An Approach to Detecting Relevant Updates to Cached
Data Using XML and Active Databases

Essam Mansour Hagen Hopfner
International University in Germany International University in Germany
School of Information Technology School of Information Technology
Campus 3, D-76646 Bruchsal, Germany Campus 3, D-76646 Bruchsal, Germany
essam.mansour@ieee.org hoepfner@acm.org
ABSTRACT date all caches for each server side update. Hence, it is necessary

Client/server information systems use caching techniques to reduce'© identify °”'¥ those clier_n caches that are affe(_:ted by the “pd‘f’“e-
As proven in [9] checking update relevance in general requires

the volume of transmitted data as well as response time and, espe- :)
cially in the case of systems with mobile clients, to reduce energy 1€ Usage of a stateful information systems server that stores the
consumptions. Updating the server database might cause inconsisf€lationships between (mobile) clients and data cached by them.
tencies between server data and cached data. Guaranteeing corg'ents retngve the dgta by ISsuing datgbase queries. So, t.he server
sistency at least demands to invalidate outdated caches. To avoid@" keep this semantic cache information and maintain an index [8]
invalidation of caches that are not affected by a particular update that represents |nformat|pn about.vvlhlch client c.aches which part of
one must check the relevancy of each update for each cache. It had1€ database. Asshownin([7, 11]itis then possible to check the rel-
been proven, that this can only be done on a stateful server. evance of server side updates using the index and to notify only the

This paper presents the purely database system (DBS) basedifected clients. So far, relevance checks are done within a middle-
DRUPE method for checking the relevance of server side updates ware component on top of the database management systems. This

to cached data by analyzing the intersection between modified dataappr.o.a(.:h causes unnecessarily complex information systems.
Utilizing DBSs to detect relevant updates to cached data and no-

and cached data. A non-empty intersection means that the update, . I~ S
operations are relevant to the cached data. The necessary cache d fy clients by sugh updates leads to a\(0|d|ng several applications
ayers and reducing the code complexity. The development of an

scriptions are stored in form of XML-documents inside the DBS. > S .

The paper introduces the used XML-model ¥R as well as the approach to detecting update relevancy as a DBS built-in function

relevancy proof-of-concept systenPUIME . The main contribu- 1S thﬁ main topic to be |nvr$st|gated in this paper.l d

tion of our work is that the system utilizes the DBS utilities to detect T_ IS paper presents t. e DiRE (DetectingRe evanFUp "?‘te
Easily) method for checking the relevance of the manipulation op-

update relevance, notify clients and manage the required repository —“>. . . .
of the queries issued by the clients. Hence, no additional middle- erations insert, delete and update over multi-set semantics of the

ware is required in order to realize consistency aware client/serverrelaltlonal data model. The ma|n.object|ve (.)f this method is to test
information systems, even if clients are small footprinted mobile the ypdate rglevancy using queries of relational algebrglthat check
devices. the intersection between the cached data and the modified data. A
manipulation operation is to be irrelevant to the cached data, if the
intersection is empty. Otherwise, this manipulation operation is rel-
1. INTRODUCTION evant. We introduces an XML-based model R (XML-Based
Data caching is an appropriate technique for reducing the vol- Relational Algebra) for storing queries issued by clients and the
ume of transmitted data and response times in distributed systemgnanipulation operations executed by the server. It provides XML
in general and in client/server information systems in particular. If representation for the queries and manipulation operations. This
clients are mobile devices such as mobile phones or embedded deXML representation is to be stored as XML documents in modern
vices that use wireless communications, optimizing data transmis- DBSs that must provide XML management support, such as DB2
sions also increases the uptime of the clients by decreasing their[12] and Oracle [15]. The paper highlights a proof-of-concept sys-
energy consumptions [2, 10]. However, the major drawback of tem, called WTIME (Update NdificationM adeEasy) that utilizes
caching techniques, which per se create redundant data on (mobilefhe DRUPE method and the XRAL model to develop an update
clients, is the potentiality of inconsistencies. Server side updates notification mechanism as built-in function inside DBSs that pro-
must also update the cached copies or at least invalidate them. Esvides XML management support and triggering mechanism.
pecially in information systems with many clients, such as mobile ~ The remainder of this paper is organized as follows: Section 2
information systems, it is not useful or even impossible to invali- discusses the related work. Section 3 presents an application ex-
ample used through the paper to illustrate our ideas. Section 4
gives an overview of the used query notation. Section 5 describes
the DRUPE method. Section 6 outlines the XRL model. Sec-
Permission to copy without fee all or part of this material is granted pro- tion 7 introduces the BTIME system. Section 8 presents first ex-
vided that the copies are not made or distributed for direct commercial ad- perimental results and discusses the scalability and performance of

vantage, the ACM copyright notice and the title of the publication and its UpTIME . Section 9 concludes the paper and gives an outlook on
date appear, and notice is given that copying is by permission of the ACM. fture research.

To copy otherwise, or to republish, to post on servers or to redistribute to

lists, requires a fee and/or special permissions from the publisher, ACM.

EDBT 2009 March 24-26, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

791

2. RELATED WORK bles in Figure 2 show sample dataaifiema_tatandlocation_tab

Finding irrelevant updates strongly overlaps with the theory of respectively. As they show, there are two cinemas belong to Karl-
incremental view updates [1]. In fact, cached data can be con- Sfuhe and other two belong to Bruchsal.
sidered to be a (materialized) view over a global database. Many
algorithms have been developed in order to check the relevance
or irrelevance of modifications to the global DB by comparing the (LD
queries (views) to a query that would result in the updated tuples (pLAce
on a semantic level. There are two major drawbacks with these
approaches: language limitations and the empty set problem.

The algorithms utilize the query containment problem (QCP) [3].
Therefore, they have similar limitations. In [17] it was shown that
the QCP is undecidable for arbitrary calculus queries, for arbitrary
queries in the relational algebra, and for logical query languages
[16]. However, [3] gives the proof that QPC is decidable but NP-
complete for conjunctive queries. Also, other subsets of these con- Figure 1: The ER diagram of the cinema database.
junctive queries were researched, and there are subsets with better
QCP complexity but these approaches lead to stricter restrictions to

(miD][TITI‘_E][LENG‘TH][FS‘K)

location ‘

The cinema table

the query language. , CID | CNAME | LID | HOTLINE | RATE | RENEWED_ON
The empty set problem [9] results from the fact that QPC is de- 9901 | Cineplex | 101 | 111999777 5 1999

fined on the result sets: a que@. contains a query): if, for 9902 | Filmpalast | 102 | 111888777] 6 2000

each database state, the resulfgfis a subset of the result 6J-. 9903 | City-Kinos | 103 | 111333777] 7 1993

) 9904 | zizO 101 | 111555777 2 1999

From the set theory we know, that the empty set is a subset of every

set. Therefore, if for example a delete would not delete anything The location table

(e.g. the tuples that should be deleted are not in the relation), then Iil()Dl ;t’;ﬁsil Bszff;r POS%\;ZEODE

the result would pe an empty set (that is contained gnyway). The T05 1 Karsrune | Braverst ~513T

system would notify the client about an update that did not change 103 | Karlsruhe | Kaiserstr 76131

anything.

Besides these more general researches there exist papers dediFigure 2: Example extensions of some cinema database tables
cated to the incremental view update problem. [13] consider inserts
and deletes in combination with horizontal database fragments. There-

fore, they do not allow projections. Inserts, deletes and modifica- 4 QU ERY REPRESENTATION

tions are considered in [1]. However, the approach is limited to | bile inf . licati . d
equal-joins and do not support self-joins. Algorithms that use logi- ndn:ﬁ e Itn (t)kr]matlon syst_lf_err:ws, ?pp |ctz:]t|ons.generatec(j:|l:erles an "
cal query languages typically forbid negations [4]. send them 1o the server. eretore, there 1S no need (o suppor

descriptive query languages, such as SQL. Queries are to be rep-

The solution for overcoming the limitation of a purely seman-) X .
tic relevance check is to analyze the database extension and no{esented in a useful way for storage and retrieval. The relational
algebra representation [5] is an efficient way to represent queries

only the database intension. In [9] we introduced an approach that . ;

calculates test queries based on the query predicates and the mod2Ver data stored in relational database.
ification operations. The test queries are executed on the database. P P
Their result sets show the relevance or irrelevance of the update for
the whole query. By splitting the queries into predicates it is possi-
ble to optimize the relevance check for systems with many partially
overlapping queries by testing them in parallel. However, the tests P
in [9] are based on the set semantics (SELECT DISTINCT) of the
relation algebra that is “uncommon” in most application scenarios.
Some ideas on testing update relevance under multiset-semantics
have been published in [7]. Furthermore, [6] show, that the test The query notation used in this paper is the notation of the re-
query idea can also be used for handling update relevance checkdational algebra operators, such as selection jein (), projec-

of context aware queries. However, all these approaches imple-tion (r) and renamey). Assume a mobile client issued the query
ment the update relevance test as middle-ware component but ddQCLto know the name, street, and hotline of cinemas in Karlsruhe,
not utilize the services, functions and build-in features of modern Whose postal code is 76131, where the rate of the cinema is greater

ﬂ'ctab.cnamdtab.streetctab.hotlin&gctab.RATE>4A Itab.Postal_Code-’ 76131/ (
peab(Cinema_tal dictan Lip=ttab LiD piab(lOCation_tak)))

Figure 3: The relational algebra of QCL

database management systems. than four. Figure 3 shows a relational algebr&aiL .
A relational algebra query tree might have several equivalent re-
3. AN APPLICATION EXAMPLE lational algebra trees due to the use of algebraic properties for query

)) o o optimization [5]. For example, the relational algebra expression of
The cinema database introduced in this section is used as an apthe queryQCL, shown in Figure 3, has the following predicates:
plication example to demonstrate the ideas of our work and evalu-
ate the WTIME system. The cinema database as shown inFigure1 e a selection predicat&SP), such thattab.RATHs one of the

conceptually consists of four entitiesnema, auditorium, location attributes of the previously renamed relat@nema_taband
andmovie In this paper, the used queries and manipulation opera- Itab.Postal_Codés an attributes of the also previously re-
tions are applied to the tables representing the entitremmaand named relatiotocation_tab

location These tables areinema_tabandlocation_tab The ta-
- - e a join predicate (JF such thatctab.LID is an attribute in

'based on [14] cinema_takandltab.LID comes fromocation_tab

792

e a projection predicatePP), such thatctab.cnameas well
asctab.hotlineare attributes of the relatiarinema_taband
[tab.streetis an attribute ofocation_tab

In relational algebra, selection and projection operators could be
pushed inside a join operation under certain condition [5]. We can
push a selection inside a join, since it involves only attributes of
one relation. Moreover, pushing a projection operation inside a
join requires that the result of the projection contain the attributes
used in the join. Figure 4 shows an equivalent relational algebra
expression for the one shown in Figure 3 according to the algebraic
properties for query optimization.

(7Tclab.cnamectab.hotlinectab.LI D(O'ctab.RATB 4 (pctab(Ci nema_tab))))
Pctab.LID=ltab.LID
(Wltab.streeLIlab.LlD (Ultab.PoslaI_Code/ 761317 (Pltab (location_tab))))

Figure 4: An equivalent relational algebra for the QCL query.

In order to support our method for detecting relevance update,
it is more efficient to store queries in the form of a set of relations
restricted to specific rows and attributes and a set of join predi-
cates. Therefore, it is assumed that queries are to be generated b
an application in such form. Generally, any SQL query could be
mapped into relational algebra expression, such that the selection
and projection operation are pushed inside the join operation. Con-
sequentially, we can easily utilize our method with several mobile
information systems, in which relational data is queried by mobile
clients.

MO1 | insertinto cinema_tab(cid,cname,lid,hotline,rate,renewed_on)
valueg9905, 'Cineplex’,102,'111333888',7,2004);

MO2 | delete fromcinema_talwhere CID = 9903

MO3 | update cinema_talset hotline =’0721-2059-333Where cid = 9902

MO4 | update cinema_tab set RATE =whererenewed_on = 1999

MO5 | update cinema_tab set LID = 100here renewed_on < 2000

Figure 5: Manipulation operations over cinema_tab

In the example scenario it is assumed that the server is to ex-
ecute several manipulation operations ovigrema_tab The first
operation inserts a new cinema, whose id, name, hotline, rate are
9905, Cineplex, 111333888 and seven, respectively. This cinema
is located in Karlsruhe and was renewed in 2004. The second op-
eration deletes the cinema tuple, whose id is 9903. The third oper-
ation modifies the hotline of the cinema tuples, whose id is 9902,
to 0721-2059-333. The fourth operation updates the rate of the
cinema tuples, which were renewed on 1999, to seven. The fifth

operation relocates the cinemas, which renewed before 2000, to a

location with the id 101. Figure 5 depicts the SQL DDL statements
corresponding to these manipulation operations.

5. DRUpE: A METHOD FOR CHECKING
UPDATE RELEVANCY
The DRUPE ? detects the relevance of insert, delete and update
operations over multiset semantics of the relational data model.

The main idea is to check the intersection between modified data
and cached data, which is a result of specific queries. A non-empty

intersection means that the update operations are relevant to cached

data. The method retrieves the data of the intersection using a
query/queries constructed from the manipulation operations and the
queries, whose result is cached on at least one client.

5.1 Test the relevance of inserts

We use the SQL insert construcNSERT | NTO rel ati on
(col uml, [colum?2,]) VALUES (val uel,
[value2, ...]) for adding a new tuple into a relation. The
number of columns and values must be the same. If a column is not
specified, the default value for the column is used.

Data to be cached after insertion (D1)

Cached Data I
(Query Results) () Inserted Data

Figure 6: The effect of an insert operation on cached data.

Figure 6 illustrates the effect of an insert statement on the cached
data. That effect is represented by the intersectid) between the
inserted data and the cached data. The data that belongs to the in-
tersectiorD1is data to be considered in the result of queries issued
previously by mobile clients. Therefore, the insertion is a relevant
manipulation operation, if the intersecti@1 is not empty. Con-
sequentially, the mobile clients should be notified to update their
cached data. The intersection is to be not empty if and only if the

Yew inserted tuple is matching the selection and join predicates of

a query regardlesshe content of the projection predicate.

Assume the insert statemeM@1), shown in Figure 5, is to be
executed on the server. The intersectidncould be retrieved using
a relational algebra query constructed from the insert statement,
MO, and a query whose result is cached on at least one mobile
client. For example, the intersectidl of the data inserted by
MO1 and the cached data produced by the qu@GL could be
retrieved by the quer@Ins:

07> 4 Altab.Postal_Code=’76131/ A102=ltab.LID (pian(location_tab))

The selection predicate @Insis constructed as follows:

e 7 > 4 results from the selection predicate of the qu@GL
by replacing the attributRATEwith its corresponding value
in the inserted tuple of the operation numi®1 shown in
Figure 5.

102 = ltab.LID is constructed from the join predicate@QE€L
by replacing the attributetab.LID with its corresponding
value in the inserted tuple of the operation numbMD1
shown in Figure 5.

Itab.Postal_Code=" 76131 is the rest of the selection pred-
icate of QCL and associated with the un-manipulated rela-
tion(s), in this casécation_tab

The general algorithm to check whether the relevance of an in-

sertion is as follows: If the modified relatidlR was not queried

by at least one client, then this insertion is not relevant to cached
data. Otherwise for each queBQ retrieving data fronMR do:

1. ifthe attributes of the selection predicate or the join predicate
do not have a value in the insert statement, then this insertion
is not relevant to cached data.

2. else construct from the selection predicate€Qf new se-
lection predicatedlSP1by replacing the attributes with their
corresponding value in the insert statement, then map the join
predicates o€Qinto selection predicatd$SP2by replacing

the attributes with their values in the insert statement.

2the acronym stands fdbetectingRelevantUpdateEasily

793

3This only holds for the multiset semantics of the relational alge-

bra.

3. construct a query by removingR from the original query e else for each quer€Q retrieving data from the relatioMR

issued by a mobile client and replacing the selection and join do

predicates related tMR with the new selection predicates .

NSP1andNSP2to check the intersectionl. 1. construct a query by adding the WHERE clause of the
delete operation to the selection predicate of the query

4. if the result of the constructed query is non empty result, re- CQ to check the intersection.

turn the ID of the client who issues the quep. 2. if the result of the constructed query is non empty re-

sult, return the ID of the client who issues the quegy
5.2 Test the relevance of deletes to be notified.

We use the SQL delete constri@ELETE FROM r el ati on
[WHERE condi ti on] for removing rows from a relation. Any 5.3 Test the relevance of Updates

row that matches the WHERE condition will be removed from the A SQL update statement changes data of one or more rows in

relation. a relation. Either all the rows can be updated, or a subset may be
chosen using a condition. The update statement has the following
Date to be removed after insertion (D1) form: UPDATE rel ati on SET col unmName = val ue [,
columNanme = value ...] [WHERE condition].
Cached Data A
(Query Results) < Deleted Data Data to be modified Data to be modified
after the update (D1) by the same value (D2)

. . Nz
Figure 7: The effect of a delete operation on cached data. F Updated Data

Figure 7 illustrates the effect of a delete statement on the cached
data. That effect is represented by the intersectidh) petween
the deleted data, which matches the WHERE clali§€dauseand)))
the cached data, which represents queries results. The data that be- 1h€ update statement might update attributes belonging to se-
longs to the intersectiob1 is data to be removed from the result ~ [€ction, join or projection predicates of queries, whose result is
of queries issued previously by mobile clients. Hence, the dele- cached on at least one mobile client. If the update statement mod-
tion is a relevance update operation, if the intersecBdnis not ifies the value of attributes pelonglng to projection predicates only,
empty. Consequentially, the mobile clients should be notified to that means no new data will be considered as a part of a query re-
update their cached data. The intersection is to be not empty if andSult nor no part of the cached data will be removed. However, part
only if the deleted rows match the selecti@? and join gP) pred- of the cached data might be modified. _
icates of a query regardless the content of the projection predicate. Figure 8 illustrates the effect of the previous case. That effect is
The data of this intersection is to be retrieved by a query that picks "éPresented by the intersectioi¥l(andD2) between the updated
rows matching thaVClauseof the deletion and the predicaBP data, which matches the WHERE clais€lause and the cached

Figure 8: The effect of updating a projected attribute.

andJP of the query. data, which represents queries results. The data belongs to the in-
Assume the delete stateméMO2, shown in Figure 5, is to be tersectionD1 is data to be updated by new values, and this data
executed on the server. The interseciihcould be retrieved us- 1S part of a result of queries issued previously by mobile clients.

ing a relational algebra query constructed from the delete statement! "€ data belongs to the intersectib is data to be updated by
and a query whose result is cached on at least one mobile client. Foth® same values, and this data is part of a result of queries issued
example, the intersectidd1 of the data deleted bylO2 and the previously by mobile clients. Therefore, the update operation in

cached data produced RCL could be retrieved by the que@D: this case is a relevance update operation, if the interseBtiois
not empty. Consequentially, the mobile clients should be notified

to update their cached data. The intersecbdris to be not empty

Octab.CID = 9903 A ctab.RATE> 4 A ctab.Postal_Code=" 76131’ h .
if and only if the updated rows:

P1 P2
(petab(cinema_tab bciab L= rabLi pran(location_tal)) e match the selectiorS§P) and join (P) predicates of a query,
The queryQD consists of the selection predicat®sl) andP2), and
and a join predicat&can.Lip = tab.Lip SUCh that:P1is the WHERE e are modified with new values.
clause of the delete stateme®? and the join predicate are the
selection predicate and join predicate of the quU@GL. The data of the intersectiddl is to be retrieved by a query that

Before deleting the rows matching the WHERE clause, we check picks rows matching th#VClauseof the update operation and the
whether the result of the que@D is empty or not. If the resultis Selection predicat&P and JP of the query, and the updated at-
not empty, then the deletion is a relevant manipulation operation, tributes are to be modified by new values.
and the clients issuing the queries, which retrieve data from the ~Assume the update statemeMQ@3), shown in Figure 5, is to

modified relation, should be notified. be executed on the server. TREO3 statement is an update state-
The general algorithm to check whether a delete operation is rel- ment that modifies the attrioute HOTLINE, which is projected in
evant to cached data or not is as follows: the queryQCL shown in Figure 3. The intersecti@i could be re-

trieved using the relational algebra qu&ly constructed from the
¢ if the modified relationMR was not queried by at least one update statement and a query whose result is cached on at least one
client, then this deletion is not relevant to cached data. mobile client. The result of the queQU is to be checked before
executing the update operation. For example, the intersebtlon
e else if the delete statement does not have a WHERE clause,of the data updated bylO3 and the cached data produced by the
then this deletion is a relevant manipulation operation, queryQCL could be retrieved by the que@QU:

794

O ((ctab.cid=9902 A —(hotline=/ 0721 —2059—333')) ° the. preyious two pr.edicate.s f@1l and D3 are added as a
Actab.RATE> 4 (ctab.Postal_Code’761317)) disjunction composite predicatd){ or D3).

(petan(cinema_tah betan Lib=tab.LiD piab(lOCation_tal) . .
Regardless the existence of cd32 the relevancy will not be af-

QU is produced by adding the selection predicates (ctabeid fected, but it is important to check that data is only in categories
9902 A —(hotline =’ 0721 — 2059 — 333')) to QCL, such that: D1 or D3 as it has been detected in the previous selection predi-
ctab.cid = 9902 is the WHERE clause of the update statement, Cates. o)
and—(hotline =" 0721 — 2059 — 333') means that the value of the Assume the update statem&hO5, shown in Figure 5, is to be
attributeHOTLINE is to be changed to a new value, as the query €xecuted on the server. The statement is an update statement that

QU is to be executed before the update Operation_ modifies the attributé.ID, which is used in a jOin predicate. The
intersectiorD1 between the data updated MO5 and the cached
Data to be deleted Data to be remained Data to be added data produced by the que@could be retrieved by the quems

after the update (D1) after the update (D2) after the update (D3)

Cached Dat A S
(Query Results) (@) Updated Data

Figure 9: The effect of updating a selection or join attribute. VN

OQ « OctabRATE 4Actab.Postal_Code’ 761317 (Petab(CiNema_tab
Mctab.LID=ltab.LID Piab(lOCation_tah)
IDV — 7TCID,c‘,inema_tab.LIIZ(OQ)
IDN «— (Orenewed_or2000 (petab(Cinema._taf)
Mctab.cip=ipv.cio (IDV)
— opvup=101 (IDV)

all
There are three categories of intersection in the case that the D1 < moneoono (IDN) (7 mvnciovnio(VN)
update statement modifies attributes belonging to selection or join OQis the selection and join predicates of the original quiDy/
predicates. Figure 9 shows these categories, which are: is the ids of the cinema picked in the query result and the LID

e Category D1): Data to be deleted after the update , because values participated in the joinDN contains the rows satisfy the

changing attributes used in selection or join predicates might UPdate where clause and exist in the result of the queryNIis
lead to un-matching. nonempty that means the new value, 101, assigned to the attribute

used in the join predicate is not in the values succeed to joih.

o Category D2): Data to be remained after the update, al- will contain any updated row, which was considered in the query
though the attributes used in selection or join predicates have result, and because the new value is not one of the values joining
been changed, they are still matching the selection and join with the rows from other table(s) the row is to be removed from the
predicates. query result.

« Category D3): Data to be inserted after the update, the change . Moreover, the intersectiod3 of the data updated YOS5 and
leads to matching this data with the selection and join pred- (e cached data produced by the qu@GL could be retrieved by

; ; ; : the queryQU4:
icates, so this data is to be considered as a part of the quer .
result. P EYTININTT TCID cinema_tab.Lid CiNeMa_tab — IDV
.)) CRW < 0 (renewed_or2000) A (RATE>4) (CiNEMa_tab
The update operation should be considered as a relevant manip- ya — opvLib=101) (IDV)
ulation operation if and only if categori@&sl or D3 have occurred. WN «— CRWixicrwcinoniv.cio NIN

In categoryD2, the update should not be considered as a relevant D3

w WN) N 7 VA
update, because the data is already cached at the client side, and — mwncownup(WN) (T maciovauo(VA)

there is no need to modify it. NIN contains the rows that were not picked in the query result.
Assume the update statement MO4, shown in Figure 5, is to be CRWocontains the updated rows that at the sametime satisfy the se-

executed on the server. It modifies the attribR&TE which is lection predicates of the query associated to the updated relational.

used in a selection predicate of the quL shown in Figure 3. In this example there is only one selction predicate relatexrto

The intersectiorD1 could be retrieved using a relational algebra €Ma_tab which isRATE >4 If VAis nonempty that means the
query constructed from the update statement and a query whose€W value,_ 101, assigned to the attr_lbute used in the join predicate
result is cached on at least one mobile client. For example, the IS a@lready in the values succeed to joiWN contains the updated
intersectionD1 of the data updated bylO4 and the cached data fOWS that were not in the query result and at the sametime satisfy

produced by the quer@CL could be retrieved by the queU2: the selection predicates of the query over the updated reldd8n.
contains the updated rows that are to be considered in the query re-

sult after the update because the new updated value will join these
rows with the rows picked by the rest of the query.
The general algorithm to check whether an update operation is

The queryQU2 is constructed by adding the following selection ~"elevant to cached data or not is as follows:
predicates tQCL: e if the modified relationMR was not queried by at least one

e (ctab.renewed_or- 1999) is the WHERE clause of the up- client, then this update operation is not relevant to cached
date statement. data.

O ((ctab. renewed_on=1999) A (((ctab.RATE > JA—(7>4))
\/(ﬂ(ctab.RATF>4)/\(7>4)))/\(ctab.RATF>4/\ctab.PostaI_Code’76131’))
(petan(cinema_tab betan Lib=tab.LiD piab(lOCation_tal)

e ((ctab.RATE> 4) A =(7 > 4)) means this row will not be
a part of the query result after the update, but it was a part of
the result before the update, categbd. The value 7 is the
new value assigned to the attriblRATEby MO4 and

e else if the update statement does not contain any attribute
used in a selection, join, or projection predicate of a query,
whose result is cached on at least one mobile client, then this
update is irrelevant update operation.

o (—(ctab.RATE> 4) A (7 > 4)) means this row was not a
part of the query result before the update and will be a part e else if the update statement contains only attribute(s) used in
of the query result after the update, categbBy a projection predicate, then for each quKIQ:

795

1. construct a query by adding the WHERE clause of the A

update operation and the negation of the update SET query
clause to the selection predicatekdd to check the in-
tersectiorD1.
2. ifthe result of the constructed query is not empty, return aetlt?irgﬁtr: o _ A
the ID of the client who issueldQ to be notified. sequence O relations lojns
e if the update statement contains attribute(s) used in a selec- ggﬁlﬁm 0 l.n 1
tion predicates, then for each qué<®: mandatory 1
multiplicity 1.. relation jpredicate

1. construct a query, whose selection predicates are the
selection predicates matching categbryor D3.

0

2. ifthe result of the constructed query is not empty, return

the ID of the client who issuelQ to be notified. name rename selection projection
e if the update statement contains attribute(s) used in a join i

predicates, then for each quefQ: N

1. construct two queries, whose selection and join predi- spredicate attribute
cates are matching categdpyl or D3, respectively .

2. if the result of at least one of the constructed queries 19ure 10: The XML Schema of a relational algebra query.

is not empty, return the ID of the client who issued the
queryKQ to be notified.

predicateUDT
6. XReAl: AN XML-BASED MODEL FOR
QUERIES AND MANIPULATIONS mandatory 1
XREAL * provides an XML-based model for queries issued by simplePredicate compositePredicate
mobile clients and manipulation operations, which are to be exe-
cuted by the server. The X#AL model consists of three main com- 1 1 1 1

ponents,mobile clienf query and moperation The mobile client

. . . . attribute operator operand i junction Ipredicate
component represents a particular mobile client and its contextual P rpredicate junction 1P
information. The details of thenobile clientcomponent is outside
the scope of the paper. Tlygierycomponent represents a specific Calle alribute

query issued by a mobile client in the form of relational algebra, as

discussed in Section 4. Figure 11: The XML Schema of the predicateUDT type.
The XReAL specifications are to be stored and retrieved using

modern DBSs, which is utilized to manage the data at the server.

That means on the one hand the management of mobile queries and .

relevant functions, such as detecting update relevancy, is to be inte-Of the relation . Theenameelgment denotes the tgmporally name

grated into and supported by the relational DBS. On the other hand, used to refer to the relation in the_ query. Téuéectloneleme_nt IS

the mobile query management is moved from the application layer composed of a sequence ofspredlca}teelement of typeredica-

to the database layer. The ¥RL specifications for queries and teUDT. The projectionelement consists of a sequence of at least

manipulation operations assist in developing a mechanism for de- oneattributeelement of typattributeUDT.

tecting the update relevancy and notiying mobile clients as a DBS th Thle prechatelfDJty(s)_e |a comple>_<t t)lgped(_:omposded .Oft 0(;‘? of
built-in function. This mechanism generates the test queries for- e elementsimplePredicater compositePredica@s depicted in

malized by the DRWE method by querying the XBAL specifi- Figure 11. T.hesimpIePredicatelement consistg ofa sequence of
cations. elementsattribute, operatorandoperand Theattributeelement is

of typeattributeUDT.
6.1 The XReAl Model for Queries Theoperatorelement is of typéogicalOperatorUDT, which is a
The XReEAL model formalizes a relational algebra query as a simple type that restricts the token datatype to the values (eq, neq,

queryelement that consists of two attribut€3D andMCID, and :t’ Itet(ﬂ]’ gt,lzindgtJ:]eQ. Respe::tlvely,t thfg refer (th equtal, tnhot equal, |
a sequence of elementglationsandjoins. Figure 10 shows the essthan, less than or equal, greater than, and greater than or equal.

XML schema of thequery component. Th&ID attribute repre- Ttrtle.t())pterfilrnhdelelmenlt IS coTp?s%d of oge (.)tLtheleI?.memEJgprt
sents a query identification. THACID attribute represents the _?_h” ‘:t?b tevla ueete_mtenbls 0 gufq‘tﬁ P Wi sed(_ec |ton predicates.
identification number of a mobile client that issued the query. A eatinbuteelement Is 1o be used with join predicates.

query might access only one relation. Thereforguaryelement The compqsntePrgdlcqtelement cqn5|sts of a sequence of el-
contains at least elationselement and might hasjains element. ements,rpredicate, junctionand lpredicate The rpredicate and

Therelationselement is composed of a sequence of at least one Ipredi.cateelements. are of typﬂredicqteUDT Qonseqqentially, the
relation element. Theelation element consists of an identification rpredicateandipredicateelements might consists of simple or com-

attribute, calledRID, and a sequence of elementame, rename, posite predicate. Thgnction element is of typgunctionUDT,

selectionsandprojection The nameelement represents the name which is a simple type that restricts the token datatype to the values
(andandor).

4the acronym stands fotML-BasedRelational Algebra The attributeUDT type is a complex type composed of an at-

796

tribute, calledofRelation and a sequence of elementame isIN-
Resultandrename The ofRelationattribute represents a relation
ID, to which the attribute belongs. Theameelement denotes the
name of the attribute. ThisINResultis an optional element that
determines whether the attribute is projected in the final result of
the query or not. Theenameelement represents the new name
assigned to the attribute in the query.

moperation
1 ¢ 1

IStatement UStatement

DStatement

IID ReceivedAt

DID ReceivedAt
fl

- set
rmame attributes name

where
where

optinal
mandatory
multiplicity

element A

1. attribute O
sequence O

attribute choice [_J
O edge 7
1

1.

avalue n

Figure 12: The XML Schema of the manipulation operations.

6.2 The XReAl Model for Manipulations

The XReAL model formalizes manipulation operations with re-
spect to the manipulation operations in the SQL language. A ma-
nipulation operation might be an insert, delete or update operation.
Figure 12 shows the XML schema of theoperationcomponent,
which might consists of onéStatement, DStatemerdr UState-
ment The IStatemenelement consists of attributedD and Re-
ceiveAt and a sequence of elementsameand attributes The
rname element represents the name of the manipulated relation.
The attributeselement represents the attributes of the inserted tu-
ple and the corresponding value for each attribute. D&&atement
element consists of attributeB|D andReceiveAtand a sequence
of elementsrnameandwhere Thewhereelement is of typgred-
icateUDT. TheUStatemenglement consists of attributdg|D and
ReceiveAtand a sequence of elementsame, seandwhere The
whereelement is of typgredicateUDT Thesetelement is of type
simplePredicatend restricted to use an equal operator only. It is

<query QID="QID1" MCID="MC101"> < operator>eq</operator>
<relations> <operand>
+<relation RID="RID01"> <attribute
+<relation RID="RID02"> ofRelation="RID02">
<Irelations> <name>LID </name>
<join> <[attribute>
<jpredicate> </operand>
<simplePredicate </simplePredicate
<attribute ofRelation="RID01% <ljpredicate>
<name>LID </name> <ljoin>
</attribute> <lquery>

Figure 13: The XREAL specification of the QCL query.

<relation RID="RID0O1"> <projection>
<name>cinema_tak:/name> <attribute>
<rename>ctab</rename> <name>CNAME </name>
<selection> </attribute>
<spredicate- <attribute>
<simplePredicate <name>HOTLINE </name>
<attribute> </attribute>
<name>RATE</name> <attribute>
</attribute> <name>LID </name>
<operator-gt</operator> </attribute>
<operand> </projectior>
<value>4</value> <Irelation>
</operand>
<IsimplePredicate
</spredicate-
</selection>

Figure 14: The XReAL specification of the relation RIDO1.

The operations over the relations, whose IDsRI201andRID02,
precede the join operation.

Figure 15 illustrates the XRAL specification for the insert oper-
ation shown in Figure SStatemenof the insert operation consists
of attributes,|ID whose value 143001 andreceivedAtthat deter-
mines the receipt time. There are six elements of ptpgbutethat
specify the name and value of an attribute, suciCH3 and 9905
for the first attribute of the insert statement.

Figure 16 illustrates the XRAL specification for the delete op-
eration shown in Figure 5.DStatemenibf the delete operation
consists of attributedDID whose value iD5001 and receivedAt
that determines the receipt time. There iglaereelement under
DStatementhat formalizes the where clause of the delete state-
ment, which isCID = 9903.

Figure 17 illustrates the XRAL specification for the update op-

assumed that the update statement is to modify only one attribute€ration shown in Figure 5.UStatemenbf the update operation

at atime.

6.3 An Example

Itis assumed that a mobile client, whose IDME101, issued the
query QCL shown in Figure 4. Figure 13 illustrates an overview
of the XReAL specification for the quer@CL. This specification
consists of ajueryelement. The query ID iQID1. There are two
relations ¢inema_taband location_tal), whoseRIDs are RID01

and RIDO2 respectively. These relations are joined together using

one join predicate, which is RID01.LID = RID0O2.LID.

Figure 14 illustrates the XBAL specification for the relation,
whose ID isRIDOL This specification consists of relation el-
ement. The name of the relation émema_tab and its rename
is ctab. There is a selection operation over the relation, which is
RATE > 4 There is also a projection operation that picks the at-
tributes CNAME HOTLINE and LID. The order of the elements
indicates the order of the operations. In the relation whose ID is
RIDOY, the selection operation precedes the projection operation.

797

consists of attributed)ID whose value i2J7001 and receivedAt
that determines the receipt time. Thetelement formalizes the
set clause of the update statement, whicRASTE = 7 Thewhere
element ofUStatemenformalizes the where clause of the update
operation, which iRENEWED_ON = 1999

7. UptiME: A MANAGEMENT SYSTEM

FOR QUERIES AND CACHES

This section presents a proof-of-concept system, calledME
(Update NaificationMadeEasy), that utilizes DBSs as a base for
managing queries and caches in mobile information systems. New
sub-systems must be introduced to DBSs to support the manage-
ment of mobile databases. Detecting update relevancy and notify-
ing clients by such updates are examples of the new required sub-
systems. BTIME utilizes the DRWE method and the XRAL
model to develop an update notification mechanism as a built-in
function inside DBSs that provides XML management support and

<IStatement IID="13001" Zattribute> <UStatement UID="U7001" receivedAt="2008-09-12T11:34:27"'
receivedAt="2008-09-12T11:34:2%" <aname>HOTLINE</aname> <rname>cinema_tak</rname>
<rname>cinema_tak:/rname> <avalue>111333888& /avalue> <set>
< attributes> </attribute> < spredicate-
<attribute> <attribute> <simplePredicate
<aname>CID</aname> <aname>RATE</aname> <attribute>
<avalue>9905</avalue> <avalue>7</avalue> <name>RATE </name>
</attribute> </attribute> </attribute>
<attribute> <attribute> < operator>eg</operator-
<aname>CNAME </aname> <aname> <operang>
<avalue>Cineplex<favalue> RENEWED_ON</aname> <value>7</value>
<lattribute> <avalue>2004< /avalue> </operand>
<attribute> </attribute> <IsimplePredicate
<aname>LID</aname> </attributes> <Ispredicate-
<avalue>102</avalue- </IStatement- <Iset>
</attribute> <where>

<spredicate-
<simplePredicate

. " . . <attribute>
Figure 15: The XREAL specification of the operationMOL1. <name>RENEWED_ON</name>
<lattribute>
<DStatement DID="D5001" receivedAt="2008-09-12T11:34.27" < operator>eq</operator>
<rname>cinema_tak</rname> <operang>
<where> <value>1999</value>
</operand>

<spredicate-
<simplePredicate
<attribute>
<name>CID </name>
</attribute>
< operator>eg</operator>
<operang>
<value>9903</value>
</operand>
<IsimplePredicate
</[spredicate-
<I/where>
</DStatemert

</simplePredicate
<Ispredicate-
</where>
</UStatement

Figure 17: The XREAL specification of the operationMO4.

The Application Layer
[Mobile Client } {
Manager

Query Manipulation
Manager Manager

The DBS Layer

‘Update Notification| XReAl Repositor
. Mechanism || * information of Mobile Clients
‘| * Encoded Mobile Queries Relational Data of
* Encoded Manipulation Operations | | A Specific Application
* Update Notifications

Triggering
Mechanism

Figure 18: The conceptual architecture of the UptiME System.

Figure 16: The XREAL specification of the operationMO2.

triggering mechanism. The following sections discusses the con-
ceptual architecture of therTIME system and the use of the DBSs
utilities for supporting the repository of the XA L specifications
and an update notification mechanism.

. The XREAL model is used to encode manipulation operations to
7.1 A Conceptual Architecture be stored into the XRAL repository.

The UpTIME system provides management support for the con- TheDBS Layemainly supports the management of the &R
textual information concerning clients, queries issued by these clientpository, detecting and notifying clients, whose cached data is af-
and manipulation operations that are to be executed by the serverfected by manipulation operations. The XRL repository stores
Moreover, update notification is one of the main functionality of XREAL specifications, such as contextual information, queries and
UPTIME in order to preserve the consistency of the database. Fig- manipulations, and notifications that should be sent to specific mo-
ure 18 depicts the conceptual architecture efftME that consists bile clients. Furthermore, the database of a specific application do-
of two main layers, thé\pplication LayerandDBS Layer main, such as the cinema database, is to be managed witli®e

The main functionality of thépplication Layeris to communi- Layer. UPTIME extended DBSs, which provide XML data man-
cate with external entities, such as mobile clients, and to prepareagement and triggering mechanism, to react as a mobile database
the contextual information, queries and manipulations to be man- system.

aged by thddBS Layer The functionality of theApplication Layer .
AR y) o f 7.2 The XReAl Repository

are provided through three sub-systerwmbile Client Manager
UPTIME utilizes the modern DBSs, which provide XML man-

Query ManagendManipulation Manager.

Mobile Client Manageris responsible for registering, unregis- agement support such as DB2 [12] and Oracle [15], to provide a
tering a client and formalizing the contextual information of the repository for storing the XRAL specifications and update notifi-
client using the XRAL model. The main duties duery Man- cations. The XRAL repository is based on a relational database
ager include receiving queries from the registered clients, formal- schema, in which XML type is supported to store well-formed and
izing the query using the XBAL model, registering it, reply to validated XML documents.
client queries, and unregistering queries. There is a need to register Figure 19 depicts the database schema of the XRrepository.

a query if the client is going to cache the query result. As soon The schema consists of four fundamental relatiomdjent, query

as a client decides to delete cached data extracted from specifiomanipulation and notification A manipulation operation might
queries,Query Managershould be informed to unregister these cause natification(s) to be sent to mobile clients issuing queries,
queries from the systenManipulation Managettakes the respon- ~ whose cached result intersects with data affected by the manipula-
sibilities for formalizing and registering manipulation operations. tion operation.

798

[0.N]

fesues>—L sert statements based on the DFLmethod, as discussed in Sub-
section 7.4. The generation process is impleneted using XQuery
[18] queries executed by the DBS. Generating a non-empty list
means that there is a chance of detecting a client, whose cached data
is to be affected by the operation. Thé@PDetectivexecutes the
SQL insert statements, which are base®&LECTstatement that
might return a tuple to be inserted into thetificationtable. After
executing safely the generated SQL insert statemé8RDetective
executes the manipulation operation, which is to be executed also if
the generated list is empty. FinalJSPDetectivehanges the sta-
Figure 19: The ER diagram of the XReAl Repository tus of the manipulation operation to be test€jl All these actions
are processed as a part of the transaction of inserting a manipula-
]]]] tion operation into thenanipulationtable. JSPDetectivénandles
The relations,mclientand query, consist of a primary key at- these actions a one sub-transaction, all or nothing. For simplicity,
tribute MCID andQID) and an attribute of XML typeNICINFO the exception handling is ignored in Figure 20.
andQTreg. Each manipulation operation has an identification num- The trigger attached to thetificationtable invokes a Java stored
ber and is classified into three typéssert, deleteandupdate The procedure, calledSPNotifier after inserting new tuple(s) W8P De-
attributesMalD and Typestore the identification number and the tective For each new tupldSPNotifiersends a SMS to the clients,

type of an operation. The both attributes represent the primary key whose cached data affected by the manipulation operation.
of the relation. Manipulation operations are classified also into two

status newl) or tested T) operations. Th&tatusattribute repre- 7.4 SQL Templates for the Insert Statements
sents the status of an operation. The time at which the operationis |y case a manipulation operation modifies a specific table, which

received is to be stored_into theceived_agttribute. ThdSTMT, is used in several querigsQi, there is a probability that several
DSTMTand USTMT attributes are of XML type and store XML rqws are to be added to tmetificationtable. These rows are to be
documents representing XRL specification foinsert, deleteor added if and only if there is an intersection between the result of
update operations respectively. The content of the attributes of cQj and the modified data. This intersection is to be determined
XML type is to be validated by the XML schema of the XRL using a SELECT statement, call@&ST returning the number of
model. _ _ _ picked rows. ThiFESTstatement is based on the DRE/method.

The notificationrelation consists of the attributelCID, QID,
(MalD, Typg anddetected_athat represents the time at which the Insertinto NOTIFICATION
notification is detected. The tuples of thetificationrelation are selectMCID?, QID?, MalD?, Type? current timestamp
to be inserted as a result of testing the intersections between cached m@rsgslbm'syw“mmyl
and modified data, as it is discussed in the following sub-section. (aSQL query that

) .) . is generated according to the DRE) method

7.3 A Trigger-Based Notification Mechanism and returns the number of picted rows usiugnt(*))

UPTIME utilizes the triggering mechanism provided by DBSs
to develop an update notification mechanism as a built-in func-
tion of DBSs. The update notification mechanism ¢fiuME de-
tects the relevancy of upadtes (manipulation operations) and noti-
fies clients caching data affected by such updates. Figure 20 depicts OTXQUERY
a flowchart diagram of the update notification mechanism pf U 02 <ListOFInsertions>
TIME . This mechanism is based on two triggers created over the | 03{

; ; o 04for SMSTMT in
manipulationandnotificationtables. 05 db2-f:sglquerf"SELECT IT.ISTMT FROM XREAL_INSERTIONS_TAB

Figure 21: A generic SQL template for the insert statements.

06 AS IT WHERE status = 'N™)//IStatement
Inser((];g;{gﬁulanon 07return '
A Java Stored Procedure 08 <Insertions caused_by_MalD="{$MSTMT//@IID}*
called by a trigger after inseting 09 {

tuples into the manipulation table:

10 for $query in

11 db2-fn:xmicolumriQUERY.QTREE’)

12 Illquery[//relation/name="{$MSTMT//rname/text()}"]

13 return

14 <InsertionDDL>

15 Insertinto NOTIFICATION

16 select {$query/data(@MCID)}, '{$query/data(@QID)},
17 {$MSTMT//data(@IID)}, 'I", current timestamp

18 from sysibm.sysdummy1

T
|
A Java Stored Procedure
Has ne called by a trigger after inseting 19 where 0 <
tuples. tuples into the notification table 20 (
YES 21 e
I it updats Notify mobile clients cited .
relevant update e e s 22) </InsertionDDL>

23} </Insertions>
24} </ListOFInsertions>

Change the status
to tested 'T"

execlaled Execute the insert

Figure 20: A flowchart of the UPTIME notification mechanism.

The trigger attached to theanipulationtable invokes a Java Figure 22: A generic SQL template for the insert statements.
stored procedure, callediSPDetectiveafter inserting a new tu-
ple representing a manipulation operatidi&PDetectivestarts by The structure of the generated insert statement consists of two
generating for each new manipulation operation a list of SQL in- dynamic parts. The first part is the row that probably will be added

799

if and only if the TEST statement returns a positive result. This |4 B
. . select count(*) select count(*)
row is added usm@ELECTstatement over a du_mmy tab_le- The from the relations of the query from cinema_tab as CTAB,
SELECTstatement includes a where clause, which consists of one where location_tab as LTAB
predicate. This predicate checks that zero is less than the number of| ((‘(’Vhe’e
rows returned from a specifilESTstatement generated dynamicly the where clause of the delete (
according to the relevant DRRE test. Intuitively, The second part) CID = 9903
is theTESTstatement. and é
an
- - the selection and join predicates) (
<ListOFInsertions- b B . CTAB.LID = LTAB.LID and
<Insert|on§ caused_by_MalD="XXXX> Postal_Code ='76131' and
 SinsertiondDL RATE>4))

+<InsertionDDL>

</Insertions>
</ListOFInsertions- Figure 25: A) a SQL template for the delete, B) an example.
A B
Figure 23: The result of the XQuery. select count(¥) select count(*)
from the relations of the query from the relations of the query
where where
((
A B
select count(*) select count(¥) the where clause of cid = 9902
from the relations of the query from location_tab as LTAB the update operation and
except the modified relation | where and not (hotline ='0721-2059-333')
where (102 = LTAB.LID and the negation of the set clause)
(The selection and join 7>4and of the update operation and
predicates according to Postal_Code ='76131"))
DRUPE method for testing and CTAB.LID = LTAB.LID and
an insert operation) (Postal_Code ='76131" and
the selection and join RATE > 4))
predicates of the query))

Figure 24: A) a SQL template for the insert, B) an example.

Figure 26: A) SQL template for an update operation modifying
Figure 21 depicts the general structure of the insert statementa projected attribute, B) an example.
used to detect clients, whose cached data affected by a manipula-
tion operation. The SELECT statement shown in Figure 21 returns
specific values for the client ID, query ID, manipulation ID and from the tables used by th query, and a where clause constructed by
type, and the time at which this row will be added to the notifica- adding conjunctively the where clause of the delete operation to the
tion table. SYSIBM.SYSDUMMY1 is a dummy table provided by selection and join predicates of the query. Figure 25.B shows the
DB2 to be used for SQL statements, in which a table reference is TESTstatement for checking the relevancy of the delete operation
required but the contents of the table are not important. shown in Figure 16 on the queCL shown in Figures 13 and 14.
Figure 22 shows the query formalized using XQuery to generate As shwon in Figure 25.B, the where clausaid = 9903) of the
an insert statement for each manipulation operation, whose statusdelete operation is added to the selection and join predicates of the
is new (\), and queries, which use the modified table. Lines 15-19 QCL query.
in Figure 22 shows the generation of the first dynamic part of the The SQL template of aESTstatement for an update operation
insert statement. XREAL_INSERTIONS_TAB is the physical ta- modifying a projected attribute is shwon in Figure 26.A. The tem-
ble representing the manipulation relation shown in Figure 19 for plate consists of a SQL selecting from the tables used by th query,
the insert operation. The generic result of this XQuery is illus- and a where clause constructed by adding conjunctively the where
trated in Figure 23. The result is an XML document that consists clause of the update operation and the negation of the set clause to
of a list of insert statements caused by a speific manipulation op- the selection and join predicates of the query. Figure 26.B shows
eration. JSPDetectivafter executing the XQuery executes these the TESTstatement for checking the relevancy of the update oper-
insert statements. ation numbeMO3 shown in Figure 5 on the que@CL. As shwon
Figure 24.A depicts a SQL template for an insert operation. The in Figure 26.B, the where claus€ID = 9902) and the negation
TESTstatement for the insert operation consists of a SQL selecting of the set clausenpt (hotline = '0721-2059-333)) of the update
from the tables used by the query except the modified query. The operation are added to the selection and join predicates @@e
where clause of th&@ EST statement constructed from the selec- query.
tion and join predicates of the query except that the selection and Figure 26.A depicts a SQL template for an update operation
join predicate(s) related to the modified table re-constructed using modifying an attribute used in a selection predicate. TEST
the actual inserted values. Figure 24.B showsTtBSTstatement statement for the update operation consists of a SQL selecting from
for checking the relevancy of the insert operation shown in Figure the tables used by the query. The where clause oT E®Tstate-
15 on the quenyQCL shown in Figures 13 and 14. As shwon in ment consists of the where clause of the update, the join and selec-
Figure 24.B, the selection predica®ATE > 4and join predicate tion predicates except the selection predicate(s) over the modified
CTAB.LID = LTAB.lIDare both re-constructed by replacing the at- attributes, and disjunction predicate that test case D1 and case D3.
tributes RATE and CTAB.LID respectively by the corresponding Figure 26.B shows th€ESTstatement for checking the relevancy
values (7, 102) from the insert statement. of the update operation shown in Figure 17 on the qu@8L. As
The SQL template of aESTstatement for the delete operation shwon in Figure 27.B, the predicalgRATE > 4) and not((7) > 4)
is shwon in Figure 25.A. The template consists of a SQL selecting), checks whether the rate of the cinema was greater than 4 and will

800

A

B

select count(*)
from the relations of the query
where
(
(
the where clause of
the update operation

)

and

join and selection predicates

of the query except the predicates
over updated attribute

)

and

(

(the selection predicate for D1)
or
(the selection predicate for D3)

)))

select count(*)
from the relations of the query
where

(

(

RENEWED_ON = 1999

)

and

(

CTAB.LID = LTAB.LID and
Postal_Code ='76131’

)

and

(

(

((RATE > 4) and not((7) > 4))
or

(not(RATE >4) and ((7) > 4))
)))

Figure 27: A) SQL template for an update operation modifying

a slection attribute and B) an example.

not remain greater than 4 after the update or cage D1 However
the predicatenot(RATE > 4) and ((7) > 4thecks whether the rate
of the cinema was not greater than 4 and will be greater than 4 after

the update or notase D3

A

select count(*)
from the relations of the query
where

(the where clause of

not XC.ID in (IDs of rows
picted by the query)

and

NewValue in in (the
values used in the join

of the query)

)))

select count(*)
from cinema_tab XC
where

(RENEWED_ON < 2000)

the update statement) and (
and ((——Case D1

(——Case D1 XC.CIDin
XC.ID in (IDs of rows (select the IDs 0QCL)
picted by the query) and
and not 101 in
not NewValue in (the (selected values)
values used in the join)OR
of the query) (——CASED3

) (RATE>4)

OR and

(——CASED3 not XC.CID in
(the selection predicates (select the IDs 0QCL)
related to the updated relation) and
and 101 in (selected values)

)))

Figure 28: A) SQL template for an update operation modifying

ajoin attribute, B) an example.

28.B, forcase D1the XC.CID should be one of the rows picked in
the query result and the value 101 is not one of the joining values
used in the query, and faase D3 the updated rows satisfying the
selection predicate RATE > 4, were not part of the query result
and the new value is one of the joining values.

8. EVALUATION

We have utilized DB2 Express-C 9.5 [12] and the Sun Java 1.6
language to implement theBS Layershown in Figure 18. The
XML Schema of the XRAL model is used to validate the at-
tributes of XML type shown in Figure 19. The shown SQL and
XQuery queries are formalized to be executed using DB2. How-
ever, these queries could be supported by other DBSs, which pro-
vide XML management support and triggering mechanism. The
Application Layerof UPTIME is in-progress. Currently, the devel-
oped functionally of théApplication Layeris restricted to register
mobile clients and queries and to insert manipulation operations.
All test were done on a standard PC running Ubuntu 8.04 Linux
(Intel(R) Core(TM)2 Duo CPU @ 2.20GHz with 2 GB of RAM).
Figure 29 illustrates the time consumption for registering queries
on the server and for checking the relevance of insert, update and
delete operations. We used the example queries and modifications
presented throughout the paper for our experiments.

50 - T T T T T T T T4
Registering a query

Checking relevance of insert operations -------

Checking relevance of delete operations -------- -

40 [Checking relevance of update operations -~ B

30 - .

Seconds

20

10 +

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of queries

Figure 29: Evaluation of time consumption

The method of detecting the intersection(s) between modified
data and cached data demands a registration of queries issued by
mobile clients. These queries are to be stored in the server as
individual entries on the XRAL repository. This method avoids
query indexing as needed in other approaches like those presented
in [8]. The time that is required to register or de-register a query is
the time required to insert or delete an individual query without a
need to re-construct the index of the queries. Registering a 16,384
queries took only approximately 6 secohisour experiments. As
shown in Figure 29, the time for registering queries is linear to the
number of queries. In other approaches that are based on query in-

Figure 28.A depicts a SQL template for an update operation dexing, such as presented in [8], the registration time exponentially
modifying an attribute used in a join predicate. TREST state- increases with the growth in the number of queries. Avoiding the
ment checks that the updated rows are fall in the interseEtioor query indexing provides high scalability in handling a great number
D3. A row is to be part oD1if and only if the row was part of the Of clients and queries.
query result and the new value is not one of the joining values. A Beside the Scalability, another advantage of the method presented
row is to be part oD3if and only if the row satisfying the selection in this paper is the applicability of the method to be implemented

predicates related the updated table was not part of the query results-l-he algorithms presented in [8] needed more than 80 seconds for

and the new value is one of the joining values. Figure 28.B shows registering 10,000 queries, some others presented in [9] where even
the TESTstatement for checking the relevancy of the update oper- slower. However, these results base on a 1.6 GHz Athlon machine
ation numbeMO5 shown in Figure 5 o0QCL. As shwon in Figure with only 512 MB of memory.

801

within the DBS. That leads to reduce the code complexity of the
Application Layer Consequentially, the maintenance of the-U
TIME system needs less effort.

The main drawback of this method is the cost of repeating the
check for similar queries. However, Figure 29 illustrates the worst
case where all registered queries are effected by the issued mod-
ification operations. As shown in Figure 29, the time required to
check the relevance of a manipulation operation is linear to the
number of queries, which use the manipulated table and might be
affected by the operation. Our experimental results show that the
maximum required time for checking the relevancy of a manipu-
lation operation to 16,384 related queries is approximately 50 sec-
onds. So, we expect, much better performance for real world appli-
cations. Furthermore, that drawback of multiple checks for similar
queries could be avoided by maintaining a list of similar queries.
These experiments with various query loads are part of future work.

9. CONCLUSION AND OUTLOOK

In this paper, we have presented a method called, BR|for

(3]

(4]

(6]

detecting relevant updates to cached data. The paper has presented7]

three categories of relevancy test, for insert, delete and update op-
erations respectively. The main idea of these tests is to check the
intersection between the modified data and the cached data, which
is a result of specific queries. For each manipulation operation, the
paper has discussed the effect of the operation on the cached data
and the criteria of the intersection(s) between the cached data and
modified data. A non-empty intersection means that the manipula-
tion operations are relevant to cached data. This method retrieves
the data of the intersection using a query(ies) constructed from a
manipulation operation (insert, delete or update) and the queries,
whose result is cached on at least one client.

This paper has presented XRL , an XML-based model, for
the queries issued by mobile clients and server-side updates. The
paper furthermore has presented a proof-of-concept system, called
UPTIME that utilizes the DRBE method and XRAL model to
provide a DBS built-in function for update notifications.

The main advantages of our approach to detecting relevant up-
dates to cached data are: 1) the quick response in detecting the rele-
vant updates as soon as the execution of an manipulation operations
occurs, 2) the ability to check the intersection between the modi-
fied and cached data using SQL queries generated by XQueries,
which are executed by an XQuery engine provided within mod-
ern DBSs, 3) the flexibility in exchanging and sharing the XReAl

[

(8]

[10]

1

[12]

specification, such as mobile queries, 4) seamless integration of thel13]

update notification management into relational DBSs, and 5) the
scalability and performance improvement due to avoiding several
intermediate layers that were required to support the management
at the application layer.

This paper has presented a research work that is part of a con-

tinuous research project aiming at developing a framework for ad- [15]

vanced query management in mobile information systems based on
XML and DBS utilities. Currently we are extending the UptiME
system to support context-aware queries and do additional experi-
ments with different workloads and query sets.

10. REFERENCES
[1] J. A. Blakeley, N. Coburn, and P.-A. Larson. Updating

derived relations: Detecting irrelevant and autonomously
computable updates. In A. Gupta and I. S. Mumick, editors,
Materialized Views, chapter 21, pages 295-322. MIT Press,
London, England, 1998.

[2] C. Bunse and H. Hopfner. Resource substitution with
components — optimizing energy consumption. In

802

[16]

[17]

J. Cordeiro, B. Shishkov, A. K. Ranchordas, and M. Helfert,
editors,Proceedings of the 3rd International Conference on
Software and Data Technologieolume SE/GSDCA/MUSE,
pages 28-35, Setubal, Portugal, July 2008. INSTICC press.
A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data basestac. of the
ninth annual ACM symposium on Theory of computing
pages 77-90, New York, NY, USA, 1977.

C. Elkan. Independence of logic database queries and update.
In D. J. Rosenkrantz and Y. Sagiv, editdPspc. of the ninth
ACM symposium on Principles of database sysigrages
154-160, New York, NY, USA, 1990. ACM Press.

R. Elmasri and S. B. NavathEundamentals of Database
SystemsAddison Wesley, 2007.

H. Hopfner. Towards update relevance checks in a context
aware mobile information system. Rroc. of the 35th

annual conference of the German Computer Society, (Gl)
volume P-68 oLNI, pages 553-557, Bonn, Germany, 2005.
Kollen Druck+Verlag GmbH.

H. Hopfner. Update Relevance under the Multiset Semantics
of RDBMS. InProceedings of the 1. conference on mobility
and mobile information systems, volume P-7@&.B, pages
33-44, Bonn, Germany, 2006. Kéllen Druck+Verlag GmbH.
H. Hopfner. Query Based Client Indexing in Client/Server
Information Systemslournal of Computer Science
3(10):773-779, 2007.

H. Hopfner.Relevanz von Anderungen fir Datenbestande
mobiler Clients VDM Verlag Dr. Miiller, Saarbriicken, 2007.
in German.

H. Hopfner and C. Bunse. Ressource substitution for the
realization of mobile information systems. In J. Filipe,

M. Helfert, and B. Shishkov, editor®roc. of the 2nd
International Conference on Software and Data Technologie
volume Software Engineering, pages 283—-289, Setubal,
Portugal, July 2007. INSTICC press.

H. Hopfner, S. Schosser, and K.-U. Sattler. An Indexing
Scheme for Update Notification in Large Mobile Information
Systems. IrCurrent Trends in Database Technology - EDBT
2004 Workshops, Revised Paparslume 3268 of. NCS

pages 345-354, Berlin, Germany, Nov. 2004.
Springer-Verlag.

IBM RedbooksDB2 9.5 pureXML GuideMarch, 2008.

D. Maier and J. D. Ullman. Fragments of relations. In

M. Stonebraker, editoRroc. of the 1983 ACM SIGMOD
international conference on Management of ddNaw York,
NY, USA, 1983. ACM Press.

14] C. Papadimitriou. A note on the expressive power of prolog.

Bulletin of the EATC326:21-23, June 1985.

M. Scardina, B. Chang, and J. War@racle Database 10g
XML & SQL: Design, Build, & Manage XML Applications in
Java, C, C++, & PL/SQL McGraw-Hill Osborne Media,
2004. book.

0. Shmueli. Decidability and expressiveness aspects of logic
queries. In M. Y. Vardi, editoRroc. of the sixth ACM
symposium on Principles of database systgrages
237-249, New York, NY, USA, 1987. ACM Press.

M. K. Solomon. Some properties of relational expressions.
In Proc. of the 17th annual Southeast Regional Conference
pages 111-116, New York, NY, USA, 1979. ACM Press.

[18] P. WalmsleyXQuery O'Reilly, first edition edition, March

2007.

