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ABSTRACT
We investigate the problem of refining SQL queries to satisfy
cardinality constraints on the query result. This has appli-
cations to the many/few answers problems often faced by
database users. We formalize the problem of query refine-
ment and propose a framework to support it in a database
system. We introduce an interactive model of refinement
that incorporates user feedback to best capture user prefer-
ences. Our techniques are designed to handle queries having
range and equality predicates on numerical and categorical
attributes. We present an experimental evaluation of our
framework implemented in an open source data manager
and demonstrate the feasibility and practical utility of our
approach.

1. INTRODUCTION
Traditional relational database systems support a boolean

retrieval model, in which constraints are specified on prop-
erties of individual tuples and not on the result table as a
whole. As a consequence of this model, an SQL query can-
not ensure a result cardinality when executed on a given
database. However, there are several situations where one
would like the associated queries to satisfy a cardinality con-
straint on the result size. Such cases often occur in Busi-
ness Intelligence applications, where analysts pose queries
on existing corporate databases. For instance, consider a
marketing scenario, in which a bank seeks to extend a pro-
motional offer to ten thousand young, high-income profes-
sionals. Given a customer database, one can express these
conditions as predicates on the dateOfBirth, salary and
profession attributes. However there exists no means other
than a cumbersome trial and error procedure for setting the
predicates such that the resulting query returns 10K tuples
when executed on the given database. In general, today’s
relational database management systems lack support for
tying the query predicates to the output cardinality of a
query in an automated fashion. This paper seeks to address
this gap.
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We refer to the problem of queries returning too many
or too few tuples as the many/few answers problem. For
the many answers case, Carey and Kossmann [4] proposed
a STOP AFTER operator in SQL to limit the cardinality of
a query. Typically, this clause is combined with an OR-

DER BY clause, resulting in a Top-k query processing prob-
lem [11]. Top-k based approaches have been proposed for
the few answers problem as well [1]. A fundamental require-
ment of these techniques is that they require a scoring func-
tion. Defining such a scoring function is often a non-trivial
task especially when defined on multiple semantically dis-
tinct attributes. For instance, to consider the bank example
described above, a Top-k approach would require a scoring
function that combines temporal (dateOfBirth), monetary
(salary) and categorical (profession) attributes to return
a single score.

An important feature of the many/few answers problem
is that users often have preferences on how to transform the
original query to increase/decrease the result size. To con-
sider the bank query above, a bank might prefer younger
customers if it is offering a new account, while it might
prefer high-income customers if it is extending a new in-
vestment opportunity. Defining scoring functions to express
such application-specific preferences over multiple attributes
is challenging. Moreover, such functions provide at best in-
direct control over the set of tuples returned.

In this paper, we propose the Stretch ‘n’ Shrink (SnS)
framework for the many/few answers problem which enables
interactive user-aided refinement of queries to a given result
cardinality through transformations of the selection predi-
cates. The transformations take the form of relaxations i.e
stretching query predicates to increase the query cardinality,
and contractions i.e shrinking query predicates to decrease
the cardinality. This model of refinement offers the advan-
tage of not requiring the user to define a separate scoring
function. Therefore, it generates queries which can utilize
traditional query processing primitives without the need of
additional infrastructure for processing ranking queries effi-
ciently [19]. Additionally, by casting the many/few answers
problem as a predicate transformation problem, this frame-
work is able to explicitly capture preferences on how the
query is to be refined, as detailed in the following examples.

Example 1. Consider a query with the predicates year

> 1990 AND cost < 5000 returning too few answers. There
are many ways in which the query could be refined to satisfy
the target result size. For instance, one could change the
predicate on year to year > 1980 while leaving the other
predicate unchanged. Alternatively, one could change only
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the predicate on cost to cost < 7000. Or, both the predi-
cates could be modified together to year > 1987 AND cost <

6500. Each of these choices involves relaxing one or more of
the predicates i.e increasing the selectivity of the predicates.

Similarly, for the case of categorical predicates:

Example 2. Consider a query with predicates country

= ’USA’ AND state = ’California’ , returning too many
answers. This query could be refined by adding additional
predicates such as city = ’Santa Cruz’ OR city = ’Mil-

pitas’ or predicates city = ’San Francisco’ AND Zip =

’94112’. These additional predicates further constrain the
results returned by the query and reduce its cardinality to the
target answer size.

These examples illustrate that there might be multiple
queries that satisfy the result cardinality constraint. Our
goal in this paper is to provide a navigational framework
that enables users to interactively refine queries as per their
preferences. We make the following contributions in this
work:

• We formally define the problem of query refinement for
queries with range and/or equality predicates which
return too many or too few answers.

• We introduce the SnS framework for Interactive Query
Refinement which encompasses all the cases outlined
above. SnS supports a novel model of query refinement
which keeps a user “in the loop” guiding one towards
a query that best satisfies the target cardinality.

• We describe the sampling and indexing procedures un-
derlying SnS, which are designed to aid accurate and
efficient query refinement. We present an implemen-
tation and evaluation of the framework in a database
system, demonstrating its practical utility.

2. RELATED WORK
There has been some research on modifying query predi-

cates with the intent to relax the query and generate more
answers. Chaudhuri [5] introduced a formal model for mod-
ifying SQL queries in order to increase their output cardi-
nality. Similarly, Chu and Chen [10] also defined a formal
model of query relaxation using a type abstraction hierar-
chy on attributes, and proposed an extension (CSQL) of
SQL to specify such queries. However, both of these are
primarily formal models, and the papers do not investigate
issues in practically realizing such models, especially with re-
spect to ensuring a target cardinality. More recently, Kadlag
et al. [21] introduced algorithms for relaxing multiple pred-
icates using multidimensional histograms. However, their
technique is does not consider join queries, nor does it in-
corporate user preferences.

The typical solution proposed in the literature to handle
the many answers problem is to utilize scoring functions and
return only the Top-k ranked results [11, 7]. The primary
problem with this approach is the requirement of a scoring
function which may not be readily available. In addition,
Top-k query processing is typically performed over single
tables; optimizing Top-k queries over joins is a challenging
problem [19]. An alternative approach, used in the many an-
swers case, is to compute the skyline of the query results [2].

However, skyline computation over joins is expensive and
predicting the size of the skyline is difficult [13, 6].

There has been much research on detecting and relaxing
queries with empty results. Agrawal et al. [1] introduced a
technique utilizing ranking algorithms in this context. More
recently Luo [23] proposed a method for detecting empty re-
sult queries using information collected from previously exe-
cuted queries. This technique, which uses materialized view
matching cannot be generalized to the few answers problem
though. Similarly, Koudas et al. [22] introduce a technique
for relaxing an empty query by computing the set of re-
sults which are closest to the original query as per skyline
semantics. However, the method requires expensive skyline
computation and cannot provide guarantees on the relaxed
result size. In the context of text search, Fontoura et al. [12]
recently introduced a model of query relaxation along mul-
tiple hierarchical taxonomies. However, their model incor-
porates a cost based procedure for relaxation, and does not
incorporate individual user preferences on query relaxation.

Recently, there has been increasing interest in the problem
of generating targeted test queries that satisfy cardinality
constraints on multiple intermediate subexpressions [3, 26].
This paper extends the applicability of such frameworks by
adding support for categorical predicates, and introducing
techniques for incorporating user preferences.

3. PRELIMINARIES

3.1 Model
Consider a conjunctive SPJ (Select-Project-Join) query Q

with selection predicates. We consider selection predicates
to include range (<,≤, >,≥) and equality (=) predicates.
Each predicate can be defined on a numeric or categorical
domain. We consider a numeric domain to be any domain
on which a range predicate is defined. In the rest of the
paper, for ease of presentation, we assume that the numeric
domain is the domain of integers, although our techniques
work for general numeric domains.

Unlike numeric domains, categorical domains permit only
equality predicates. In this paper, we consider the class of
hierarchical categorical predicates. Categorical predicates in
databases often implicitly express hierarchies e.g (Country,
State, City, Street, No.) or (Genre, Artist, Song). Each
attribute is thus at some level of a hierarchy, with the root
at the smallest level. For instance, Country is at level 1,
and Street is at level 4. We define the level of a categorical
hierarchical predicate to denote the maximum level at which
a predicate is defined on the hierarchy. Thus Country =

’US’ and State = ’FL’ has a level of 2.
We assume knowledge of the hierarchies defined by a database

schema. Such hierarchies can be specified by the user or the
schema designer. We note that the presence of hierarchies
is a feature and not a requirement of SnS framework. In
the absence of information about hierarchies, we treat each
attribute as a single level hierarchy by itself.

Given query Q, and a target result cardinality k, we gen-
erate a new query Q′ by refining the selection predicates of
Q. We term the predicate transformations that increase the
cardinality of Q as relaxations, and the transformations that
decrease the cardinality as contractions. We next define the
rules for relaxing and contracting numeric and categorical
predicates.

863



3.1.1 Numeric Predicate Refinement
Consider a numeric predicate Pi : xi < Ci. A relaxation of

Pi is any predicate P ′

i : xi < C′

i s.t C′

i ≥ Ci. Effectively, we
have Pi ⊆ P ′

i . Likewise, a contraction of Pi is any predicate
P ′

i : xi < C′

i such that C′

i ≤ Ci i.e P ′

i ⊆ Pi.
We can convert any predicate on a numeric domain to a

predicate of the form xi < Ci. For instance, a predicate
xi > Ci can be transformed into −xi < −Ci. We consider
range predicates of the form Cl

i < xi < Cu
i as two separate

predicates −xi < −Cl
i and xi < Cu

i . In the rest of the paper,
for ease of exposition, we assume that the numeric predicates
have been appropriately transformed into predicates of the
form xi < Ci.

3.1.2 Hierarchical Categorical Predicate Refinement
We would like to define relaxation and contraction to gen-

erate supersets and subsets (respectively) of the original hi-
erarchical predicate in an analogous fashion to numeric pred-
icates. In the following, we use as a running example the
predicate: Country = ’US’ and State = ’FL’.

Hierarchical Relaxation: We consider two notions of re-
laxation, namely Expansion and Roll-up. Expansion de-
notes the process of disjunctively adding additional predi-
cates at the current level of the hierarchical predicate. Thus,
we can expand the example predicate to Country = ’US’

and ( State = ’FL’ OR State = ’CA’ ). Likewise, roll-up
is the process of removing all predicates from the current
level of the hierarchy. Thus, the example predicate can be
rolled up to obtain Country = ’US’. We note that this no-
tion of roll-up is analogous to the roll-up operation on data
cubes.

Hierarchical Contraction: Similar to the forms of relax-
ation discussed above, we consider two notions of contrac-
tion, namely shrinking and drill-down. Shrinking is the in-
verse operation of expansion, in which predicates are re-
moved from a disjunction at the current level of the hi-
erarchy. Drill-down is the inverse operation of roll-up, in
which additional predicates are added conjunctively at the
next level of the hierarchy. The example predicate can be
drilled down to obtain Country = ’US’ and State = ’FL’

and City = ’Miami’.

3.2 Problem Definition
We have defined notions of relaxation and contraction

for numeric and categorical domains. We refer to each nu-
meric predicate or categorical hierarchy as a dimension of
the query.

Example 3. The query:
Select * from T

Where weight < 120 and age < 40

and country = ’US’ and state = ’FL’

has 3 dimensions, one for each of the two range predicates
and one for the hierarchy (Country, State, . . .)

A query is therefore relaxed or contracted along its dimen-
sions. We use d to represent the number of dimensions of a
query. We now define the problem of Query Refinement as:

Definition 1. Query Refinement Problem: For a given
SPJ query Q, and a target result cardinality k on database
D, generate a query Q′ satisfying the following conditions.
(i) Q′ is generated by using either only relaxations or only

contractions along the dimensions of Q. (ii) Q′ when exe-
cuted on D returns k tuples in its result. (iii) There is no
other query Q′′ satisfying conditions (i) and (ii) such that
the user prefers Q′′ over Q′.

We note that the requirement of using only relaxations
or only contractions (Condition (i)) is to prevent predicate
refinements that cancel each other out. Additionally, it en-
sures that the space of possible refinements can be bounded,
since otherwise one could transform any query to any other
query using these transformations. Effectively, when Q is
estimated to return fewer tuples than k, Q is relaxed; when
Q returns too many tuples, it is contracted.

3.2.1 The Need for Approximation
Condition (ii) in problem definition above requires the

generation of a query that returns exactly k tuples. This
may be difficult since there might be no query that exactly
satisfies the target cardinality. Consider a simple selection
query with only a single predicate x < 20 on column x con-
taining 100 distinct values (1, . . . , 100), with each value hav-
ing a frequency of 10. In this case, if the target cardinality
is 505 tuples, the best one can do is to refine the predi-
cate to x < 52 to obtain 510 tuples. Additionally recent
results show that the problem of generating a query that
satisfies an output cardinality is hard to solve exactly [3]
or to approximate to within a constant absolute or relative
error [26]. As a consequence, our framework enables user-
aided exploration of the search space to return a query that
best captures user preferences, with an acceptable (for the
user) error in output cardinality.

3.3 Terminology
Given a query Q with d dimensions, we define boundaries

within which the predicate along a given dimension can be
relaxed or contracted. This is captured by the notions of
maximal relaxations and contractions, as defined next.

Definition 2. [Maximal Relaxation] (numeric) Given
a numeric predicate Pi : xi < Ci, its maximal relaxation is
a predicate P m

i : xi < Cm
i such that (i) Cm

i ≥ Ci. (ii) The
refinement Q′ of Q produced by refining only the predicate Pi

to P m
i is estimated to return at least k tuples. (iii) There is

no predicate P m′

i : xi < Cm′

i such that Cm′

i < Cm
i and P m′

i

satisfies conditions (i) and (ii). In the absence of a predicate
satisfying all three conditions, the maximal relaxation is set
to xi < ∞.

Effectively, for a numeric predicate, the notion of a max-
imal relaxation defines the boundary upto which one could
relax the predicate to satisfy the target cardinality. If the
predicate is relaxed further, other predicates must be con-
tracted, violating the requirement of using only relaxations
or only contractions.

An analogous notion of maximal contractions can simi-
larly be defined for numeric predicates. A maximal con-
traction bounds how much one can contract a given nu-
meric predicate to obtain the target cardinality. We use the
term maximal transformation as a generic term for maxi-
mal relaxations and contractions (depending on whether the
query is to be relaxed or contracted), and denote its value
as P m

i : xi < Cm
i or (where the context is clear) as just the

constant Cm
i .
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Definition 3. [Maximal Relaxation] (categorical) Given
a hierarchical categorical predicate Pi : xi1 = Ci1∧. . .∧xil =
Cil having a level l, its maximal relaxation is a predicate
P m

i : xi1 = Ci1 ∧ . . . ∧ xilm = Cilm such that: (i) The new
level lm ≤ l. (ii) The refinement Q′ of Q produced by re-
fining only the predicate Pi to P m

i is estimated to return at
least k tuples. (iii) P m

i is a roll-up of Pi. (iv) There is no

predicate P m′

i that satisfies conditions (i) - (iii), and has

lm
′

≥ lm. In the absence of such a predicate, the level of the
maximal relaxation is set to 0.

Similar to the case of numeric predicates, maximal relax-
ations for hierarchical categorical predicates bound the level
upto which the predicates along the dimension can be rolled
up. However, the analogous notion of maximal contraction
is not defined for categorical hierarchies due to the multiple
possible paths for drilling down a hierarchy.

Given these definitions of maximal relaxations and con-
tractions, we next define two queries at the core of our re-
finement procedures.

Definition 4. [Extended Query] Qe : Given a query
Q with d dimensions, the extended query Qe is the query
which returns tuples satisfying the predicates of Q along at
least d − 1 of the d dimensions.

Example 4. The extended query for the query in Exam-
ple 3 is
Select * from T where

(age < 40 and country = ’US’ and state = ’FL’) OR

(weight < 120 and country = ’US’ and state = ’FL’) OR

(weight < 120 and age < 40)

Observe that Qe is a superset of Q; Qe is also a super-
set of any query generated by relaxing Q along only one
dimension.

Definition 5. [Bounding Query] Qb : Given a query
Q with d dimensions, the bounding query Qb is a refinement
of Q with the predicates along each dimension maximally
relaxed.

If Q is to be contracted, Qb is identical to Q, and is there-
fore a superset of all queries generated by contracting the
predicates of Q. If Q is to be relaxed, Qb is a superset of any
query Q′ satisfying the target cardinality constraint, where
Q′ is generated by relaxing the predicates of Q. Therefore
the bounding query Qb bounds all possible solutions to the
query refinement problem.

Example 5. If the query in Example 3 is to be relaxed, a
possible bounding query is:
Select * from T

Where weight < 170 and age < 60

and country = ’US’

with the values in bold text indicating the maximal relax-
ations along each of the three dimensions.

The bounding query Qb bounds the search space for re-
finements of Q that satisfy the target cardinality constraint.
Generating Qb requires computation of maximal relaxations
along each dimension of Q. The maximal relaxations can
be computed by utilizing the extended query Qe, which is
a superset of all queries that relax Q along only one dimen-
sion. Before we describe our procedures for performing such
computations, we outline the cardinality estimation scheme
underlying our framework.

3.4 Cardinality Estimation Scheme
Our query refinement framework requires fast and accu-

rate cardinality estimates for any potential refinement Q′

of the original query Q. These estimates could be obtained
from the cardinality estimation component of the database
system. However, such estimates are often incorrect, es-
pecially for queries with multiple joins and selection predi-
cates [20]. The accuracy of refinement directly depends on
the cardinality estimation scheme deployed. Therefore, we
utilize sampling based estimators for cardinality estimation.
In order to avoid sampling repeatedly for each refinement
considered, we deploy a Superset Sampling Estimator (SSE)
which provides fast and accurate cardinality estimates.

Consider an SPJ query Qs, which we term as a superset
query. Given Qs, SSE provides cardinality estimates for any
query Q′ ⊆ Qs to within an error ǫ|Qs| with high probability.
We next describe SSE if Qs is a single relation or a join
query.

3.4.1 Single Relation Queries
Suppose Qs is a selection query on a single relation A.

Since Qs is defined on a single relation A, a random sam-
ple of Qs can be obtained by sampling from the underlying
relation A, and applying the predicates of Qs. We wish to
specify guarantees for using this random sample for estimat-
ing the cardinality of any query Q′ ⊆ Qs.

A range space is a set system, defined by a set P and a set
of subsets R (ranges) of P . In our current problem setting,
the set P is the superset query Qs while the ranges are all
possible queries Q′ ⊆ Qs. An ǫ-approximation EP of a set
P for a range space R has the property that for any R ∈ R

˛

˛

˛

˛

|P ∩ R|

|P |
−

|EP ∩ R|

|EP |

˛

˛

˛

˛

≤ ǫ

An ǫ-approximation E thus guarantees selectivity estima-
tion to within a 1±ǫ interval. The following lemma of Vapnik
and Chervonenkis [27, 16] links the size of a random sample
of a set, and the error guarantee obtained using the sample
for approximate range counting.

Lemma 3.1. For any range space with finite VC dimen-
sion, a random sample of size O( 1

ǫ2
log 1

ǫδ
) is an ǫ-approximation

with probability 1 − δ.

This Lemma provides guarantees on the size of the random
sample of Qs required to estimate the cardinality of any
query Q′ ⊆ Qs to within ǫ|Qs| with high probability. We
note that this random sample needs to be computed only
once, and can then be kept in memory.

3.4.2 Join Queries
The SSE procedure for a single relation query relies on

the fact that one can easily obtain random samples of a
base relation. If the superset query Qs is a join query over
multiple relations, then obtaining a uniform random sample
of Qs is known to be difficult [8].

However, utilizing random samples of base relations for
join cardinality estimation is a well known technique in database
literature [14]. In this work we deploy the t index join cardi-
nality estimation scheme [14] which obtains a random sam-
ple from the outer relation, and joins it with indexes on the
other relations. We note however, that SSE for joins can
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utilize any alternative sampling based join cardinality esti-
mation scheme as well.

If a random sample of the outer relation of size n tuples
joins with the inner indexes to produce njoin tuples, the
cardinality of the join can be estimated as njoin ×Nouter/n
where Nouter is the size of the outer relation. In terms of
selectivity, Haas et al. [14]. show that, under certain as-
sumptions, if µ is the actual selectivity of the join, and µn

is the estimated selectivity after n tuples have been read,
then:

P{|µn − µ| ≤ ǫµ} ≈ 2φ(
ǫµ

√
n

σ
) − 1 (1)

when n is large and ǫ
√

n is small. σ2 is the variance and φ
is the c.d.f for a standardized normal random variable.

The t index procedure described here provides a useful
means to obtain accurate cardinality estimates for any join
query. However, the cost of performing such estimation can
be prohibitively high if a join is performed with the inner
indexes for each query for which a cardinality estimate is
required. Instead, SSE executes the t index procedure only
once for the superset query Qs. The tuples produced by this
procedure are stored in an in-memory data structure. This
set of tuples serves as an ǫ-approximation EQs for estimating
the cardinality of any query Q′ ⊆ Qs to within ǫ|Qs| with
confidence bounds derived from Equation 1.

Given a superset query Qs, a target error bound ǫ, and a
confidence probability 1 − δ, an invocation of SSE with Qs

i.e SSE(Qs) generates an ǫ-approximation EQs for the pur-
poses of estimating the cardinality of all queries Q′ ⊆ Qs.
The primary advantage of utilizing SSE is that one can tune
the parameters to obtain estimates of desired accuracy, and
avoid making any independence assumptions. Our query re-
finement framework invokes either of the two versions of SSE
described here, depending on whether the original query is
a single relation query or a join query.

3.5 The Stretch ‘n’ Shrink Framework
We now provide a high level overview of the Stretch ‘n’

Shrink (SnS) framework for Interactive Query Refinement.
SnS refines a query in two phases, with each phase utilizing
the SSE procedure described in Section 3.4.

3.5.1 Phase 1: Computing Bounds
The goal of the first phase is to:

• Estimate the cardinality of the original query Q and
identify whether it is to be relaxed or contracted.

• Compute maximal relaxations and contractions along
each dimension of Q and generate the bounding query
Qb.

In order to perform such computation, SnS invokes SSE
with the extended query Qe as the superset query to gen-
erate an ǫ-approximation EQe . Since the original query
Q ⊆ Qe, one can estimate the cardinality of Q using EQe ,
and identify whether the query is to be relaxed or contracted.
Maximal relaxations and contractions can similarly be com-
puted using EQe , since they correspond to queries which
relax or contract the original query along only one dimen-
sion. SnS generates the bounding query Qb by refining Q to
its maximal relaxations along each dimension. We provide
further details of the first phase in Section 4. We note that
this phase does not require any user intervention.

3.5.2 Phase 2: Query Refinement
Phase 2 of SnS takes as input the bounding query Qb

computed in Phase 1. Qb is guaranteed to be a superset
of all possible refinements of Q. Therefore, SnS can in-
voke SSE with Qb as the superset query to compute an
ǫ-approximation EQb which is utilized to estimate the car-

dinality of any query Q′ ⊆ Qb.
As illustrated in Examples 1 and 2, there might be mul-

tiple possible refinements of the original query that satisfy
the target cardinality constraint. Therefore, SnS provides
an interactive procedure which takes into account user feed-
back to refine the query as per one’s preferences. There are
two components of this interactive procedure:

• Index structures for cardinality estimation: SnS
utilizes the in-memory set EQb consisting of tuples pro-

duced by SSE(Qb) to compute cardinality estimates
for each possible refinement Q′ considered by the pro-
cedure. For efficiency purposes, we devise indexing
schemes over EQb which are tailored to the needs of
our refinement framework.

• Navigation Scheme: Our goal is to provide a means
for users to interactively refine queries. Therefore, we
devise user navigation schemes which enable one to
explore the search space for refinements Q′ that best
capture one’s preferences.

We provide further details of our index structures and
navigation schemes for queries with only numeric, only cat-
egorical and both numeric and categorical predicates in Sec-
tion 5.

4. PHASE 1: COMPUTING BOUNDS
In Phase 1, SnS identifies whether the original query Q

is to be relaxed or contracted, and computes maximal re-
laxations or contractions along all dimensions of Q. For
this purpose, it generates the extended query Qe, and in-
vokes SSE(Qe) generating an in-memory ǫ-approximation
EQe . EQe can be utilized to estimate the cardinality of Q,
since Q ⊆ Qe. Additionally, EQe enables computation of
the maximal relaxations and contractions of Q as described
next.

4.1 Maximal Transformations (Numeric)
Consider a numeric predicate Pi : xi < Ci. The SnS

framework computes its maximal transformation P m
i : xi <

Cm
i through procedure MaxTrans illustrated as Algorithm 1.

In order to compute P m
i , the procedure requires as input

the predicates along the remaining d − 1 dimensions of the
original query, with dimension i set as unknown. MaxTrans
performs a binary search between the lower (Cl

i) and up-
per (Cu

i ) bounds of the domain of dimension i. For each
value val considered, the procedure refines predicate Pi to
xi < val, and invokes the cardinality estimation component
(encapsulated as CardEst) to obtain a cardinality estimate
for the resulting query.

MaxTrans returns a value Cm
i such that Q with predicate

Pi refined to xi < Cm
i best satisfies the target cardinal-

ity constraint. This value is then compared to the original
value Ci of the predicate. If Cm

i ≥ Ci, P m
i is the maxi-

mal relaxation along dimension i; if Cm
i ≤ Ci, the query is
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Algorithm 1 Binary Search for Maximal Transformations
Var D: Database
Var Q: Query
Var k: Target

MaxTrans(Point p)
i = UnknownDimension(p).

min = Cl

i
Set min, and max

max = Cu

i
to domain boundaries

while (min ≤ max) do

val = (min+max)/2
p[i] = val New value on dim i

Q′ = GenQuery(p).
Est = CardEst(Q′,D); Est. card. of resulting query
if Est < k then

min = val
else if (Est > k) then

max = val
else

return Cm

i
= val

end if

end while End of loop for binary search
return Cm

i
= val

A.x

B.y

A.x

B.y

A.x

B.y

Extended QueryOriginal Query

A.x

B.y

RelaxationContraction

Cx Cm
x

Cm
y

Cy

Cm
x Cx

Cy

Cm
y

Cx

A.x < Cx ∧ B.y < Cy A.x < Cx ∨ B.y < Cy

Cx

Cy
Cy
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Oy

O

Figure 1: Maximal relaxations and contractions for

numeric predicates

to be contracted, and P m
i is the maximal contraction along

dimension i.
The CardEst procedure utilizes the ǫ-approximation EQe

for cardinality estimation. Consider for instance the 2 pred-
icate query shown in Figure 1 with predicates A.x < Cx ∧
B.y < Cy. The extended query has predicates A.x < Cx ∨
B.y < Cy which divide Qe into three regions O, Ox and
Oy as shown in Figure 1. Observe that one only requires
the tuples of EQe in the region O + Ox in order to com-
pute the maximal transformation Cm

x along A.x; likewise
one can compute Cm

y using the region O + Oy. More gener-
ally, for a d dimensional query, SnS computes Cm

i by con-
sidering only the tuples in EQe which satisfy the predicates
along the remaining d−1 dimensions. These tuples are used
to construct an exact histogram sorted along dimension i
in memory. The MaxTrans procedure effectively performs
a binary search on this histogram as accessed through the
CardEst wrapper function.

4.2 Maximal Relaxations (Categorical)

Consider a hierarchical categorical predicate Pi : xi1 =
Ci1 ∧ . . . ∧ xil = Cil. As with numeric predicates, one can
compute the maximal relaxation along dimension i by con-
sidering the tuples in EQe which satisfy the predicates along
all d − 1 remaining dimensions. For example, given the ex-
tended query from Example 4, one only needs to consider
tuples which satisfy the predicates weight < 120 and age

< 40.
For each such tuple t , SnS computes the maximum level

lt such that t satisfies all predicates of Pi with level ≤ lt.
Thus, a tuple that satisfies all levels of Pi has a lt = l, while
a tuple that fails to satisfy even xi1 = Ci1 has lt = 0. For the
hierarchical predicate considered in Example 4, lt = 2 if the
tuple satisfies country = ’US’ and state = ’FL’; lt = 1 if
it satisfies only country = ’US’, with lt = 0 otherwise.

SnS maintains a counter N(i) for each level 0 ≤ i ≤ l
of the hierarchical predicate. For each tuple t generated by
SSE(Qe) which satisfies all remaining d−1 dimensions, SnS
computes lt and increments N(i) for all 0 ≤ i ≤ lt. At the
end of the SSE procedure, these counts are scaled up as per
the sampling percentage. The level of the maximal relax-
ation is the level lm such that N(lm) ≥ k and either lm = l
or N(lm +1) < k. Accordingly P m

i : xi1 = Ci1∧ . . .∧xilm =
Cilm is the maximal relaxation along dimension i. If no
such predicate is identified, SnS sets lm = 0 i.e the resulting
bounding query Qb has no predicate on dimension i. For
the example predicate, if N(2) = 20K, N(1) = 60K and
N(0) = 200K, and the target cardinality is 50K, then the
level of the maximal relaxation is 1 i.e the maximal relax-
ation is the predicate country=’US’.

Given a query Q with numeric and/or categorical pred-
icates, SnS simultaneously computes the maximal relax-
ations/contractions along all dimensions of Q with a single
invocation of SSE(Qe) using the procedures outlined above.
This generates the bounding query Qb which is utilized in
the second phase of our framework, as described next.

5. PHASE 2: QUERY REFINEMENT
Phase 1 of SnS returns a bounding query Qb which bounds

all solutions to the query refinement problem. This section
describes indexing structures and navigation schemes for in-
teractively exploring the search space defined by Qb in order
to generate refinements of the original query. We first de-
scribe these techniques for numeric predicates in Section 5.1
and for categorical predicates in Section 5.2 before combin-
ing the techniques in Section 5.3.

5.1 Numeric Predicates
In this section, we assume that the query has only nu-

meric predicates of the form xi < Ci. We first state certain
properties of the space enclosed by Qb, before describing an
indexing structure which exploits these properties. We then
describe the navigation scheme supported by SnS for nu-
meric predicates, and illustrate how the index supports the
scheme.

If the original query Q is to be relaxed, let variables Cb
i =

Cm
i and Cs

i = Ci. If it is to be contracted, let Cb
i = Ci and

Cs
i = Cm

i . Effectively, Cb
i corresponds to the predicate along

dimension i (xi < Cb
i ) of the bounding query Qb, while Cs

i

corresponds to the smaller of Ci and Cm
i .

In the following we use the terms rectangle and hyperrect-
angle interchangeably. The bounding query Qb corresponds
to a d dimensional hyperrectangle Ob : ∀iC

l
i < xi < Cb

i
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Figure 2: Query Refinement: Phase 2

Every point on the curve in O0
2 dominates k points

where Cl
i is the lower bound of the domain of xi.

Consider the d hyperplanes 〈xi = Cs
i 〉. Each hyperplane

splits Ob into 2 halves, and therefore the hyperplanes along
the d dimensions result in 2d smaller rectangles. Out of these
2d rectangles, one is of particular interest.

Definition 6. [Dominant rectangle] (O0
d): This is the

rectangle enclosing the region ∀i : Cs
i < xi < Cb

i .

Property 1. Every solution to the query refinement prob-
lem is defined by a set of selection predicates corresponding
to a point inside the dominant rectangle O0

d.

This property holds because Cs
i corresponds to the maxi-

mal contraction along a dimension.

Definition 7. [l-dominated rectangle] (Ol
d) Any rect-

angle for which there exists l dimensions L = {j1 . . . jl} such
that for any point x ∈ Ol

d

x ∈ Ol
d → ∀i∈Lxi < Cs

i

is an l-dominated rectangle.

Unlike the dominant rectangle, an l-dominated rectangle
is not unique. For instance, there are 2 1-dominated rectan-
gles in Figure 2.

Property 2. Any point in O0
d dominates any point in

Ol
d along at least l dimensions i.e is larger on l dimensions.

We next describe our index structures, which exploit these
properties to optimize space requirements.

5.1.1 Index Structure

Algorithm 2 QuadTree Insertion

QTInsert(Tree,tup)
if (Tree.isroot) N++
Tree.elements++
UpdateMinMax(Tree,tup);
if (Tree.isLeaf == false) then

Child = ComputeChild(tup)
QTInsert(Child,tup)
if (Tree.elements < αN/2) then

Merge(Tree,Children)
end if

else

Insert(tup)
if (Tree.elements > αN) then

Split(Tree)
end if

end if

In Phase 2, SnS invokes SSE(Qb) to generate an ǫ-approximation
EQb . Our procedure constructs an in-memory quadtree on
EQb to support fast range counting. The quadtree structure
is derived from the adaptive spatial partitioning tree intro-
duced in [17]. Algorithm 2 describes our quadtree insertion
algorithm QTInsert. QTInsert maintains a target fraction
α, such that no leaf in the tree may contain more than an α
fraction of the tuples seen (N). If a leaf contains more than
αN tuples, it is split into 2d children. Similarly, if the leaf
descendents of an intermediate node together contain less
than αN/2 tuples, then the subtree at the node is collapsed
into a leaf node. This can happen due to incoming tuples
increasing N . At each node of the quadtree, QTInsert main-
tains the min and max values along each dimension over all
the tuples in the leaves of the subtree at the node

The space requirements of the quadtree described above
can be optimized further. Property 1 asserts that all solu-
tions to the query refinement problem must lie within the
dominant rectangle O0

d. Given a d dimensional point p′ cor-
responding to a query Q′, SnS requires the quadtree index
to return the number of tuples in EQb that are dominated
by p′. Property 2 asserts that p′ must dominate every point
pl in Ol

d along l dimensions. Therefore, for any tuple tpl

represented by a point pl in Ol
d, one only requires the re-

maining d − l dimensions to check whether pl is dominated
by p′ (i.e whether tpl ∈ Q′). Since it is possible to discard
the l dominated dimensions, we modify the quadtree index
to exploit this property by initially splitting the root node
of the tree along the d hyperplanes 〈xi = Cs

i 〉. This opti-
mization results in significant space savings. For instance,
the quadtree does not keep any attributes of tuples in the
d-dominated rectangle Od

d, only maintaining a counter for
this node.

5.1.2 Navigation Scheme
We now describe the navigation scheme supported by the

SnS framework. Each dimension i of the original query is
initially associated with a range (Cs

i , Cb
i ) defined by the orig-

inal query predicate, and the associated maximal transfor-
mation. Our goal is to support an interactive refinement
procedure which enables specification of one’s preferences
on the choice of values of the refined predicates, within the
constraints defined by these ranges.

The interactive refinement procedure proceeds in the form
of rounds between the user and the SnS framework. Each
round consists of the following two steps:

• The user selects an arbitrary predicate Pj : xj < Cj

and refines it to a new predicate P ′

j : xj < C′

j such

that Cs
j ≤ C′

j ≤ Cb
j i.e C′

j lies within the range for
dimension j.

• SnS recomputes the ranges (Cs
i , Cb

i ) for each unrefined
dimension i conditional on the user’s current set of
predicate refinements.

Each predicate refinement further constrains the ranges of
the remaining unrefined predicates. This process is repeated
for d−1 rounds, at which point the final unrefined predicate
is fully constrained, and can be computed automatically. We
illustrate this interactive refinement procedure through the
following example:

Example 6. Consider a query with predicates year < 1960

and age < 25 and salary < 3000 and suppose it returns
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too few answers. In Phase 1, SnS computes maximal relax-
ations (1980, 40, 7000) for year, age, salary respectively.
In Phase 2, one may first refine the predicate on age to age

< 30. SnS in turn recomputes the ranges of the remaining
predicates as year: (1960, 1975) and salary:(3000, 6400).
These ranges are smaller than the ranges specified by the
initial set of maximal relaxations due to the relaxation of
the predicate of age. Given these ranges, one may refine the
predicate on year to year < 1970. SnS computes the best
choice of the final predicate, relaxing it to salary < 4100.
The final refined query has predicates year < 1970 and age

< 30 and salary < 4100.

Algorithm 3 Numeric Predicate Refinement

1: INumRef()
2: for all Dimensions i do

3: Cs

i
= min(Ci, Cm

i
); Cb

i
= max(Ci, Cm

i
)

4: C′

i
= Ci

5: end for

6: if ∃i : Cm

i
= ∞ then

7: RecomputeLowers()
8: end if

9: NumUnRef = d

10: while NumUnRef > 0 do

11: GetUserRef()
12: NumUnRef −−

13: for all UnrefinedDimensions i do

14: Cm

i
= MaxTrans(C′

1, . . . , C′

i−1, ?, C′

i+1, . . . , C′

d
)

15: if Contraction then Cs

i
= Cm

i
else Cb

i
= Cm

i

16: if NumUnRef = 1 then C′

i
= Cm

i
; return;

17: end for

18: end while

19: RecomputeLowers()
20: for all Dimensions i do

21: temp = MaxTrans(Cb

1 , . . . , Cb

i−1, ?, Cb

i+1, . . . , Cb

d
)

22: if temp > Cs

i
then Cs

i
= temp;

23: end for

Algorithm 3 describes the numeric predicate refinement
component (INumRef ) of the SnS framework. INumRef
initially defines a range (Cs

i , Cb
i ) for each predicate (as per

Property 1). Each predicate refinement made by the user
(GetUserRef ), results in a recomputation of the ranges for
each unrefined predicate (lines 13-17). This is performed by
calling the MaxTrans procedure (Algorithm 1), setting the
unrefined dimension i as unknown (’?’), with all remaining
dimensions j set to either the original C′

j = Cj (if unrefined)
or the refined C′

j values. When only one unrefined dimen-
sion i remains (line 16), INumRef automatically refines the
associated predicate to its maximal transformation Cm

i .
The version of MaxTrans utilized by INumRef differs from

the description in Algorithm 1 in two minor ways. First, it
performs a binary search over the limited range (Cs

i , Cb
i ).

The second difference is that the associated cardinality esti-
mation module CardEst now utilizes the quadtree index on
EQb through the function QTQuery outlined as Algorithm 4.
Given a d dimensional point p, QTQuery computes the num-
ber of tuples in the quadtree dominated by p. QTQuery also
uses the min and max values associated with each node of
the quadtree to avoid unnecessary tree traversals.
Recomputing lower bounds for relaxations: The above
discussion assumes that it suffices to recompute only the
maximal transformation Cm

i in each round of the refine-
ment process. While this holds true in general, for certain
special cases of query relaxation the lower bound may be too
tight to achieve the target cardinality due to highly selec-
tive predicates. This is indicated by maximal relaxations for

Algorithm 4 Index Querying Procedure

QTQuery(QuadTree Tree,Point p)
if (DominatesOnAllDims(p,Tree.max)) then

return Tree.elements
else if (DominatesOnOneDim(Tree.min,Point p)) then

return 0
end if

if (Tree.isLeaf) then

return CountDominatedPoints(p,Tree.elementsArray)
else

dom = 0
for all (Child ∈ Tree.Children) do

dom+=QTQuery(Child,p)
end for

end if

return dom

some dimensions being set to infinity. In this case, INumRef
recomputes the lowerbounds by calling the RecomputeLow-
ers procedure (Alg 3 lines 19-23). RecomputeLowers invokes
MaxTrans for each dimension i, with all remaining dimen-
sions j set to their maximal relaxations Cb

j . If the returned
value exceeds the current lower bound Cs

i , then the lower
bound is modified.
Error Guarantees: Our navigation scheme enables a re-
finement of all but one of the predicates as per user prefer-
ences. The final predicate is however refined by INumRef.
Let the maximum frequency of a value in dimension i in the
bounding query Qb be mi. If i is the final dimension refined
by SnS, then in the worst case, the resulting refined query
will have an absolute error of mi

2
with respect to the tar-

get cardinality. This error is separate from the errors due
to cardinality estimation, and is an artifact of our flexible
navigation scheme. This also suggests that it is best to leave
attributes with uniform distributions and many distinct val-
ues as the final unrefined dimension, since these would be
expected to have a low value of mi.

5.2 Hierarchical Categorical Predicates

S | GG | SC | S

S

C | SG A | SGG | SC

A| SGC C| AGS

A | G

S | AG

G

Figure 3: Navigation paths for 2 hierarchies (S,C)

and (G,A)

In this section, we describe the indexing structures and
navigation schemes supported by SnS for refining queries
with hierarchical categorical predicates only. Since these
predicates are equality predicates on categorical domains,
one cannot utilize quadtrees and adopt a range shrinking
navigation scheme as with numeric predicates. Instead, the
SnS framework deploys techniques based on materializing
different navigation paths on a data cube [15].

Consider a query Q with d hierarchical categorical dimen-
sions. Q can be relaxed by roll-up and expansion operations
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applied in an arbitrary order on the upper levels of the cate-
gorical hierarchies. Likewise, Q can be contracted by shrink-
ing and drill-down operations applied in an arbitrary order
on the lower levels of the hierarchy. We refer to any fea-
sible sequence of such relaxation or contraction operations
for refining Q as a navigation path or NavPath. For ex-
ample, given two two-level hierarchies (State(S), City(C))
and (Genre(G), Artist(A)), the possible NavPaths for re-
laxation/contraction are illustrated in Figure 3. In the fig-
ure, an entry along a navigation path (NavEntry) of the form
G|SC represents a relaxation/contraction operation on di-
mension G, with predicates on S and C unchanged, and no
predicate on A.

5.2.1 Index Structure

Algorithm 5 Constructing CFDs

1: List NavPaths = CreateNavPaths()

2: HistInsert(Tuple Tup)
3: List HistEntries = NULL
4: for all NavEntry Nav ∈ NavPaths do

5: childAttr = ExtractChildAttr(Nav,Tup)
6: HistEntry parent = GetParent(Entries,Nav)
7: if hasChild(parent,childAttr) then

8: HistEntry child = GetChild(parent, childAttr);
9: else

10: HistEntry child = AddChild(parent,childAttr);
11: end if

12: child.freq++
13: Entries.add(child)
14: end for

As with numeric predicates, SnS invokes SSE(Qb) in or-
der to generate an in-memory ǫ-approximation EQb for the
purposes of cardinality estimation. The goal of our indexing
structure is to support fast cardinality estimation for the op-
erations of relaxing or contracting a hierarchical predicate
by utilizing EQb . SnS accomplishes this by maintaining con-
ditional frequency distributions (CFDs) for each NavEntry
along any possible NavPath for relaxation or contraction.

Algorithm 5 describes our procedure for constructing CFDs
as exact histograms over EQb . Given a query Q with d hi-
erarchies, function CreateNavPaths constructs the possible
NavPaths for query refinement. Having identified the navi-
gation paths, SnS invokes function HistInsert for each tuple
Tup produced by SSE(Qb). HistInsert traverses the Nav-
Paths in a breadth-first top-down fashion. Each NavEn-
try encountered encodes a particular CFD; for instance G|S
represents the frequency distribution of Genre conditional
on a given value of the State predicate. Given a NavEn-
try, HistInsert identifies the appropriate parent and child
histogram entries (HistEntry) and increments the frequency
of the child accordingly. For instance, given a tuple with
Genre=’Pop’ and State = ’Fl’, for NavEntry G|S, HistIn-
sert (a) identifies the parent HistEntry for State = ’Fl’

(b) looks up its children for a HistEntry corresponding to
Genre=’Pop’, creating a new child if necessary and (c) in-
crements the frequency count of the child.

5.2.2 Navigation Scheme
As with numeric predicates, SnS supports a navigation

scheme for hierarchical categorical predicates which proceeds
in the form of rounds. The process begins with all predicates
as in the original query. In each round:

• The user selects an arbitrary hierarchical predicate,

and either rolls-up/expands the predicate (in the case
of relaxation) or drills-down/shrinks it (for contrac-
tions).

• SnS identifies the current position of the user along the
NavPaths, and displays the appropriate set of CFDs for
any possible next refinement step, utilizing the index
structure.

This process continues until either (a) the refined query
exceeds the target cardinality (for relaxations) or falls below
the target cardinality (for contractions) or (b) one identifies
a final predicate, for which SnS computes an appropriate
relaxation or contraction to best satisfy the target cardinal-
ity. We illustrate this process through the following example
featuring only drill-down operations:

Example 7. Consider a query with initially no predicates
which is to be contracted to a target cardinality of 50K tu-
ples along the hierarchies (S, C) and (G, S). SnS initially
presents frequency distributions on State e.g (’FL’, 10M),
(’CA’, 7M),. . ., and Genre e.g (’rock’, 5M), (’pop’, 3M),
. . .. One may then select State = ’FL’. In response, SnS
presents frequency distributions on city e.g (’Miami’, 800K),
(’Tampa’, 400K), . . . and genre e.g. (’rock’, 2M), (’pop’,
1M), . . .. These distributions are conditional on the selection
of State=’FL’. This process is repeated, with one possibly
selecting genre=’Rock’ and artist=’Coldplay’. The final
predicate for attribute city is computed by SnS as city=’Miami’
OR city=’Tampa’ OR city=’Alachua’.

Identifying the appropriate set of CFDs to display is straight-
forward At each round of the refinement process, the user is
at some NavEntry, with the current set of predicate refine-
ments corresponding to an associated HistEntry hist. There-
fore for roll-ups, SnS needs to display frequencies of the
parents of hist. Similarly, drill-downs require displaying fre-
quency distributions of the children of hist. Likewise, expan-
sion and shrinking require displaying the frequency distribu-
tions of the siblings of hist and of its children respectively.

We now describe how SnS refines the final predicate.
Refining the final predicates: Suppose the final pred-
icate to be refined is on attribute xi with possible values
C1

i , . . . , Cn
i with associated (through HistEntries) conditional

frequency estimates f1
i , . . . , fn

i respectively. The goal of this
step is to disjunctively select a subset J = j1, . . . , jr of these
n values such that

P

j∈J
f j

i ≈ k. This is the subset-sum
problem, which is known to be NP-hard. Although polyno-
mial time approximation schemes exist for this problem [18,
25], we implement a greedy 2-optimal approximation algo-
rithm [25] described as Algorithm 6. This approximation
guarantee is a worst-case guarantee, and in practice the
greedy algorithm works extremely well.

Procedure FinalPred (Algorithm 6) takes as input a list of
possible values C1

i , . . . , Cn
i for the final predicate sorted in

decreasing order of their frequency f j
i . FinalPred greedily

adds new values to the current set (CurrSet) of values unless
the associated sum CurrSum exceeds the target cardinality.
The procedure ensures that CurrSum is guaranteed to be
≤ k. Additionally, FinalPred maintains the greedy set Cur-
rBigSet with minimal error which has a sum CurrBigSum
> k. FinalPred returns either of CurrSet or CurrBigSet
having minimum error.

To summarize, SnS supports a navigation scheme based
on roll-ups/expansions or drill-downs/shrinking along mul-
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Algorithm 6 Refining the Final Predicate

FinalPred(SortedList values)
CurrSet = NULL; CurrSum = 0; CurrBigSet = NULL; CurrBig-
Sum = 0;

for all (Cj

i
, f

j

i
) ∈ values do

if CurrSum +f
j

i
≤ k then

CurrSet.add(Cj

i
)

CurrSum + = f
j

i

else if | CurrSum +f
j

i
− k| < | CurrBigSum −k| < then

CurrBigSet = CurrSet + C
j

i

CurrBigSum = CurrSum +f
j

i
.

end if

end for

return minErr(CurrSet,CurrBigSet)

tiple navigation paths for a set of hierarchies. It supports
these operations by maintaining conditional frequency dis-
tributions along all such possible navigation paths

5.3 Combining the techniques
In the previous two sections, we have described index

structures and navigation schemes for queries with only nu-
meric, and only hierarchical categorical predicates. In this
section, we illustrate how these techniques can be combined
for queries with both numeric and categorical predicates.

5.3.1 Index Structure
The goal of the index structure is to efficiently support

cardinality estimation for range and equality queries over
multidimensional categorical and numeric data. The index
is built on the ǫ-approximation EQb generated by the SSE
procedure.

SnS combines the quadtree index (for numeric predicates)
and navigation path index (for categorical hierarchies) by
adding a quadtree to each histogram entry (HistEntry) to
represent the numeric dimensions of the tuples correspond-
ing to the HistEntry. This is accomplished by adding an
extra function call QTInsert(child.Tree,Tup) after line 13 of
the HistInsert procedure in Algorithm 5. Thus, for instance,
the numeric attributes for all tuples with state=’FL’ are
indexed by a quadtree associated with the corresponding
HistEntry. Additionally, SnS maintains a global quadtree
which indexes all tuples in the bounding query. This index
structure suffices to provide fast cardinality estimates for
any Q′ ⊆ Qb.

5.3.2 Navigation Scheme
The navigation scheme for queries with both numeric and

categorical predicates remains essentially unchanged. As be-
fore, refinement proceeds in rounds. In each round:

• The user selects either a numeric or categorical predi-
cate and refines it to a new value.

• SnS responds by updating the ranges for unrefined nu-
meric predicates, and the appropriate CFDs for the
categorical predicates.

Suppose a numeric predicate Pi : xi < Ci is refined to a
new value C′

i. SnS recomputes the ranges of the remain-
ing unrefined predicates by calling the MaxTrans procedure
(Algorithm 1). For the categorical predicates, the relevant
CFDs are updated by calling the QTQuery procedure (Al-
gorithm 4) for the quadtrees associated with each HistEntry.
Likewise, a similar procedure is adopted when a hierarchical
categorical predicate is relaxed or contracted.

6. EVALUATION
In this section, we describe an implementation and exper-

imental evaluation of our refinement framework
We have instantiated the SSE procedure in the Postgresql

8.0 database system, and implemented the SnS framework
as a Java based frontend. SnS communicates with SSE
through the JDBC layer and network sockets. Each query
Q submitted for refinement results in two invocations of the
SSE layer, once for the extended query Qe, and once for the
bounding query Qb. Our instantiation of SSE utilizes pre-
computed random samples on base relations. In our eval-
uation, the SSE procedure is halted when it generates an
ǫ-approximation of size 5000 tuples, with a sampling thresh-
old of at most 5%. Varying the sample size (provided it isn’t
too low) did not have a significant affect on the cardinality
estimates.

We conducted experiments on three different test databases.
The primary test database is a 2.5 GB database generated
using the DMV data generator [24]. The DMV dataset con-
sists of 4 tables. The table sizes of Owner (O) and Car (C)
are 2.5 million tuples; the size of Demographics (D) is ap-
proximately 3.6 million tuples; and the size of Accidents (A)
is approximately 10.7 million tuples. The dataset was gen-
erated with the correlations flag set on. This produces many
interesting correlations between columns on different tables.
which makes cardinality estimation highly challenging. Ad-
ditionally, we also performed experiments on two TPC-H
databases of size 1 GB each. One of them is the standard
TPC-H database generated as per the benchmark specifica-
tion. Since this database consists of uniformly distributed
data, we also generated a TPC-H database with zipfian skew
Z = 1 using a publicly available tool [9].

To simulate user interaction with the system, we imple-
mented an external function which randomly refines predi-
cates (within the constraints imposed by the framework) at
each round of the refinement process. In our experiments we
plot the relative error of the refined queries, which is defined
as

Err =
|RefinedQueryCard . − TargetCard .|

TargetCard .

The experimental evaluation was conducted on a lightly
loaded machine running Suse Linux with 4 GB memory and
3.60GHz clock speed.

6.1 Accuracy Experiments
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Figure 4: Single Query Varying Target

Figure 4 describes the results of an experiment using the
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DMV database in which we fixed the original query, and
varied the target cardinality. We generated 3 initial queries.
The query marked as Num is a 3 table join query with 3 nu-
meric range predicates, and original cardinality of approx-
imately 600K. The query marked as Cat is a 3 table join
query with 2 categorical predicates, each a part of a 3 level
hierarchy. Its original cardinality is approximately 250K.
The query marked as Both is a 3 table join query with 3 nu-
meric and 2 categorical predicates and original cardinality
approximately 125K. We varied the target cardinality from
1K (low selectivity) to 2M (high selectivity) tuples and plot
the cardinality of the queries generated by our system with
respect to the target cardinality. As can be seen, our tech-
nique generates queries that approximately satisfy the target
cardinality constraints for a wide range of target and initial
query cardinalities.
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Figure 5: Multiple Query Varying Targets

In our next experiment, we generated three random work-
loads of 50 queries each defined on the DMV database having
numeric (Num), categorical (Cat), and both numeric and cat-
egorical (Both) predicates respectively. Each query in each
workload is refined to target cardinalities of 10K, 100K and
1M tuples. We plot the average errors for each workload-
target cardinality combination in Figure 5. As can be seen,
the average errors are low except for the case of queries
with categorical predicates only, and a low target cardinal-
ity (10K). This is primarily due to the underlying data dis-
tribution which prevents contraction to the target cardinal-
ity. For instance, consider a query with predicates make =

’Porsche’ and country = ’GM’, and cardinality 186K tu-
ples, which is to be contracted to 10K tuples. Given two cat-
egorical hierarchies (make, model, color) and (country,
state, city), the best that any query refinement algorithm
can do on the underlying DMV database is to contract the
query to 40K tuples (model = ’Carrera’ and color = ’red’

and city = ’Berlin’ and state = ’Berlin’). Further con-
traction of this query is not possible.

In our next experiment, we examine the effects of the
size of the domains on which categorical predicates are de-
fined. For the experiment shown in Figure 6, we generated
50 queries with 3 categorical predicates defined on domains
with 4, 20 and 197 distinct values on the DMV database.
Each query in the workload has a cardinality less than 100K.
We invoke SnS to relax each query to target cardinalities:
100K, 200K and 300K tuples. We consider each predicate
to form a single level hierarchy, resulting in 3! = 6 possible
navigation paths for query relaxation. Each query is relaxed
by rolling up along every possible navigation path, with the
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Figure 6: Varying # Distinct Values for relaxation

final predicate selected using the subset sum procedure Fi-
nalPred (Algorithm 6). In Figure 6, we plot the average
error with respect to the domain size of the final predicate.

As can be seen from Figure 6, the average errors for small
(4) and large (197) sized domains are higher. For small do-
mains, this higher error is due to the fact that disjunctively
adding or removing an additional predicate can significantly
change the query cardinality. This leads to a coarse de-
gree of control over the cardinality of the refined query. At
the other extreme, for large domains, the FinalPred proce-
dure has a much finer degree of control on query cardinality.
However attributes with a large number of distinct values
often have many low frequency values, for which cardinality
estimation may be difficult. This illustrates an interesting
tradeoff for categorical domains, in which we need to balance
the finer degree of control provided by large domains, with
the associated higher relative errors in cardinality estimates
for the many low frequency values present. We note that a
similar tradeoff does not arise in numeric predicates, since
one does not require cardinality estimates for each distinct
value within a range, but for the range as whole.
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Figure 7: Varying dimensions and skew

In our next experiment illustrated in Figure 7, we examine
the effects of varying the number of predicates (dimensions),
and the skew of the underlying data on the accuracy of our
refinement procedures for numeric predicates. We generate
workloads of 5 table joins defined on TPCH tables, with 2,
3, 5 and 7 numeric predicates, with each workload having
50 queries. The target cardinality was fixed at 100K tuples.
We plot the average error for each workload over both the
uniform (Z=0) and skewed (Z=1) data. As can be seen, the
errors are uniformly low (< 1%) and are not significantly
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affected by the number of dimensions or skew of the data.

6.2 Overheads
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Figure 8: Execution Times

We measure the execution times of our technique by gen-
erating a workload of 10 queries on the DMV database, with
each query having 3 numeric and 2 categorical hierarchical
predicates. Each query was refined to 10K, 100K and 1M
tuples. We measure the execution times on cold and warm
caches. The execution time is the time to complete the entire
refinement procedure, from the initial query specification to
the final generation of the refined query. Figure 8 demon-
strates that the average execution times are low (approx.
5s on cold caches) and independent of the target cardinal-
ity. This execution time is primarily concentrated on the
execution of the SSE procedure. Once the SSE procedure
instantiates the indexing structures, each round of the re-
finement process takes few ms to execute, demonstrating
that our framework can support an interactive refinement
interface with low response times.

7. CONCLUSIONS
In this paper, we have introduced a new model for solv-

ing the many/few answers problem. We have presented an
interactive query refinement framework, and outlined the
challenges, and our solutions for practically realizing such a
framework. Our experimental evaluation of an implemen-
tation of this framework in a real database system demon-
strates the utility of our approach.
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