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ABSTRACT
In a database system, disclosure of confidential private data
may occur if users can put together the answers of past
queries. Traditional access control mechanisms cannot guard
against such breaches to private data. Online auditing tech-
niques have been advanced to limit such disclosure of pri-
vate data. Essentially, before answering any query, these
techniques inspect the answers of the past queries to deter-
mine whether answering this query would compromise the
stated data disclosure policies. While the primary require-
ment for online auditing is high efficiency, existing audit-
ing approaches are expensive with respect to both computa-
tional time and space. Specifically, this cost is excessive in
the general case of auditing arbitrary aggregate queries over
real-valued confidential attributes with respect to interval-
based privacy disclosure.

In this paper, we model this problem as the well-studied lin-
ear programming (LP) problem and propose an efficient on-
line auditing solution for constantly monitoring the bounds
of protected attributes. The previously proposed approaches
in this direction repetitively employ the LP. Consequently,
for each new query, they require evaluation of the entire set
of answers to past queries. In this paper, we propose a novel
approach to employ LP that keeps the prior evaluation state
in a concise form and conducts an incremental evaluation.
Basically, our approach treats the online auditing problem
as a series of updation problems. Each time when a new
query is issued by a user, instead of solving a new LP prob-
lem with up-to-date log of all queries, we modify the existing
bounds obtained in auditing previous queries based on cer-
tain rules so as to get the updated bounds with the new
query added. Since it significantly reduces the computation
time and storage space, our approach offers the first practi-
cal solution for the interval-based online auditing problem.
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Our experimental results demonstrate that our solution is
about 30 times faster than the existing solutions.

1. INTRODUCTION
With the fast development of computer technology and the
wide spread use of networks, people can now have unprece-
dented access to huge amount of information much easier.
While this enhances availability, it puts private data at risk.
Though access control can be used to protect private in-
formation of individuals (e.g., salary) from being accessed
by unauthorized users, it does not prevent this information
from being disclosed via seemingly innocuous queries (e.g.,
SUM,GROUP BY, AVERAGE,COUNT, etc.). Consider the
following toy example. A user may submit the following
query to a database payroll with attributes including title,
sex, department, and salary, where the attribute salary is
protected.

SELECT SUM(salary)
FROM payroll
WHERE title=professor, department=Biology;

Assume that there are three professors in the Biology de-
partment and the sum of their salaries is $450,000. Since this
query does not enable the user to gain access to the salary
directly, it is allowed. The query and its answer can be writ-
ten as x1 +x2 +x3 = 450, 000. Similarly, the user may issue
another query and obtain its answer as x1 + x2 = 300, 000
via the following query

SELECT SUM(salary)
FROM payroll
WHERE title=professor, sex=male, department=Biology;

However, combining the answers to the above two queries,
the user is able to infer that the salary of the only female
professor in the Biology department is $150,000. This simple
example illustrates that it is essential to determine whether
any SQL query reveals information forbidden by the database
system’s data disclosure policies by examining past queries.
This problem, known as auditing [10] of queries by inspect-
ing the answers of the past queries to determine whether
these answers could have been put together by a user to in-
fer confidential information. The process of performing such
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auditing whenever a new query arrives, is known as online
auditing [7].

The first question in online auditing is how to measure pri-
vacy disclosure. Three types of privacy disclosure measures
have been considered in the research literature: exact-value
disclosure, interval-based disclosure, and probability-based
disclosure. The exact-value disclosure [7, 24, 32] means that
an individual’s privacy is disclosed iff the exact value of a
protected attribute for that individual is disclosed. It is also
called full disclosure. The interval-based disclosure [27] gen-
eralizes the concept of exact-value disclosure, stating that an
individual’s privacy is disclosed iff the difference of the lower
and upper bounds of a protected attribute for that individ-
ual being disclosed to be no greater than a predetermined
threshold. In the above example, the female professor’s pri-
vacy is considered to be disclosed if her salary is known to
be between $145,000 and $155,000 given the threshold be-
ing $15,000. It is clear that the exact-value disclosure can be
considered as a special case of the interval-based disclosure
where the threshold is zero. The probability-based disclo-
sure means the privacy disclosure occurs when the posterior
distribution of the data after answering queries is signifi-
cantly different from its prior distribution that the snooper
knows at the beginning [23,37]. Probability-based disclosure
is sound. However, the work of calculating the distribution
function change for each variable caused by the change of the
geometrical polytope constructed by the answered queries is
inhibitive. Even if the computing time is not an issue for
probability-based disclosure, we need to monitor the change
of the bounds for each variable anyway. In [23], to quan-
tify the difference of prior and posterior distributions for
each variable, they divided the whole real domain into small
intervals and counted the sampled data falling in each in-
terval before and after the new query to see the difference.
For each variable, we actually need to check some inter-
vals determined by their bounds, instead of the whole real
domain. Considering all above facts, we choose to study
interval-based disclosure over the other two measures.

In particular, we focus on auditing arbitrary SUM queries
over a real-valued attribute that is protected. A up-to-date
log of all previously answered queries is maintained for each
user in auditing. A new query is denied if it enables its
issuer, when combined with the corresponding query log,
to infer that the difference between the bounds of any pro-
tected value is no greater than a predetermined threshold;
otherwise, it is answered and incorporated in the query log.

Auditing interval-based discourse is equivalent to monitor-
ing the changes of upper and lower bounds for all appeared
variables. When SUM queries arrive in an arbitrary manner,
employing linear programming (LP) is the most appropriate
way to go because there is no extra information helping us to
deduce the bounds of variables. If additional constrains are
added, there might be more efficient approaches available,
other than linear programming, such as audit expert system
for exact-value disclosure [10] and Fre’chet bound for the 2-
dimensional OLAP [26]. Compared to these, LP is really a
powerful tool for auditing interval-based disclosure, because
there are several efficient algorithms available for it, like pri-
mal simplex method, dual simplex method and interior point
method [44]. However, the existing auditing approach [28]

simply proposes to employ the LP algorithm repetitively to
calculate the upper and lower bounds for each variable upon
the arrival of every new query. Though a single LP problem
can be efficiently solved, the existing auditing approach re-
quires excessive CPU time and storage as it involves solving
a large number of LP problems for all protected values that
appear in a user’s query history. The worse thing is the size
of the LP problem becomes larger when more queries come.

[23] pointed out that denying a query could leak extra in-
formation to snoopers in some cases. So they proposed sim-
ulatable auditing. Simulatable auditing means the decision
of answering or denying a query can be deduced by both
auditor and snooper. In other words, the auditor makes
the decision only based on the past answered queries with
the newly posted query, without accessing the internal data
values. Thus, if there exists a result to the newly posted
query, which is consistent with the past queries, causing pri-
vacy disclosure for one variable, the query is denied. The si-
multable auditing loses much utility, because it denies many
queries which are not harmful indeed, although it keeps full
privacy. The other drawback is the computation is intimi-
dating, because for each consistent result, the auditor needs
to examine if there is privacy disclosure occurring, let alone
the work of finding the consistent result. Considering these
facts and that the information leaked by denying a query
is rather limited, especially when a number of variables in-
volved, in this paper we do not consider the effect caused by
denying a query.

In this paper, we propose a novel approach that performs
incremental evaluation to determine whether or not to al-
low a new query. Essentially, we treat the online auditing
problem as a series of updation problems. More specifically,
we use horizontal updation and vertical updation to take
advantage of the relationship among different LP problems
in online auditing. A key observation is that, given a set of
queries, the formulated LP problems for auditing different
protected values only differ in the objective functions, while
the constraints remain exactly the same. The horizontal up-
dation opens the black box of these formulated LP problems
and modifies the solution of one LP problem to quickly de-
rive the solutions of the other LP problems without having
to solve them repetitively. When a new query is issued by
a user, a new LP problem is formulated for auditing each
protected value. The formulated LP problem is the same
as the existing LP problem for auditing the same value ex-
cept that one more constraint representing the new query is
added. The vertical updation is designed to create a short-
cut between the existing LP and the new LP in auditing.
Essentially, the vertical updating is similar to the horizontal
updating in the way in which it solves a new LP problem
by utilizing the result of another approximate LP problem.
However, the required techniques are different.

Although the LP approach for interval-based auditing prob-
lem on real value has been proposed earlier, it is not viable
because online auditing calls for fast response time and small
storage space. When compared to the earlier solutions, our
proposed approach enjoys many advantages. (1) Both the-
oretical analysis and numerical experiments show that our
solution is significantly more efficient than the existing au-
diting approach. Our solution is about 30 times faster than
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the existing solution for auditing 30 queries in our numerical
experiments. We also observe that our solution is increas-
ingly more efficient when auditing more and larger queries.
(2) Besides the advantage in computation time, our algo-
rithm requires much less storage space, because through the
whole auditing process, we store only one simplex tableau,
but not the log of all queries. (3) It allows every user to
specify a different level of privacy.

To the best of our knowledge, our auditing solution rep-
resents the first significant improvement over the existing
LP-based approach in the general case of auditing arbitrary
SUM queries over a real-valued attribute in terms of interval-
based disclosure. Since our solution fairs significantly better
with respect to time and space complexity, we believe it is
the first practical solution for the online auditing problem.

The rest of this paper is organized as follows. In Section
2, we review the literature work related to disclosure con-
trol and auditing. In Section , we provide the preliminary
knowledge about LP, which will be exploited in the follow-
ing sections. In Section 4, we formulate the online auditing
problem and treat it as a series of updating problems includ-
ing horizontal updating and vertical updating. In Sections
5 and 6, we present the horizontal updating and vertical up-
dating, respectively. In Section 7, we incorporate horizontal
updating and vertical updating to construct our online au-
diting algorithm and analyze its efficiency. In Section 8, we
conduct numerical experiments to evaluate the efficiency of
our online auditing algorithm. Finally, in Section 9, we con-
clude the paper and discuss some future research directions.

2. RELATED WORK
Traditionally, auditing is considered to be one of the security
control methods for statistical databases [1, 16, 48]. Other
security control methods can be classified into restriction-
based and perturbation-based. The restriction-based tech-
niques protect privacy information from being disclosed by
imposing restrictions. The restrictions can be placed on
queries [46,47] such as the size of each query [13], the overlap
among different queries [14], and the types of queries [46,47],
or they can be placed on source data such as partition [9,41],
microaggregation [15, 48], generalization [21, 45], and sup-
pression [11, 12, 17, 18]. The perturbation-based techniques
protect sensitive information by adding random noises. The
random noises can be added to query answers [5], data struc-
tures [40], or source data [2,3,6,20,22,29,35,43]. Compared
to these methods, auditing has advantages such as allowing
database systems to provide users unperturbed query results
as long as the results will not lead to any privacy disclosure
without imposing additional restrictions.

Our work is different from the recent research on k-anonymity
[39, 42], ℓ-diversity [31], and t-closeness [25] for protecting
published data about individuals without revealing privacy
information about them. The k-anonymity privacy requires
that each equivalence class (i.e., a set of records that are in-
distinguishable from each other) consists of at least k records.
The ℓ-diversity further enhances the requirement that each
equivalence class contains at least ℓ well-represented values
for each sensitive attribute, while the t-closeness privacy re-
quires that the distribution of a sensitive attribute in any
equivalence class is close to the distribution of the attribute

in the whole dataset. These privacy requirements can be
used to evaluate certain anonymization process that parti-
tions the protected data into equivalence classes before pub-
lication of data. In comparison, we address the problem of
protecting a sensitive attribute in a database which may not
necessarily be anonymized. In addition, the database is not
published; instead, it is protected against privacy disclosure
via user queries.

The auditing problem has been investigated in different cases,
mostly for auditing SUM queries (except [7]). Chin and Oz-
soyoglu [8,10] investigated the auditing problem over a pro-
tected attribute with respect to exact-value disclosure. They
designed a system called audit expert, which maintains a bi-
nary matrix to efficiently represent a user’s knowledge about
the protected attribute. It has been shown that the audit
expert takes O(n2) time for processing a new query given n
database records, and O(mn2) time for auditing a set of m
queries. The audit expert remains one of the most efficient
auditing algorithms with respect to exact-value disclosure.

Different types of protected attributes have been investi-
gated in auditing. The auditing of boolean attributes have
been proven to be NP-hard [24]. The auditing of integer
attributes is NP-hard as well [27]. However, they can be
relaxed to real problem at the cost of losing accuracy. The
auditing of real attributes is polynomial due to the existence
of polynomial LP solutions such as the interior-point meth-
ods [44]. From practical point of view, the simplex method
is unarguably among most efficient methods [44] to solve the
problem of auditing real attributes.

Auditing can be performed over either well-structured queries
or arbitrary queries. The auditing of well-structured queries
such as OLAP queries [46], data cube queries [26], and range
queries [47] can be more efficient than the auditing of arbi-
trary queries since the structural information of queries can
be utilized to speed up the auditing process. In this paper,
we investigate the auditing problem in the general case of
auditing arbitrary SUM queries over a real-valued attribute
in terms of interval-based disclosure.

[30, 33, 34, 38] consider the extended auditing problem on
select-project-join queries for general databases. [36] pro-
vides a good survey of all of the above methods.

The idea of solving a bunch of LPs by taking advantage of
their similarity is not new. It was first introduced in op-
erational research community, called sensitivity analysis or
postopitmality analysis [19]. It was out of the concern that
the parameter values of a LP and constraints are subject to
change in reality. To avoid respectively solving many similar
LPs, many methods specialized for different similarity situa-
tions were proposed. This idea was also successfully applied
by computer science community to solve human-computer
interface problems, called incremental LP, [4]. We are the
first introducing this idea to database area and give the al-
gorithms tailored for the auditing problem.

3. PRELIMINARIES
In this section, we briefly review the primal simplex method,
the dual simplex method and the two-phase method, which
provide preliminary knowledge for constructing our online
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auditing algorithm.

3.1 Primal Simplex Method
A LP problem can be modeled as the following.

min Z = CX

s.t.

(

AX = b

X ≥ 0

(1)

where C, X are vectors of n real values, b is a vector of m
real values, and A is an m × n matrix (m ≤ n) in the real
domain. Without loss of generality (with linear transforma-
tion), assuming that A can be written as (B, N), where B
is an invertible m × m matrix,

(B, N)X = b
BXB + NXN = b

XB + B−1NXN = B−1b

If B−1b ≥ 0, then (B−1b, 0) is a feasible solution of the LP
problem. In such case, we call (B−1b, 0) feasible basic
solution and call B feasible basis. The variables corre-
sponding to XB are called feasible basic variables. After
getting the feasible basic solution, we have

CX = CBXB + cN XN

= CB(B−1b − B−1NXN ) + CN XN

= CBB−1b − (CBB−1N − CN )XN

If CBB−1N−CN ≤ 0, then (B−1b, 0) is the optimal solution,
because XN cannot be less than 0. The value of CBB−1N −
CN is called criterion value.

In this paper, we focus on the simplex method, which is one
of the most efficient methods for solving LP problems. Its
basic idea is to find a feasible solution first and then keep
swapping one basic variable and one non-basic variable such
that the objective value is decreased constantly. When the
objective value cannot be decreased anymore, the current
feasible solution is the optimal solution. All the work is
done in a table called simplex tableau by the procedure
pivoting. A simplex tableau has the form shown in Figure
1, where all symbols correspond to the problem in (1). Recall
that XB denotes the basic feasible variables, XN denotes
the non-basic feasible variables, CBB−1b is the objective
function value, CBB−1N − CN is the criterion value, and
B−1b, 0 is the feasible basic solution. For the convenience
of explanation, Figure 1 can be recoded as Figure 2. It
shows δ denotes CBB−1N − CN , a denotes B−1N and so
on. Suppose we swap xr ∈ XB and xk ∈ XN . The cell ark,
corresponding to the row of the variable xr and the column
of the variable xk in the tableau, is called a pivot. Pivoting
is executed by dividing the row of xr by ark and adding this
row multiplied by some number to the other rows such that
the cells at the column of xk become 0. After that, swap
the columns of xr and xk. The result will have exactly the
same form as Figure 1. Regarding how to choose variables
to swap, there are many rules. The most common one is as
shown in Algorithm 1 [44].

XB XN

Z CBB−1b 0 CBB−1N − CN

XB B−1b I B−1N

Figure 1: Simplex Tableau

XB XN

Z CBb′ 0 δ

XB b′ I a

Figure 2: Simplex Tableau of Simple Denotation

Algorithm 1 Primal Simplex Algorithm

1: Find a feasible basis B, such that B−1b ≥ 0. Build the
corresponding simplex tableau as in Figure 1.

2: δk = max{δj |j ∈ N}
3: If δk ≤ 0, stop. The current feasible solution X =
„

B−1b
0

«

is the optimal solution.

4: If δk > 0 and the corresponding vector ak ≤ 0, the
optimal solution is infinite.

5: Otherwise, choose ark such that b′r/ark =
min {b′i/aik|aik > 0}, as the pivot. Do pivoting,
then go back to step 2.

3.2 Dual Simplex Method
A standard LP like equation (1) has a dual LP form as the
following:

max Z = Wb

s.t. WA ≤ C
(2)

in which W is the vector of variables and the parameters b
and C are same as in problem (1). There is an important
property that the optimal objective value of problem (2) is
equal to the optimal objective value of problem (1). Thus,
by searching through feasible basic solutions of problem (2)
such that the objective value is increased, we can finally get
the optimal objective value of problem (1) as well. The basic
idea of dual simplex method is to implement this searching
process in the simplex tableau of problem (1), but for the
problem (2). Its supporting theory is that a solution of prob-
lem (1), called primal infeasible basic solution, satisfy-

ing X =

„

B−1b
0

«

and CBB−1N−CN ≤ 0, corresponds to

a basic feasible solution of (2). Thus, dual simplex method
is searching from one basic infeasible solution of problem
(1) to another, such that the objective value is increased.
Algorithm 2 gives the rule of how to traverse one primal
infeasible basic solution to another.

The reason why we introduce dual simplex method is that,
we will use it in Section 4 for updating mixed variables.
Primal simplex algorithm and dual simplex algorithm are
essentially the same. Normally, if finding a primal infeasible
basic solution is much easier than finding a feasible basic
solution, then dual simplex method is chosen.

3.3 Two Phase Method
The simplex methods like Algorithms 1 and 2 are very prac-
tical and efficient ways dealing with linear programming
problems. Now the question is how to find the first ba-
sic solution to start these algorithms? Consider the primal
simplex algorithm. For equations of n variables and rank
k, the possible combinations of basic feasible variables are
„

n
k

«

= n!
k!(n−k)!

, which is a huge number. So instead of

looking for a starting basic feasible solution among them, an
extra optimization problem is constructed to get the starting
feasible solution as the first phase and based on it, primal
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Algorithm 2 Dual Simplex Algorithm

1: Find a basis B, such that CBB−1N − CN ≤ 0. Build
the corresponding simplex tableau like Figure 2.

2: If b′ = B−1b ≥ 0, get the optimal solution X =
„

B−1b
0

«

and the optimal objective value Z =

CBB−1b; otherwise let b′r = min{b′i|i = 1, ..., m}.
3: If ar ≥ 0, there is no feasible solution; otherwise choose

ark such that δk/ark = min{δj/arj |arj < 0} as the
pivot. Do pivoting, then go back to step 1.

simplex method on the original problem is run as the second
phase. The idea of the first phase is that for the problem
(1), add the relaxing variables Xa = {xn+1, ..., xn+m} and
put each of them in one constraint like (3). It is obvious
that if there exists a feasible solution for the original prob-
lem (1), the optimal objective value of problem (3) is 0; in
other words Xa are 0. The advantage of the constructed
problem is that we have the feasible basic variables Xa right
away. Thus by running the simplex method, we get a opti-
mal solution like (x′

1, x
′

2, .., x
′

n, 0, ..., 0), where (x′

1, x
′

2, .., x
′

n)
is a feasible solution for the original problem (1). Subse-
quently, we can go to the second phase to solve the original
problem by applying the primal simplex method. Note that
besides this method, there are other similar methods such as
big M [44] of finding the first basic feasible solution, which
is as follows.

min
X

xi∈Xa

xi

s.t.

(

AX + Xa = b

X, Xa ≥ 0

(3)

4. MODELING ONLINE AUDITING
The goal of online auditing is to check if answering an ar-
riving query would breach privacy, given that the users have
complete knowledge of the previous queries. A sum query
can be represented as an equation. For example, the query
on the average salary of all faculty in the Biology department
can be indicated as

x1 + x2... + xn = n ∗ Average

where xi denotes the salary of faculty i and n is the total
number of faculty members. When users are also allowed to
query the average salary by attributes such as sex, age and
position, each query can improve the precision of the esti-
mate of some faculty salary. Such unconstrained querying,
may lead to disclosure of private information.

The basic task of online auditing is to continually check the
lower and upper bounds of every variable to make sure that
the bounds are not close enough to breach privacy. Privacy
is breached if the difference between the inferred lower and
upper bounds of a value is smaller than a predetermined
threshold . Note that our research on online auditing is
orthogonal to the definition of safe threshold. The system
manager may assign different forms of safe threshold to dif-
ferent variables in auditing. For example, professor A, who
does not care his salary information is released, can set the
safe threshold for his or her salary data to be 0. After the
safe thresholds are set for all variables, if the new query can
reduce the bounds within the safe threshold for any variable,
that query is denied. Otherwise, it is allowed.

The task of online auditing can be modeled as a series of
growing linear programming problems. When the new query

P

xi∈st
xi = St arrives, where st is the variables set associ-

ated with tth query, the server should run the following lin-
ear programming problem to find the lower bound (indicated
by min xj) and the upper bound (indicated by max xj). As
max xj can be equivalently solved by min − xj , for sim-
plicity, in the following we discuss only min xj . The first
t− 1 constraints correspond to the previously released t− 1
queries. xi ≥ 0 is the default constraint, to ensure positive
values (for example, salary can never be negative). When
the attribute can also take on negative values, this constraint
can be removed. Other semantics such as xi ≥ c, can also
be similarly modeled through simple linear transformations.
Finally, we can get the linear programming model as equa-
tion (4)

min xj

s.t.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P

xi∈s1
xi = S1

...
P

xi∈st−1
xi = St−1

P

xi∈st
xi = St

xi ≥ 0, ∀xi ∈ s1 ∪ ... ∪ st−1 ∪ st

(4)

Linear programming problems are not difficult to solve.
Simplex methods can efficiently deal with them in practice.
However, for online auditing, a lot of linear programming
problems have to be solved, essentially one for each query.
Worse is that, the size of the problem increases for each sub-
sequent query. Finally, a solution is required very quickly.
Thus, a more efficient solution is clearly needed.

The key idea of our solution is to treat each successive linear
programming problem simply as an updation of the previous
result. This is possible since each successive linear program-
ming problem only differs from the prior problem in two
ways. First, the objective function is different – instead of
min x1, we would like to solve min x2. Secondly, there is
one more constraint based on the tth query.

Taking these two facts into consideration, we can divide the
series of updation problems into two types, horizontal and
vertical. These can be defined as follows:

Definition 1 (The horizontal updation problem).
Given the same set of queries, as well as the bounds of one
set of variables, how can the prior result be modified to get
the bounds of other variables.

Definition 2 (The vertical updation problem).
Given the same set of variables, objective function, and bounds
under the previous queries, how can the prior result be mod-
ified to get the bounds when a new query arrives.

In the following sections, we look at algorithms to perform
both horizontal and vertical updation.

5. HORIZONTAL UPDATION
As discussed above, we have a horizontal updation prob-
lem when the objective function is modified, while the con-
straints are unchanged. Thus, we replace c by c′ as in (5).

min z = C
′

X

s.t.

(

AX = b

X ≥ 0

(5)

Suppose that we have already solved the previous problem
with the objective function CX and get the final tableau.
According to the structure of tableau, we only need to up-
date the criterion values to be C′

BB−1N − C′

N and Z to
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XB XN

Z C′

BB−1b 0 C′

BB−1N − C′

N

XB B−1b I B−1N

Figure 3: Updated Simplex Tableau for (5)

be C′

BB−1b. This is sufficient since the optimal solution of
the previous problem is a basic feasible solution of the new
problem. In other words, we do not need to expend time on
finding the first feasible solution for the new problem. Intu-
itively, we save approximately half of the time by omitting
the first phase. If C′

BB−1N−C′

N ≤ 0, the current solution is
in fact the optimal solution. Otherwise, we pivot according
to the primal simplex methods. Thus, the horizontal update
algorithm can be formally represented as follows: Next, we

Algorithm 3 Algorithm for Horizontal Updating

1: Update the criterion values CBB−1N − CN to be
C′

BB−1N − C′

N and the objective value CBB−1b to be
C′

BB−1b respectively.
2: If C′

BB−1N − C′

N ≤ 0, get the optimal solution X =
„

B−1b
0

«

and the optimal objective value C′

BB−1b

. Otherwise, do pivoting as the Algorithm 1 until
C′

BB−1N − C′

N ≤ 0.

illustrate the algorithm through a small example. Suppose
that we have the following three queries shown in Figure 4.
The figure also shows the simplex tableau result obtained
by solving min x1. From this, we can see that the optimal
solution is (1 4 3 0) and min x1 = 1.

8

>

<

>

:

x1 + x2 = 5

x1 + x3 = 4

x2 + x3 + x4 = 7

x1 x2 x3 x4

Z 1 0 0 0 -1/2

x1 1 1 0 0 -1/2

x2 4 0 1 0 1/2

x3 3 0 0 1 1/2

Figure 4: the Simplex Tableau Result for min x1

Now assume that we need to solve min x2. Following Step
1 of Algorithm 3, we have

C
′

BB
−1

N − C
′

N = (0 1 0) × I ×

0

@

−1/2
1/2
1/2

1

A − 0 = 1/2.

Since this is positive, it shows that the current feasible
solution is not the optimal solution. Therefore, we update
the simplex tableau as in Figure 5. According to the pivoting
rule (Step 4 of Algorithm 1), we choose the cell labeled * as
the pivot. After pivoting, the new simplex tableau is shown
in Figure 6, where the criterion value is -1. Thus, the current
solution (4 1 0 6), is optimal, and min x2 = 1.

For min x3, C′

BB−1N − C′

N = 1/2. Following the same
procedure as above, we will easily get min x3 = 0.

For min X4, C′

BB−1N −C′

N = 0. Thus, the current feasible
solution is optimal. Thus, we can immediately stop, and
compute min x4 = 0.

6. VERTICAL UPDATION
Vertical updation occurs when the constraints are changed
while the objective function remains the same. This will

x1 x2 x3 x4

Z 4 0 0 0 1/2

x1 1 1 0 0 -1/2
x2 4 0 1 0 1/2
x3 3 0 0 1 1/2*

Figure 5: the Simplex Tableau for min x2 (I)

x1 x2 x4 x3

Z 1 0 0 0 -1

x1 4 1 0 0 1
x2 1 0 1 0 -1
x4 6 0 0 1 2

Figure 6: the Simplex Tableau for min x2 (II)

happen, whenever a new query, a′X = b′ is posed. The
updated optimization problem is depicted in (6).

min Z = CX

s.t.

8

>

<

>

:

AX = b

a′X = b′

X ≥ 0

(6)

This is a more challenging problem. Given the final tableau
of 1 and a new query, we need to figure out how to modify the
given result to get the new result. We address this problem
in three cases, depending on whether the new query consists
of all new variables, mixed variables, and all old variables.

6.1 All New Variables
If the new query consists of all new variables, releasing the
query result does not affect the lower and upper bounds
of the old variables at all. The upper bounds of the new
variables are the query result and the lower bounds are 0
(assuming non-negative values). For example, assume the
previous queries are

x1 + x2 = 5

x2 + x3 = 7

The bounds for x1, x2 and x3 are [0,5], [0,5] and [2,7] re-
spectively. If the new query is x4 + x5 = 8, it has no inter-
section with previous queries. Thus, the bounds of previous
variables stay unchanged. For new variables, one can easily
infer that x4 and x5 are in [0,8]. Thus, the updated bounds
for all variables are [0,5], [0,5],[2,7], [0,8] and [0,8].

Statement 1. If the new query consists of all new vari-
ables, the bounds of old variables stay unchanged. The lower
bound for all new variables is 0 and the upper bound is the
result of the query.

Note that even if the new query contains all new variables,
we still need to update the tableau by choosing one new
variable as the basic variable and letting the rest of them
be non-basic variables. For example, suppose the previous
tableau is as in Figure 6 and the new query is x5 + x6 =
10. Then by choosing x5 as the basic variable, the updated
tableau is shown in Figure 7.
6.2 Mixed Variables
If the new query contains both old and new variables, it
is easy to determine if the previous solution is still opti-
mal, simply by updating the simplex tableau. From the
previous simplex tableau result, we know that the coeffi-
cient matrix of previous queries as linear equations can be
represented as in Figure 8. Supposing the new query is
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x1 x2 x5 x4 x3 x6

Z 1 0 0 0 0 -1 0

x1 4 1 0 0 0 1 0
x2 1 0 1 0 0 -1 0
x4 6 0 0 1 0 2 0
x5 10 0 0 0 1 0 1

Figure 7: Updated Tableau for the Query of All New

Variables

t1x1 + ...+ tnxn +xn+1 + ...+xn+k = t, where x1, ..., xn are
old variables, t1, ..., tn are either 0 or 1 and xn+1, ..., xn+k

are new variables . With the new query, the new coeffi-
cient matrix is shown in Figure 9, where TB and TN de-
note the coefficients corresponding to XB and XN respec-
tively. Linear transformations can make it have the form
of Figure 10. Now, {XB , xn+1} can be basis variables for
all of linear equations. However, do they correspond to
a basic feasible solution? Perhaps even the optimal solu-
tion? For this, we must look at the previous criterion values
CBB−1N −CN ≤ 0. After the new query arrives, the crite-
rion values corresponding to the basic variables {XB , xn+1}

become (CB , 0)

„

B−1N
T ′

N

«

− CN = CBB−1N − CN . It

shows the updated criterion values unchanged, still nega-
tive. Let (X ′

B , xn+1, xn+2, ..., xn+k, X ′

N ) be the solution us-
ing {XB , xn+1} as the basic variables. If t′ ≥ 0, then this so-
lution is an optimal basic feasible solution. If not, although
this solution is not a basic feasible solution, it is a primal
infeasible basic solution, which corresponds to a feasible so-
lution of its dual problem. Thus, we can employ the dual
simplex method to find the optimal solution. All procedures
can be done from the previous simplex tableau.

XB XN Result

I B−1N B−1b

Figure 8: Previous Coefficient Matrix

XB xn+1 xn+2...xn+k XN Result

I 0 0 B−1N B−1b
TB 1 1...1 TN t

Figure 9: Current Coefficient Matrix (I)

Thus, we have the algorithm for vertical updates of mixed
variables as Algorithm 4. We now give an example to il-
lustrate our algorithm. Again, consider the example given
in Section 5. Given the simplex tableau result of Figure 4,
if the new query is x3 + x5 = 5, we need to solve a linear
programming as follows:

min Z = x1

s.t.

8

>

>

>

>

>

<

>

>

>

>

>

:

x1 + x2 = 5

x1 + x3 = 4

x2 + x3 + x4 = 7

x3 + x5 = 5

x1, ..., x5 ≥ 0

(7)

Following Step 1 of Algorithm 4, put the new query into the
tableau and do the associated linear transformation. We get
a new tableau as in Figure 12. Because t′ = 2, the current
solution (1 4 3 0 2) is the optimal solution and min x1 = 1.

If the new query is x3 +x5 = 2, after step 1, the new tableau
is shown in Figure 13. Because t′ = −1, the current solution
is not the optimal solution, but a primal feasible basic solu-
tion. Thus, employ Algorithm 2, choose the cell, labeled *,

XB xn+1 xn+2...xn+k XN Result

I 0 0 B−1N B−1b
0 1 1...1 T ′

N t′

Figure 10: Current Coefficient Matrix (II)

Algorithm 4 Algorithm for Vertical Updating of Mixed
Variables
1: Given the new query t1x1+...+tnxn+xn+1+...+xn+k =

t, update the previous simplex tableau to get the new
tableau in the form of Figure 11.

2: If t′ ≥ 0, terminate with the optimal solution
((B−1b)′, t′, 0...0) and the optimal objective value
cBB−1b.

3: If not, employ Algorithm 2 on the tableau of Figure 11
to get the optimal solution.

as the pivot. After pivoting, the new tableau is Figure 14 It
satisfies the requirement of a optimal solution. Hence, the
optimal solution is (2 3 2 2 0) and min x1 = 2.

6.3 All Old Variables
If the new query contains all old variables (i.e., seen in the
prior queries), then there are two cases. One possibility
is that releasing the new query does not affect the known
bounds of any of the variables. Thus, it may simply be that
the new query is simply a linear combination of previous
queries (i.e., can easily be derived from the old queries). For
example, given the old queries, x1 + x2 = 5, x3 + x4 = 6,
the new query is x1 + x2 + x3 + x4 = 11. In this case, there
is no problem. The other possibility is that releasing the
new query tightens the known bounds on some or all of the
variables. Hence, the problem that we now face is that given
a new query, how do we know whether it tightens the known
bounds or not. If it does, what are the new bounds?

The first case can be easily verified simply by putting the
parameters of the new query at the bottom of the previous
simplex tableau and executing Gaussian elimination. If all
parameters become zeroes, the new query is duplicate and
the bounds for all variables do not change at all. Otherwise,
further work needs to be done. Note that, since in a simplex
tableau, the coefficients A are represented by (I, B−1N), it
only takes O(mn) operations to implement Gaussian elim-
inations on the new query. In terms of computation effi-
ciency, it is same as audit expert system in [10]. However,
it is better than audit expert system in terms of storage
efficiency, because in the real practice of simplex methods,
only B−1N and the indices of variables corresponding to I
are stored.

In the second case, we need to do more work. Sometimes,
even if the query is not duplicate, the optimal value does
not change, although it happens rarely. So first we put the
previous optimal solution in the new query. If the solution
matches the new query, the previous optimal solution is the
current optimal solution. Otherwise, similar to earlier, we
need to find a basic feasible solution or a primal infeasible
basic solution for the new optimization problem with the
new query . However, differing from the previous problems,
there is no direct way to find it. Therefore, we have to
resort back to the two-phase method – first, find a feasible
solution; then starting with that solution, run the simplex
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XB xn+1 xn+2...xn+k XN

Z CBB−1b 0 0 0...0 CBB−1N − CN

XB B−1b I 0 0...0 B−1N
xn+1 t′ 0 1 1...1 T ′

N

Figure 11: Simplex Tableau for Mixed Variables

x1 x2 x3 x5 x4

Z 1 0 0 0 0 -1/2

x1 1 1 0 0 0 -1/2
x2 4 0 1 0 0 1/2
x3 3 0 0 1 0 1/2
x5 2 0 0 0 1 -1/2

Figure 12: Simplex Tableau I

method to get the optimal solution. However, due to the
special structure of our problem, we only need to include
one slack variable for the constructed optimization problem
for the first phase, instead of m variables ( m is the rank
of A) as in equation 3. Thus, we still spend less time than
standard simplex method.

Given the new query is TBXB + TNXN = t, simple linear
transformation with the previous queries can make it to be
T ′

NXN = t′ such that t′ ≥ 0. Then add a relaxing variable
xadd to make it to be T ′

NXN + xadd = t′. To get a feasible
solution of the updated problem, we need to solve an extra
optimization problem:

min Z
′

= xadd

s.t.

8

>

<

>

:

AX + 0xadd = b

T ′

N XN + xadd = t′

X ≥ 0

(8)

The reason why we create such an extra problem is that
now we can have a feasible solution, (B−1b, t′, 0), directly.
In addition, the optimal solution of the extra problem is a
feasible solution of its original problem.

To solve the extra problem, we insert this new query into
the previous simplex tableau, let {XB , xadd} to be the basic
variables and apply the primal simplex method to find the
optimal solution. The starting tableau is as in Figure 15.

When getting the optimal solution, to solve the original
problem, we delete the column and row corresponding to
the variable xadd from the tableau. Suppose the current ba-
sic variables are XB′ and the remaining variables are XN′ .
Then the new tableau is shown in Figure 16.

Putting it all together, the formal algorithm for vertical up-
date of all old variables is shown in Algorithm 5.

Next, we will give an example to illustrate our algorithm.
Suppose the previous queries and the objective function are

min x1

8

>

<

>

:

x1 + x2 = 5

x2 + x3 + x4 = 4

x1 + x3 + x5 = 7

(9)

Its optimal solution is (1 4 0 0 6) and its simplex tableau is
Figure 17.

If the new query is x2 + x5 = 10, the previous optimal so-

x1 x2 x3 x5 x4

Z 1 0 0 0 0 -1/2

x1 1 1 0 0 0 -1/2
x2 4 0 1 0 0 1/2
x3 3 0 0 1 0 1/2
x5 -1 0 0 0 1 -1/2*

Figure 13: Simplex Tableau II

x1 x2 x3 x4 x5

Z 2 0 0 0 0 -1

x1 2 1 0 0 0 -1
x2 3 0 1 0 0 1
x3 2 0 0 1 0 1
x4 2 0 0 0 1 -2

Figure 14: Simplex Tableau III

lution satisfies the equation. Thus, min x1 is still 1. If
the new query is x2 + x5 = 4, the optimal solution does
not satisfy. Following the Algorithm 5, we need to create
an extra problem by adding one relaxing variable x6. Thus
the starting simplex tableau for the extra problem is shown
in Figure 18. According to the pivoting rule of the primal
simplex algorithm, the cell labeled * is chosen as the pivot.
After pivoting, the simplex tableau is shown in Figure 19.
It shows that the optimal solution for the extra problem is
(3 2 2 0 2 0). This implies that (3 2 2 0 2) is a feasible
solution for the original problem. Based on the step 3 of the
algorithm 5, delete the column corresponding to the x6 and
recalculate the data on the first row, which are objective
value and criterion value, to get Figure 20. As the criterion
value is −1/3, which means the current solution is the op-
timal solution, we get the optimal solution for the original
problem (3 2 2 0 2), without further pivoting.
7. ONLINE AUDITING ALGORITHM
From the previous two sections, we know how to perform
horizontal updates and vertical updates. In this section,
we will integrate both to construct an efficient online audit-
ing algorithm, which we call the online updating algorithm,
shown in Algorithm6.

The basic idea of this algorithm is that we choose one old
variable as a default variable and keep its corresponding sim-
plex tableaus for min and max as default simplex tableaus.

Algorithm 5 Algorithm for Vertical Updating of all Old
Variables
1: Given the new query TBXB + TNXN = t, do Gaussian

elimination on it. If all parameters become zeroes, ter-
minate. Otherwise, go to the next step.

2: Put the previous optimal solution in the new query. If
it satisfies the equation, terminate since the previous
optimal solution is also currently optimal. Otherwise,
go to the next step.

3: Create an extra problem of the objective function
min xadd, where xadd is the relaxing variable. Construct
the corresponding simplex tableau with {XB , xadd} as
the basic variables. Then run Algorithm 1.

4: Delete the column and row corresponding to the variable
xadd and modify other cells to get a starting simplex
tableau as shown in Figure 16. Then run Algorithm 1
again.
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XB xadd XN

Z′ T ′

N 0 0 T ′

N

XB B−1b I 0 B−1N
xadd t′ 0 1 T ′

N

Figure 15: Simplex Tableau for the Extra Problem

XB′ XN′

Z CB′B′−1b 0 CB′B′−1N − CN′

X′

B B′−1b I B′−1N ′

Figure 16: Vertical Updating of All Old Variables

It also keeps a record of all old variables that are involved in
the old queries (i.e., the queries that have been previously
answered by the auditing algorithm). When a new query ar-
rives, the algorithm checks whether it contains all new vari-
ables, mixed variables, or all old variables and chooses the
corresponding vertical update method accordingly. By us-
ing the vertical updating method, the algorithm obtains the
minimal and maximal values of the default variable and the
updated simplex tableaus as well. Then, starting from the
default variable, the algorithm uses the horizontal update
method to solve the minimal and maximal values for every
other variable that has appeared in either the old queries or
the new query. While doing so, if the algorithm detects that
the difference between the minimum and maximum bounds
of any variable becomes smaller than the predefined thresh-
old, the new query is denied. Otherwise, the algorithm re-
leases the answer to the query and chooses the last vari-
able processed as the default variable and the corresponding
tableaus as the default tableaus.

In the implementation, we use a binary vector α of length
|X| to record the old variables (i.e., the variables in X that
have been involved in the old queries) for each user. A binary
value 1 in the vector indicates the corresponding variable is
involved in the old queries. Similarly, we use another binary
vector β of length |X| to represent the new query asked
by the user. We use the following method to determine
which vertical auditing method is used in step 2 of our online
updating algorithm (Algorithm 6). If (α AND β) = 0, then
the new query contains all new variables; else if (α AND
β) = β, then the new query contains all old variables; else,
the new query contains mixed variables. At the end of step
3 in the online updating algorithm, α is updated as (α OR
β).

Intuitively, our online auditing algorithm is superior to the
existing approach of applying standard linear programming
in auditing each user’s queries due to several reasons. First,
except for the case in which a new query contains all old
variables, our algorithm avoids the phase of finding the first
basic feasible solution. Even in the case that a new query
contains all old variables, the phase of finding the first basic
feasible solution is performed for the default variable only in
vertical updates (see Algorithm 5), while it is avoided for all
other variables which are involved in the old queries and the
new query in horizontal updates. The improvement of our
online auditing algorithm over the standard linear program-
ming is significant since the phase of finding the first basic
feasible solution can be as expensive as the phase of finding
the optimal solution. Furthermore, even in vertical updating

x1 x2 x5 x3 x4

Z 1 0 0 0 -1 -1

x1 1 1 0 0 -1 -1
x2 4 0 1 0 1 1
x5 6 0 0 1 2 1

Figure 17: Simplex Tableau for (9)

x1 x2 x3 x6 x4 x5

Z 6 0 0 0 0 3 2

x1 1 1 0 0 0 -1 -1
x2 4 0 1 0 0 1 1
x3 6 0 0 1 0 2 1
x6 6 0 0 0 1 3* 2

Figure 18: Step 1 for Updating on (9)

for all old variables, the constructed optimization problem
in first phase is simpler than standard simplex methods.

Second, in the phase of finding an optimal solution, our
online auditing algorithm can quickly determine whether a
newly constructed solution is optimal (see step 2 in Algo-
rithm 3 and in Algorithm 4) or whether a new query would
improve the existing optimal solution (see step 1 in Algo-
rithm 5) before it employs the traditional primal simplex
method (Algorithm 1) or dual simplex method (algorithm
2) to get the optimal solution. In most cases, as we observe
in our numerical experiments (see the next section), our on-
line auditing algorithm can get the optimal solution without
incurring the cost of calling the traditional simplex method.

Third, our online auditing algorithm requires recording the
binary vector α of length |X| as well as one default variable
and two default simplex tableaus between auditing different
queries. In comparison, standard linear programming re-
quires that the set of all old queries is recorded in auditing.
Our online auditing algorithm is more storage-efficient since
a simplex tableau usually requires much less storage than
the set of old queries does. A simplex tableau takes at most
O(|X|2) bits to store, while the set of previous queries may

require as much as O(2|X||X|) bits in the worst case. In this
sense, it is also better than any solution (not based on linear
programming), due to the efficacy of storage of past history.

8. EXPERIMENTAL VALIDATION
To assess the relative performance of our algorithm versus
standard linear programming in auditing, we performed sev-
eral experiments on an IBM T43 laptop with a CPU clock
rate of 1.86 GHz, 512 MB of RAM, and running Microsoft
Windows XP Professional 2002. We first describe the ex-
perimental settings, including the synthetic data sets used
in our performance evaluation. We then show the perfor-
mance results over a range of data characteristics.

8.1 Experimental Settings
We ran our algorithm and the standard linear programming
for auditing a set Q of queries over a set X of real values,
each of which is randomly selected from {1, 2, ..., |X|}. Since
our algorithm is more efficient when a new query is denied
rather than answered in auditing (while the standard linear
programming remains the same in the two cases), we tested
essentially the worst case for our algorithm (time complexity
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x1 x2 x5 x3 x6 x4

Z 0 0 0 0 0 0 -1

x1 3 1 0 0 0 1/3 -1/3
x2 2 0 1 0 0 -1/3 1/3
x5 2 0 0 1 0 -2/3 -1/3
x3 2 0 0 0 1 1/3 2/3

Figure 19: Step2 for Updating on (9)

x1 x2 x5 x3 x4

Z 3 0 0 0 0 -1/3

x1 3 1 0 0 0 -1/3
x2 2 0 1 0 0 1/3
x5 2 0 0 1 0 -1/3
x3 2 0 0 0 1 2/3

Figure 20: Step 3 for Updating on (9)

wise) in which all queries in Q are not denied in auditing.
For this purpose, we set the threshold to be zero. In general,
our algorithm will perform significantly better as queries can
be quickly denied.

We generated the set Q of queries in a random manner.
The size of each query is determined by a random variable
of Poisson distribution with mean µ. If the generated num-
ber is greater than |X|, we generate it again till the number
is not greater than |X|. Note that in this way, the generated
data is not real poisson distribution, but of the density func-

tion Prob(x = k) = λke−λ

k!
/
P

|X|

i=1
λie−λ

i!
, 1 ≤ k ≤ |X|. To

model the phenomenon that queries often involve common
variables, some fraction of variables in subsequent queries
are chosen from the previous queries generated. We use an
exponentially distributed random variable with mean equal
to the correlation level γ to decide this fraction for each
query. Thus, if we assume the previous query is qi, the size
of new query is s, and fraction level is r, then the new query
is generated by randomly choosing |qi|∗r values from qi and
the rest s − |qi| ∗ r values from X\qi. In case of s < |qi| ∗ r
(i.e. the size of new query is smaller than the fraction of the
previous query), we choose s values randomly from qi. In
case of s − |qi| ∗ r > |X| − |qi| (i.e., there is no enough data
from X\qi for the new query), we choose all data from X\qi

to form the new query. However, these two cases happen
rarely in our experiments.

parameter meaning default value
|X| number of values (variables) 100
|Q| number of queries 30
γ correlation level 0.5
µ average size of queries 10

Table 1: Parameters and default values

The four parameters, |X|, |A|, µ and γ that are used to gen-
erate data and queries in our experiment is summarized in
Table 1. Our experiment is executed by varying one of four
parameter while keeping the rest as the default values, which
are shown in Table 1. Since the final result (allow or deny)
is the same, for each set of data that is generated, we only
compare the execution time of our online updating algorithm
with the standard linear programming.

Algorithm 6 Online Updating Algorithm

1: Take the first query and get each variable’s minimum
and maximum (which are obviously 0 and the result
of the first query, respectively). If the difference be-
tween these values is no greater than a threshold, deny
the query; otherwise, answer the query, choose any one
of the variables that are involved in the first query as
the default variable, and build corresponding simplex
tableaus as the default tableaus.

2: When a new query arrives, employ the appropriate ver-
tical update algorithm to obtain the minimum and max-
imum of the default variable and the updated simplex
tableaus as well. If the difference between the minimum
and maximum is smaller than the predefined threshold,
deny the query.

3: Starting from the default variable, employ the horizontal
update algorithm to obtain the minimum and maximum
values for every other variable that is involved in either
the old queries or the new query. Again, if the differ-
ence between the minimum and maximum values for any
variable is smaller than the predefined threshold, deny
the query. Otherwise, answer the query, update the last
variable processed as the default variable, update the
corresponding tableaus as the default tableaus, and go
to Step 2.

8.2 Experimental Results
Figure 21 shows our experimental results by varying the
number of queries issued by a user from 5 to 50. It is ob-
served that the execution time of standard linear program-
ming increases in linear proportion to the number of queries,
while the execution time of our online updating algorithm is
much less sensitive to the change of the number of queries.
In the default case where |Q| = 30, our online updating
algorithm is about 30 times faster than standard linear pro-
gramming. The more queries are involved in auditing, the
more efficient is our algorithm as compared to the standard
linear programming. This feature makes our algorithm more
prominent for auditing a large number of cumulative queries
for each frequent user in the long run.
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Figure 21: Varying |Q|
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Figure 22: Varying |X|

Figure 22 compares our algorithm with the standard linear
programming by scaling up the number of values in the pro-
tected attribute from 100 to 500. It is observed that our
algorithm is affected little, while the standard linear pro-
gramming increases evidently with |X|. The reason is that
the more values are in the protected attribute, the more vari-
ables are involved in the queries; thus, the standard linear
programming takes more time to solve the minimum and
maximum for these variables.
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Figure 23: Varying µ
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Figure 24: Varying γ

In Figure 24, the correlation level is varied from 0.2 to 0.9.
The larger the correlation level, the more overlap between
two consecutive queries. However, the total number of vari-
ables involved in 30 queries (|Q| = 30 in the default case)
does not change significantly with the correlation level. This
is mainly due to the random choice of each query besides
the overlapping portion taken from the previous query. As
a result, the standard linear program is not sensitive to the
change of the correlation level. Our algorithm is around 30
times faster than the standard linear programming consis-
tently in this set of experiments. This is due to the number
of queries, and is consistent with our prior result. Thus, the
conclusion is that overlap factor does not affect running time
of either algorithm.

The last set of experiments scales up the average size µ of
each query from 10 to 50, as shown in Figure 23. The stan-
dard linear programming increase with the average size of
each query because the larger each query is, the more vari-
ables are involved in auditing; thus, it takes more time for
the standard linear programming to solve the minimum and
maximum for these variables. Notice that this increase is not
linear, since the number of variables involved in a fixed num-
ber of queries (i.e., |Q| = 30 in Figure 23) may be saturated
if the average size of each query is large enough (µ ≥ 40
in Figure 23). In comparison, our auditing algorithm takes
the advantage of vertical updating and horizontal updat-
ing almost equally effectively in any cases. In other words,
our algorithm is more efficient for auditing larger queries as
compared to the standard linear programming.

We note that the experiments were performed exactly fol-
lowing our proposed algorithms. In fact, there are some
methods which can be used to further reduce the computing
time without increasing the storage space. All state-of-art
algorithms (e.g., the revised simplex method) that improve
the simplex method can be directly incorporated in our al-
gorithm. We also note that there exist multiple stopping
rules for simplex methods. We chose to use the widely used
rule in our experiments in step 4 of the Algorithm 1 and step
3 of the Algorithm 2 [44]. This rule has a potential problem
in theory: it may cause recycling in searching for a basic
feasible solution. Certain other stopping rules, such as the
Bland rule and the dictionary order rule [44], can be used
to avoid the potential recycling problem. Nonetheless, the
potential recycling problem happens very rarely in practice.
We did not encounter any such problem in our experiments.

9. CONCLUSIONS
Online auditing is a critical component in database systems
for protecting privacy information stored in databases with-

out adding noises or over-restricting user queries. Tradi-
tional auditing approach exploits linear programming for
monitoring the exact bounds of protected values that each
user can obtain from a set of queries. The efficiency of this
approach is restricted by applying standard linear program-
ming repetitively for auditing all involved values with re-
spect to the set of cumulative queries each time a new query
is checked. This paper shows that the efficiency of online
auditing can be improved by opening the black box of linear
programming and discovering short cuts between auditing
different values. Numerical experiments show that our algo-
rithm is significantly more efficient than the standard linear
programming, especially more efficient for auditing a larger
number of larger queries over more protected values. In the
future, we plan to investigate the online auditing problem
for mixed queries, including not only SUM queries, but also
min and max queries. For mixed queries, Chin investigated
the auditing problem with respect to the exact-value disclo-
sure [7]. It is interesting to extend our study to auditing
mixed queries with respect to the interval-based disclosure.
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