
MVT: A Schema Mapping Validation Tool
Guillem Rull1,2 Carles Farré2 Ernest Teniente2 Toni Urpí2

Universitat Politècnica de Catalunya
1-3 Jordi Girona, Barcelona 08034, Catalonia, Spain

{grull | farre | teniente | urpi}@lsi.upc.edu

ABSTRACT
Schema mappings define relationships between schemas in a
declarative way. We demonstrate MVT, a mapping validation tool
that allows the designer to ask whether the mapping has certain
desirable properties. The answers to these questions will provide
information on whether the mapping adequately matches the
intended needs and requirements. MVT is able to deal with a
highly expressive class of mappings and database schemas, which
allows the use of negations, order comparisons and null values.
The tool does not only provide a Boolean answer as test result,
but also a feedback for that result. Depending on the tested
property and on the test result, the provided feedback can be in
the form of example schema instances, or in the form of an
explanation, that is, highlighting the mapping assertions and
schema constraints responsible for getting such a result.

1. INTRODUCTION
A schema mapping is a declarative specification that models a
relationship between two schemas. Defining a mapping is a key
task in contexts such as information integration or data exchange.
A lot of research has focused on finding correspondences between
schemas [9], and on generating mapping candidates from these
correspondences [8]. Nevertheless, generating a mapping is a
semi-automatic process, which always requires feedback from a
human designer to solve semantic heterogeneities, choose
between different mapping candidates, and refine the mapping
[3]. The designer thus needs to check whether the mapping
produced is in fact what was intended, that is, he must find a way
to validate the mapping.

Motivated by that, we present MVT, a prototype tool that
implements the mapping validation approach we presented in
[11]. MVT allows the designer to ask whether the mapping has
certain desirable properties. The answers to these questions will
provide information on whether the mapping adequately matches
the intended needs and requirements.

As an example, consider the following database schema S1:
CREATE TABLE Category (
 name char(20) PRIMARY KEY,
 salary real NOT NULL,
 CHECK (salary >= 700), CHECK (salary <= 2000))

CREATE TABLE Employee (
 name char(30) PRIMARY KEY,
 category char(20) NOT NULL,
 address char(50),
 CHECK (category <> 'exec'),
 FOREIGN KEY(category) REFERENCES Category(name))

CREATE TABLE WorksFor (
 emp char(30) PRIMARY KEY,
 boss char(30) NOT NULL,
 CHECK(emp <> boss),
 FOREIGN KEY (emp) REFERENCES Employee(name),
 FOREIGN KEY (boss) REFERENCES Employee(name))

the following database schema S2:
CREATE TABLE Persons (
 id int PRIMARY KEY,
 name char(30) NOT NULL,
 address char(50))

CREATE TABLE Emps (
 empId int PRIMARY KEY,
 salary real NOT NULL,
 boss int,
 CHECK (salary BETWEEN 1000 AND 5000),
 CHECK (empId <> boss),
 FOREIGN KEY (empId) REFERENCES Persons(id),
 FOREIGN KEY (boss) REFERENCES Emps(empId))

and the following mapping assertions between S1 and S2:
 MAPPING ASSERTION m1
(SELECT e.name, c.salary
 FROM employee e, category c
 WHERE e.category = c.name and c.salary >= 10000)
 SUBSET OF
(SELECT p.name, e.salary
 FROM persons p, emps e
 WHERE p.id = e.empId)

 MAPPING ASSERTION m2
(SELECT wf.emp, wf.boss
 FROM worksFor wf, employee e, category c
 WHERE wf.emp = e.name and e.category = c.name
 and c.salary >= 1000)
 SUBSET OF
(SELECT pEmp.name, pBoss.name
 FROM emps e, persons pEmp, persons pBoss
 WHERE e.empId = pEmp.id and e.boss = pBoss.id)

The mapping defined by these two assertions states that the
employees of S1 that have a salary above a certain threshold are a
subset of the emps of S2. Assertion m1 captures information of
employees that may or may not have a boss, while assertion m2
takes care of specific information of employees that have a boss.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the ACM. To copy otherwise, or to
republish, to post on servers or to redistribute to lists, requires a fee and/or special
permissions from the publisher, ACM.
EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

1 This work was supported in part by Microsoft Research through the

European PhD Scholarship Programme.
2 This work has been partly supported by the Ministerio de Ciencia e

Innovación under project TIN2008-03863.

1120

Mapped schemas S1 and S2 are themselves correct in the sense
that their constraints are not contradictory. However, when the
mapping is considered, it turns out that assertion m1 can only be
satisfied trivially. That is, if we want to satisfy m1 without
violating the constraints in S1, the first query of m1 must get an
empty answer (recall that the empty set is a subset of any set).
MVT allows the designer to detect that problem by means of
running a mapping satisfiability test. Moreover, it highlights the
schema constraints and mapping assertions responsible for the
problem. In this case, the problem is in the interaction between
m1 and the constraint CHECK(salary <= 2000) from S1. That
explanation may help the designer to realize that m1 was probably
miswritten, and that it should be mapping those employees with a
salary above one thousand, instead of ten thousand.

In this paper, we demonstrate how MVT can be used to test the
desirable properties of mappings considered in [11]: mapping
satisfiability (strong and weak), mapping inference and query
answerability (firstly identified in [7]), and mapping losslessness.
MVT considers a class of schemas and mappings defined by
means of a subset of the SQL language. Namely:
− Primary key, foreign key, Boolean check constraints.
− SPJ views, negation, subselects (exists, in), union, outer joins

(left, right, full).
− Data types: integer, real, string.
− Null values.
Mapping assertions are in the form of Q1 op Q2, where Q1 and Q2
are queries over the mapped schemas, and op is =, ⊆ or ⊇.

We also demonstrate that MVT always provides some feedback,
in addition to the Boolean answer to whether the tested desirable
property holds or not. Depending on the tested property and on
the test result, the feedback can be in the form of example
instances of the mapped schemas, or in the form of an explanation
[10, 12]. An explanation is a set of schema constraints and
mapping assertions that is responsible for the test result (e.g., the
explanation {mapping assertion m1, constraint CHECK(salary
<= 2000) from S1} provided as feedback for the satisfiability test
in the example above). Providing this feedback is important since
it may make easier to the designer to identify problems and fix
them, especially when the schemas and the mapping are large.

Contributions. The main contribution of this work is that MVT
is, to the best of our knowledge, the first implemented tool able to
check this kind of properties in the context of mappings.
Moreover, it does not only implement the validation approach of
[11], but also integrates it with the work about computing
explanations for failed database schema validation tests of [10,
12]. Implementing the extended validation method we presented
in [12] allows MVT to compute one approximated explanation in
the case in which example schema instances are not a suitable
feedback for the test result. The explanation is approximated in
the sense that it may be not minimal. Implementing the black-box
method of [10] allows MVT to offer the designer the possibility
of refining this approximated explanation into an exact one, and
compute also all the additional possible explanations. Finally,
MVT incorporates the treatment of null values, which was not
considered in [10, 11, 12]. Allowing null values in the schema
instances is significant since a single validation test may have a
certain result when nulls are not allowed, and a different result
when they are.

2. DEMONSTRATION OVERVIEW
We illustrate the use of MVT using the example scenario
introduced in the previous section. Along the demonstration we
modify the mapping according to the results of the different
validation tests. The schemas and the mapping are kept small for
the sake of clarity.

Testing mapping satisfiability. We begin the demonstration with
the satisfiability test we already discussed in the introduction. Just
say here that we define a mapping to be strongly (weakly)
satisfiable if there exists a pair of instances of the mapped
schemas that satisfy all (at least one) mapping assertion(s) in a
non-trivial way. A trivial case would be when the queries in the
mapping have an empty answer. Let us assume that we decide to
fix m1 as indicated in the previous section. We load the updated
mapping into MVT, perform the satisfiability test again, and show
that now m1 is satisfiable. This time, the feedback the tool
provides consists in one instance of each mapped schema that
indeed satisfies both m1 and m2 non-trivially (we omit it here).

Testing mapping assertion redundancy. The next test we
demonstrate uses the mapping inference property [7] to detect
redundant assertions in the mapping. An assertion is inferred from
a mapping if all pairs of schema instances that satisfy the mapping
also satisfy the assertion. Based on that, a mapping assertion is
redundant if it can be inferred from the other assertions in the
mapping (taking into account the mapped schema constraints).
Therefore, the expected feedback for a mapping assertion that is
redundant is the set of schema constraints and other mapping
assertions the tested assertion is inferred from. If the tested
assertion is not redundant, it is better to illustrate that by means of
providing a pair of mapped schema instances that satisfy all
mapping assertions except the tested one.

To illustrate this test, let us assume that we have come up with an
alternative mapping, more compact that the one we already had. It
consists in the following single assertion:
 MAPPING ASSERTION m3
(SELECT e.name, c.salary, wf.boss
 FROM employee e LEFT OUTER JOIN worksFor wf
 ON wf.emp = e.name, category c
 WHERE e.category = c.name and c.salary >= 1000)
 SUBSET OF
(SELECT pEmp.name, e.salary, pBoss.name
 FROM emps e LEFT OUTER JOIN persons pBoss
 ON e.boss = pBoss.id, persons pEmp
 WHERE e.empId = pEmp.id)

The main difference with respect to m1 and m2 is that m3 uses left
outer join to capture both the employees with and without boss at
the same time. Now, we may want to know how this assertion
relates with the other two. Therefore, we load the schemas and the
three assertions into MVT, and run the assertion redundancy test.
We get the following results. Assertions m1 and m2 are both
redundant, with explanations as feedback. The explanation for m1
is {m3}. The one for m2 is {m3, WorksFor.boss NOT NULL}.
However, m3 is not redundant, and the feedback provided by
MVT is the following pair of schema instances:

Instance of S1: Instance of S2:
Category('execA', 1000) Persons(0, 'A', null)
Employee('A', 'execA', null) Persons(1, 'A', null)
Employee('AA','execA', null) Persons(2, 'AA', null)
WorksFor('A', 'AA') Emps(0, 1000, null)
 Emps(1, 2000, 2)
 Emps(2, 1000, null)

1121

These schema instances show that m3 is not only more compact
but also more accurate. Assertions m1 and m2 allow a single
employee from S1 to be mapped to two persons with different ids.
Assertion m3 prevents that by means of the outer join (other
formalisms allow expressing this kind of correlations by means of
Skolem functions [8]).

Testing mapping losslessness. A mapping is said to be lossless
[11] with respect to a given query if the information needed to
answer that query is captured by the mapping. More formally, the
mapping {V1 op W1, …, Vn op Wn} is lossless w.r.t. query Q
defined over S1 (S2) if Q is determined by the extension of the Vi
(Wi) queries (these query extensions must satisfy the mapping
assertions). The purpose of this property is to allow the designer
to test whether a mapping that may be partial or incomplete is
enough for the intended purpose.

When a mapping turns out to be lossy, MVT provides a
counterexample as feedback (see below). When the mapping is
indeed lossless, the provided feedback is the explanation (schema
constraints and mapping assertions) that prevents such a
counterexample from being constructed.

We illustrate the property with the following example. Let us
assume that after replacing the mapping {m1, m2} with {m3} we
want to know whether the names and addresses of all employees
with a salary of at least 1000 are mapped. We perform a mapping
losslessness test with the following query as parameter:
SELECT e.name, e.address
FROM employee e, category c
WHERE e.category = c.name and c.salary >= 1000

The result of the test indicates that the mapping is not lossless
with respect to that query, and provides the following schema
instances as feedback:

Instance 1 of S1: Instance of S2:
Category('execA', 1000) Persons(0, 'A', null)
Employee('A', 'execA', null) Emps(0, 1000, null)
Instance 2 of S1:
Category('execA', 1000)
Employee('A', 'execA', 'A')

The above counterexample shows two instances of S1 that differ
in the address of the employee, but are mapped to the same
instance of S2, and have the same extension for the queries in the
mapping. Seeing this, the designer can realize that the address of
the employees is not captured by the mapping. This result does
not mean necessarily that the current mapping is wrong. That

depends on the intended semantics. For example, if the address of
the employees in S1 was considered classified for some reason,
then a lossy mapping would be what the designer wanted. Let us
assume that this is not the case, and that the designer decides to
modify m3 in order to capture the addresses. Then, it suffices
adding e.address and pEmp.address, respectively, to the
select clauses of the queries in m3.

Figure 1: Architecture of MVT.

MVT also allows testing the property of query answerability
(identified in [7] together with mapping inference). We omit its
discussion here due to space reasons.

3. SYSTEM ARCHITECTURE
MVT extends our database schema validation tool [13] to the
context of mappings. The architecture of MVT is depicted in
Figure 1.

The GUI component allows using MVT in an easy and intuitive
way. To perform the different available tests, users go along the
following interaction pattern:
1. Load the mapping and the mapped schemas.
2. Select one of the available validation tests.
3. Enter the test parameters (if required).
4. Execute the test.
5. Obtain the test result and its feedback, which can be in the

form of example schema instances, or in the form of
highlighting the schema constraints and mapping assertions
responsible for the test result.

The Test Controller processes the commands and data provided
by users through the GUI, and transfers back the obtained results.

The Mapping and Mapped Schemas Extractor is responsible of
translating the loaded mapping and mapped schemas into a format
that is tractable by the CQCE Method Engine. In this way, it
generates an in-memory representation where both the mapping
and the schemas are integrated into a single logic database
schema that is expressed in terms of deductive rules.

According to the approach we presented in [11], the Test
Controller and the Mapping and Mapped Schemas Extractor work
together to reformulate the problem of validating the selected
mapping property in terms of the problem of testing whether a
query is satisfiable over a database schema. The resulting query
satisfiability test is performed by the CQCE Method Engine.

The CQCE Method Engine implements the CQCE method [12], an
extended version of the CQC method [6]. The original CQC
method can be used to check whether a certain query is satisfiable
over a given database schema. It provides an example database
instance when the query is indeed satisfiable. However, it does
not provide any kind of explanation for why the tested query is
not satisfiable. Other validation methods do not provide an
explanation for this case either. The CQCE method addressed this
issue. It extends the CQC method so this is able to provide an
approximated explanation for the unsatisfiability of the tested
query. The provided explanation is the subset of constraints that
prevented the method from finding a solution. It is approximated
in the sense that it may be not minimal.

The Text Controller may ask the Explanation Engine to check
whether the explanation provided by the CQCE Method Engine is
minimal, and to find the other possible minimal explanations (if

1122

any). In order to do that, the Explanation Engine implements the
black-box method presented in [10].

The feedback is translated back to the original SQL representation
by the Test Controller and the Mapping and Mapped Schemas
Extractor, and shown to the user through the GUI. If the CQCE
Method Engine provides a database instance, and since this
instance corresponds to the integrated schema that resulted from
the problem reformulation, it has to be translated in terms of the
original mapped schemas. Similarly, if the feedback is an expla-
nation (a set of constraints) and since these constraints belong to
the integrated schema, they have to be translated in terms of the
original mapped schema constraints and mapping assertions.

The whole MVT tool has been implemented in the C# language
using Microsoft Visual Studio as a development tool. Our
implementation can be executed in any system that features the
.NET 2.0 framework. Some screenshots are shown in Figure 2.

4. RELATED WORK
Recently, other tools related with the mapping validation problem
have been presented [2, 4]. The main difference of our tool with
respect to them is that they need schema instances in order to
perform the validation. Our tool only requires the mapping and
mapped schemas definitions to be provided, and it is therefore
able to reason over the mapping itself rather than relying on
specific instances that may not reveal all the potential pitfalls.

The SPIDER tool demonstrated in [2] is a mapping debugger for
source-to-target tuple-generating dependencies mappings, based
on the computation of routes [5]. Basically, the user can select a
set of target tuples, and see how this tuples were obtained from
the source instance through the mapping. Since routes are inten-
ded to allow the user to explore and understand a given schema
mapping, this work can be seen as complementary to ours. As we
demonstrate here, our tool sometimes provides schema instances
as feedback for a certain validation test. Therefore, routes could
be used to help the designer to understand this feedback, and to
make easier the detection and fixing of the problems.

The Spicy system [4] is aimed at helping the designer to choose
among the different candidate mappings (tuple-generating
dependencies) the ones that represent better transformations of the
source into the target. Source and target schema instances are
required. Each candidate mapping is executed over the source
instance in such a way that a new instance for the target schema is
obtained, and this new instance is compared with the available
target instance. At the end, the user gets a ranked list of mappings,
suggesting which ones are believed to better reproduce the target.
At this point, the validation information provided by our tool,
combined with the similarity measure attached by Spicy, might
help the designer to choose and refine the final mapping.

Another tool that has appeared recently is Muse [1], a mapping
design wizard that assists designers in understanding and refining
schema mappings. In particular, it guides the designer on the
choice among alternative mapping definitions by constructing
synthetic examples that illustrate the differences among them.
However, the construction of such examples is not aimed at
revealing potential mapping-definition flaws such as redundancies
and information loses. In this sense, our tool complements Muse
by enabling the designer to validate and refine the chosen
mapping definitions. Although our current version of the tool does

not deal with nested mappings and nested relational schemas as
Muse does, we are already working to include such features in a
next release. Instead, our tool does handle mapping definitions
featuring negations and order comparisons, which Muse does not
consider.

Figure 2: Screenshots of MVT.

5. REFERENCES
[1] B. Alexe, L. Chiticariu, R. J. Miller, D. Pepper, W.-C. Tan:

Muse: a system for understanding and designing mappings.
In SIGMOD Conference, pp. 1281-1284, 2008.

[2] B. Alexe, L. Chiticariu, W.-C. Tan: SPIDER: a Schema
mapPIng DEbuggeR. In VLDB, pp. 1179-1182, 2006.

[3] P. A. Bernstein, L. Haas: Information integration in the
enterprise. Commun. ACM 51(9), pp. 72-79, 2008.

[4] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, G.
Summa: The Spicy system: towards a notion of mapping
quality. In SIGMOD Conference, pp. 1289-1294, 2008.

[5] L. Chiticariu, W.-C. Tan: Debugging Schema Mappings with
Routes. In VLDB, pp. 79-90, 2006.

[6] C. Farré, E. Teniente, T. Urpí: Checking query containment
with the CQC method. Data Knowl. Eng. 53(2), pp. 163-223,
2005.

[7] J. Madhavan, P. A. Bernstein, P. Domingos, A. Y. Halevy:
Representing and Reasoning about Mappings between
Domain Models. In AAAI/IAAI, pp. 80-86, 2002.

[8] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, R.
Fagin: Translating Web Data. In VLDB, pp. 598-609, 2002.

[9] E. Rahm, P. A. Bernstein: A survey of approaches to
automatic schema matching. VLDB J. 10(4), pp. 334-350,
2001.

[10] G. Rull, C. Farré, E. Teniente, T. Urpí: Computing
explanations for unlively queries in databases. In CIKM, pp.
955-958, 2007.

[11] G. Rull, C. Farré, E. Teniente, T. Urpí: Validation of
mappings between schemas. Data Knowl. Eng. 66(3), pp.
414-437, 2008.

[12] G. Rull, C. Farré, E. Teniente, T. Urpí: Providing
Explanations for Database Schema Validation. In DEXA, pp.
660-667, 2008.

[13] E. Teniente, C. Farré, T. Urpí, C. Beltrán, D. Gañán: SVT:
Schema Validation Tool for Microsoft SQL-Server. In
VLDB, pp. 1349-1352, 2004.

1123

	1. INTRODUCTION
	2. DEMONSTRATION OVERVIEW
	3. SYSTEM ARCHITECTURE
	4. RELATED WORK
	REFERENCES

