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ABSTRACT

Collaborative research in various scientific disciplines requires sup-
port for scalable data management enabling the efficient correlation
of globally distributed data sources. Motivated by the expected data
rates of upcoming projects and a growing number of users, com-
munities explore new data management techniques for achieving
high throughput. Community-driven data grids deliver such high-
throughput data distribution for scientific federations by partition-
ing data according to application-specific data and query character-
istics. Query hot spots are an important and challenging problem
in this environment. Existing approaches to load-balancing from
Peer-to-Peer (P2P) data management and sensor networks do not
directly meet the requirements of a data-intensive e-science envi-
ronment. In this paper, our contributions are partitioning schemes
based on multi-dimensional index structures enabling communities
to trade off data load balancing and handling query hot spots via
splitting and replication. We evaluate the partitioning schemes with
two typical kinds of data sets from the astrophysics domain and
workloads extracted from Sloan Digital Sky Survey (SDSS) query
traces and perform throughput measurements in real and simulated
networks. The experiments demonstrate the improved workload
distribution capabilities and give promising directions for the de-
velopment of future community grids.

1. INTRODUCTION

Many e-science communities such as astrophysics, climatology,
or biology face huge data volumes from current experiments. Due
to the expected data rates of upcoming projects, e. g., the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS), pro-
ducing several terabytes a day, current centralized data manage-
ment approaches offer only limited scalability.
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Correlating and combining information from various observa-
tions or experiments are key for finding new scientific insights.
Additionally, published data sets are not changed in order to en-
sure the reproducibility of experiments. Instead, new additional
versions are made available. In order to deal with the sheer data
volumes, the communities join forces in Virtual Organizations and
build infrastructures for their scientific federations, so-called data
grids [27]. These data grids interconnect dedicated resources us-
ing high-bandwidth networks and enable researchers to share their
data sets within the community. Mostly, data sets are currently
provided to the whole community by the institutions conducting
the experiments, hosting the data on their own servers. This ap-
proach of autonomous data management is not well-suited for the
application scenario just described as each data source needs to be
queried individually and (probably large) intermediate results need
to be shipped across the network. Moreover, an increasing popu-
larity within the user community puts high demands on the various
architectural design choices, such as providing high query through-
put. Another challenging aspect are skewed data distributions in
the data sets as well as query hot spots.

Together with our partners from the AstroGrid-D [7] community
project within the D-Grid initiative, we construct a grid environ-
ment that supports users to bring their everyday science to the grid.
Our main focus are applications that access scientific databases
from the grid or use grid-based data stream management [12]. It
is therefore a natural choice for us to use data and workloads from
the astrophysics community, though our techniques presented in
this paper are also applicable to other domains.

1.1 Problem Statement

Enabling e-science communities to address the two major issues,
high-throughput data management and correlation of distributed
data sources, new data sharing infrastructures are required to 1)
directly deal with several terabytes or even petabytes of data, 2) in-
tegrate the existing high-bandwidth networks with several hundred
nodes within the community, and 3) offer high throughput to cope
with a steadily growing user community.

For the scope of this paper, we focus on how to incorporate
workload-awareness into a data sharing infrastructure for e-science
communities? The fact that query workloads for scientific data sets
are not uniformly distributed is substantiated by an analysis [11] of
a query trace from the Sloan Digital Sky Survey (SDSS) [26].

When some areas of the data space are very popular within the
community, data nodes covering these areas, so-called query hot
spots, tend to become the bottleneck during query processing. In
general, query load balancing can be achieved via splitting (parti-



tioning) and replication (Section 2.2).

Several inspiring proposals on load balancing within P2P data
management systems [4, 9, 16] or data-centric storages [3] exist in
related work. However, these proposals do not meet the require-
ments for data-intensive applications from e-science communities
as they only apply data partitioning or do not deal with skewed data
distributions. Other data structures [6] that are designed for large
scale data sets currently do not address query hot spots (Section 5).

We propose community-driven data grids (Section 2) as a decen-
tralized and scalable approach to scientific data management using
the existing available capacities—both CPU and main memory—of
the community network resources. So far, only data load balanc-
ing aspects have been considered during data partitioning within
HiSbase [20, 21], our prototypical implementation of a community-
driven data grid.

1.2 Contributions

In this paper, we generalize the data-driven partitioning schemes
of community-driven data grids to a cost-based partitioning in order
to address two important challenges in scientific federations: data
and query load balancing.

For this cost model, we define several weight functions (Sec-
tion 3). Besides data partitionings which consider only data load,
we propose several weight functions that allow advanced and work-
load-aware weighting schemes. One weight function, for example,
combines the weight for points and queries to compute the hear of
regions as the product of the associated data points and queries. Fi-
nally, we describe a weight function that decides by using the extent
of queries whether replication is better than splitting a region.

In Section 4, we evaluate our approach using quadtree-based par-
titioning schemes introduced in previous work [22]. We use a sam-
ple of one million queries from an SDSS query trace on three obser-
vational data sets and a synthetic workload on a uniform data sam-
ple from the Millennium' simulation. We further perform several
throughput measurements on our local resources of the AstroGrid-
D testbed as well as in a simulated network with the various par-
titioning schemes. The evaluation results assess the effectiveness
and applicability of our load balancing techniques as presented in
this paper. We conclude in Section 6 and give an outlook of ongo-
ing work and future research issues.

2. COMMUNITY-DRIVEN DATA GRIDS

In e-science communities such as astrophysics, geosciences, and
climatology, the combination of various globally distributed data
sources is fundamental in order to obtain new scientific results.
Therefore, most projects publish data sets from their experiments,
observations, or simulations online and create scientific federations.
In order to perform correlation queries in such a federated environ-
ment, data needs to be transmitted to one site and correlated there.
Data might be replicated using mirrors, but basically each institute
is responsible for providing scalable data access to its own archive
(and for ensuring increased fault tolerance via replication). If com-
munities are not depending on data autonomy, they could create a
centralized data site which would offer access to all available data.
While correlation now can be performed directly on-site and no
network traffic beyond the results of queries is necessary, query
processing needs to be handled carefully due to the centralized ap-
proach. For example, several job queues could be used in order to
differentiate between short running (one minute) and long running
(several hours) queries [14].

"http://www.mpa-garching.mpg.de/millennium/
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Figure 1: Architecture for community-driven data grids.

These data access services, regardless whether federated or cen-
tralized, experience increased popularity within the research com-
munity and the public domain. Thus, these data services are used
by more and more people. Due to the increasing interest, scalability
issues with the current approaches arise. For example, users inter-
acting with the public SDSS archive are only allowed to run their
queries for a limited amount of time and the result size is restricted
in order to avoid overloading the server.

2.1 HiSbase Architecture

In the following we give an overview of HiSbase [20, 21], our
prototype implementation for community-driven data grids. Com-
munity-driven data grids enable collaborating researchers to share
their data sets in a common infrastructure. Technologies developed
for decentralized Peer-to-Peer (P2P) architectures provide scalable
communication and data management to overcome the deficiencies
of centralized approaches. Based on distributed hash tables (DHT),
new nodes and their resources are integrated seamlessly. Built on
top of a P2P overlay network infrastructure, such as Chord [25] or
Pastry [17], HiSbase provides a framework for data publication and
efficient data access which adapts to the data and query character-
istics of their specific domain.

Thereby, community-driven data grids achieve high throughput
in query processing as data is distributed across numerous (e. g.,
hundreds of) nodes according to predominant query patterns. As
a consequence, most processing tasks can be performed locally,
achieving high cache locality as nodes mainly process queries on
logically related data. Figure 1 illustrates this approach on an ab-
stract level. In the figure, logically related data originating from
(possibly) different distributed sources are denoted by the same ge-
ometric shapes. The data grid allocates data fed into the system by
means of community-specific distribution functions. Thereby, re-
lated data objects of various sources are mapped to identical nodes.

We will use a data grid for astrophysics as running example
where data from the same area of the sky is mapped to the identical
node. This is appropriate for typical access patterns to astrophysi-
cal data sets like point-near-point and point-in region queries. Such
queries are usually region-based, i. e., they process data within cer-
tain regions of the sky. These regions are specified by the two-
dimensional celestial coordinates right ascension and declination.

The data partitions distributed to nodes have a specific capacity
and thus can also be seen as data buckets. As data sampling and
training drive the data placement in these buckets, we also denote
partitioning schemes as histograms.

HiSbase partitions multi-dimensional e-science data across an


http://www.mpa-garching.mpg.de/millennium/

(1) Splitting (Partitioning)

data node A
(master)

data node B
(slave)

N

(i) Replication

Figure 2: Query load balancing (gray query rectangles) via splitting and replication

initial set of nodes for data load-balancing. Later on, of course,
additional resources (data and nodes) can be added to the commu-
nity network, which is constructed as follows. We precompute the
histogram of the actual data space in a preparatory training phase
based on a training set and pass it to the initial HiSbase node during
startup. Additional nodes subsequently joining the network receive
their own local copy of the histogram from a neighboring node.
HiSbase allocates data according to the precomputed histogram and
uses the histogram as a routing index. By initially sending their data
to any HiSbase node, data archives feed data into HiSbase.

In the following we describe the training phase, the partitioning
schemes used, and the mapping process of HiSbase.

We use a training phase to construct the partitioning scheme
which describes how the data is to be partitioned across the data
nodes. Our weight functions of Section 3 will be integrated into
this phase. By means of our weight functions, the partitioning pro-
cess becomes also workload-aware, i. €., it uses information about
data and queries and the queries’ extent. First, we select representa-
tive training samples from the data sets. In case of workload-aware
partitioning schemes, we additionally use a training workload, e. g.,
a query trace from an existing archive. Starting with a single parti-
tion, the partitioning process is continued until the cost of the his-
togram reaches a predefined limit. Until this limit is reached, the
partition contributing the highest cost (i. e., weight) is selected and
divided. Exemplary limits are the histogram size or a maximum
size for all partitions. The HiSbase framework then provides sev-
eral tools to support the research community in comparing various
partitioning data structures and strategies. Eventually, a partition-
ing scheme is selected that shows the best load-balancing capabil-
ities and other required characteristics. One such characteristic is
a regular shape of partitions (squares or rectangles), as these are
preferable in order to limit the complexity of query processing.

Quadtrees [8, 18] exhibit this characteristic and therefore we use
quadtree-based partitioning schemes throughout this paper. For a
d-dimensional data space, a quadtree is recursively defined to be
either a leaf with a d-dimensional hypercube data region or an in-
ner node with 24 child trees. Each leaf is capable of storing a cer-
tain amount of objects and is split if the capacity is exceeded. Ad-
ditionally, quadtrees adapt to the data density which is useful for
communities with skewed data sets. They split densely populated
areas more often, resulting in approximately even data distribution
across all leaves. In previous work [22], we describe the evaluation
of quadtree-based partitioning schemes using our training frame-
work in more detail.

As most of the prevalent P2P infrastructures such as Chord [25]
and Pastry [17] use a one-dimensional key space, we use a space
filling curve to linearize the partitions of the partitioning scheme,
e.g., Z-Order [15, 13] or Hilbert curve [10]. We assign region ids
to the partitions with the Z-Order space filling curve, as it is easy to
compute and corresponds naturally to a depth-first ordering of the
quadtree leaves. Furthermore, the mapping process benefits from
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the preservation of the spatial locality between neighboring parti-
tions by the space filling curve. Once a HiSbase network is set up,
every HiSbase node accepts queries and routes them to the rele-
vant regions. These regions are identified via the histogram data
structure. The key-based routing mechanism of the underlying P2P
infrastructure identifies the responsible nodes and only those nodes
cooperatively contribute to the query result and merge intermediate
results if necessary. Previous work [20, 21] provides additional ma-
terial on the query processing and data distribution within HiSbase.

2.2 Load Balancing Techniques

Query load balancing is a challenging task in distributed query
processing. When dealing with popular (“hot”) data, two strate-
gies are generally applied in order to reduce the heat at the node
predominantly responsible for the data:

Splitting (Partitioning) By further dividing the partition, parts of
the query load can be moved to a different region. If that
region? is covered by another node, load is balanced be-
tween these nodes. If hot areas are distributed among multi-
ple nodes, good load balancing is achieved.

Replication Sometimes migration is not possible (e. g., one single
data object is “hot”) or desirable (e.g., the query process-
ing would result in more communication overhead). In such
cases, load balancing only is achieved by making multiple
copies of the hot region at several locations. If all replicas
participate equally during query processing, our design again
achieves good load balancing.

Figure 2 shows the increased flexibility of load balancing tech-
niques that apply both partitioning and replication. Initially, par-
titioning succeeds in dividing the two hot spot areas denoted by
several gray query rectangles. The second partitioning step in Fig-
ure 2(i), however, would introduce additional communication over-
head. In such situations, we can mitigate query hot spots better by
replicating the original data area. Thus, multiple copies are avail-
able during query processing (Figure 2(ii)).

For deciding whether we gain more from replicating a region
instead of splitting it, the following information is considered in
our heuristics:

amount of data we still prefer to split those regions first that con-
tain a considerable amount of data due to the importance of
data load balancing,

number of queries regions with many queries should be handled
before those regions whose workload is considerably low for
query load balancing reasons,

In the following, we use the terms regions and data partitions
interchangeably.



Figure 3: Impact of skew on the height of the leaves.
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Figure 4: Impact of splitting a leaf on its ratio to a query area.

extent of regions and queries in order to balance query load, we
rather replicate regions whose workload predominantly con-
sists of queries having a large extent, i.e., they cover a large
area compared to the area of the region itself.

Figure 3 depicts the basic idea, why it is important to incorpo-
rate the relationship between the extents of regions and queries in
a replication-aware weighting scheme. If all data and queries were
uniformly distributed, a quadtree-based partitioning scheme with
n regions has a maximum height of log,. n in the general case and
log, n for our running example. If either data or queries are skewed,
the regions with less “load” are leaves with height 4 < log, n (with
a larger area) and those in a hot spot area have i > log4n (with a

smaller area). A query area which covers about 11—6 of a region, will

cover % on the next level and eventually will have the same size as

a region after another split, as shown in Figure 4. Thus, the query
is very likely to span multiple regions and to produce additional
communication overhead.

In order to take the aspects just described into account, a weight
function needs to adhere to the following heuristics. The weight
function distinguishes regions with many data points from regions
with only a few data points. Similarly, it regards workloads with
many and few queries separately and moreover pays attention to
whether queries cover a small or a big area of the region.

If a region contains little data and only a few queries, it should
neither be split nor replicated as it does not contribute significantly
to the overall load of the system.

In case of regions that contain little data which is interesting to

many queries, we replicate those regions that have many big queries.

These data partitions can be replicated at several nodes and then all
replica are available for query processing. Partitions with many
small queries are further split, as the resulting partitions possibly
will fall into the category with few data points and few queries.
If a partition contains many data points but is only relevant to few
queries, we prefer to split the partition. The performance of the
small queries might increase as they run on smaller data sets which
will even out the additional communication overhead for the big
queries for the overall performance.
The crucial class for the weighting scheme is the forth category of
regions which contain much data as well as many queries. This
category requires a good choice between splitting a region if small
queries mainly constitute the workload and replicating the region if
the ratio of big queries is higher.

Table 1 summarizes the options to either split or replicate regions
based on their associated number of data points and queries.

After having described the intuition about our criteria for query
load balancing, we now present our approach to creating workload-
aware data partitionings using weight functions.
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Data Points  Few Queries Many Queries
Small Big Small Big
Few - SPLIT REPLICATE
Many SPLIT SPLIT REPLICATE

Table 1: Categorization of regions for the replication-aware
weight function

3. REGION WEIGHT FUNCTIONS

In the following, we define a set of three weight functions for
points, queries, and regions. This enables communities to create
partitioning schemes for their data grids with a higher flexibility.

During the course of discussion, we will use several variables
for points, queries, and regions which we will define in this para-
graph. During the creation of our partitioning scheme, dubbed the
training phase, we use a representative training data set P and a
training workload Q. The variable p denotes a data point from P
and q is a query from Q. Note that scientific data sets often com-
prise many dimensions. For simplicity and ease of presentation,
we only consider the projection to the most predominant attributes
from the query patterns (such as the two celestial coordinates in our
astrophysics example) during the training phase. When distributing
the data partitions, the complete data is distributed.

The hyperrectangle A, describes the boundaries of query ¢ within
the data space of the partitioning scheme. Likewise, we define the
area A, covered by the region r. These areas are important building
blocks for our weight functions.

We consider data points as relevant for query q if they reside
within A;. We further denote the queries for which p is relevant as
Qp and define P, as the set of points which are relevant for query g.

Oy = {q€Q|pcAy} )
P, = {peP|pcAy} 2

The set P, of data points within a region r and the set Q, of queries
which intersect region r is defined in a similar fashion.

{peP|peA}
(g€ 0| A,NA, # 0}

P,
o

3.1 Point Weight

If a partitioning scheme is targeted at balancing data skew, the
weight of a data point is relevant. Data skew can originate from
data spaces with a mix of densely and sparsely populated regions.
The differences in data density may arise from the original data dis-
tribution or from the fact that some regions have been investigated
more extensively than others, i. e., more data has been collected and
is available.

In general, we can define the weight w(p) of a point p as a func-
tion of its default weight o and the queries Q) it is relevant for:

o+ f(Qp) &)

When weighting data points, each point has a default weight o,
e.g., 0 = 1. Now we also want to consider queries for which a point
p is relevant. For example, if a point is relevant for 10 queries, it
will have an additional weight of 10. Note that if we set default
weight o = 0, only data points which are relevant to any query are
considered during the training phase.

3
C)

w(p) =

Example 1: Cardinality Function. 1In the introductory ex-
ample from above, we used the function f: Q) — |Qp|. Itis a
reasonable candidate function: easy to understand, strictly mono-
tonically increasing, and easy to compute.



Points | Queries | Regions | Example | Load Balancing
1 - h(P;) W, data
- 1 i(Or) Wy queries

f(Qp) - h(P) wo, data and queries
- g(Py) i(0Qr) we, data and queries
1 1 h(P)-i(Qr) Wpg data and queries

Table 2: Overview of region weight functions in Section 3.3

Example 2: Scaled Weight Function for Point Data.
The extent of the actual query hot spot(s) is unknown during the
training phase. While we can locate the positions of query hot spots
with our representative training workload Q, we can only approx-
imate the extent of the area of the data space that will be subject
to high query workload. Situations where only a limited number
of queries is available during training make such estimates more
difficult. As a consequence, we try to approximate the actual hot
spots by increasing the query area A, for all queries ¢ by a scaling
factor ¢ > 1 in every dimension. We denote this area as A, ¢ in the
following.> Also, we introduce a new parameter A in the weight
function of data points in order to scale the importance of Q) in
relation to the default weight . Thus, Equation 5 is extended to:

o+ A-H{geQlpcAypyl (6

Tuning the parameters ¢ and A for wy,eq can be quite difficult.
Choosing the wrong scaling factor can yield counterproductive par-
titioning schemes, which was confirmed by our experimental re-
sults (Section 4.1).

3.2 Query Weight

The weight for queries is defined in a similar fashion. We assign
a default weight 7y to each query, which represents the default pro-
cessing cost for any query. Depending on the set F;, we add an ad-
ditional query weight g(P;). In the following, we use g(F;) = |P,]|.

wig) = v+ )
3.3 Combining Data and Query Weights

The weight functions for data points (Equations 5 and 6) and
queries (Equation 7) constitute the basic building blocks for defin-
ing the weight of a region. Based on the weight of the individ-
ual partitions, we always split the partition with the highest weight
next. The weight of a region r depends on the data points P, it
contains and the queries Q, which intersect with its area.

h(Pr) @ i(Qr), ®

For the rest of the paper, we will only discuss the multiplication of
both weights (- is used for ®).

Composing the weight functions for points and queries to the
weight of a region will result in partitioning schemes that are opti-
mized for various load balancing goals. Depending on the combi-
nation, a partitioning scheme can achieve load balancing for data,
for queries, or for both. In Table 2, we summarize five general
patterns of how the weight functions of points and queries are com-
bined for the weight of a region. We associate the examples dis-
cussed in the following with their corresponding pattern and state
their load balancing capabilities.

Weight functions for the first two approaches consider either
only the data points or only the queries for computing the weight of
aregion. The first (w) just counts the data points within a region,
the second (w,) only considers the number of queries intersecting
with each partition.

Wscaled, A, ([7) =

w(r) = where ® € {+,}

3Equation 1 and 2 are still valid, as Ag1 =Aq.
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All remaining three alternatives consider both data and queries
for weighting the regions. In the third and fourth approach (wg,
and wp, ), the weight of a data region only depends on one of the
building blocks—either points or queries—however the weight of
the chosen building block is influenced by the other, e. g., we weight
each data point according to its relevance for queries. The last
weight function w, computes the heat of a region by multiplying
the number of objects within a region and the number of queries
intersecting the region. This weight function implicitly scales all
queries until they cover the entire area of the region(s) they inter-
sect and assigns more weight to regions that contain lots of data
and receive many queries. Thus, this weight function provides a
notion of the overall load based both on data and on queries. If the
region contains no data, its weight is 0 and therefore it is unlikely
to be split. If regions receive no queries, we prefer to split those
regions that contain more data. We therefore use (|Q,|+ 1) in case
of queries. Thus, if a region receives no queries, it still has the same
weight as when using w .

After we have introduced the five weight functions intuitively,
the Equations 9-13 give their formal definition.

wp(r) = [P )

we(r) = Q] (10)

wo,(r) = Y w(p) (11)
peP,

wp,(r) = ) wiq) (12)
q€0;

qu(”) = |P]-(|0r]+1) (13)

The relevance of data points for a particular query ¢ can also be
described using the indicator function 14, : P — {0, 1}:

_ 0 ifpgAy,
La,(p) = {1 ifpeA,.

Equation 15 shows that wo, and wp, define the same weight
function if we set the default weights to 6 = ¥ = 0 in Equations 5
and 7 and f(Q)) = |Qp| and g(P;) = |P,|, respectively. Intuitively,
counting points weighted by the queries they are relevant for is
equivalent to counting queries weighted by the points that are rele-
vant for them.

wo, (=Y wip)=Y Y 14(p)= Y w(g) =wel(r)

pep; PEP €0, q€0r
(15)

For the sake of simplicity and the discussion in this paper we use
the weight-factors o, 7, ¢, and A as constants. Other scenarios,
where o, for example, is a function that returns the average size of
a data point p depending on the catalog it originates from, show
promising results but are beyond the scope of this paper.

3.4 Adding Query Extents

The pure heat-based weight function w,, captivates with its sim-
plicity. However, if there is a small hot-spot area, heat-based par-
titioning may split that area multiple times as it tries to reduce the
query load imbalance. This can lead to communication-thrashing,
i.e., too much communication between nodes covering neighbor-
ing partitions is necessary to retrieve the complete result.

For example in our two-dimensional quadtree-based partitioning
schemes for astrophysics data, a query area A, containing the cen-
troid of the region area A,, would be split into four subqueries. In
the worst case, four different nodes are responsible for these re-
gions. This would result in four-times overhead, as intermediate
results need to be transmitted and the query uses CPU resources on

14)



four nodes. Under such circumstances, we prefer to keep the region
as a whole and rather replicate it with our master-slave approach as
described in Section 3.6.

Our replication-aware weight function w,  incorporates the ex-
tents of queries and regions by classifying the queries according
to the fraction of the area A4 of query ¢ and the area A, of region
r. Thus, weight function w4 realizes the behavior from Table 1
in Section 2.2. For 0 < o0 < 8 < 1, the sets of small (big) queries

Qsmall (foig ) are defined in Equations 16 and 17, respectively.

{acor |
= {qur |

Based on the classification for Q,, we define the splitting gain
for region r, gaing(r), as the number of small queries in r (Equa-
tion 18). Analogously, we define gain.(r), the replication gain
for region r with the number of big queries intersecting r (Equa-
tion 19). For the same reason as in w,;, we add one to both cardi-
nalities to deal with regions that receive no queries or whose query
sets Q™! or QP8 are empty.

gaing () = Q" + 1
gain,(r) = |02 + 1

The replication-aware cost function w4, compares gaing(r) and
gain,(r) to determine whether a region should be split or not. As
long as splitting a region is considered beneficial, only the value
of gaing(r) is used. As soon as the “big” queries outnumber the
“small” queries, we reduce the weight of a region considerably, by
multiplying the size of |P,| with the fraction of the small queries
and big queries. In some application domains it might be desir-
able to additionally specify the preference 7 for either splitting or
replication. This is formalized by Equation 20.

11
gl — Ag< oA}

Ay >B-A}

16)

v (17

18
19

gaing(r)
Pl ain, (r)
WAq,a-,B,r(’) = gainy

|Py| - gaing(r) , otherwise .

,if T- gaing(r) < gain, (r),

(20)
The values for @ and 3 strongly depend on workload characteris-
tics of the application domain, as we realized during our evaluation.
At first thought, values like @ = %, B= % ora = ﬁ, B= % seem
reasonable. Remarkably, those combinations have a fairly large
“blind angle”, i. e., they ignore queries which have area extents be-
tween both thresholds. Especially, the decision in favor of splitting
a region is sensitive to this gap. After having made the decision to
split a region, those “hidden” queries will probably intersect mul-
tiple regions causing high overhead. Thus, we suggest to use the
same values for ¢ and .

3.5 Cost Analysis

The complexity of the weight functions described in the previous
sections strongly depends on the choice of functions f, g, i, and i
as well as on the data structures used for storing the training set P
and the training workload Q. A naive approach iterating over all
queries in the workload in order to acquire the weight for all data
points would lead to an overall complexity of O(|P|-|Q|).

The complexity and overhead of maintaining the data points and
queries as well as the complexity of performing the weighting can
be reduced via appropriate data structures. We use hierarchical,
tree-like data structures, e.g., quadtrees [8, 18] for creating our
partitioning schemes and for storing data points and queries. The
leaves of the quadtree correspond to the individual regions. Trees
offer a good pruning capability, i. e., one can decide quickly whether
a point or a query is relevant. We store both, queries and points, in
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the same index structure. This allows us to reduce both, the number
of data points and queries which need to be considered for comput-
ing the weight of a region.

We decided to redundantly store queries which span multiple re-
gions at the leaf-level, i. e., at every region, instead of storing them
at inner nodes of the tree, e.g., the nodes that fully contain the
bounding box of the hyperrectangle. This further simplifies com-
puting Q) and Q, because we do not inspect query sets at inner
nodes on the path from the root to the leaf-level.* For comput-
ing weight functions such as wg or wp,, containment queries are
necessary to decide which query areas contain a data point. These
queries can become quite complex, especially if large query work-
loads are used. Computing the heat of a region by using the weight
function w,,(r), however, is compellingly simple. We only need
to multiply the sizes of the two sets P, and Q, in order to compute
the weight of a region and avoid the cost for comparing each data
point of P. with each query in Q,. These adaptions further reduce
the complexity to compute the weight of a region to O(|P| + |Q|).
Only when a region is split, we need to reorganize the sets P- and
Q,. To summarize, by using a hierarchical data structure for creat-
ing the data partitions, we integrate most of the weighting cost into
the tree maintenance and only need two lookups in order to com-
pute Wpg. For the replication-aware weight function wy, , we also
use the maintenance methods of the tree. When splitting a region,
its queries are immediately classified for the newly created leaves
into the corresponding sets Q! and Q”*8 by at most two compar-
isons. Thus, only two additional counters for storing the values of
gain (r) and gain, (r) are necessary.

3.6 Replication during Runtime

In this section we have provided several weight functions for
the partitioning process of data which combine weight functions
for data points and queries to weight functions for regions. Starting
from pure data-based weight functions, we proposed several weight
functions that additionally take the workload into account.

During runtime, nodes within the HiSbase network need to de-
cide which of their regions need replication. During the training
process, we can identify those replication candidates. The regions
r whose gain,(r) is higher than gaing(r), are perfect candidates for
replication and can be annotated as such. Nodes then can explicitly
prefer those regions for replication.

In order to support overloaded nodes during runtime with addi-
tional resources, HiSbase builds a master-slave hierarchy. Lightly
loaded nodes, i. e., nodes having less data or less queries to process,
offer some of their capacity as slaves to overloaded peers. Master
nodes then send some of their /0t data subsets to such slave-nodes.
During query processing all replica are available for query load-
balancing purposes. Please note that the master-slave relationship
is defined with regard to a single region. Thus, a node can be master
for one its own regions as well as slave for other regions in parallel.

Due to space limitations, we cannot discuss design alternatives
such as stopping the partitioning process if every leaf should be
replicated, or the complete process of selecting replica.

4. EVALUATION

In the following, we will present our analysis of the various
workload-aware partitioning schemes introduced in the previous
section. Two aspects were important for our evaluation settings:
the analytical properties of the partitioning schemes and their im-
pact on the overall throughput in a real deployment. In our opinion,

4This is basically the same trade-off as between MX-CIF and ex-
tended MX-CIF quadtrees [19].



Parameter Value Description

P Ppss Prit Data Sets used for
training sample extraction.

(0] Qobs> Omil Workloads used for
workload-aware training.

s 0.1%, 1%, 10% | Size of the training set (of P).

n 42 43 4% 45, Size of the partitioning

46 47 48 49 schemes.

Table 3: General parameters for the evaluation setup.
Weight Function ‘ Parameter and Value
WQI" Wscaled‘l,(f} l = 00], (P = 10,20.40, 80 (fOl‘ Pobs)
A =1, ¢ =10,50,100,200,400 (for P,,;)
o = 1 (both data sets)
a, /31 € {7056 (& o.?ooz), 55 (2 0.004),
16(=0.0625), 7(=0.25)}, 1 =1

WA

Table 4: Weight function specific parameters.

complementing results obtained from statistical analysis or simula-
tions with experiments of a actually deployed system is fundamen-
tal for assessing distributed architectures.

4.1 Partitioning Scheme Properties

In order to evaluate the analytical properties of the partitioning
schemes created with the data-based (w ), heat-based (wq), and
extent-based (W4,,) weight functions outlined in this paper, we con-
ducted several experiments. We give a detailed description of the
parameters, data sets, and query workloads used during our eval-
vation. We present and discuss results with respect to our goal of
achieving a workload-aware data partitioning.

For the evaluation, we implemented a Java-based prototype which
created partitioning schemes according to our weight functions,
based on a training data sample P and a representative query work-
load Q. First, we evaluated the performance of our technique on
data samples from three astrophysical catalogs using a query trace
from the SDSS catalog. Afterwards, we assessed the effect of our
workload-aware training on a data sample from astrophysical sim-
ulations using a synthetic workload. This gave valuable additional
information, as the simulation data is quite uniformly distributed
and so the impact of some parameters was visible more clearly.

We constructed quadtree-based partitioning schemes using the
standard splitting strategy as well as the median-based heuristics
from [22]. Here, we only discuss results with standard quadtrees.
For each approach, we varied the number of partitions to be all
powers of four between 16 (4%) and 262 144 (4°) as these can be
generated exactly by quadtrees.

For both data sets used during the evaluation, we drew several
training samples of different sizes (0.1%, 1%, and 10%) to bench-
mark the quality of results produced from small data sets. We ex-
tracted the random samples with functionality provided by rela-
tional database systems. We report on the results obtained from
quadtree-based partitioning schemes using the standard splitting
strategy based on the 0.1% and 1% samples, each containing about
150000 and 1500000 data points, respectively. Table 3 summa-
rizes the general parameters used during the evaluation.

From the weight functions defined in Section 3, we used the uni-
form point (data-based) weight function w), as a baseline for our
comparisons, and the guery-based point weight function wg, with
various values for the default weight o, the importance A of Op,
and the scaling factor ¢. Furthermore, we used the heat-based
weight function wp, and the query extent-based weight function
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Figure 5: The observational data and workload.

wy, with T =1 and with varying o and B thresholds. Table 4 gives
a summary of the used weight function parameters.

4.1.1 Results from the Observational Data Set

The first data set P, (see Figure 5(i)) are 137 million objects
drawn from subsets of the ROSAT (25 million objects), SDSS (84
million objects), and TWOMASS (28 million objects) catalogs. We
clearly see that the data sets exhibit a high data skew.

For the observational data set P, the corresponding query set
Q,ps Was constructed from real queries issued to the web interface’
of the SDSS catalog in August 2006. Because the queries used ra-
dial searches, the query areas were mapped to square areas with the
same midpoint and an edge length corresponding to the diameter
of the circular search area. Queries with the default search parame-
ters for the web interface were removed from the query set, as this
particular query alone made up 12% of the entire query log. The
remaining 1100000 queries were used during our evaluation. In
Figure 5(ii), we clearly see that the workload is non-uniform and
exhibits many query hot spots.

Parameters for Extent-based Partitioning Schemes. The
values for the parameters of w4, are motivated by the observation in
Section 2.2 that the fraction between a query and a region increases
four-fold with every split. Analyzing the workload Q,,,, we found
that the median of the used search radii in Q4 is at 0.2 arc minutes
and 75% of the queries have a radius smaller than 0.4 arc minutes.
This is extremely small, as queries with an 0.2 arc minutes radius
cover only # of the whole sky. If the queries are at such a small
scale, we need to adapt 8 accordingly. For example, our smallest
value of 3, 0.0002, corresponds to 41—(, and classifies those queries as
big that will increase the network load with high probability, when
their region is split an additional six times.

Shttp://cas.sdss.org/astrodr6/en/tools/search/
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16 384 regions.

Spatial Locality and Small Partitioning Schemes. Dur-
ing the course of our evaluation, we made several observations.
First of all, the example workload Qs from the SDSS archive,
shows the expected high spatial locality, as can be seen from Fig-
ure 6. With all tested partitioning schemes, for less than 10% of the
queries multiple partitions contain relevant information. Commu-
nities with such workload characteristics greatly benefit from the
high degree of parallelism within the system. For up to 1024 his-
togram regions, the number of one-region queries is identical and
the partitioning schemes only have minor differences. Therefore,
partitioning data—even with a partitioning scheme which is only
based on the data—can migrate load to different partitions which
work in parallel. For uniform query loads and communities at the
very beginning of building their grid infrastructure, data-based par-
titioning is completely sufficient.

Adaption to Query Workloads. When we compare the par-
titioning schemes of P, in Figure 7 with the original data and
query set from Figure 5, we can observe the similarity between the
data distribution and the data-based weight function w;, and also
the heat-based partitioning w, and the query load Q. Thus, we
can see that our weight functions are able to create workload-aware
data partitionings.

Load Balancing Capabilities. Figure 8 shows that the heat-

based weight function w , distributes the overall load significantly

better across multiple nodes for quadtree-based partitioning schemes
on the observational data set using the SDSS workload than the

weight function w, which focuses on data load only. We quan-

titatively evaluated the total query load by calculating the sum of

the individual query loads for each region, and the uniformness of

the load distribution using the Gini coefficient as in [16]. The Gini

coefficient is defined as the area between the Lorenz curve for the

distribution and the diagonal.
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Figure 9: Comparison of the percentage of regions that receive
no queries from Q.

While w;, only achieves a Gini coefficient of 0.79, w,, has a
coefficient of 0.53, which is considered a fair load distribution in
distributed systems [16]. The partitioning scheme of Wa4,.0.25,0.25
achieves the same load distribution and w4, 0.004,0.0625 differs only
marginally from the heat-based partitioning. With 0.67, the Gini
coefficient of w4, 0.0002,0.0002 lies between wp and w,.

In the w), approach for data load balancing, 20% of the regions
receive 83% of the overall system load. For our workload-aware
technique w,;, these 20% handle less than 60% of the overall load.
When using the extent-based wa_ 0.0002,0.0002, 20% of the regions
process 68% of the load, as the weight function recognizes some
candidate regions for replication. Thus, the query load is less bal-
anced as in the wj, partitioning scheme. We will see in the fol-
lowing that with regards to other characteristics the extent-based
approach is preferable to the heat-based technique.

Regions without Queries. When analyzing the weight func-
tions with regard to regions that do not take part in query process-
ing, the less such regions, the better the weight function distributes
the load to several partitions. w, always achieves the best result.
Up to 65 536 regions, both w;,; and wy4, are at a comparable level
and between 15% and 50% better than pure data load balancing.

In Figure 9, wp, always has the lowest number of regions with-
out queries. The following analysis, however, shows that w, is
too eager in splitting regions further and further and therefore in-
troduces significant communication overhead.

Reduced Traffic by Workload-Awareness. In order to in-
vestigate the communication overhead, we compared our partition-
ing schemes to a scheme where every query could be answered by
a single region. All regions that need to be contacted additionally,
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Figure 10: Communication overhead for partitioning schemes
of P,,; in comparison to a centralized setting.

increase the communication overhead of the specific weight func-
tion. Based on our observation that typical workloads exhibit a high
degree of spatial locality, we prefer queries that intersect a single
region which is guaranteed to be mapped to one peer. Formally, we
compute the communication overhead as

Yoeol{reR|A4NA, # 0} |

(e
Figure 10 shows the relative traffic overhead for wj, w4, and
some variations of wy . We clearly see that wy, produces lower

traffic than w,. Moreover, with a reasonable choice of a and B,
W, produces not more traffic than w),.

@n

4.1.2  Results from the Millennium Data Set

Finally, we shortly discuss how the different weight functions
performed on the Millennium data set P,,;; with the query workload
Oumit- Pnir (Figure 11(i)) comprises about 160 million objects from
the Millennium simulation [24] which are distributed on the area
[—45°,45°] x [—45°,45°].

The query areas for Q,,; were artificially generated with their
midpoints (py, py) following a two-dimensional Gaussian distribu-
tion with mean (0,0) and variance chosen in such a way that 90%
of the midpoints fall into the square area in the center taking 10%
of the space. The actual query areas were then constructed around
the midpoints from (py —r, py —r) to (px +r, py+r) with the query
“radius” r chosen randomly from {0.025, 0.1, 0.2, 0.25, 0.5} arc
minutes, which correspond to the 5 most frequent query radii from
the query workload Q,ps, introduced above. In this way, 11000
queries were generated for training and testing the resulting parti-
tioning schemes.

In Figure 11, some of the partitioning schemes of B,,;; with 1024
partitions are shown. Each region is colored with its heat-based
weight (the w,-value) on a scale from cold (white) to hot (red),
which is normalized over the compared partitioning schemes. The
wp-partitioning scheme, in Figure 11(ii), is a completely balanced
quadtree with 1024 same-sized partitions as the data distribution
is almost uniform. The hot spot in the center of the data space
is also clearly visible as the query load is not considered. Fig-
ure 11(iii) shows how wg  splits the hot regions first and the par-
titioning scheme adapts to the hot spot. As the number of regions
is fixed, regions at the border of the data space are not split further
and now contain more data. From Figure 11(iv) it becomes obvi-
ous why: regions at the border of the hot spot contain 16-times the
data than in the w), partitioning but also receive many queries and
thus their load will be too high. Finally, we see in Figure 11(v) that
the heat-based weighting scheme w,, approximates the extent of
the hot spot very good but does not lose sight of data load balanc-

ing. Actually, the extent-based weight function wy, produced the
same partitioning scheme. Note the four different sizes of regions
in our workload-aware partitionings: regions are 16-times smaller
(in the very center of the hot spot), 4-times smaller, unchanged, and
4-times larger (the cold regions at the border of the data space) than
the regions of the w), partitioning scheme.

4.2 Throughput Evaluation

The previous analysis of the histograms was based on the train-
ing data and both the training and testing query sets. The following
throughput measurements are conducted on a distributed or simu-
lated HiSbase instances. We intentionally do not use the master-
slave approach during runtime as described in Section 3.6 for repli-
cation in order to emphasize the throughput variations purely based
on the choice of the weight function.

As in previous evaluations [20], we measure throughput for vary-
ing multi-programming levels (MPLs), i.e., a varying number of
parallel queries in the system, to evaluate to what extent the use of
our workload-aware histogram data structures improve the system
throughput. Each run has k peers, a batch containing / queries, and
an MPL m. MPL=m denotes that each peer keeps m parallel queries
in the system. At the start of a run, each peer immediately submits
m queries. We measure timestamps s, 4 and r, ; when peer p has
submitted its g-th query and has received the results, respectively.
After receiving an answer, peers submit their next query in order to
sustain the multi-programming level.

For measuring the throughput 7', we only consider queries pro-
cessed during the saturation phase Iy . gy 1s the time span when
every peer has issued MPL=m parallel queries, i. e., the time inter-
val between the point in time when the last peer has submitted its
m-th query and the first peer has submitted its last query, which is
expressed formally as:

Ly = i 22
sat 1?§§k(sp,m)vlrgnplgk(sp,l) (22)

The throughput T is based on the number of successfully pro-
cessed queries during the saturation phase 4:

N lrpg€la, 1 <p<kl<q<lj

Isat

T (23)

During the throughput evaluation, we used partitioning schemes
created with the data-based (W), heat-based w p, and extent-based
Wa,,0.0002,0.0002 Weight functions, respectively. The size of the
histogram—4 096 for real and 262 144 for simulated networks—
is chosen to be large enough to ensure that all peers are responsible
for data partitions. The results shown are the averages built over
three evaluation runs in both (the real and simulated) cases.

Each single HiSbase node was configured to allow ten parallel
queries on its local database, as suggested in [20]. The following
evaluation shows that especially higher multi-programming levels
for the HiSbase nodes increase the overall throughput; we report on
MPLs selected from {10, 50, 100, 300, 500}.

4.2.1 Results from the Observational Workload

For our throughput experiments, we chose a subset Q,,,,; of about
22000 queries from the query trace Q.. We selected queries
which were among the top 20% fasted queries when executed on a
single DB2 database containing all data. Those queries—with run-
ning times between 1 and 4 ms—would be penalized most severely
from being submitted to a queuing system. Each node randomly
selected 5 000 queries from Q,,,; for its query batch.

Our 16 computer lab nodes are from consumer-class Linux PCs
equipped with 1.6 GHz processors, 512 MB RAM and running DB2
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Figure 12: Throughput of deployments with 16 and 32 nodes

V9.1.4. For the measurements with 32 nodes, we additionally used
16 nodes from our local AstroGrid-D resources having between 1
and 4 GB main memory and 2.8 GHz Intel Xeon CPUs. We used
the H2 database® for performing the local query processing. Af-
ter assigning each node a random identifier, we distributed the data
according to the partitioning scheme.

Figure 12 shows the throughput achieved by a HiSbase network
using a partitioning scheme with 4096 partitions which are dis-
tributed among 16 and 32 nodes, respectively. For 16 peers, we
see that the w), partitioning scheme achieves surprisingly the high-
est throughput, while for the setup with 32 nodes, the extent-based
technique wy outperforms both w), and wpg. Due to several query
hot spots in Q,,,;, only a fraction of the additional nodes can sig-
nificantly participate during query processing. While w,_ increases
the throughput in a near-linear fashion, the gain of w),, and w, is
only sub-linear.

We have successfully demonstrated HiSbase [21] on PlanetLab
and we see great value of PlanetLab for evaluating the algorithmic
properties (like messaging overhead) of distributed architectures in
volatile environments. However, our initial throughput measure-
ments on 100 PlanetLab nodes showed that the PlanetLab frame-
work is not suitable for performing throughput evaluations of data-
intensive grid applications. Issues like bandwidth-limited links and
limited main memory access (below 160 MB) do not reflect the an-
ticipated infrastructure for community grids. We therefore aban-
doned using PlanetLab and evaluated the throughput trend of larger
deployments with FreePastry’s discrete-event simulator instead.

During our simulations, we evaluated three different partitioning
schemes (Wp, Wpq, wa,) with 262 144 partitions using the MPLs
from above on HiSbase networks with 100, 300, and 1 000 nodes,
respectively.” Database accesses were simulated by returning the
result set after a delay which corresponded to the time obtained

Shttp://h2database.com
7We did not measure the throughput of 1 000 nodes with MPL=500
as current e-science scenarios not yet require such high parallelism.
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during the selection process for the Q,,,; queries. The simulation
engine does not model running time improvements due to caching
effects or smaller databases at each nodes. Likewise, we assumed
that parallel running queries do not interfere and the measured run-
ning time is also valid for ten parallel queries. Runs with the same
setups like in the distributed scenarios with 16 and 32 nodes verified
that the results of the simulator are realistic. The ratios between the
simulated measurements and the real results were at a reasonable
level between 1.07 and 2.25.

The results from the simulations showed a similar trend as in
the real deployments. With all tested partitioning strategies, the
extreme query hot spots diminished the load balancing effect of
adding new nodes. Figure 13 depicts that workload-aware parti-
tioning schemes perform better for high MPL levels (MPL=300 and
MPL=500) and large networks with 300 and 1 000 nodes than the
pure data-load approach.

4.2.2  Results from the Region-Uniform Workload

Analyzing query workload Q,,,; for the partitioning schemes
with 262 144 regions revealed that 3% of the regions receive any
query (as opposed to the 27% in Figure 9 based on the complete
query trace Q,p,). In order to evaluate the scalability under a uni-
form query workload, we generated workloads where 92% of the
regions intersect with queries. The 600 000 generated queries were
uniformly distributed among the regions and the query areas were
constructed in a similar fashion as for the millenium data set (see
Section 4.1.2). According to a uniform distribution, we picked a
region identifier and a center point for the query area within that re-
gion. As all histograms achieved similiar results, Figure 14 depicts
only how the extent-based histogram balances the query load uni-
formly in a near-linear and even super-linear throughput (stressed
by the trend line for MPL=300), especially when comparing the
300-nodes and 1000-nodes networks.

4.3 Summary

In summary, the evaluation corrobates that query hot spots are
an important issue in scientific data management. The analyti-
cal evaluation showed that our partitioning techniques adapt to the
query workload and that our extent-based technique (w4, ) has the
same message overhead as a data-based distribution while also of-
fering query load balancing. The throughput experiments showed
that the extent-based partitioning is best in taking advantage of ad-
ditional nodes, especially for highly parallel workloads. For all
partitioning schemes, throughput significantly improves when all
nodes participate during query processing. In the presence of query
skew, however, this can only achieved by replication during run-
time. Therefore, employing load balancing during runtime with
techniques such as a master-slave approach and replicating “hot”
data based on monitoring statistics are the next important steps to-
wards fully workload-aware community-driven data grids.
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Figure 13: Throughput on the observational query workload with simulated net-

works with 300 (left) and 1 000 (right) nodes
5. RELATED WORK

Federated data grids and many of the various design options
for data grids are summarized by a recent survey [27]. They are
discussed with regards to organizational structure, data transport,
data replication, and scheduling by defining a comprehensive tax-
onomy for data grids and mapping existing data grids to that topol-
ogy. Throughout this paper, we enhanced the data-driven parti-
tioning techniques for community-driven data grids [20] to a cost-
based model and described partitioning techniques, which allow
data load balancing and are aware of query hot spots. Many data
sets of publicly funded projects become (and remain) available to
the public after a period of grace of one year and can be accessed
by the community. Community-driven data grids have a main fo-
cus on this multitude of data repositories, where institutions are
no longer interested in keeping them “private” and do not enforce
data autonomy but cooperatively share data with colleagues. Previ-
ous work [22] has described a framework for comparing different
partitioning techniques and discussed several measures for evalu-
ating the partitioning quality with regard to data load balancing.
It also discusses two quadtree-based partitioning schemes, without
and with a median-based heuristic, which have been extended to
support our weight functions and have been used in our evaluation
experiments. Our work is reminiscent of the achievements in the
context of parallel databases (e.g., [1, 5]) which addressed many
similar issues yet in a far more stable and homogeneous setting.

Several other interesting proposals for accessing and correlating
scientific data sets have been proposed in the literature. GIME [29],
for example, takes a different approach to geotechnical informa-
tion management in federated data grids. While preserving the
data autonomy of the participating institutions, the system uses
a replicated index (based on quadtrees or R-trees) for managing
the bounding boxes of participating archives. Thus, it reduces the
number of messages by submitting the query only to those archives
whose minimum bounding box actually intersects the query area.
The system does not address data load balancing or query load bal-
ancing issues. Load imbalance can arise for data archives covering
a large area. These archives have to process more queries than
small archives and several data sets cannot be combined directly
on-site. Having a similar goal, i.e., reducing the network traf-
fic generated by correlating distributed data sources, the authors
of [28] describe various techniques for finding optimal join orders
within scientific data federations.

The fact that workloads on astrophysical data sets are mostly spa-
tial queries (selections on the celestial coordinates or corresponding
stored procedures) and that these workloads exhibit a high query
skew is supported by an extensive analysis of the traffic for the
SDSS SkyServer [23] and an experience report on migrating the
SkyServer on MonetDB [11]. The query load used on our skewed
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Figure 14: Throughput for the region-
uniform query workload

data set is the same as used by the latter.

In the following, we discuss related work [9, 4, 16] investigating
techniques of load balancing for P2P networks. The major differ-
ence to these techniques compared to our solution is that load bal-
ancing in P2P networks is designed for networks with highly dy-
namic data and mostly deals with either skewed data distributions
or skewed query load, but not both. The flexibility needed in such a
fast changing environment comes at the price of dealing with each
data object individually, which can result in prohibitive costs for
disseminating vast amounts of data to multiple nodes. The authors
of [9] show that load balancing schemes for range-partitioned data
in highly dynamic P2P networks either need to adjust the load be-
tween neighbors or need to change peer positions within the range.
HotRod [16] addresses query hot spots on one-dimensional data by
replicating popular data ranges on additional rings but does not deal
with skewed data distributions. P-Ring [4] addresses data skew
in an orthogonal manner in comparison to the partitioning-based
approach, but does not consider query hot spots. While our par-
titioning schemes adapt the regions to data skew and query skew
distributing these across the cooperating peers, P-Ring has the no-
tion of “helper peers” that support peers which are overloaded by
skewed insertions either by data redistribution between neighbors
or by merging their data into a neighbor’s range. In P-Ring it is
required that there are less data partitions than peers. If P-Ring
would be extended in order to support these large data sets by sup-
porting our notion of regions, that requirement would lead to larger
partitions which are not as easily distributed as the regions created
with our workload-aware partitioning schemes. Furthermore, P-
Ring does not perform data replication.

SD-Rtree [6] is a Scalable Distributed Data Structure (SDDS)
which targets large data sets of spatial objects. An SDDS has
the following characteristics: 1) It has no central data index, 2)
servers are dynamically added to the system when needed, and 3)
the clients access the SDSS which is potentially outdated. SD-
Rtrees perform data load-balancing by data partitioning and reor-
ganization similar to AVL trees. The histogram in HiSbase differs
from the SD-Rtree index in that it is used also for query load bal-
ancing and it uses the multi-dimensional index structure to deter-
mine candidates regions for replication.

Related work in sensor networks (e. g., [2, 3]) illuminates aspects
of data distribution and load balancing from a different perspective
where data is created within the network and the predominant goal
is to increase quality of data and reduce the power consumption in
order to increase the lifetime of a sensor network. As these solu-
tions also deal with individual data objects, it is currently unclear
whether they can be directly applied to petabyte-scale data sets of
e-science communities. However, it is an interesting question for
future investigations.



6. ONGOING WORK AND CONCLUSION

Supporting the efforts for building global-scale data manage-
ment solutions within many e-science communities such as biol-
ogy or astrophysics is a challenging task. In this paper, we have
described several weight functions to create cost-based partitioning
schemes for community-driven data grids that address data skew,
query hot spots—each on its own or in combination—and finally, a
weight function that only splits data regions if the gain of doing so
is higher than the gain of replicating that region.

We evaluated our weight functions on a data set from astro-
physical observations and data from an astrophysical simulation
with actual application workloads. For small communities, sur-
prisingly simple partitioning schemes already achieved good load
balancing results. With increasing number of partitions, the extent-
based weight function outperforms the other schemes with regards
to reduced communication overhead and load balancing. Based
on our throughput evaluation, workload-aware partitioning alone is
not sufficient to completely level out query hot spots. As a conse-
quence, we currently incorporate load balancing techniques such as
a master-slave hierarchy in our data grid infrastructure.

Further interesting open research issues are adaption to hetero-
geneous nodes with different capacities or whether the complemen-
tary approach of merging cold regions can be included in our train-
ing phase and how communities can benefit from that. Finally, we
are also looking into different data-intensive applications such as
distributed data-mining in scientific communities.

Given the diversity of goals, resources, and applications among
various scientific communities, it is clear that there is no single best
data management solution. Thus, it is an important as well as an
interesting challenge for the database community to explore pos-
sible alternatives for building scalable data management solutions
for tomorrow’s scientific federations.
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