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ABSTRACT
We study the problem of estimating selectivity of approxi-
mate substring queries. Its importance in databases is ever
increasing as more and more data are input by users and
are integrated with many typographical errors and different
spelling conventions. To begin with, we consider edit dis-
tance for the similarity between a pair of strings. Based on
information stored in an extended N-gram table, we pro-
pose two estimation algorithms, MOF and LBS for the task.
The latter extends the former with ideas from set hashing
signatures. The experimental results show that MOF is a
light-weight algorithm that gives fairly accurate estimations.
However, if more space is available, LBS can give better ac-
curacy than MOF and other baseline methods. Next, we
extend the proposed solution to other similarity predicates,
SQL LIKE operator and Jaccard similarity.

1. INTRODUCTION
With the widespread use of the Internet, text-based data

sources have become ubiquitous. The demand for effective
support of approximate or fuzzy string queries becomes ever
increasing because of the presence of unclean data and differ-
ent spellings. Suppose a user wants to retrieve information
on a customer named ‘przymusinski’ in a decision support
system. Using SQL like operator, she may express the query
as “name like pr%s nsk%”. Alternatively, she may search for
the name as ‘przimunsinski’ but allow a match to be within
an edit distance of 2. In query optimization, accurate and
efficient selectivity estimation is essential to produce an op-
timized query execution plan. In the example query, when
the selectivity of the predicate is very high, the plan using
index seek will be optimal if an appropriate secondary index
on the name column is available. However, if its selectivity
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is low, the cost of scanning the data might be cheaper.
To handle approximate substring matching, various string

(dis)similarity measures, such as edit distance, hamming dis-
tance, Jaccard coefficient, cosine similarity and Jaro-Winkler
distance have been considered [2, 16, 15, 6]. Edit distance
is one of most widely accepted measures for general database
applications where domain specific knowledge is not assumed [1,
14, 15, 18, 22]. The edit distance between two strings s1 and
s2, denoted as ed(s1, s2), is the minimum number of edit op-
erations of single characters that are needed to transform s1

to s2.
In this paper, we first consider edit distance to measure

similarity and will extend the solution to other similarity
measures in later sections. We distinguish between the two
following problems concerning edit distance:

Substring selectivity estimation: Given a query sub-
string sq and a bag of strings DB, estimate the number of
strings s ∈ DB satisfying ed(sq, b) ≤ ∆, where b is a sub-
string of s and ∆ is the edit distance threshold.

Full string selectivity estimation: Given a query
string sq and a bag of strings DB, estimate the number of
strings s ∈ DB satisfying ed(sq, s) ≤ ∆, where ∆ is the edit
distance threshold.

Example 1. Consider a DB = {‘kullback’, ‘bach’, ‘eisen-
bach’, ‘bacchus’, ‘baeza-yates’}. Suppose the query sq ≡‘bach’
and ∆ = 1. For substring selectivity, all 5 elements in DB
except ‘baeza-yates’ satisfy the edit distance threshold, i.e.,
|Ans(‘bach’, 1)| = 4. For full string selectivity, the corre-
sponding answer Ansf (‘bach’, 1) is {‘bach’}.

The class of applications for substring selectivity estimation
is broader than the class of applications for string selec-
tivity estimation (e.g., “name like %pr%sinski%”). Several
techniques [15, 18] were proposed to handle string selectiv-
ity estimation with edit distance. Direct application of those
techniques to the substring problem is not an option since it
will almost always under-estimate the true selectivity, which
may change the ordering of predicates producing a bad query
execution plan.

Furthermore, it is not trivial to adapt those techniques to
give estimation of substring selectivity with edit distance.
For the substring selectivity estimation problem, the biggest
challenge is the estimation of intersection sizes among corre-
lated substrings. Previous studies on string selectivity esti-
mation do not need to consider this complication. To illus-
trate, let us return to |Ansf (‘bach’, 1)|. Estimation meth-
ods for string selectivity partition strings into groups (e.g.,
clusters [15], extended q-gram entries [18]). For |Ansf (‘bach’, 1)|,
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these groups include ‘back’, ‘bacc’, etc. Note that a string
cannot simultaneously be the string ‘back’ and the string
‘bacc’. This non-overlapping condition greatly simpli-
fies counting for string selectivity estimation. For substring
matching, however, a string contain substrings like ‘kull’,
‘back’ and many more substrings simultaneously, which are
not necessarily similar (e.g., ‘Solomon Kullback’). In other
words, the substring condition gives rise to too many possi-
ble cases to consider imposing a major challenge. To the
best of our knowledge, this is the first study developing algo-
rithms for approximate substring selectivity estimation. As
a preview, we make the following contributions.

• The first algorithm we propose is called MOF, which is
based on the MOst Frequent minimal base substring.
Substring frequencies are estimated from extended q-
grams.

• Recall that a key challenge for substring selectivity es-
timation is to estimate the overlaps among groups of
substrings. MOF sidesteps this challenge by basing its
estimation on a single substring. It is expected that
the estimation may be improved by basing the estima-
tion on multiple substrings. We propose in Section 4
an estimation algorithm called LBS, which uses signa-
tures generated by set hashing techniques. However,
standard set hashing is not sufficient. We extend set
hashing in two ways. The first one is the approxima-
tion of signatures for set intersections. The second one
is the use of multiple minimum values to improve ac-
curacy. Depending on the amount of available space,
LBS can be tuned to use larger signatures for improved
estimation quality.

• The proposed algorithms can be extended to string
similarity measures other than the edit distance. We
show in Section 5 how to extend the algorithms to deal
with SQL LIKE operator and Jaccard similarity.

• We show in Section 6 a comprehensive set of experi-
ments. We compare MOF and LBS with two baseline
methods. One is based on random sampling and the
other one is a generalization of SEPIA designed for
strings [15]. We explore the trade-offs between esti-
mation accuracy, size of the intermediate data struc-
ture, and the CPU time taken for the estimation. Our
results show that for fast runtime and low intermedi-
ate size, MOF is an attractive light-weight algorithm.
However, if more space is available for the signatures,
so that the overlaps can be more accurately estimated,
LBS is the recommended choice.

1.1 Related Work
Jin and Li [15] proposed SEPIA which estimates the selec-

tivity of string predicates with edit distance. SEPIA builds
clusters of similar strings and maintains histograms that
store distribution information of strings with augmented edit
distance information. Given a query, it visits each cluster
and estimates how many strings in the cluster are within the
threshold using histograms. One of the baseline algorithms
used here for experimental comparison, called S-SEPIA, ex-
tends SEPIA to handle substrings.

The extension of q-grams with wildcards for estimating
selectivity of string matching with edit distance was first

proposed by Lee et al. in [18]. Their approach is based on
partitioning string hierarchies and exploiting structures in
replacement semi-lattices. These concepts are not applicable
to substring selectivity estimation. And as discussed earlier,
their method does not need to estimate the overlaps among
groups, which is the main focus of the methods proposed
here for substrings.

Krishnan et al. first proposed to use pruned suffix trees
for substring selectivity estimation [17]. The KVI estimate,
which assumes independence of substrings, was proposed.
Based on the Markov assumption and the concept of max-
imally overlapping substrings, Jagadish et al. proposed the
MO estimate [13]. Chaudhuri et al. observed that MO often
under-estimates and introduced the CRT algorithm based on
the Short Identifying Substring (SIS) assumption [5]. Chen
et al. applied set hashing to handle boolean predicates on
substrings [8]. Using a suffix tree and set hashing signatures,
they estimate the selectivity of substring boolean predicates.
These studies [17, 13, 5] deal with the selectivity estimation
of LIKE clauses. However, they cannot handle general forms
of LIKE clauses with both ‘ ’ and ‘%’. Moreoever, none of
these algorithms deal with selectivity estimation with edit
distance or other similarity measures.

Our algorithm LBS adapts from set hashing signatures. A
simpler scheme could be based on mapping a value v to a bit
position (v mod m). This is used in containment checking
of an element with a set, and checking non-overlap between
two sets. However, as observed in [1, 20], it performs poorly
in estimating e-overlap between two sets for e > 1, where
e-overlap is satisfied if there are at least e number of overlap-
ping elements between two sets. The nature of our problem
of estimating the overlap between two groups concerns a
value of e typically much larger than 1.

Approximate string matching has been widely studied across
various fields including text retrieval [2, 21], and data clean-
ing [22]. Jin et al. proposed MAT trees to process fuzzy
predicates on strings [14]. Chaudhuri et al. developed an in-
dex structure and a fuzzy matching algorithm to effectively
filter incoming tuples [7]. Estimating the cardinality of ap-
proximate string predicates is essential in all these tasks.

There have been extensive studies on approximate string
matching in the computational biology community [12]. How-
ever, we believe that the string matching studies in bioin-
formatics are different in at least two key aspects. First, for
efficient selectivity estimation, we rely on the SIS assump-
tion for database applications. It is doubtful whether the
SIS assumption holds in a typical bioinformatics applica-
tion. Second, for database applications, the alphabet size is
typically much larger than 4 in DNA sequences. The larger
alphabet size presents a harder problem to deal with, par-
ticularly in terms of efficiency.

2. PRELIMINARIES
We first introduce two closely related techniques on which

the proposed algorithms are based.

2.1 Extended Q-grams with Wildcards
Let Σ be a finite alphabet with size denoted as |Σ|. Any

string s of length q(> 0) in Σ∗ is called a q-gram. An N-gram
table over DB consists of the frequencies of all q-grams for
1 ≤ q ≤ N [5]. In [18], Lee et al. proposed the extended
N-gram table, which generalizes the N-gram table with the
wildcard symbol ‘?’ for string selectivity estimation. Any

828



string of length q(> 0) in (Σ ∪ {?})∗ is called an extended
q-gram. Extended q-grams capture various forms of strings
with the wildcard symbol. For instance, the 3-gram table
for the string “beau” contains 1-gram (i.e., for b, e, a, u in-
dividually), 2-grams (i.e., be, ea, au), and 3-grams (i.e., bea,
eau). In an extended 3-gram table, the additional 2-grams
are ?e, ?a, ?u, b?, e?, a? and ??. The additional 3-grams
include (non-exhaustively) ?ea, e?? and etc. The entry ?ea
gives the frequency of strings that include a substring of
length 3 ending in ea. The entry e?? gives the frequency of
strings that contain a substring that begins with e followed
by any two characters.

For edit distance, edit operations considered are deletion
(D), insertion (I) and replacement (R). A query Q is a pair
Q ≡ (sq, ∆), where sq is the query string and ∆ is the edit
distance threshold. For any substring b such that ed(b, sq) ≤
∆ and insertion/replacement modeled by ‘?’ (e.g., ‘nua’,
‘nub’, etc. are modeled by ‘nu?’), b is called a base substring
of Q. Base substrings represent possible forms of substrings
satisfying the query. Then the set of tuple ids in DB that
have a substring which can be converted to sq with at most
∆ edit operations is:

Ans(sq, ∆) =
[

b

Gb, (1)

for all base substrings b, and Gb denotes the set of tuple ids of
string s in DB containing b as a substring. 1 For example,
Ans(sylvie, 1) contains strings like “sylvia carbonetto”, or
“sylvester”, but not “cecilia van den berg”.

To compute |Ans(sq, ∆)|, the size of the answer set, all
possible base substrings b are enumerated. Specifically, when
the length of sq is l, the base substrings vary in length
from (l − ∆) to (l + ∆). For each possible length, we con-
sider all iDjIkR combinations, where iDjIkR denotes i
deletion, j insertion and k replacement operations, with
i + j + k = ∆ and i, j, k ≥ 0. For example, the base sub-
strings of Q ≡ (van, 1) can be partitioned into 3 groups
of length of 2, 3 and 4. Each group is from 1D, 1R, or
1I edit operation respectively. The group of 1I consists
of ?van, v?an, va?n and van?. The group of 1R consists
of va?, v?n, and ?an. The desired answer |Ans(van, 1)| is
|Gva ∪ Gan ∪ Gvn ∪ . . . ∪ G?van ∪ . . . |.

The above description considers all possible base strings
and combinations for illustration purposes. In practice, par-
ticularly for larger edit distance thresholds ∆ and long query
substrings, a sampling strategy can be applied. However,
Equation (1) still requires the accurate estimation of the
overlaps among the group Gb’s.

2.2 Set Hashing
The estimation of the size of the union

S

b
Gb, where b

are the base substrings, depends on how similar the sets
within the union are. This leads to the notion of resemblance
between two sets A and B, defined as:

γ =
|A ∩ B|

|A ∪ B|
. (2)

Min-wise independent permutation is a well-known Monte-
Carlo technique that estimates set resemblance. Based on a
1Because DB is a bag of strings, DB may contain dupli-
cates of the same string s. We assume that each of those
duplicates has its own distinct tuple id. This treatment is
consistent with the studies in [5, 15, 18].
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Figure 1: Set Resemblance Example

probabilistic analysis, Cohen proposed unbiased estimators
to estimate the size of a set by repeatedly assigning random
ranks to the universe and keeping the minimum values from
the ranks of a set [9]. Each assignment of random ranks to
the universe is a random permutation. The minimum values
from the permuted ranks of a set kept for each permutation
is called the signature vector and can also be used to estimate
the set resemblance [9, 3].

Figure 1(a) gives an example of two sets A = {t1, t3, t5}
and B = {t4, t5}. The entire universe of tuple ids is U =
{1, . . . , 5} . To make the example clearer, we use t1, . . . , t5
to denote tuple id 1, . . . , 5. Figure 1(b) shows four random
permutations π1, . . . , π4. For each of these permutations,
Figure 1(c) shows the permuted ranks of the elements of A
and B. For instance, for set A, π1 maps t1, t3, t5 to 1,
3, 4 respectively. The minimum value of the mapped three
values for A is 1. Thus, under π1, the signature value of A
is 1. Similarly, the signature values of other permutations
are computed. Finally, by doing an equality matching on
each dimension of the two signatures in Figure 1(d), the
set resemblance is estimated to be 1 out of 4. The true
resemblance turns out to be exactly |{t5}|

|{t1,t3,t4,t5}|
= 1

4
.

Let us give the formal definitions below. Consider a set
of random permutations Π = {π1, . . . , πL} on a universe
U ≡ {1, . . . , M} and a set A ⊂ U . Let min(πi(A)) denote
min({πi(x)|x ∈ A}). Π is called min-wise independent if for
any subset A ⊂ U and any x ∈ A, when πi is chosen at
random in Π, we have Pr(min(πi(A)) = πi(x)) = 1

|A|
[4].

Then with respect to two sets A and B, if Π is min-wise
independent, Pr(min(πi(A)) = min(πi(B))) = γ where γ
is the resemblance defined in equation (2).

To estimate γ (denoted as γ̂), the signature vector of A is
constructed as: sigA = [min(π1(A)), . . . , min(πL(A))] and
similarly for sigB . The ith entry of vector sigA is denoted as
sigA[i], i.e., min(πi(A)). By matching the signatures sigA

and sigB per permutation, γ can be approximated as:

γ̂ =
|{i | sigA[i] = sigB [i]}|

L
(3)
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The equations above generalize to set resemblance among
multiple sets. In practice, L does not need to be big for
γ̂ to be a good estimate of γ. In testing similarity among
web documents [3], 100 samples were considered to be good
enough. Chen et. al used 50 for L to process boolean pred-
icates [8].

Chen et al. generalized the above idea to estimate the size
of boolean queries on sets including intersection, union and
negation [8]. The size of the union of m sets |A1 ∪ . . .∪Am|
can be estimated as follows. Let A = A1 ∪ . . . ∪ Am and
B = Aj for any Aj ∈ {A1, . . . , Am}. By Equation (2),

γ =
|A∩Aj|

|A∪Aj|
. But as A ∩ Aj = Aj and A ∪ Aj = A, we get:

|A| = |A1 ∪ · · · ∪ Am| =
|Aj |

γ
. (4)

Aj in Equation (4) can be any Aj ∈ {A1, . . . , Am}, but
the one whose size is the biggest generally gives the best
performance [8]. To estimate γ, the signature of union, sigA,
can be constructed with the individual signatures as follows:

sigA[i] = min(sigA1 [i], · · · , sigAm
[i]) (5)

Let us return to the example in Figure 1. Based on
Figure 1(d) and Equation (5), the constructed signature
sigA∪B is [1,1,1,1]. Now applying Equation (3) to esti-
mate the resemblance between A ∪ B and A gives γ̂ = 3/4
([1,1,1,1] vs. [1,1,2,1]). Finally, by Equation (4), the size of

|A ∪ B| = |A|

γ̂
= 3

3/4
= 4. This turns out to be exact, as

A ∪ B = {t1, t3, t4, t5}.
As will be shown later, applying the above set hashing

equations is not sufficient for our task. We extend the above
scheme in two key ways in Section 4.

3. ESTIMATION WITHOUT SIGNATURES

3.1 MOF: The MOst Frequent Minimal Base
String Method

The first method we propose, called MOF, is based on
extended q-grams. Recall from Equation (1) and the corre-
sponding discussion that Ans(Q) =

S

b Gb for all the base
substrings b of Q. However, it is obvious that given two base
substrings b1 and b2, it is Gb2 ⊆ Gb1 if b1 is a substring of
b2 (e.g., b1 = va, b2 = va? in the earlier example). We de-
fine a base substring bi as minimal if there is not any other
base substring bj with i 6= j that is substring of bi. Thus,
Equation (1) can be simplified to:

|Ans(sq, ∆)| = | ∪b∈MB Gb| (6)

where MB is the set of all the minimal base substrings.

Example 2. Let us consider the example of Q ≡ (boat, 2).
Possible base substring length varies from 2 to 6, which cor-
respond to the situations with 2 deletions and 2 insertions
respectively. The following table enumerates all the possibil-
ities for illustration purposes.

Starting from the base substrings of length 2, we elim-
inate base substrings that contain another base substring.
For instance, ‘bo’ is a substring of ‘bo?’, ‘boa?’, ‘bo?a’, and
etc. After removing redundant base substrings, the set of
remaining minimal base substrings is MB = {‘bo’, ‘ba’,
‘bt’, ‘oa’, ‘ot’, ‘at’, ‘b?a’, ‘b?t’, ‘b?a’, ‘o?t’, ‘b??t’}. Thus,
|Ans(boat, 2)| = |Gbo ∪Gba ∪Gbt ∪Goa ∪Got ∪Gat ∪Gb?a ∪
Gb?t ∪ Gb?a ∪ Go?t ∪ Gb??t|.

2D bo ba bt oa ot at
1D1R bo? b?a ?oa (from boa)

bo? b?t ?ot (from bot)
bt? b?a ?ta (from bta)
oa? o?t ?at (from oat)

1D1I boa? bo?a b?oa ?boa (from boa)
bot? bo?t b?ot ?bot (from bot)
bat? ba?t b?at ?bat (from bat)
oat? oa?t o?at ?oat (from oat)

2R bo?? b?a? b??t ?oa? ?o?t ??at
1I1R boa?? bo?t? b?at? ?oat? (from boat?)

boa?? bo??t b?a?t ?oa?t (from boa?t)
· · ·

bo?a? ?bo?t ?b?at ??oat (from ?boat)
2I boat?? boat?? boat?? boat?? (from boat??)

· · ·
??boat ??boat ??boat ??boat (from ??boat)

Algorithm 1 shows an outline to find all the minimal base
substrings. The first for loop from line (2) to (8) gener-
ates all possible base substrings. In the most general case
when ℓ and ∆ are large, the loop may be computationally
expensive. However, as motivated by the Short Identifying
Substring (SIS) assumption in [5], ∆ ≤ 3 can find many
database applications. For ∆ ≤ 3, the following table enu-
merates all the combinations with deletions, insertions and
replacements (ℓ being the length of the query substring).
For example, for ∆ = 3, there are only two possibilities to
obtain a substring of length (ℓ− 1), namely either by 2D1I
or by 1D2R. Thus, even for ∆ = 3, there are only 10 com-
binations to be considered with a complexity of O(ℓ3).

ℓ-3 ℓ-2 ℓ-1 ℓ ℓ+1 ℓ+2 ℓ+3

∆ = 1 1D 1R 1I
∆ = 2 2D 1D1R 2R, 1D1I 1I1R 2I
∆ = 3 3D 2D1R 2D1I, 3R, 1D2I, 2I1R 3I

1D2R 1D1I1R 1I2R

The for loops in the lines (9) to (14) finds all the minimal
base substrings. The loop exploits the simple fact that a
string cannot be a substring of something shorter. Finally,
the set MB of all the minimal base substrings is returned.
For situations when ℓ and ∆ are larger, it is too expensive to
fully implement line (6), and a sampling strategy is applied.
The effectiveness of the sampling is evaluated in Section 5.

With the set MB computed, the MOF (“MOst Frequent”)
estimation algorithm uses the following heuristic based on
the most frequent minimal base substring bmax among all
the base substrings in MB:

MOF (Q) =
|Gbmax

|

ρ
(7)

The parameter ρ is called coverage. This simple heuristic
is based on a generalization of the SIS assumption stating
that: “a query string s usually has a ‘short’ substring s’ such
that if an attribute value contains s’, then the attribute value
almost always contains s as well” [5]. Our generalization
states that a query substring s usually has an identifying
minimal base substring s′. 2 The requirement of almost al-
ways in the SIS assumption is more realistically relaxed to
a fraction ρ in our case; that is, a fraction ρ of the strings
in the Ans(sq, ∆) also contain the most frequent minimal
base substring. As an example, |Ans(‘sylvia′, 1)| is 538 in

2Apart from the SIS generalization, the key difference be-
tween MOF and the CRT framework in [5] is that the former
deals with edit distance.
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Algorithm 1 MinimalBaseSubstrings

Input: query string sq, edit distance threshold ∆
Output: the set MB of minimal base substrings
1: C = φ, MB = φ
2: for all ℓ from (length(sq) − ∆) to (length(sq) + ∆) {

3: Find all (i, j, k) s.t. i+ j +k = ∆ and length(sq)− i+ j = ℓ
4: for all c = (i, j, k) found in the above step {

5: C = C ∪ {c}
6: Bc = the set of all base substrings with iDjIkR operations
7: } /* for all */
8: } /* for all */
9: for all c = (i, j, k) ∈ C, c′ = (i′, j′, k′) ∈ C s.t. j′−i′ > j−i{
10: for all b ∈ Bc and b′ ∈ Bc′ {

11: if b is a substring of b′ {
12: Bc′ = Bc′ − {b′} }

13: } /* for all */
14: } /* for all */
15: for all c ∈ C
16: MB = MB ∪ Bc

17: return MB

the DBLP author names data set in Section 6, and typical
variations of the query ‘sylvia’ are ‘silvia’ and ‘sylvia’ oc-
curring 202 and 100 times repectively. So the base string
‘s?lvia’ alone explains more than half of the answer set size.
The validity of our assumption is extensively evaluated in
Section 6 by MOF.

In MOF, as shown in Equation (7), a single default value ρ
is used for simplicity. This default value can be obtained by
sampling on the data set, which can be easily piggybacked
when the extended N-gram table is being constructed.

For a base substring b, if the extended N-gram table kept
by the system contains an entry for b (e.g., when |b| ≤ N),
then the frequency |Gb| is immediately returned. Otherwise,
|Gb| needs to be estimated using a substring selectivity es-
timation algorithm like MO [13].

3.2 Algorithms not Based on Extended Q-grams

3.2.1 S-SEPIA: a Method based on Clustering
For string selectivity estimation, Jin and Li [15] proposed

the SEPIA algorithm. It clusters the strings in the database
and use histograms to store distribution information for each
cluster. We adapt SEPIA to substring selectivity estima-
tion problem by building clusters of substrings rather than
strings. However, if we were to build clusters based on all
the substrings contained in the database, it would be infea-
sible for large databases. Thus, we apply random sampling
on substrings. Algorithm 2 shows a skeleton of S-SEPIA
which is a simple adaptation of SEPIA to substrings. In the
construction of clusters, the loop in lines (2) to (4) randomly
extracts c ∗ ℓ substrings for each string where ℓ is the length
of the string. Line (4) runs the normal SEPIA construc-
tion procedure to build the clusters and the corresponding
histograms.

Another complication in adapting SEPIA to the substring
problem arises from the counting semantics. As discussed
in [13], there is the difference between presence counting and
occurrence counting. If the tuple string is “Vancouver Van
Rental” and the query substring is “Van”, presence count-
ing gives a value 1 to show that the substring is present
in the tuple, whereas occurrence counting gives a value of
2 to indicate that the substring occurs twice in the tuple.
For substring selectivity estimation, the intended semantics
is presence counting, whereas the construction procedure of

Algorithm 2 S-SEPIA

Procedure Construct

Input: DB
Output: Clusters C, Global histogram PPD,

Error correction module ECM
1: SDB = φ
2: for all tuple t ∈ DB {

3: Generate (c ∗ length(t)) substrings from t; add to SDB
4: } /* for all */
5: Run SEPIA with SDB to construct C and PPD
6: Sample substring queries Q
7: Produce the error correction info ECM from Q using

freqest from SDB and freqtrue from DB

Procedure Estimate

Input: Query string sq, Edit distance threshold ∆
Output: |Ans(sq, ∆)|
1: Estimate freqest with sq and ∆ using C and PPD
2: Calculate freqcorrected with sq, ∆ and freqest using ECM
3: return freqcorrected

S-SEPIA essentially conducts occurrence counting.
To address this issue, we adapt the error-correction phase

in SEPIA as follows. In lines (6) and (7), queries are ran-
domly sampled to build a table giving a correction factor be-
tween presence and occurrence counting, according to query
length, threshold, and frequency range. Then, during esti-
mation time, line (2) of the Estimate procedure adjusts the
estimated frequency based on this table.

3.2.2 RS: a Method with No Space Overhead
Note that MOF requires space overhead in the form of the

extended N-gram table. S-SEPIA also incurs space overhead
in the form of the histograms and other auxiliary informa-
tion associated with the clusters. The algorithm called RS,
which stands for“Random Sampling”, represents another ex-
treme. It relies on random sampling from DB at query time.
As such, it does not create any intermediate “compile-time”
data structure and incurs no space overhead. Specifically,
given a query substring sq, all it does is to randomly sample
a fixed number of strings s from DB and checks the percent-
age of them such that ed(sq, b) ≤ ∆, where b is a substring of
s. It is conceivable that RS may incur significant query time
computation, particularly for larger edit distance threshold
∆ and length l. In the experimental results section later,
we examine the trade-offs between query time computation,
space overhead and estimation accuracy.

4. ESTIMATION WITH SET HASHING SIG-
NATURES

4.1 LBS: Lower Bound Estimation
While MOF estimation is simple and efficient, a key weak-

ness is that the estimation is based on a single minimal base
substring which is the most frequent. In general, the estima-
tion may be more accurate if many, if not all of, the minimal
base substrings are used. However, if multiple minimal base
substrings are used, we need to estimate the size of the union
| ∪b∈MB Gb| in Equation (6). This can be done by applying
Equation (4) to obtain

LBS(Q) = |
[

b∈MB

Gb| ≈
|Gbmax

|

γ
(8)

where bmax is the most frequent minimal base string in MB.
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Figure 2: An illustration of LBS

Note that |Gbmax
| is exactly the one used in the numerator

of the MOF estimation in Equation (7). The only difference
is that in MOF, ρ is a single default coverage computed by
sampling for each data set. In contrast, the resemblance γ
in the above equation is calculated by taking into account
all the minimal base strings, making it more specific to the
query. It is also possible that the resemblance γ is estimated
to be zero for some extreme cases, in which case a default
resemblance, like ρ, is used instead since we cannot divide
by zero in Equation (8).

To compute LBS(Q) with Equation (8), we need the val-
ues of |Gbmax

| and γ. As mentioned earlier, the former
can be estimated using MO if it is not kept in the ex-
tended N-gram table. However, the difficulty here is to com-
pute the approximation of γ by Equation (3) which requires
the signatures to be compared for matching, i.e., we need
sigb(≡ sigGb

) for all b ∈ MB to compute the approximation
of γ. But there may be base substrings that are too long to
be kept in the N-gram table. For instance, suppose that a
base substring b ≡ ‘database’ and an extended N-gram table
with N = 5 is maintained.

Although set hashing technique [8] is able to estimate the
size of intersection or union of strings when the query strings
are not kept in the summary structure (PST or N-gram ta-
ble), the algorithm has exponential complexity. It is compu-
tationally manageable when the number of terms is expected
to be small as in the boolean query problem, but the com-
plexity will be unacceptable in the approximate substring
problem where the number of possible forms of substring
could be quite large.

Our solution is to rely on the substrings of b stored as
extended q-grams in the N-gram table. Specifically, by let-
ting b1, . . . , bw be all the substrings of b of length N stored
in the N-gram table with w = ℓ − N + 1, we can approxi-
mate the signature sigb based on the individual signatures
sigb1 , . . . , sigbw

. For instance, we calculate the signature
sigdatabase based on sigdatab, sigataba, sigtabas and sigabase.

To illustrate our approach, let us consider an example with
w = 2. Suppose that we have b ≡ ‘data’, b1 ≡ ‘dat’ and b2 ≡
‘ata’, and the tuples containing ‘dat’ are exactly {t1, t3, t5}
as captured by set A in Figure 1. Similarly, suppose that

Algorithm 3 LBS Estimation

Input: query sq, edit distance threshold ∆, maximum extended
q-gram length N , default resemblance ρ

Output: |Ans(sq, ∆)|
1: MB = MinimalBaseSubstrings(sq , ∆) (Algo. 2)
2: freqmax = 0, sigmax = null, sigunion = null
3: for all b ∈ MB {

4: if length(b) > N {

5: Decompose b into a set of substrings sb,i of length N
6: Compute sigb by applying Equation (9) with sigsb,i

7: Calculate freqb (i.e. |Gb|) using MO
8: }

9: if freqb > freqmax {

10: freqmax = freqb, sigmax = sigb

11: }

12: sigunion = Union of sigunion and sigb as in Eqn. (5)
13: } /* for all */
14: Compute γ̂ with sigmax and sigunion as in Eqn. (3)
15: if γ̂ = 0 { γ̂ = ρ }

16: return (freqmax/γ̂) as in Equation (8)

the tuples containing ‘ata’ are exactly {t4, t5} as modeled
by set B in Figure 1. We assume that the 4 random permu-
tations π1, π2, π3, π4 in Figure 1 are still used. Now for the
signatures, the permuted values of set A = {t1, t3, t5} under
permutation π1 is 1, 3, 4 as shown in Figure 1, which is pre-
sented as circles in the left diagram of Figure 2(a). However,
because a signature only retains the minimum value for each
permutation, only the value 1 is retained (shown as a solid
circle, as opposed to the unfilled circles). The situation is
similar for set B, as shown by the solid circle in the second
column of the left diagram in Figure 2(a).

Let us consider how sigA∩B can be estimated for π1 using
sigA and sigB only. Since each signature keeps the minimum
value for each permutation, i.e. 1 for sigA and 2 for sigB,
it is not possible to figure out the exact minimum value for
the permutation of the intersection A ∩ B using sigA and
sigB only. Instead, we try to infer, as tightly as possible, a
lower bound of the minimum value for the permutation of
the intersection.

The value 1 is not possible for sigA∩B because if this were
the case, the value for sigB should be 1 as well, instead of
2. On the other hand, 2 is still a possible value for sigA∩B

because all we know from sigA is that the minimum value is
1. Thus, given just the two solid circles in the left diagram
in Figure 2(a), the best inferred signature of sigA∩B we can
get under permutation π1 is 2. Actually, A ∩ B has only
t5 which is mapped to 4. This is shown by the two unfilled
circles in Figure 2(a), under the permutation π1. It is easy
to see that the inferred value 2 is a lower bound of the actual
value.

The right diagram in Figure 2(a) shows the signatures for
permutation π3 in Figure 1. A similar reasoning determines
that the value 2 is the inferred signature value of sigA∩B

under permutation π3. This turns out to be the correct
signature value because of the matched unfilled circle in the
second column of the right diagram.

Figure 2(b) shows the inferred sigA∩B, [2, 4, 2, 1], for all
the four permutations that are computed by selecting the
maximum value of the corresponding sigA and sigB values
for each permutation. The true signature sigA∩B(= sig{5})
is actually [4, 5, 2, 1], as shown in Figure 1. As we mentioned
previously, the inferred values are always lower bounds to the
true values. This observation can be generalized to compute
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the intersection of w signatures for any permutation i, 1 ≤
i ≤ L:

ˆsigb1∩...∩bw
[i] = max(sigb1 [i], · · · , sigbw

[i]) (9)

To verify, suppose that there is a sigbi
[k] for 1 ≤ k ≤ L

such that sigbi
[k] < sigbj

[k]. Then the value sigbi
[k] cannot

be the true signature value of sigb1∩...∩bw
[k]. Otherwise, the

signature value sigbj
[k] must be the same as sigbi

[k]. By this
argument, Equation (9) forms a lower bound estimation for
sigb1∩...∩bw

.
Algorithm 3 sketches the outline of the LBS (“Lower Bound

eStimation”) estimation algorithm. It first computes all the
minimal base substrings. For each such substring, if it is
too long to have kept in the extended N-gram table, lines
(4) to (8) estimate its frequency and signature. All these
signatures are combined together in line (12) for the even-
tual computation of the resemblance γ̂ in line (14). Finally,
in line (16), the estimate is returned.

4.2 Improving LBS with Extra Minima
Recall from Equation (9) that the estimated signature

value is a lower bound to the true signature value. One
possibility to improve the lower bound is to keep extra min-
imum permuted values such as the second minimum, the
third minimum, etc. Certainly, each additional minimum
value kept increases the size of the signature linearly. Below
we describe the mechanics.

So far we have used the notation sigA to denote the sig-
nature of set A under L permutations. To introduce addi-
tional minimum values kept in the signature, we use sigA,1,
sigA,2, . . . to denote the first minimum, the second minimum
and so on in the signatures. (In other words, sigA used pre-
viously is now equivalent to sigA,1.) Figure 3 gives an illus-
tration of how to compute the signature with keeping the
second minimum value for an intersection of two sets, i.e.,
sigA∩B,1 and sigA∩B,2 from sigA,1, sigA,2, sigB,1 and sigB,2.
This is a continuation of the situation shown in Figure 2.
What is different in Figure 3 is that there are now two solid
circles for each set, corresponding to the first and second
minima. Recall from Figure 2(a) that with only the first

minimum kept, ˆsigA∩B,1[1] = max(sigA,1[1], sigB,1[1]) = 2.

But with two minima kept, as shown in Figure 3, it is clear
that no element in A ∩ B can have a hash value of 2 since
sigA,1[1] < 2 < sigA,2[1]. If there had been an x ∈ A such
that π1(x) = 2, then we would have chosen 2 as sigA,2[1]
not 3. Similarly, because sigB,1[1] < 3 < sigB,2[1], no ele-
ment in A ∩ B can have a hash value of 3. Thus, we can
infer sigA∩B,1[1] = 4, which turns out to be the correct
value in this example. As there is no additional minimum
values kept in sigA[1] and sigB[1], we cannot infer any bet-
ter lower bound of the second minimum value of sigA∩B[1]
and thus the second minimum value for A ∩ B is set to
ˆsigA∩B,2[1] = ˆsigA∩B,1[1] = 4. This is summarized in Fig-

ure 3(b) under the column for the permutation π1, i.e., (1,3)
and (2,4) lead to (4,4).

The right diagram in Figure 3(a) shows the case for per-
mutation π3. Figure 3(b) also shows the results for permu-
tations π2 and π4. The table in Figure 4 enumerates all
the possible combinations with the first and second minima
kept. To save space, we do not present the general formula
which can handle the case when kmin ≥ 2 minima are kept.
Hereafter, we use kmin to denote the number of minima kept
in the signature. In the next section, we will evaluate the
effectiveness of LBS with kmin varying from 1 to 3.

Condition Estimation
sigA,1[i] sigA,2[i] sigA∩B,1[i] sigA∩B,2[i]

= sigB,1[i]= sigB,2[i] sigA,1[i] sigA,2[i]
6= sigB,1[i]= sigB,2[i] sigA,2[i] sigA,2[i]
= sigB,1[i] 6= sigB,2[i] sigA,1[i] max(sigA,2[i],

sigB,2[i])
≥ sigB,2[i] sigA,1[i] sigA,2[i]

≤ sigB,1[i] sigB,1[i] sigB,2[i]
Otherwise max(sigA,2[i],max(sigA,2[i],

sigB,2[i]) sigB,2[i])

Figure 4: Estimation of Signatures

While the discussion so far is based on the intersection
of two sets A and B, the computation can be modeled as a
binary operator. When more than two sets are intersected,
this binary operator can be applied successively. Note that
the LBS estimation algorithm shown earlier does not change,
except for line (6). This line is now generalized to compute
the first and second minima of the signature. However, only
the first minimum values are used to estimate frequency and
resemblance in subsequent lines. For our example, if we
focus our attention on ˆsigA∩B,1 for all the four permutations,
the signature becomes [4,4,2,1], which is a closer match to
the true signature of [4,5,2,1] than [2,4,2,1] in Figure 2(b)
with only the first minimum. This shows that extra minima
may help to better approximate signatures for intersections.

5. EXTENSIONS TO OTHER SIMILARITY
MEASURES

Although our discussion so far has focused on edit dis-
tance, LBS can support various similarity measures.

5.1 SQL LIKE Clauses
We will consider two major constructs of LIKE: ‘%’ and

‘ ’. ‘%’ character matches any substring and ‘ ’ character
matches any single character.

Suppose a LIKE pattern %s1%...%sm%. For example,
the predicate “name like %silvia%carbonetto%” selects all
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the names that contain silvia followed by carbonetto with
any number of characters in between.

Assume for now that each si (1 ≤ i ≤ m) is a plain
substring without any special character like ‘ ’. Any string
that satisfies the LIKE condition must have all of sis, 1 ≤ i ≤
m as its substring. Recall that Gb denotes the set of tuple
ids in the DB that have b as a substring. Then the size of
the set of tuple ids in DB that match the LIKE condition
slike ≡ %s1%...%sm% can be estimated as:

| ˆAns(slike)| = |
\

1≤i≤m

Gsi
|. (10)

This is an upper bound of the true selectivity but a tighter
bound than min|Gsi

| proposed in [5]. Note that LBS uti-
lizes signature and it can handle intersection as well as union.
We make use of the next formula for intersection size esti-
mation [8].

|Gs1 ∩ · · · ∩ Gsm
| = γm · |Gs1 ∪ · · · ∪ Gsm

| ≈ γ̂m · ˆ|G|, (11)

where γm is the resemblance of Gs1 , . . . , Gsm
which can be

calculated by Equation (3) extended to m sets. ˆ|G| is the
estimated union size and it is actually the estimation of LBS,
Equation (8). Thus our estimation of Equation (10) is the
output of LBS multiplied by γ̂m. We only highlight key
modifications due to space restriction.

1. It generates base substrings for each si setting ∆ = 0
in line (2) to (8) of Algorithm 1. (i.e., each si becomes
one base substring.)

2. It returns the value in line (16) of Algorithm 3 multi-
plied by γm.

If si contains ‘ ’, which matches any single character, we
only need to substitute ‘ ’ with our wildcard ‘?’ when gen-
erating base substrings.

One interesting observation is that γm can be quite small
in Equation (11). To estimate γm in the style of Equa-
tion (3), we would need a larger L, the number of random
permutations in set hashing, for small γm. Note that small

L is enough in Equation (4). γ =
|Aj |

|A|
is generally not small

since |Aj |, the frequency of most frequent base substring,
is not a small fraction of |A| from the generalized SIS as-
sumption. However, in Equation (11), we cannot make the
same assumption on the relative size of |Gs1 ∩ · · · ∩ Gsm

|
and |Gs1 ∪ · · · ∪ Gsm

|. For example, in the query %sil-
via%carbonetto%, freq(silvia) may turn out to be very
high whereas freq(carbonetto) can be relatively low. If
freq(silvia) = 10, 000 and freq(carbonetto) = 10, γ =
|Gsilvia∩Gcarbonetto |

|Gsilvia∪Gcarbonetto |
≤ |Gcarbonetto |

|Gsilvia|
= 10

10,000
and L should be

at least 1,000 to express the small γ. Let fmin = min|Gsi
|

and fmax = max|Gsi
|. Whenever ˆ|G|/fmin > L or γ̂m = 0,

we know that our estimation is likely to be inaccurate. Thus,
before multiplying the output of LBS and γ̂m we check for
the two conditions. If one of them is true, then γ̂m is set
to fmin/fmax. Experimental results on LIKE predicates in
Section 6 reflect this heuristic.

5.2 Jaccard Coefficient
The Jaccard similarity [10] of two strings a and b is defined

as:

J (a, b) = J (A, B) =
|A ∩ B|

|A ∪ B|
,

where A and B are sets of q-grams of a and b respectively.
For instance, when q = 3, J (‘tyrannosaurus’, ‘allosaurus’)
= J ({ tyr, yra, ran, ann, nno, nos, osa, sau, aur, uru, rus
}, { all, llo, osa, sau, aur, uru, rus }) = 5

13
. Our extension

starts from the intuition that if two sets are similar, their
sizes cannot be too different. If J (a, b) = γ, then γ · |A| ≤
|B| ≤ 1/γ · |A| [1]. Substituting |A| = length(a)− q + 1 and
|B| = length(b) − q + 1 into the above inequality gives us

⌈γ · (length(a) − q + 1)⌉ ≤ length(b) − q + 1 ≤

⌊1/γ · (length(a) − q + 1)⌋

Using this property, given a query string sq and a Jac-
card similarity threshold γ, we can derive conditions on the
length of strings that satisfy the similarity condition. We
use this minimum and maximum string length in line (2) of
Algorithm 1 and generate base substrings in the same way.
However, not all the base substrings generated such have
J ≥ γ, so we filter base substrings treating the wildcard as
a separate character. Before line (12) of Algorithm 3, we
check every base substring b and see if J (sq, b) ≥ γ. If it
is smaller than γ, we discard the base substring. So when
we compute the union size, we only consider those base sub-
strings that are guaranteed to have J ≥ γ.

6. EMPIRICAL EVALUATION

6.1 Experimental Setup
Data sets: We perform a series of experiments using

three benchmarks: DBLP author names and titles and IMDB
movie Keywords data. There are 699,199 full names in the
DBLP authors data set. The average and maximum length
are 14.1 and 38 respectively. There are 305,364 titles in the
DBLP titles data set. The average and maximum length
are 58.6 and 100 respectively. Finally, there are 100,000
keywords in the IMDB Keywords data set, with the average
and maximum length being 10.3 and 62. For each data set,
we generate random queries Q ≡ (sq, ∆). These queries are
divided into two overlapping query sets:

• The short query set consists of query string sq which
is a substring of a random word of length 5 to 12 in
any tuple. When the word length is 7 or less, we use
the whole word. There are 200 queries in this set. The
edit distance threshold ∆ is set to 25% of the query
string length (i.e., ∆ ≤ 3). As motivated by the Short
Identifying Substring (SIS) assumption in [5], ∆ ≤ 3
can find many database applications. The average se-
lectivity is 1.03% for the Keyword data set and 0.55%
for the DBLP authors data set.

• The long query set consists of query string sq which
is a random word of length 10 to 20 in any tuple. The
long set is the most meaningful for the DBLP titles
data set. There are 100 queries in this set. The edit
distance threshold ∆ is again set to 25% of the query
string length (i.e., 3 ≤ ∆ ≤ 5). The average selectivity
is 3.17%.

• The negative query set consists of queries whose true
frequency is 0. We randomly choose a word in a tuple
and replace up to 3 random positions with random
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Figure 5: Short Query Set on DBLP Authors

characters. Out of 200 chosen queries, 52 have true
frequency of 0. Notice that there might be tuples that
match the newly formed query by chance. This type of
query is important especially given the issue of unclean
data [17]. If a query optimizer can accurately identify
true negative predicates or the estimated frequency is
fairly accurate (i.e., the estimation is close to zero),
the predicate will remain the most selective condition
for query processing.

Evaluation metric: To evaluate the accuracy of an es-
timation method we rely on three different metrics. The
first metric we employ is relative error which is defined as
|fest − ftrue|/ftrue, where ftrue is the true frequency of the
query and fest is the estimated frequency. To prevent the
accuracy from being distorted by queries with small true
frequencies, we exclude queries whose true frequency is less
than or equal to 10. For such small queries, the second met-
ric, absolute error |fest − ftrue| is employed. It is also used
to report errors of negative queries to avoid division by 0.
The third metric we apply is the relative error distribution.
We show the distribution by providing a histogram of the
relative errors, i.e., [-100%,-75%), [-75%,-50%), etc.

Estimation methods implemented: MOF is parame-
terized by the extended N-gram table, where N was varied
from 4 to 6. As discussed in Section 3.1, the default cover-
age ρ was acquired by sampling. The following table shows
the average value and the standard deviation of ρ using the
DBLP Authors data set. The table shows that the average
ρ is rather stable with respect to the sample size. Like

Sample Size 10 20 50 100
Average ρ 0.6453 0.6445 0.6523 0.6475

Standard deviation 0.081 0.071 0.034 0.000

MOF, LBS is parameterized by N . It is also parameterized
by kmin, which controls the number of minimum values for
a signature. It was varied from 1 to 3. Thus, the results of
LBS are denoted by LBS(N ,kmin). Strictly speaking, MOF
and LBS are tunable by two other parameters PT and L,
where PT determines the minimum frequency for a q-gram
to be kept in the N-gram table and L controls the number of
permutations used, i.e., from π1 to πL. For results reported
here, we set PT = 20 and L = 10, unless specified. Finally,
in LBS, the default value ρ is used when the estimated re-
semblance by signature is ≤ 0.2 and 10 most frequent base
substrings are used in line (12) of Algorithm 3. We imple-
mented our set hashing based techniques in Java 1.5, and a
hash space of 215 was used.

S-SEPIA was implemented in C++ by modifying the SEPIA
code downloaded from [11]. We used 2,000 clusters and the

CLOSED RAND [15] method to populate the histograms.
To limit the building time to around 48 hours, we restricted
the maximum number of sampled substrings per tuple to
be 10, and set the sampling ratio according to the data sets.
The space consumption was measured by the size of the data
structure written on disk.

Finally, RS was also implemented in Java 1.5. Because RS
requires sampling from the database DB, the I/O cost may
vary depending on the buffering policy. To simplify query
time comparisons, we only considered the CPU cost of RS.
In other words, we under-estimated the true cost of running
RS in practice; it was sufficient for the eventual conclusions.

All experiments were conducted on P4 3GHz machines
with 2 GB memory running GNU/Linux with kernel 2.6.

6.2 Short Query Set: Estimation Accuracy vs
Space Overhead vs Query Time

We begin with the short query set, i.e. ∆ ≤ 3, for the
DBLP author data set. Figure 5 shows the average relative
error, and the corresponding space overhead and query time
in milliseconds. The latter two graphs are drawn in log scale.

MOF vs S-SEPIA: Let us first focus on the comparison
between MOF and S-SEPIA. S-SEPIA uses a sampling ra-
tio of 0.25%. For DBLP authors, S-SEPIA gives an average
relative error of 64% and uses close to 100 MB of memory,
whereas MOF(4) gives a better average error of 53% but us-
ing only 0.5 MB! As N increases, MOF(5) and MOF(6) give
significantly better relative average error. Yet the amount
of space used as shown in Figure 5(b) is still significantly
smaller than that used by S-SEPIA.

Recall that S-SEPIA uses the parameter c to control the
number c ∗ ℓ substrings of s to be used for clustering. The
results reported in the figures so far are based on c = 1.
We suppress the detailed results here, but point out that
increasing c beyond 1 does not give clear empirical perfor-
mance benefit.

In terms of runtime, it takes around 30 and 120 minutes to
build the extended 5-gram and 6-gram tables. But the build-
ing time for S-SEPIA is around 35 hours. For query estima-
tion, as shown in Figure 5(c), the processing time of MOF
is around 10 milliseconds. S-SEPIA’s runtime is around 30
milliseconds. In sum, MOF outperforms S-SEPIA in provid-
ing higher average estimation accuracy, lower building time
and less space overhead.

MOF vs RS: For method RS, the estimation accuracy
and CPU time required are directly proportional to the
amount of sampling done. We show in Figure 5 two settings
of RS: with 0.1% or 0.5% of the whole database sampled.
For estimation accuracy, RS(0.5%) gives an average relative
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Figure 6: Short Query Set on DBLP Titles
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Figure 7: Error Distributions on DBLP Authors

error comparable to MOF(5) and MOF(6). However, all the
MOF variants are almost two orders of magnitude faster. In
practice, RS may take even longer if I/O cost is incurred.
The faster version RS(0.1%) gives significantly higher aver-
age relative error. Thus, with a very modest space overhead,
MOF dominates RS in providing either superior query time
performance or higher estimation accuracy.

A variant of RS is to keep a sampled database around
for query time. The hope is that the space overhead would
significantly reduce query time. Unfortunately, the sampled
database only reduces the time for sampling, not the time
to check the edit distance threshold for all the substrings.
The latter by far dominates the former.

MOF vs LBS: Next let us compare MOF with LBS on
the trade-off between accuracy and space overhead. (The
query time of the two algorithms are almost identical.) The
ordering in terms of descending average relative error is:
MOF(4) > LBS(4,1) > MOF(6) ≈ MOF(5) > LBS(5,1)
> LBS(5,2) > LBS(6,1). The corresponding space over-
head ordering is almost the reverse. This exactly shows how
LBS and MOF can leverage extra space to give lower error.
Specifically, the difference in size between the pair MOF(N)
and LBS(N ,1) is due to the use of signatures by LBS. To
formally test whether the differences observed are statisti-
cally significant, we use the standard 2-tail Student’s t-test
to compute a p-value, i.e., the probability of a chance obser-
vation. The difference of LBS over MOF is well below 0.01
and is confirmed to be statistically significant. Moreover,
even though there does not appear to be a big difference in
average relative error between LBS(5,1) and LBS(5,2), the
latter’s superiority is statistically significant with a p-value
below 0.01.

Relative Error Distributions: As an explanation to
the average relative error results shown in Figure 5, Figure 7
shows the error distributions for DBLP authors. For space
reason, only the distribution of S-SEPIA and LBS(5,2) is
shown. The downfall of S-SEPIA can be summarized by the
high number of queries that are in the [-100%,-50%] range
(i.e., under-estimation) and those in the [100%,∞) bucket

(i.e., over-estimation). In contrast, LBS(5,2), perform sig-
nificantly better in those situations.

Small and Negative Query Sets: The table below
summarizes the average absolute errors on the small and
negative query sets. There are 4 and 8 queries whose true
frequencies are less than or equal to 20 or 50 respectively.

ftrue ≤ 20 ftrue ≤ 50 Negative
RS(0.1%) 15 22 0
RS(0.5%) 15 44 0
S-SEPIA 26 45 16
LBS(4,1) 13 13 3
LBS(5,1) 13 13 1
MOF(6) 10 17 0
LBS(5,2) 12 15 1
LBS(6,1) 13 13 0

For the small query sets, MOF and LBS are superior to
RS and S-SEPIA. For the negative query set, we can observe
clear benefit from increasing N . When N = 6, both MOF
and LBS exactly estimate the frequency of negative queries
as zero. For other settings of LBS, even if the estimated
frequencies are not exactly zero (e.g., 1 or 3), the frequencies
are sufficiently accurate that it is likely that the predicate
will be chosen as the most selective condition. In contrast,
for S-SEPIA, because the estimated frequency is inaccurate
(e.g., 16), there is a higher chance that incorrectly, another
predicate will be selected as the most selective condition,
resulting in a more expensive query plan.

6.3 Query Sets on DBLP Titles
Figure 6 shows the average relative error, the space over-

head and CPU query time in log scale for the short query
set on the DBLP titles data set. In the context of the earlier
discussion on Figure 5, the key highlights for the DBLP title
data set are as follow. First, RS(0.5%) gives better average
relative error in Figure 6(a) than in Figure 5(a). However,
the conclusion remains the same in that MOF and LBS are
almost two orders of magnitude faster. Second, S-SEPIA is
still dominated by MOF and LBS in both estimation accu-
racy and space overhead. Finally MOF(5) is dominated by
MOF(6), LBS(5,1), LBS(5,2) and LBS(6,1)

The results reported so far are based on the short query
set with ∆ ≤ 3. Figure 8 shows the average relative error
on the long query set on DBLP Titles with 3 ≤ ∆ ≤ 5. The
results on S-SEPIA are not included as it takes too long to
build even with a very low sampling ratio. In long queries
with higher edit thresholds, it is not practical for MOF and
LBS to enumerate all possible base substrings. One way
to cap the computational cost is to generate only up to a
specific number of base substrings. In other words, we set
a limit for |Bc| in line (6) of Algorithm 1 by sampling. We

836



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

RS(0.1%) RS(0.5%) MOF(4) LBS(4,1) MOF(5) LBS(5,1) MOF(6) LBS(5,2) LBS(6,1)

R
e

la
ti
v
e

 E
rr

o
r 

(%
)

 

(a) Average Relative Error

Figure 8: Long Query Set On

DBLP Titles

 0

 20

 40

 60

 80

 100

 120

 140

 160

RS(0.1%) RS(0.5%) LBS(4,1) LBS(5,1) LBS(5,2) LBS(6,1)

R
e

la
ti
v
e

 E
rr

o
r 

(%
)

 

 0

 50

 100

 150

 200

RS(0.1%)RS(0.5%)S-SEPIA MOF(4) LBS(4,1) MOF(5) LBS(5,1) MOF(6) LBS(5,2) LBS(6,1)

R
e

la
ti
v
e

 E
rr

o
r 

(%
)

 

Jsim = 0.6

Jsim = 0.7

Jsim = 0.8

Jsim = 0.9

(a) SQL LIKE (b) Jaccard Similarity

Figure 9: Other Similarity Measures
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Figure 10: Impact of kmin and PT on IMDB Keywords

randomly generate up to 200 base substrings, and the results
are shown in Figure 8.

In terms of the average relative error comparisons amongst
RS, MOF and LBS, all the previous observations on the
short query sets remain valid here. As for runtime, for
MOF and LBS, the query time increases from an average
20 milliseconds for the short query set to an average 120
milliseconds for the long query set. The RS method scales
up poorly with respect to ∆ as its query time is well over
2000 milliseconds. In sum, both MOF and LBS are capable
of handling long queries and larger ∆ thresholds.

The space overhead graph is not included here. With a
larger ∆, additional q-grams are needed to handle the larger
number of wildcards (e.g., q-grams with 4 or 5 wildcards for
our long query set). Compared with the space overhead
shown in Figure 6(b), the additional space required turns
out to be rather minimal (i.e., between 0.1MB to 0.5MB).

6.4 Other Similarity Measures
For LIKE predicate, we consider two types of conditions,

%s% and %s1%s2% as is typical in TPC-H benchmark. We
randomly select one or two words of length between 5 and
12 and introduced 0 to 2 ‘ ’ in each word. Figure 9(a) gives
the average relative errors on LIKE predicate. MOF and
S-SEPIA are not present because MOF does not have signa-
ture which is necessary for Equation (11) and S-SEPIA does
not support LIKE predicate. We observe that LBS outper-
forms RS by a large margin. Even with 0.5% of sampling
ration, RS’s average relative error is greater than 100% while
LBS(5,1) is 56%. The effect of inceasing N is also clear. In
LBS(6,1), the average relative error is as low as 35%.

For Jaccard similarity, we randomly select a word for sim-
ilarity threshold Jsim of 0.6, 0.7, 0.8 and 0.9. Figure 9(b)
plots the average relative error on Jaccard similarity. As in
edit distance or LIKE cases, LBS consistently outperforms
S-SEPIA, MOF and RS.

6.5 Impact of Parameters:kmin, PT

In Figure 5(a), there is the comparison between LBS(5,1)
and LBS(5,2) using the DBLP Authors data set. This sug-
gests that as kmin, the number of minima kept, increases
from 1 to 2, there is a reduction in average relative error
by using additional space. Figure 10(a) and (b) analyze the
impact of kmin in greater details. Specifically, the IMDB
Keywords data set is used with N = 4 or 5, and PT = 10,
kmin is varied from 1 to 3. When an extended 4-gram table
is used (i.e., N = 4), keeping the second minimum reduces
the error by 14% relative to the first minimum; keeping the
second and the third minima reduces the average relative
error by 20%. However, this reduction is less in the 5-gram
case. In general, when N is small, having kmin = 2 helps.
According to Figure 10(b), it is important to note that the
additional space needed by incrementing kmin is less than
the extra space required by incrementing N . For instance,
the space consumption of LBS(4,2) is less than the space
consumption of LBS(5,1).

Figure 10(c) and (d) show the impact of changing the
pruning threshold PT based on the keywords data set and
LBS(5,1). In Figure 10(d), we note a sharp drop in the space
overhead, especially in the low prune threshold. This is not
so surprising considering that many real world text data
follow Zipf’s law. The dropping ratio is bigger at higher N .
Figure 10(c) shows that LBS experiences only small increase
in error by increasing the prune threshold. This is because
the true frequency is most likely affected by a small number
of base substrings whose frequency is relatively high.

6.6 Impact of Data set Size
Figure 11 compares the average relative errors of N-gram

tables for LBS(4,1), LBS(5,1), and LBS(6,1) varying the
data set size. The T itle300 data set is the full Titles data
set used throughout the experiments and we randomly select
50,000 and 100,000 titles for the T itle50 and T itle100 data
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Figure 11: Impact of Data Set Size on Error

set respectively. We can observe that average relative error
does not change much as the data set increases in size.

6.7 Recipe: Balancing Space vs. Accuracy
MOF and LBS provide a very tunable setting depending

on the space available and CPU time expectations. The
table below offers a “recipe” for choosing the method and
the parameters.

Available Space Suggested Method

very low (< 5%) MOF(4)
low (< 30%) MOF(5)

medium (< 70%) LBS(5,1)
abundant (< 120%) LBS(5,2)
non-issue (< 400%) LBS(6,1)

When we have very limited amount of space, say 1% ∼
5% of the original data size, MOF(4) is the recommended
choice. If CPU time is not a serious concern, MOF(5) is
a good choice. If accuracy is a primary concern, the LBS
estimation algorithm is recommended, particularly LBS(5,1)
and LBS(5,2). Keeping signatures help to reduce relative
error. Increasing kmin involves less space than increasing
N . Finally, if space is not an issue, then LBS(6,1), and even
LBS(7,1), is recommended.

7. CONCLUSIONS
In this paper, we developed algorithms for estimating se-

lectivity of approximate substring matching with edit dis-
tance. Two algorithms based on the extended N-gram table,
MOF and LBS, show accurate and fast estimation. MOF
provides simple yet accurate estimation, and LBS improves
MOF capturing more complex correlation among strings by
adapting from set hashing signatures. We extended the pro-
posed algorithms to SQL LIKE predicate and Jaccard sim-
ilarity. As ongoing work, we explore further utilization of
the stored signature information in LBS. For instance, we
can support boolean queries [8].
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