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ABSTRACT
Applications that involve data integration among multiple sources
often require a preliminary step of data reconciliation in order to
ensure that tuples match correctly across the sources. In dynamic
settings such as data mashups, however, traditional offline data rec-
onciliation techniques that require prior availability of the data may
not be applicable. The alternative, performing similarity joins at
query time, is computationally expensive, while ignoring the mis-
match problem altogether leads to an incomplete integration. In this
paper we make the assumption that, in some dynamic integration
scenarios, users may agree to trade the completeness of a join result
in return for a faster computation. We explore the consequences of
this assumption by proposing a novel, hybrid join algorithm that
involves a combination of exact and approximate join operators,
managed using adaptive query processing techniques. The algo-
rithm is optimistic: it can switch between physical join operators
multiple times throughout query processing, but it only resorts to
approximate join operators when there is statistical evidence that
result completeness is compromised. Our experiments show that
sensible savings in join execution time can be achieved in practice,
at the expense of a modest reduction in result completeness.

1. INTRODUCTION
The rise in prominence of rich Internet applications provides new

opportunities for on-the-fly integration of data from sources that
are selected as a result of interactive user exploration. The prob-
lem of record linkage [10] is at the heart of these data integration
scenarios, where different and autonomously maintained tables are
joined on the expectation that the values of some common attributes
match, at least approximately. When two customer databases that
belong to different organisations are merged, for example, it is rea-
sonable to expect that the common customers can be found by
means of a join. Unless those customers are identified in exactly
the same way in both tables and in all instances, however, the result
will in general be incomplete.
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The term “record linkage" denotes a class of algorithms that at-
tempt to identify pairs of records that are meant to represent the
same real-world entity, despite minor differences in the values of
their attributes. In this paper we refer to these records as variants
of each other (others, e.g., [5], have called them fuzzy duplicates).
Common to the broad variety of existing approaches to record link-
age (see for instance the surveys in [2, 3]) is the definition of a
similarity function sim(r1, r2) that applies to pairs of records r1
and r2, along with decision rules that classify each pair 〈r1, r2〉 as
either a match or a non-match based on the similarity value, e.g. “if
sim(r1, r2) > θ then match”, where θ is a pre-defined threshold.

Performing record linkage on the tables ensures that the results
of subsequent join queries are as complete as possible. This, how-
ever, assumes that the tables are available prior to their deployment
as part of an application. Table analysis is required for at least two
reasons: firstly to tune the decision rules (i.e., to find a suitable
value for θ), and secondly to reduce the computational complex-
ity. Tuning is required to improve the performance of the linkage
process, i.e., to reduce the number of false positives (i.e., the num-
ber of records pairs erroneously reported) and false negatives (the
number of true record pairs that the algorithm fails to match). This
in general requires the ability to scan the tables. Regarding com-
plexity, note that the need to measure the similarity of each pair of
records in two tables of size n involves n2 comparisons; this com-
plexity can be reduced using blocking techniques, whereby records
are first partitioned into coarse-grain clusters, so that pairwise com-
parison is only performed separately within each cluster. Again,
this requires that the tables be pre-processed prior to linkage.

Advance access to the tables, however, is increasingly becoming
an unrealistic assumption, for instance in mashup-style integration
scenarios, where two or more data sources are integrated on-the-
fly, often by a third party who has no control over either source,
or when the data to be joined is a continuous stream. Here link-
age is indeed required, because it seems unreasonable to expect a
perfect match among values in the two sources; but it can only be
performed at query time, using a similarity, or approximate, join al-
gorithm such as similarity set join [4]. Here the similarity function
and the match decision rules are embedded into the physical join
operator. In this case, however, the inevitable O(n2) complexity
results in high query response times.

The research presented in this paper stems from the observation
that, in some scenarios, users may be willing to accept a less com-
plete result in return for faster join computation. Consider for ex-
ample a mashup-based integration, where an organization collects
data from various insurance companies into a large table of car ac-
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Figure 1: The Monitor-Assess-Respond adaptive framework

cidents that have occurred nationwide over a period of time, and
that is updated frequently. This data is then overlaid onto a map
based on the accidents location, in order to visualize “accidents hot
spots”. Suppose that the geographical information is obtained by
joining this table, itself collated from various sources, with a refer-
ence table containing an atlas of all streets in every city, along with
their precise map location. Here performing a similarity join seems
appropriate, since there is no guarantee that street names in the ac-
cidents table match exactly those in the reference atlas. On the
other hand, a full-fledged similarity join would prove expensive to
compute, and furthermore such computational cost may not be jus-
tified, as the proportion of mismatching accident locations, which
is not known a priori, may turn out to be modest. In this situation
our organization may be willing to trade the completeness of the
result, i.e., the number of accidents laid on the map, in return for a
faster visual presentation (the experimental evaluation presented in
Sec. 4 makes use of data from this example).

In this paper we explore such trade-offs. Specifically, we pro-
pose a hybrid join algorithm that employs a combination of ex-
act and approximate join operators and that is able to dynamically
switch between the two, depending on a time series of estimates
of the number of variant records that occur in the tables. As we
show in Sec. 3.2, such estimates are indeed available whenever a
parent-child relationship between the two tables is expected, but
it is not enforced through a constraint, and indeed the presence of
variants reduce the number of actual matches. We aim indeed to
cope with situations where we have reasons to assume that the two
tables should join, but because there is no primary key-foreign key
constraint to guarantee that they will, we need to be prepared to deal
with mismatches. In the example mentioned earlier, for instance,
we expect each accident record to match one record in the reference
street atlas when there are no variants. In this case the presence of
variants can be detected based on the divergence between the ob-
served and the expected join result size, at various points during the
computation.

Current results from the adaptive query processing (AQP) frame-
work [8] show how, in certain cases, the query processor can use
these estimates to modify the query plan during execution, namely
by replacing a physical operator with another that performs the
same function [12, 14, 15, 18, 19, 28, 25]. This idea has proven
viable for pipelined query plans [11], primarily as a dynamic opti-
mization technique to improve the performance of a complex query,
in cases where the initial query plan produced by the optimizer
proves inefficient.

In this paper we explore the applicability of the AQP framework
to our problem. Our goal is to control the trade-off between the

cost of the join vs the completeness of the result, i.e., by switch-
ing to an (inexpensive) exact join when no variants are detected,
and returning to an (expensive) approximate join when they are. To
the best of our knowledge, this is the first attempt to apply a well-
known query optimization technique to achieve a balance between
the cost of the query, and the completeness of the result. The adap-
tive strategy seems well-suited to achieve this goal by means of a
statistical model of the expected join result size at any point during
the computation; this is critical to being able to detect unexpected
variants in the tables, and therefore to react by switching join op-
erators. Our experiments show that the technique is indeed viable,
and that sensible savings in join execution time can be achieved at
the expense of a modest reduction in result completeness.

The paper offers the following specific contributions:

• an adaptive join processing algorithm based on exact and ap-
proximate symmetric hash joins. In particular, we have mod-
ified the SHJoin algorithm [4] to ensure that operators can
be switched safely at certain well-defined points during the
computation (Sec. 2);

• an instantiation of the generic Monitor-Assess-Respond frame-
work for adaptive query processing that uses the symmetric
join operators, and its formalization (Sec. 3);

• a definition of criteria to measure the algorithm performance,
along with experimental results (Sec. 4).

A discussion of related work (Sec. 5) concludes the paper.

2. EXACT AND APPROXIMATE JOIN OP-
ERATORS

We first introduce our model for adaptive join processing, in-
spired by the generic monitor-assess-respond (MAR) framework
for functional decomposition of autonomic systems [21]. As men-
tioned, we adapt a model previously designed to address query op-
timization problems [14, 15], to address issues of record linkage.

We model the query processor as a state machine, where each
state represents one configuration of the query plan that is cur-
rently being executed. In our case, all the processor can do is to
dynamically switch between two join operators, one exact and one
approximate. Therefore, in the simplest model the processor has
only two states, corresponding to each of the operators, and each
operator switch corresponds to a state transition (in Sec. 3.4 we
will generalize the processor model to multiple states).
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The control loop shown in Fig. 1 defines the overall adaptive
model that we are going to use. The monitor periodically obtains
the values for some observable quantities from the query processor;
the assessor performs an analysis of those values, in order to de-
termine whether a change of operator is required; when this is the
case, the responder performs a state transition, which is enacted by
the processor as an actual operator switch.

In the remainder of this section we describe the specific operators
used by the processors in our implementations, and the switching
mechanism. Details on the monitored variables and on the assessor
decision logic are presented in the next section.

2.1 Requirements for Join Operators
The choice of physical join operators is dictated by two main

requirements. Firstly, we need to make sure that the state of the join
execution can be transferred from one operator to the next without
loss of data, i.e., of partial results, and at specific points during the
execution.

As formally shown in [11], a sufficient condition for a “safe”
switch, i.e., one where we can correctly compute the remainder of
the join result after the switch without re-processing the tuples seen
so far, is that the operators expose a particular state, called qui-
escent. In iterator-based evaluation [16], an operator implements
three operations, i.e., OPEN(), NEXT() and CLOSE() (see Fig. 2).
An actual execution trace is a path through the diagram. As shown
in [11], some of the states N ′ in the execution trace, i.e., the state
the join algorithm is in when a call to NEXT() has concluded, are
indeed quiescent states, making iterator-based algorithms a suitable
choice for our purposes. The precise characterization of which N ′

states are quiescent states is specific to each join algorithm.

Figure 2: State-Transition Diagram of an Iterator

A second requirement derives from the need to support joins
among tables that are actually data streams. As mentioned in the
introduction, the streaming scenario is one where a priori analysis
of the tables involved is not feasible, making adaptivity a particu-
larly attractive option. For this reason, we use pipelined operators
in our implementation.

Hash join operators can be made to satisfy these requirements. In
particular, we have adopted a traditional symmetric hash join [31]
for the exact operator, denoted SHJoin, because it is the most used
for streams, and we have implemented a pipelined version of the
SSJoin algorithm proposed in [4], denoted SSHJoin and briefly
presented in next section.

SHJoin is the pipelined version of the traditional hash join. It
uses two hash tables that are built in parallel while reading the tu-
ples from both inputs. When reading a tuple from one input, it is
probed through the use of the hash table of the other input to iden-
tify matches. Therefore, results can be returned at any point of the

join execution, using the partial information contained in the tables,
without having to wait for the input total exhaustion.

2.2 The SSHJOIN Algorithm
SSHJoin is our pipelined, symmetric hash re-implementation of

the SSJoin operator [4]. For reasons of space, here we only give
a short overview; a more detailed description is available [23].

Figure 3: SHJoin and SSHJoin State, per Operand

Fig. 3 shows the hash data structures maintained by SHJoin and
SSHJoin, on the left and right, respectively, for each of the two
joining tables (only one is shown for simplicity). Each algorithm
operates by scanning each of the tables in turn, one tuple at a time1.
The main difference between the two is that, while SHJoin com-
putes a hash key of the join attribute values read so far, the entries
qi on the right-side of Fig. 3 are the hashed values of all the q-grams
seen by SSJoin. The set of q-grams of a string s, denoted q(s), is
the set of all substrings obtained by sliding a window of width q
(typically, q = 3) over s. In this work we use q-grams to measure
string similarity, namely by computing the Jaccard Coefficient2:

sim(s1, s2) =
|q(s1) ∩ q(s2)|
|q(s1) ∪ q(s2)|

In this case, the bucket for any q-gram q contains references to
each scanned tuple that includes q.

Since the algorithms are symmetric, they maintain two hash ta-
bles, one for each of the two joining tables (left and right inputs).
Thus, every tuple from each table is both inserted into one of the
hash tables, and also used to probe the other. SHJoin supports the
traditional iterator-based, pull-on-demand, pipelined NEXT() oper-
ation. According to [11], in this case a quiescent state is one in
which the operator has concluded a call to NEXT() and the last tu-
ple read from either the left or the right input has been joined with
all the tuples in the hash table for the right or the left input, resp.,
that it matches. In SHJoin, NEXT() is computed as follows:

a) If there is an outstanding probe tuple for which not all matches
have been returned yet, i.e., the state of the operator is not
quiescent, then the next match for that probe tuple is re-
turned.

b) If there are no outstanding tuples, i.e., we are in a quiescent
state, the operator reads a new tuple, inserts it into the appro-
priate hash table, and uses it to probe against the other hash
table.

1As other adaptive join techniques that use hash join (e.g., [28,
15]), we assume that join state can be held in main memory.
2Other similarity functions based on q-grams can be exploited, see
[5] for example.
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Operation SHJoin SSHJoin
1. obtain q-grams – |jA|
2. update hash table 1 |jA|+ q − 1
3. compute T (t) and associated counters (|jA|+ q − 1) ∗Bap

4. find matches Bex |T (t)|

Table 1: Cost of SSHJoin and SHJoin Operations

SSHJoin follows the same basic behaviour, but the result of one in-
vocation of NEXT() when probing with tuple t and joining, say, on
attributeA, is the set of tuple pairs 〈t, t′〉 such that sim(t.A, t′.A) >
k. Here k is a pre-defined threshold. This involves computing all
q-grams for t.A, and probing the q-grams hash table (right-hand
side of Fig. 3) with each of them. The tuples t′ that are retrieved at
least k times are returned as part of the match.

The main differences between SSHJoin and SHJoin can be
summarized as follows:

1. an additional operation, i.e., obtaining the q-grams in the join
attribute of the tuple, is needed before any insertion can be
made in the corresponding hash table;

2. an insertion of a tuple in a hash table additionally requires the
insertion of a pointer to that tuple for each q-gram appearing
in the join attribute of the tuple;

3. when probing a hash table on q-grams with t, the operator
builds a set T (t) of references to tuples t′ that share at least
one q-gram with t, and it associates a counter c(t′) of the
common q-grams with each t′ ∈ T (t);

4. the result consists of pairs 〈t, t′〉 where t′ ∈ T (t), c(t′) ≥ k.

We also use the constraint c(t′) ≥ k to optimize on computing
T (t), as follows. Suppose |q(t)| = g. SSHJoin considers each
q-gram in reverse frequency order. For the first g − k + 1 q-grams
of t, the tuples containing that q-gram (obtained through the hash
table) are inserted into T (t) with a counter set to 1. If the q-gram
already occurs, the counter is incremented. For the remaining q-
grams of t, the counters of the tuples where they occur, and which
belong to T (t), are incremented (but no new tuples are inserted).
The frequency of a q-gram is simply the number of tuples in the
hash table which contain it; this number is saved along with the
q-gram.

2.3 Cost Implications
We now present an analysis of the computational cost due to

adaptivity, namely (i) the relative additional cost of executing one
or more steps using SSHJoin over that of SHJoin, and (ii) the
overhead cost of switching operators.

Relative Computational and Space Costs. SSHJoin is
costlier than SHJoin both in terms of processing time and mem-
ory requirements. Concerning time, the increase in complexity can
be estimated by looking at the differences between SHJoin and
SSHJoin w.r.t. the cost of operations (1)-(4) described earlier in
this section. These costs are summarized in Table 1, where: |jA|
is the average length in characters of a join attribute value jA; q
is the q-gram size (thus, the number of q-grams is |jA| + q − 1);
Bex is the average length of the bucket for SHJoin; and Bap is
the average length of the bucket for SSHJoin (i.e., the number of
tuples containing a q-gram that is hashed to that bucket).

Bap can be estimated as Bex ∗ (|jA| + q − 1), while |T (t)| is
certainly less thanBex∗(|jA|+q−1)2. If we consider each transi-
tion between quiescent states in SSHJoin/SHJoin (corresponding
to the computation of all the matches for a tuple), then the ratio be-
tween the two costs for each such transition is inO((|jA|+q−1)2),
i.e., quadratic in the number of q-grams in jA.

Concerning space, let n be the number of tuples processed so
far from one operand, let s be the average space required for a
tuple, and let p be the space required for a pointer. For both join
algorithms, the tuples read so far are maintained only once. Thus
the space required is n ∗ s. For each operand, the space required
by the SHJoin hash table is n ∗ p whereas the space required by
SSHJoin hash table is n ∗ (|jA|+ q − 1) ∗ p.

Cost of Switching Operators. The main overhead cost in-
curred during a switch is due to the need to update the hash tables.
The tuples processed so far for both operands are kept in main
memory, together with the hash tables needed by the algorithms.
The hash table that is used by the current algorithm is up-to-date,
whereas the other lags behind, as it only contains the tuples pro-
cessed until the previous switch point. The pessimistic approach
of maintaining up-to-date both hash tables has not been considered
because it imposes an overhead on the exact case, which we assume
to be the cost-effective option in most circumstances.

Therefore, at each switch point, we need to update the appro-
priate hash table by inserting the tuples that were processed since
the last switch. This means that when we switch from exact to ap-
proximate, the hash table on q-grams is updated with the tuples that
were being processed by the exact algorithm, and similarly, when
we switch from approximate to exact, the hash table on attribute
values is updated with the tuples that were being processed by the
approximate algorithm. Thus, the switch cost only depends on the
number of tuples seen since the last switch, rather than on all tuples
scanned since the start of the join computation.

3. ADAPTIVE JOIN PROCESSING
FOR VARIANTS

We now discuss how the two operators just presented are used
to implement the actual adaptive behaviour defined by the general
MAR control loop of Fig. 1. We present an overview of the algo-
rithm and its formal details.

3.1 Algorithm Overview
The overall algorithm consists of periodic activations of the con-

trol loop, every δadapt steps of the symmetric join. At any one
time, one of the two operators is active. One step consists of the se-
quence of elementary operations that move the active operator from
one quiescent state to the next, as described above. One activation
begins with the monitor reading the current size of the join result.
The assessor computes the estimated result size at that point in the
join, and determines whether the divergence between observed and
expected result sizes is statistically significant. With this informa-
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tion, the responder determines the next state for the query proces-
sor; since the current operator is by definition in a quiescent state,
the state transition may involve an operator switch at this point.

Initially the system assumes, optimistically, that there will be
no variants and therefore the exact join operator is used in the ini-
tial state. As variants occur in either of the two tables, their effect
manifests itself as a reduction in the observed number of matching
tuples. As soon as the lag between observed and expected result
size represents sufficient statistical evidence to trigger a reaction
by the responder, the approximate join is activated. In turn, this has
the effect of reducing the lag, because we are now guaranteed that
variants will be detected3. The monitor now observes a sliding win-
dow of similarity values between each tuple pair being matched. A
long sequence of consistently high similarities is taken as an in-
dication that variants no longer occur, prompting the algorithm to
return to an exact join operator.

The key point to note is the statistical significance of the ob-
served deviation from the expected course of events. This means
that, depending on the relative frequency of the actual variants in
the table, the deviation may grow at different rates. In particular,
when variants are rare and sparse, the control loop will “lag be-
hind” and will respond slowly. This is an expected behaviour and
is part of any adaptive strategy, which is necessarily based on esti-
mates, in line with the general adaptivity framework. Furthermore,
as noted in the literature [8], the success of the strategy relies on the
accurate tuning of the thresholds and parameters involved. Dynam-
ically finding the best setting for these thresholds and parameters is
a hard optimization problem which we (in line with other threshold-
based AQP proposals (e.g., [28, 18, 15]) do not address directly but
only consider by means of an empirical exploration of the space of
available settings (in Sec. 4).

We now describe in detail the process. Specifically, we describe
the variables observed by the monitor, the logic of the assessor, and
the state machine controlled by the responder.

3.2 Estimation of Result Completeness
As mentioned in the introduction, the monitor component of the

adaptive strategy is based on the assumption that a parent-child re-
lationship is expected between the two input tables, a common case
exemplified by the car accidents scenario presented earlier. Under
this assumption, the expected result size at the end of the join is, of
course, the size of the child table, i.e., each tuple in a child table
S matches exactly one in the parent table R. Furthermore, sup-
pose that there are no variants anywhere, and that at some step of
a symmetric hash join n < |R| tuples have been scanned. The
probability that any given tuple in S has already found its match in
R is the same as the probability that the corresponding tuple in R
has already appeared among the top n tuples, i.e., p(n) = n

|R| . By
extension, therefore, the observed result size after scanning n tu-
ples, denoted On, can be modelled as a sequence of n independent
Bernoulli trials, i.e., as a binomial random variable with parameters
n and p(n): On ∼ bin(n, p(n)).

Therefore, the problem of detecting a statistically significant dis-
crepancy between the expected and observed result size after n tu-
ples, reduces to the problem of deciding whether an observation
Ōn is an outlier with respect to its distribution. Outliers are defined
using a threshold θout, namely Ōn is an outlier iff

Pn,p(n)(Ōn ≤ O) ≤ θout (1)

where Pn,p(n)(.) is the cumulative distribution function for a bino-
mial with parameters n, p(n).
3As we point out later, past variants can be matched in addition to
variants that occur further down the table.

With reference to the MAR framework, the monitor provides val-
ues Ōn every δadapt steps that are used by the assessor to compute
Pn,p(n)(Ōn ≤ O). Note that Pn,p(n)(.) changes at every step, i.e.,
P effectively represents a whole family of functions, and its value
at step n cannot be used to compute the value at step n+ 1. In our
experiments we have manually tuned parameter δadapt to achieve
a balance between the overhead incurred in computing the cumula-
tive distribution function, and the granularity of the assessment.

3.3 Identifying the Source of Perturbation
So far we have assumed, implicitly, that the query processor em-

ploys either of the two join operators on both inputs. In a symmetric
hash join, however, we may also choose to use an exact join when
scanning from the left input, while using an approximate join when
scanning from the right input (and vice versa). In this hybrid con-
figuration, each tuple read from the left is used to probe a SHJoin
hash table on the right, while a tuple read from the right is used
to probe the SSHJoin defined on the left input, as explained in
Sec. 2.2.

This is a useful property. Suppose that, in addition to statistically
detecting the presence of variants in the table, we are also able to
determine in which of the two inputs the variants appear, for exam-
ple in the left but not in the right. We could then adopt a hybrid
configuration where tuples read from the left are matched approxi-
mately, while those from the right are matched exactly. Intuitively,
this leads to a more accurate use of the two operators.

In order to detect the origin of variants, we add a flag to each
scanned tuple in each of the inputs, to denote that the tuple has
been successfully matched (at least once). That is, initially the flag
is set to false; we set the flag to true if, when probed for an exact
match, the tuple matches. Now, assume a tuple t3 is read off the
right input that, through the use of an approximate join, is found to
match with a tuple t2 stored in the left hash table. Now if t2 has
its flag set to true, this means that some t1 in the right input exists
that previously matched t2 exactly. Therefore t3, a variant of t2, is
also a variant of t1 and unless t1 and t2 are faulty in identical ways,
we can also conclude that it is t3, rather than t2 that prevents the
exact match between the two. Thus we have been able to conclude
that the right input is a source of variants. Of course, if t2 has not
been seen before, and in particular it has not been matched exactly
with any tuple from the right input, then we would not be able to
glean any evidence from its approximate match with t3. This is not
a problem, however, since in the absence of specific evidence, the
algorithm simply assumes the default case, i.e., that variants occur
in both tables.

3.4 State Machine for Adaptive Control
The complete state machine managed by the responder compo-

nent, that describes the adaptive behaviour of our algorithm, takes
account of the hybrid configurations just discussed, and thus it con-
sists of four states, shown in Fig. 4.

Each state represents one of the four possible combinations: (a)
in state lex/rex (short for “left exact, right exact”) the exact join
is used for both the left and the right inputs; (b) in lap/rap (“left
approximate, right approximate”) the approximate join is used for
both the left and the right inputs; (c) in lap/rex the approximate
join is used for the left input, and the exact join for the right; and (d)
vice versa for lex/rap. As mentioned, the algorithm optimistically
begins in the lex/rex state.

The complete set of transitions is defined by predicates ϕi(t),
i : 0 . . . 3, where t indicates the step of the operator at which the
responder is activated (recall that this is a quiescent state). Infor-
mally, the transitions characterise the following circumstances:
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Figure 4: State machine for adaptive join control

ϕ0(t): there is no evidence that tuples from either of the inputs
include a statistically significant number of variants. Note
that this accounts for two scenarios. Firstly, no variants have
ever been detected (this is the transition from lex/rex onto
itself); and secondly, the algorithm has at some point reacted
to variants, by moving into one of the other states, but recent
tuples match with very high similarity, an indication that we
can revert to an exact join (transitions back to lex/rex from
other states);

ϕ1(t): there is evidence that tuples include a statistically signif-
icant number of variants, and it is not possible to determine
which of the inputs is responsible for the loss of matches;

ϕ2(t): there is evidence that tuples include a statistically signif-
icant number of variants, and furthermore we can determine
that they are located in the left input;

ϕ3(t): symmetrically, the variant tuples are located in the right
input.

3.5 Definition of State Transitions
We now formalize these transitions in terms of monitored vari-

ables, thresholds, and predicates that the responder can evaluate.

Monitored Variables. Transitionsϕ1(t), ϕ2(t), andϕ3(t), i.e.,
from an exact to an approximate operator (left, right, or both) rely
upon the observed result size at step t, Ōt, as mentioned in Sec. 3.2.
In addition, transitions ϕ0(t) from any state other than lex/rex re-
quire the ability to recognize that exact operators may be adequate
after a portion of the join has been executed using the approximate
operator. For this purpose we use a sliding window of size W , ap-
plied independently to each input table, and count the number of
approximate matches observed within the interval [t −W, t]. We
denote this number by At,W .

Note that the monitor also reports on the number of steps t exe-
cuted so far by the join.

Assessor Predicates and Thresholds. The assessor uses the
monitored variables to compute three types of predicates. The first,

Symbol Interpretation
σ(n) ≡ Pn,p(n)(Ōn ≤ O) ≤ θout significant probability

of discrepancy

µi(t) ≡ At,W

W
≤ θcurpert unlikely i is currently

perturbed
πi(t) ≡

∑
t′<t I(µi(t

′)) ≤ θpastpert unlikely i was ever
perturbed

Table 2: Predicates Computed by the Assessor

introduced in Sec. 3.2 (Eq. 1), indicates whether or not a statisti-
cally significant number of variants are present in any of the tables:

σ(t) ≡ Pt,p(t)(Ōt ≤ O) ≤ θout

where θout is the threshold used to define outliers.
The second type of predicate, µi(t) with i ∈ {left, right} is true

iff the relative frequency of observed approximate matches within
the most recent window of sizeW is less than a pre-defined thresh-
old, θcurpert:

µi(t) ≡
At,W

W
≤ θcurpert

Finally, the third type of predicate looks at the entire history of
evaluations of µi(t

′) for any t′ < t, in order to determine how
often in the past a high density of approximate matches have been
observed:

πi(t) ≡
∑
t′<t

I(µi(t
′)) ≤ θpastpert

where I(true) = 1, I(false) = 0.
In addition, the assessor activates the responder only if the in-

terval between the current step of the execution t and the previous
is at least δadapt. Tables 2 and 3 summarize the predicates and
corresponding thresholds just described.

Responder Predicates. Based on these predicates, we can now
formalize the transitions ϕi(t), as follows.4

ϕ0(t) = ¬σ(t) ∧ µleft(t) ∧ µright(t)

Intuitively, ϕ0(t) is true when there is no statistical evidence of
variants, nor of the left or the right inputs being currently in a per-
turbation region. In this case, given the available evidence, using
exact joins for both left and right tuples (state lex/rex) is both ef-
fective (no matches will be lost) and efficient.

ϕ1(t) = σ(t) ∧ ¬µleft(t) ∧ ¬µright(t)

The σ component accounts for evidence of mismatches, and is
specifically responsible for the transition out of lex/rex. The other
two components indicate that there is no specific evidence to show
that the perturbation originates from either source. In this case,
therefore, transitioning to lap/rap is more effective (it guarantees
not to miss any variant pairs), at the cost of lower efficiency.

ϕ2(t) = σ(t) ∧ ¬µleft(t) ∧ µright(t) ∧ πleft(t)

indicates that there is evidence of (1) variants that are affecting re-
sult completeness (σ), (2) the left (but not the right) input being
4Note that all necessary state transitions can be defined using only
a subset of all possible conjunctions of those predicates.
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Figure 5: Perturbation Patterns

currently in a perturbation region, and (3) the left input having been
significantly free of past perturbations. In this situation, using an
approximate join to match new left tuples is appropriate (on ef-
fectiveness grounds), but we may continue using the exact join to
match new tuples from the right input. Thus, this calls for a transi-
tion to lap/rex.

ϕ3(t) = σ(t) ∧ µleft(t) ∧ ¬µright(t) ∧ πright(t)

In this last case, symmetric with respect to the previous, the right
(but not the left) input is currently in a perturbation region, but the
right input has been significantly free of past perturbations. Thus,
this calls for a transition to state lex/rap.

Note that reverting to exact join could also be motivated by re-
alizing that the approximate join does not help in increasing the
observed result size (e.g., because the estimate was simply wrong),
though we do not consider this case in the current version of the
assessor.

Symbol Interpretation
W size of sliding window
θsim string similarity threshold
δadapt number or steps between successive activation of

adaptive control
θout outlier detection threshold
θcurpert acceptable current perturbation threshold
θpastpert acceptable past perturbation threshold

Table 3: Thresholds

4. EXPERIMENTAL EVALUATION
Our adaptive approach is designed to strike a balance between

gain, i.e., the increased size of the join result relative to the size that
would be obtained using a purely exact join algorithm, and cost,
i.e., the increased computational cost that results from the intermit-
tent use of an approximate join. Therefore, the performance metrics
presented here are based on the principle of relative gain with re-
spect to a baseline. Specifically, regarding result completeness we
use the number of matched pairs returned by the all-exact join as a
baseline, and count the additional number of tuple matched by the
hybrid algorithm. Likewise, for computational cost we measure the
savings in join computation time achieved by the hybrid algorithm,

relative to the execution time in the all-approximate case, used as
the baseline.

In this section we report on the experimental evaluation of our
proposed technique, expressed using such cost:gain ratio, and mea-
sured on test datasets with known perturbation patterns.

4.1 Generation of Test Datasets
In order to verify the applicability of the developed algorithm

in a variety of real situations, we have developed a test data gen-
erator that can produce a variety of patterns of data perturbation.
We remark that considering a range of different possible situations
is particular relevant because up to now there is no real benchmark
that can be exploited for this purpose (with annotation on the occur-
rences of variants). The generator can produce a uniform distribu-
tion of variants across the length of an input, for example, as well
as an interleaving of perturbation regions (i.e., relatively long re-
gions of variant-rich tuples within the input) with perturbation-free
regions. The latter pattern is designed to simulate various real-life
configurations, where batches of data from different sources are
collated possibly at different times. Perturbation regions of varying
density are created when these sources refer to the same real-world
entities using variants. Examples of these patterns are shown in
Fig. 5.

From a performance perspective, intuitively we expect better re-
sults from datasets in which variants are not uniformly distributed,
because a burst of variants in one of the two inputs rapidly widens
the gap between the observed and the expected result size, allow-
ing for quick detection of any anomaly and hence a timely switch
of operators.

In our evaluation we have investigated how different perturbation
patterns affect our adaptive strategy. Each pattern is described as
a sequence of regions in each of the two joining inputs. Using our
generator, we can control (i) the intensity of the perturbation ex-
hibited by any given region, i.e. the proportion of variants among
all tuples in the perturbation region, (ii) the length of the perturba-
tion region, and (iii) the interval between two perturbation regions.
The results presented here aim to characterize the contexts in which
our approach is applicable, i.e., we aim to discover the perturbation
patterns that our adaptive techniques contend with well, and the
threshold and parameter settings that are required for that perfor-
mance to be achieved.

Towards this goal, we started by generating a pair of parent-child
input tables for each of the four configurations in Fig. 5. Also, we
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allow variants to appear in both inputs (independently from one
another), to account for all possible states in Fig. 4. Throughout
the experiments we have set the proportion of variants within an
input at a fixed 10%. While our strategy would clearly benefit from
higher error rates, this rate is generally accepted as representative
of real-world datasets that contain misspellings.

Fig. 5.(a) represents a rather uniform distribution of variants through-
out the input, with no distinguishable high-intensity perturbation
regions. In this case, we expect a slow accumulation of evidence
of statistically-significant discrepancies in the observed result size,
and, as a result, a slow reaction to the sparse variants. Fig. 5.(b)
captures the situation where low-intensity perturbation regions (light
gray) are interleaved with stretches of unperturbed regions. Fig. 5.(c)
has a small number of well-distinguished, high-intensity perturba-
tion regions. Finally, Fig. 5.(d) exhibits many high-intensity pertur-
bation regions (having fixed the total variant rate across the entire
input, a higher number of variant regions translates to perturbation
regions with shorter duration).

Furthermore, we distinguish the case where variants are only
present in the child table, from the case where they appear in both
tables. Faced with a large number of pattern combinations (each
table may be perturbed according to one of the four patterns), we
have chosen to focus on the cases where the same pattern applies
to both tables. Our results (below) indicate only marginal differ-
ences in behaviour across the patterns, suggesting that we would
not have gained additional performance insights by further mixing
the patterns. In the following, therefore, we consider eight distinct
test cases, namely two (variants in the child, variants in both tables)
for each pattern.

Following our introductory example, we have used a parent ta-
ble containing locations within a country (i.e., all 8082 munici-
palities in Italy), and a child table containing records of car ac-
cidents that occurred in those locations5. These are joined on a
single string representing location values, e.g., TAA BZ SANTA
CRISTINA VALGARDENA. A variant value is obtained by intro-
ducing a small, one-character variation in the string, e.g., TAA BZ
SANTA CRISTINx VALGARDENA, resulting in an invalid loca-
tion. Such edit distance of 1 is enough to guarantee failure of an ex-
act match, but at the same time makes it easy to tune the similarity
threshold θsim in order to control the generation of false positives,
i.e., of spurious matches, when using the approximate join. Recall
that our goal is not to study the performance of similarity functions,
but rather to measure the effectiveness of our adaptive approach un-
der the assumption that the performance of the similarity function
on the test data is known in advance.

4.2 Tuning of Parameters
The effectiveness of the approach is affected both by the set-

ting of the MAR parameters described in Sec. 3.4, and by the way
in which perturbation regions appear in the inputs. The suite of
parameters that are used by the assessor makes for a potentially
large space of configurations. The results presented below refer
to the best possible configuration for each of the eight test cases
described above, obtained by experimentally tuning the setting of
these parameters.

Somewhat surprisingly, we have found that the best settings for
each parameter oscillate within a small range regardless of the test
case. In particular, θsim was set in such a way that when the join
runs exclusively in the lap/rap state, the result size is as close as
possible to the expected size, i.e., that of the child table. A value of

5These tables were generated by the same generator used in [25]
and subsequently in several AQP papers. We thank Volker Markl
for kindly allowing us access to it.

0.85 turned out to be appropriate for all test cases.
Similarly, δadapt, the frequency of assessment, is set empirically

by observing the relative gain for different frequencies. A value
of δadapt = 100 was deemed adequate. Also, we set W = 100.
We also found that the algorithm is not very sensitive to the set-
ting of θout, the threshold used in the σ predicate to trigger a tran-
sition from lex/rex. We set θout = 0.05 throughout. However,
variations in θcurpert and θpastpert, the thresholds used for pred-
icates π and µ, respectively, result in appreciable variations in the
gain/cost ratio. The best settings were found to be θcurpert = 2
and 2 ≤ θpastpert ≤ 5, depending on the pattern.

4.3 Measuring Gain and Cost
To assess the relative gain grel , for each test case, we consider

the gap R − r between the result size R obtained by executing
the approximate join throughout, and the result size r obtained by
executing the exact join throughout. Since our adaptive strategy
produces an intermediate result size, r ≤ rabs ≤ R, we express the
gain as the fraction of the gap that has been recovered:

grel =
(rabs − r)
R− r

The cost assessment is determined empirically, in agreement with
the analysis in Sec. 2.3. In particular, the total cost breaks down
into (i) the cost of performing each step of the symmetric join,
when the algorithm is in any one of the four possible states, plus
(ii) the overhead cost due to all the state transitions. Recall that
one step of the algorithm includes all the operations executed be-
tween two consecutive quiescent states. We express this total cost
as a vector of eight elements, the state costs sci, plus the transition
costs tci, i ∈ {lex/rex, lap/rex, lex/rap, lap/rap}. In turn, the exe-
cution cost sci in state i is the product sci = ti · wi of the number
of steps ti spent in state i, multiplied by the unit cost wi of a step
in that particular state. The weights wi are determined experimen-
tally, by collecting the actual elapsed times for each step in each
possible state. These times are averaged over all experiments; fur-
thermore, since we use the lex/rex baseline case as the best cost,
the weights are normalised by the experimental unit cost wlex/rex.
These weights are as follows: [wlex/rex, wlap/rex, wlex/rap, wlap/rap] =
[1, 22.14, 51.8, 70.2] This means, for instance, that one step in state
lap/rap costs about 70 times as much as one step in state lex/rex.
Having set the weights, the actual costs sci for a particular test
case are determined simply by counting ti for each state during the
execution of that test case.

The transition costs are computed in a similar fashion, as the
product tci = tr i · vi of the number tr i of transitions into state
i throughout the join execution, times the weights vi, which are
determined by observing the actual transition times across all test
cases. Once again these times are normalised by considering the
unit step cost wlex/rex as the baseline. The weights vi are as follows:
[vlex/rex, vlap/rex, vlex/rap, vlap/rap] = [122.48, 37.96, 84.99, 173.42].
Thus, e.g., transitioning into state lap/rap has a cost that is equiva-
lent to executing about 173 steps in the baseline state lex/rex.

The total absolute cost of execution is therefore

cabs =
∑

i

sci +
∑

i

tci

Similar to the treatment of the gain, we express this cost in relative
terms, by considering the difference between the best possible cost
c, achieved by using the exact join throughout, and the worst cost
C, incurred when the approximate join is used throughout:

crel =
cabs
C − c
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Figure 6: Gain and Cost across all Test Cases

Figure 7: Breakdown of Relative Execution Times

Note that, in theory, it is possible to have cabs > C, i.e., when the
costs tci prevail, making for a strategy that is less efficient than
using the approximate join throughout. In our test cases, however,
this is never the case, as described next.

4.4 Experimental Results and Discussion
Fig. 6 shows the overall gain/cost results across the eight test

cases. These are the best results across a range of parameter con-
figurations, as discussed earlier. The efficiency index

e =
grel
crel

is reported under each column. As we can see, both relative gains
and costs are contained within a small interval, regardless of the
specific pattern used for the test case, with the higher efficiency
being achieved when variants are only present in the child table.

To achieve these results, the algorithm makes use of all four
available states to various degrees. Fig. 7 shows a breakdown of
the proportion of the time (expressed as the number of steps) spent
in each state, as well as of the number of state transitions (for sim-
plicity, we do not break the latter down by specific transition).6 No-
tably, the indicated gains are obtained while still spending nearly
6In the figure, AA denotes the lap/rap state, EE is lex/rex, AE is
lap/rex, and EA is lex/rap.

30% of the time performing an exact join. Since this fraction, as
expected, has a negligible cost compared to the approximate steps,
this translates into a substantial reduction in actual costs. This is
shown in Fig. 8, where the relative weights above are applied to the
raw execution steps reported in Fig. 7. Similarly we note that the
transition cost does not contribute significantly to the overall cost.

Note, finally, that the type of perturbation pattern plays no par-
ticularly important role in the overall cost, similar to what we ob-
served earlier regarding the overall gain.

We draw two positive conclusions from the analysis above. Firstly,
the behaviour of the algorithm does not seem to be significantly af-
fected by the variations in perturbation patterns represented by our
test cases. Although we have not explored the broader space of
possible pattern combinations, it would be difficult to conclude at
this point that the technique works distinctly better, or worse, for
some patterns rather than for others. Secondly, the gains accrued
using our strategy never incur a cost that is higher than the cost of a
purely approximate join. In other words, the algorithm may choose
to transition to the best state at each assessment step without paying
an overwhelming price to do so. This suggests the important prop-
erty that the algorithm may be tuned, possibly under user control,
for a target gain in terms of result completeness, while keeping the
marginal cost over the exact join baseline within a predictable limit.
Further work is needed to explore this space of available trade-offs.
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Figure 8: Breakdown of Relative Execution Costs

5. RELATED WORK
The problem of reconciling database records that represent vari-

ants of the same real-world entity, or “record linkage”, has a long
history, rooted in the practical problem of removing duplicates from
large databases prior to conduct data analysis, or to perform inte-
gration across data sources. The problem has been studied in de-
tail (see, e.g., [10]) and has spurred the development of a number
of research toolkits. These include Potter’s wheel [27], Ajax [13],
Tailor [9], and BigMatch [32] (see also [2] for a survey of research-
oriented tools). Commercial tools are also available, typically from
providers of data warehousing and data integration solutions (e.g.
Dataflux from SAS, and Vality). These toolkits usually involve data
preparation steps, in support of which they provide a variety of
utilities, for instance for record normalisation. The need for data
preparation, as well as for tuning of the linkage algorithms, is un-
deniable. In comparison, our approach is at the same time limited,
insofar as it focuses exclusively on the matching phase and assumes
the existence of suitable similarity functions, and innovative, in that
it explores a new direction in data quality research, by recognizing
the emerging need to perform on-the-fly, mashup-style integration
over data sources that are only made available at the time they are
needed. In this respect, we have shown how elements of data qual-
ity control can be woven into the fabric of the query processor by
exploiting techniques from the AQP area. We are not aware of pre-
vious attempts to control data quality adaptively. Note also that our
work is much less ambitious than recent proposals for data integra-
tion in mashups (e.g., [29]). In only addressing a specific subprob-
lem, however, we do provide a concrete novel approach to address
the key requirement, highlighted in [29], of performing data inte-
gration steps dynamically with sufficient accuracy.

We rely on the approximate join technique proposed in [4] but
have advanced on that proposal by adapting it to pipelined eval-
uation. This implies that we use (in the classifications proposed
in [26]) a domain-independent, token-based similarity function (as
opposed to edit-based, as in [17]). For a survey of approximate join
techniques, see [22].

Previous AQP work has focussed on QoS [12, 14, 15, 18, 19,
28, 25] . We build on [11], where the notion of operator replace-
ment in pipelined plans is considered. The notion of asymmetric
combinations of joins algorithms (which we build upon) has been
discussed in [20] but not, as we do, with a view to achieving an

effectiveness:efficiency balance.

6. CONCLUSIONS
In this paper we have addressed the trade-off between results

completeness and computational cost, that becomes available when
record linkage is performed using a combination of exact and ap-
proximate join operators. Such trade-off is interesting in a variety
of increasingly common on-the-fly data integration scenarios, e.g.
data mashups, where users may be interested in a fast, but incom-
plete join result and static integration is not an option.

Our hybrid join algorithm builds upon an established framework
for adaptive query processing (AQP), whereby the query processor
can switch join operators at some well-defined points during the
computation, without loss of data. The algorithm involves symmet-
ric hash join operators for exact and similarity-based tuples match-
ing. In particular, we implemented a variation of a known approx-
imate join algorithm, SSHJoin, to make it suitable for pipelined
processing and thus compatible with the AQP framework.

We have experimentally measured the gain:benefit ratio of our
hybrid approach, compared with an all-exact and all-approximate
join algorithm, using a suite of synthetically generated datasets that
represent a variety of data perturbation patterns. Our results in-
dicate that the algorithm achieves appreciable cost savings, at the
expense of modest loss in completeness of the join result.
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