases. WLDB, pages 180-191, 1996. [27] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and

[5] T. Brinkhoff. A framework for generating network-based G. Mendez. Cost and imprecision in modeling the position of
moving objectsGeolnformatica6(2):153—180, 2002. moving objects. INCDE, pages 588-596, 1998.

[6] S. Dieker and R. H. Giiting. Plug and play with query [28] J. Yang and J. Widom. Incremental computation and
algebras: SECONDO — a generic DBMS development maintenance of temporal aggregatesiGBE, pages 51-60,
environment. INDEAS pages 380-392, 2000. 2001.

[7] Google. Google's sparsehash project. [29] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and
http://code.google.com/p/google-sparsehash/. Current as of B. Seeger. On computing temporal aggregates with range

December 12. 2008 predicatesACM Trans. Database Sys83(2), 2008.

[8] R. H. Giiting, V. T. de Almeida, and Z. Ding. Modeling and
querying moving objects in networkgL. DB J,
15(2):165-190, 2006.

[9] A. Guttman. R-trees: A dynamic index structure for spatial
searching. I'SIGMOD Conferencegpages 47-57, 1984.

[10] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and
I. Timko. Integrated data management for mobile services in
the real world. InVLDB, pages 1019-1030, 2003.

[11] C. S. Jensen, J. Kolarvr, T. B. Pedersen, and I. Timko.
Nearest neighbor queries in road networksGli$, pages
1-8, 2003.

[12] C. S. Jensen, K.-J. Lee, S. Pakalnis, and S. Saltenis.
Advanced tracking of vehicles. Buropean Congress and

59

