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ABSTRACT

In this paper, we present ROAD, a general framework to
evaluate Location-Dependent Spatial Queries (LDSQ)s that
searches for spatial objects on road networks. By exploiting
search space pruning technique and providing a dynamic ob-
ject mapping mechanism, ROAD is very efficient and flexible
for various types of queries, namely, range search and near-
est neighbor search, on objects over large-scale networks.
ROAD is named after its two components, namely, Route
Qverlay and Association Directory, designed to address the
network traversal and object access aspects of the frame-
work. In ROAD, a large road network is organized as a hier-
archy of interconnected regional sub-networks (called Rnets)
augmented with 1) shortcuts for accelerating network traver-
sals; and 2) object abstracts for guiding traversals. In this pa-
per, we present (i) the Rnet hierarchy and several properties
useful to construct Rnet hierarchy, (ii) the design and im-
plementation of the ROAD framework, (iii) efficient object
search algorithms for various queries, and (iv) incremental
update techniques for framework maintenance in presence
of object and network changes. We conducted extensive ex-
periments with real road networks to evaluate ROAD. The
experiment result shows the superiority of ROAD over the
state-of-the-art approaches.

General Terms
Spatial Search, Road Network, Index and Algorithm

1. INTRODUCTION

The proliferation of mobile devices, along with broad de-
ployment of wireless communication networks and high pre-
cision geo-positioning technology, have been stimulating the
growth of location-based services (LBSs) during the past
decade. Typically, an LBS server maintains location-related
information to answer user queries with respect to user-
specified locations. We refer to the location-related infor-
mation and user queries as spatial objects (or object, for
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Figure 1: Spatial objects tagged on digital map

short) and location-dependent spatial queries (LDSQs), re-
spectively. To many location-related applications, LDSQs
often serve as fundamental data access operations. For ex-
ample, for a conference event, LDSQs can help an attendee
in travel planning, e.g., Q1: find the nearest bus station to
the conference venue, and Q2: find hotels within 10-minute
walk from the conference venue.

As objects and user trajectories are constrained by road
networks, search of spatial objects should be based on net-
work distances. Recently, a trend for LBS deployment has
been growing quickly on the Web. Spatial objects from
content providers (e.g., stores, average users etc) and dig-
ital maps from map service providers (e.g., Google Map,
MapQuest, MS Virtual Earth, Yahoo! Map' etc,) are cou-
pled to quickly deploy LBSs on the fly. As such, content
providers embed maps from any map service provider on
their web pages while tagging objects on the embedded maps.
Figure 1 shows an example map from Google Map on which
a bus station and a conference site (as spatial objects) are
tagged by the conference webmaster (i.e., a content provider).
In this model, content providers and map service providers
do not necessarily maintain data from each other. This tech-
nological trend allows dynamic combination of contents and
map services to facilitate content-rich LBSs.

Although existing applications based on this model can
display objects tagged on a map and point-to-point direc-
tions search, common LDSQs like finding the nearest book-
stores from a given location based on network distance or
current traffic condition have not yet been supported. To
meet the enormous Web and mobile user needs for LBSs,
the support for efficient LDSQ processing is needed. Thus,
there is a great demand on a system framework that can
i) flexibly and efficiently accommodate diverse objects (in
terms of contents, types, and formats) on maps, ii) efficiently
support various LDSQs, and iii) effectively support different

"http://maps.google.com, http://www.mapquest.com,
http://maps.live.com, http://map.yahoo.com, respectively.



distance metrics such as road network distance, travel time,
toll, etc to be considered for LDSQs.

However, all existing techniques proposed for processing
LDSQs in spatial network databases, including network ex-
pansion based, Fuclidean distance bound based, and solu-
tion based approaches [2, 6, 9, 13, 16, 19], do not pro-
vide the desired features. The network expansion based
approaches, though supporting various types of queries, ob-
jects and distance metrics, are not efficient due to expensive
network traversal involved in network distance computation.
The Euclidean distance bound based approaches (which rely
on heuristics derived from the physical properties of Eu-
clidean distance) are not always applicable since Euclidean
distance cannot be used to estimate some distance metrics
(e.g., trip time, travel cost etc). Solution based approaches
that pre-compute search results for specific queries to boost
the search efficiency suffer from expensive costs of result
pre-computation and storage. Besides, they adapt poorly to
other query types, and to object and network changes.

In this paper, we propose a novel and efficient system
framework, called ROAD for processing LDSQs on road net-
works. As we analyzed, there are two basic operations,
namely, network traversal and object lookup involved in pro-
cessing LDSQs on a road network. Network traversal visits
network nodes and edges following a certain traversal strat-
egy to determine the network distances of objects i.e., one of
search criteria, while object lookup accesses and checks ob-
jects at traversed nodes or edges based on object attributes
and search criteria. Objects collected during the course of a
traversal are the answer objects. For a search that covers a
large portion of a network, the overhead incurred by traver-
sals and objects lookups would significantly deteriorate the
overall search performance and thus need to be optimized.

Figure 2: Basic idea behind ROAD framework

Figure 2 illustrates the problems and provides an overview
of our basic ideas. As shown, 01 and o2 are two objects on a
network. If an NN query is issued far away from these two
objects, say at ng, the search cost is expected to be higher
than the same query issued somewhere close to the objects.
As traversals from a query point towards the searched ob-
jects and the placements of objects are constrained by the
network topology, nodes and edges (i.e., the entire network)
logically form an object search space. Observing that some
subspaces (i.e., small portions of the network) with no ob-
jects can be skipped from detailed examination during a
search, we strategically formulate a network as a collection
of regional subnets (called Rnets). As such, each of the
Rnets captures a search subspace. The idea, aiming at ex-
ploiting search space pruning effective technique to effec-
tively speed up the search performance, is to avoid detailed
traversal and object lookup within Rnets and thus allow the
bypass of those Rnets that do not contain objects of inter-
est. To enable the bypass of an Rnet during traversal, two
pieces of additional information are required: (i) information
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about selective (i.e., shortest) paths across an Rnet that al-
low traversals to continue at other sides of the Rnet, and
(ii) information about the content of objects inside an Rnet
to provide a quick search guideline. These two requirements
lead to the notions of shortcuts and object abstract, respec-
tively, in the paper. As shown in the figure, with the aid
of shortcuts and the object abstract for Rnet R, a search
from n, can bypass R and continue on the other side of the
network to find objects, as R is found containing no object.

To realize the ROAD framework, two novel index struc-
tures, namely, Route Querlay and Association Directory,
have been proposed. The ROAD framework is named af-
ter these two key components. The former naturally man-
ages the physical network structure and the shortcuts, while
the latter associates objects and object abstracts with the
road network. This design offers many advantages. First,
it provides a clean separation between network and objects.
In practice, map service providers may provide shortcuts
for Rnets, while content providers may map objects to the
nodes, edges and Rnets on the fly. Meanwhile, flexible ob-
ject and network updates can be facilitated. Additionally,
diverse object types can be supported upon the same net-
work. Second, shortcuts can be customized for different dis-
tance metrics as needed by applications. Third, as both net-
work traversal and object lookup are seamlessly supported
by ROAD, various LDSQs can be efficiently processed.

In this paper, we detail the design, implementation and
evaluation of ROAD and provide a holistic solution to sev-
eral important research issues, including organization of Rnets,
search algorithms for LDSQs, and maintenance of the ROAD
framework. Notice that the concepts of Rnets, shortcuts,
object abstracts introduced for road networks in this pa-
per are also applicable to other spatial networks like airline
networks. In summary, this paper presents the following
significant contributions:

1. We present ROAD, a system framework to support
efficient processing of LDSQs on road networks. It
clearly separates network and objects, exploits search
space pruning technique, and supports object search
based on different distance metrics.

We develop Rnet hierarchy and employ its nice prop-
erties to reduce index overhead, improve query perfor-
mance, and facilitate incremental framework mainte-
nance.

We devise efficient search algorithms for range queries
and nearest neighbor queries, i.e., two of the most com-
mon types of LDSQs, upon ROAD framework. Our al-
gorithms significantly reduce the traversal overheads,
thereby rendering fast search performance.

We develop efficient ROAD maintenance schemes to
handle object and network changes.

We conduct an extensive performance evaluation on
ROAD. The result shows the superiority of ROAD over
the state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents the core concept
behind ROAD and details the ROAD framework, such as
the properties of shortcuts and object abstracts, the organi-
zation of Rnets and ROAD implementation. Section 4 and
Section 5 detail the query processing algorithms and ROAD
framework maintenances, respectively. Section 6 reports the
performance evaluations of ROAD in comparison with ex-
isting works. Section 7 concludes this paper.



2. RELATED WORK

In this section, we first discuss existing works that can be
categorized into network expansion based approaches, Fu-
clidean distance bound approaches and solution based ap-
proaches, on processing LDSQs on road networks. Then,
we review related works on hierarchical road networks that
aim at facilitating shortest path search.

Network expansion based approaches. Network ex-
pansion gradually expands the search space in a network by
forming a spanning tree rooted at a given query point. It
is applicable for object search and shortest path search like
Dijkstra’s algorithm [4]. Iteratively, it examines the next
closest unexplored node that guarantees the expansion to
be minimal each time until all the nodes and edges that sat-
isfy search criteria are visited [9, 16]. Objects of interest
located on the visited nodes and edges are the result objects
and the paths from the root to those objects are the shortest
paths. Although the network expansion is useful for many
LDSQs, it is inefficient due to an almost blind scan over the
entire search space and a slow node-by-node expansion to-
wards all directions. For a large search space, this deficiency
seriously deteriorates the search performance.

Euclidean distance bound approaches. Euclidean dis-
tance is always the lower bound of physical path distance.
Euclidean distance bound approaches [16, 19] employ this
property as a heuristic to identify candidate objects whose
FEuclidean distances are not greater than a certain threshold
distance. Then, false candidates whose network distances
that can be determined by shortest path algorithms (e.g.
A* algorithm [3]) or materialized distances (e.g. HEPV [10],
HiTi [11]) are greater than the threshold are eliminated.
However, the heuristic is not applicable to other network
distance metrics, such as travel time or cost. It is also not
very effective when paths between objects and query points
are not in straight lines. As studied in [16], these approaches
perform worse than network expansion for the same LDSQs.

Solution based approaches. By pre-computing and main-
taining query results for potential access in the future, so-
lution based approaches such as VN® [13], UNICONS |[2],
SPIE [7] and Distance Index [6], optimize the search perfor-
mance for a given type of queries. VN3 [13] employs the con-
cept of Voronoi diagram for nearest neighbor (NN) queries
on road networks. For each object, a geometric polygon is
formed based on network distances from other neighboring
objects and indexed in a spatial index. All points within a
polygon should have the enclosed object as their NNs. With
VN3, NN search is transformed to a point enclosure problem.
UNICONS [2] pre-computes kNN objects for some selected
nodes. SPIE [7] organizes a network as a set of spanning
trees and pre-computes NN results on nodes in the span-
ning trees. NN queries can be answered by accessing pre-
computed results maintained at some of the closest nodes.
Distance Index [6] pre-computes for all nodes the object
distances and pointers to next nodes towards individual ob-
jects, and encodes them as distance signatures. Directed by
the signatures, both range and NN queries are supported.
Instead of precise distances, distance ranges are adopted
such that narrow (wide) distance ranges are used to indi-
cate objects nearby (faraway). To determine the precise dis-
tances of objects, a search chases the next pointers of nodes
to reach some nodes closer to the objects, as signatures there

provide more precise distance ranges of the objects. Based
on the more precise distances, objects may be collected as a
query result. Figure 3 illustrates the distance signatures on
objects o1 and oz stored at ng and n, . However, we can see
both distance ranges for objects are identical, that implies
redundant storage. In other words, it incurs excessive stor-
age and pre-computation costs. Our evaluation result also
reflect that it is completely impractical.

[dird)): {} [dordy): {}
[di-d>): [di-d>): {}
[d>-d5): {01, 05} [d>-d5): {01, 02}
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Figure 3: Distance Index

The common pitfalls of solution based approaches are
their extremely high overheads incurred in pre-computation,
result storage, and maintenance. More importantly, they
adapt very poorly to other types of queries, and to objects
and network updates.

Hierarchical road networks. Although some existing
works such as HEPV [10] and HiTi[11] structure a road net-
work in a hierarchy, ROAD is totally different from them in
terms of objectives, designs and implementations. All those
existing works focus on shortest path search over a large net-
work. To alleviate memory consumption of storing all-pair
shortest paths over a network, they divide a network and
materialize shortest paths between the boundaries of parti-
tions and between nodes inside each partition. By concate-
nating shortest paths from a source to a partition boundary
node, to another partition boundary node, and so on until
the destination is reached, the shortest path between source
and destination is determined. For completeness, all those
shortest paths must be maintained and are organized in a
tree of sub-networks. Differently, our ROAD divides a net-
work in order to facilitate search space pruning for efficient
LDSQ processing. Rather than storing sub-networks in a
hierarchy, we maintain a network in a flattened structure as
will be discussed in next section to speed up the network ex-
pansion. Besides, some shortcuts within Rnets are not kept
to save memory and maintenance cost. Furthermore, within
the smallest Rnets, no precalculated shortest paths between
nodes are needed.

3. THE ROAD FRAMEWORK

In this section, we present the concept, design and im-
plementation of our ROAD framework. We first introduce
Rnets, shortcuts and object abstracts, i.e., the key design in
support of search space pruning in ROAD, and then dis-
cuss Rnet hierarchy formation. More, we present Route
Qverlay and Association Directory, the two core components
in ROAD implementation.

3.1 Preliminaries

Formally, a road network can be modeled as a weighted
graph N consisting of a set of nodes N and edges E, i.e.,
N = (N,E). A node n € N represents a road intersection
or an end point; and an edge (n,n’) € E represents a road
segment connecting nodes n and n’. |n,n’| denotes the edge



distance, which can represent the travel distance, trip time
or toll of the corresponding road segment, and its value is
positive. We simply use distance in the rest of the paper. A
path P(u,v) stands for a set of edges connecting nodes u and
v and its distance |P(u,v)| =32, /ep(uw M n’|. Among
all possible paths connecting node u and node v, the one
with the shortest distance is referred to as the shortest path,
denoted by SP(u,v). The network distance ||u, v|| between
u and v is the distance of their shortest path SP(u,v), i.e.,
[|u,v|| = |SP(u,v)|. For simplicity, we assume that objects
reside on edges (i.e., road segments) in a network. Objects
at nodes (i.e., road intersections) can be treated as they are
located at the end of the edges. We denote a set of objects
on edge (n,n') by O(n,n’) and the distance from an object
0 € O(n,n’) to the nodes n and n’ by §(0,n) and 6(o0,n’), re-
spectively. Also, we assume LDSQs to be initiated at nodes
for simplicity. Each LDSQ is specified with a distance condi-
tion D and an attribute predicate A. Given a set of objects
in a network, an object, o, is collected as the answer of an
LDSQ if (1) its distance from a query node, ng, denoted by
17, ol = min(||ng, nl] + 6(0, n), lIng, w'|| + 8(0, n')) satisfies
D (e.g., ||ng, o|| < 100) and (2) its attribute denoted by o.a
satisfies A (e.g., restaurant o.type = ‘seafood’). As shown,
we single out the conditions of network distance from other
attributes due to its importance and focus of this work.

3.2 Rnets, Shortcutsand Object Abstracts

To find objects in terms of their network distances and
attributes, a search algorithm may implicitly form a search
tree originated at the query node. Following the topology
of the network, the portion of the network covered by a
search tree conceptually represents a search space. Scanning
an entire search space incurs significant traversal overheads.
Skipping some search subspaces that do not contain objects
of interest from detailed examinations presents an optimiza-
tion opportunity. This search space pruning technique is
expected to be very effective in road networks because spa-
tial objects are often clustered and concentrated in some
areas, e.g., hotels and resorts are likely to be in business
and scenic areas, respectively. Thus, many subspaces do
not contain objects of interest and can be pruned. Though
well received in various database searches, to the best of our
knowledge, the idea of search space pruning has not been
exploited in the context of object search on road networks.

shortcut

border node

shortcut

S(n:,n

(b) Rnet

(a) Closed path

Figure 4: Closed path and Rnet

Figure 4(a) explains how search space pruning can be re-
alized in a road network. Suppose a search tree grows from
a node, ng, to reach a node n;. Assume that the path cover-
ing edges (n1,n2), (n2,ns), (n3,n4), and (n4, ns) represents
a closed path, i.e., a path that has no nodes connecting to
other parts of the network besides the two ending nodes (i.e.,
n1 and ns). If no object of interest presents in the closed
path, a detailed traversal on the path can be skipped and
the traversal has to continue at ns in order to explore ob-
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jects thereafter. Considering this closed path as a subspace,
we need to have (1) a hint about whether or what objects
are on the path; and (2) an artifact at ni connecting ns,
the other end of the path. Accordingly, we introduce o0b-
ject abstracts and shortcuts. As such, when a closed path is
reached and no object of interest is indicated in an object
abstract, a search can bypass the entire path via a shortcut
to the other end directly. A shortcut between two ending
nodes is the shortest path between them.

In road networks, closed paths are usually short; thus
the performance gained by bypassing closed paths is rather
limited. We, therefore, introduce a notion of Rnets, which
stands for regional sub-networks, in a road network. FEach
Rnet encloses a subset of edges and it is bounded by a set of
border nodes. Each border node is the entrance and exit of
an Rnet. The formal definition of Rnet is stated in Defini-
tion 1. In an Rnet R, nodes with edges not belonging to R
are border nodes. Meanwhile, a border nodes can be shared
by more than two Rnets at the same time. Based on Rnets,
the concepts of shortcuts and object abstracts are developed
and formally stated in Definition 2 and 3, respectively. It is
noteworthy that the edges that contribute to SP(b,b") might
not necessarily be included in Er.

DEFINITION 1. Rnet. In a network N = (N,E), an
Rnet R = (Nr, Er, Br) represents a search subspace, where
Nz, Er and Bgr stand for nodes, edges and border nodes in
R, and
(1) Er CE,

(2) Nr = {n|(n,n’) € Er V (n/,n) € Er}, and
(3) Br = Nr N {n|(n,n’) € E'V (n',n) € E'}, where
E'=F — Er. |

DEFINITION 2. Object Abstract. The object abstract
of an Rnet R, O(R), represents all the objects residing on
edges in Er, i.e., O(R) U O(e). O

eeER

DEFINITION 3. Shortcut. The shortcut, S(b,b'), between
border nodes b and b’ (€ Br) of an Rnet R bears the shortest
path SP(b,b’) and its distance ||b,b'||. |

Figure 4(b) depicts an Rnet, R, where n1, ns and ng are
the border nodes. When a search reaches n1, the entire Rnet
can be bypassed with shortcuts S(n1,ns) to ns or S(ni,ne)
to ng if the corresponding object abstract O(R) indicates no
object of interest.

3.3 Rnet Hierarchy

In ROAD, we structure a road network as a hierarchy of
Rnets where large Rnets at the upper levels enclose smaller
Rnets at lower levels. At each level, a network can be viewed
as a layer of interconnected Rnets. This structure benefits
various search scenarios. For objects located far away from
a query node, a search range can be quickly expanded with
long shortcuts in large Rnets. For objects that are close
to query nodes, shortcuts in moderate-sized Rnets or even
original edges can be used to reach the answer objects.

To derive an Rnet hierarchy, we first treat the entire road
network as a single Rnet that has no border node and par-
tition it into p; partitioned Rnets. Definition 4 states the
formal definition of Rnet partitioning. We refer the original
Rnet as the level-0 Rnet. The partitioned Rnets are the chil-
dren of the Rnet they partitioned from. At each subsequent



level i, we partition each Rnet into p; child Rnets. As a re-
sult, at a level = (€ [0,1]), the entire network is fully covered

by ][ p: interconnected Rnets. For an Rnet hierarchy of [

i=1

I h
levels, there are > [] p:; Rnets.
h=0i=1

DEFINITION 4. Rnet partitioning. Partitioning of an
Rnet R = (N,E,B) where N, E, B are a set of nodes,
edges and border nodes and B C N, forms p child Rnets,

Ri, Re, --+ Rp where p > 1 and R; = (N;, E;, B;). Here,
N= U N, E= U E;, BC |J B;. Also, the
1<i<p 1<i<p 1<i<p

following three conditions must hold.

1. Edges of all child Rnets are disjointed, i.e., V;Vji #
j EN Ej = 0.

2. Nodes in an Rnet are connected by edges in the same
Rnet, i.e., V;V(n,n') € E;,n € N; An' € N;.

3. Border nodes in an Rnet are common to its parent
Rnet and some of its sibling Rnets, i.e., B; = N; N
(BU U Nj). |

JE([1,p]—{i})

As illustrated in Figure 5, a network N is first partitioned
into three Rnets, namely, R1, R2 and Rgs, each of which is
then partitioned into 2 smaller Rnets, R;, and R, @ € [1, 3].
Consequently, Rq1, Rz and R3 form the first-level Rnets, and
Ri,, Rip, Raq, R2p, Rs,, and Rs; form the second-level
Rnets. In the figure, n3 is common to both R and Rz and
hence it is a border node corresponding to the level-1 Rnets.
Meanwhile, it is shared by both Rz, and R3, and is a border
node of level-2 Rnets.

Figure 5: Example Rnet hierarchy

Network Partitioning Methods. An ideal network par-
titioning should generate equal-sized Rnets and minimize
the number of border nodes which in turn minimizes the
number of shortcuts formed and maintained. However, this
ideal network partitioning is known as NP-complete [15]. In
this study, we adopt geometric approach [8] and Kernighan-
Lin algorithm (KL algorithm) [12]. The geometric approach
first coarsely partitions a network into two by dividing a set
of edges spatially such that these two result subnets have
equal numbers of edges. KL algorithm is then used to fine
tune the two result Rnets by exchanging edges between them
until further exchanges do not reduce the number of border
nodes. We set p; to be power of 2 (i.e., p; = 2%, for = being
a positive integer) and recursively apply this binary parti-
tioning until p; Rnets are formed. This network partitioning
approach is also used in [10]. Alternatively, partitioning can
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be based on network semantics. For instance, a country-
wide road network can be partitioned into levels of states,
counties, cities, and townships. Further, the network par-
titioning could be based on the distributed objects. Since
ROAD is a general-purpose framework to support searches
on various objects to be mapped onto the same spatial net-
work at the query time, our current network partitioning
is performed independently of objects. We will study the
object-based network partitioning in our future work.

Creation of Shortcuts and Object Abstracts. After an
Rnet hierarchy is formed, object abstracts and shortcuts are
constructed in a bottom-up fashion. As edges in child Rnets
are fully covered by their parent Rnet (see Definition 4),
object abstracts of an Rnet can therefore be constructed
directly from their child Rnets. Lemma 1 states this prop-
erty. On the other hand, the shortcuts of a border node
can be determined by adopting Dijkstra’s algorithm [4] to
explore paths for all other border nodes in the same Rnet.
To speed up shortcut computations, shortcuts in Rnets at
level i can be calculated based on those in Rnets at level
i+1 (as stated in Lemma 2). Further, the representation
of shortcuts can be based on those shortcuts in child level
Rnets. Referring to our example Rnet hierarchy as shown in
Figure 5, the shortcut from n; and ns, S(n1,ns) can be rep-
resented as (S(n1,nq), S(nqg,n3)). To determine a detailed
shortest path for this shortcut, S(ni,nq) and S(ng,ns) can
be explored at nodes n1 and ng4, respectively.

LEMMA 1. The object abstract of a parent Rnet R fully
covers those of all its child Rnets Ri,---Rp, i.e., O(R)
U O(Ry). Also, according to Definition 2, the object
1<i<p
abstract of a smallest Rnet R (= (N, E,B)) is |J O(e). O

eckE

Proof. The proof is straightforward and is omitted. |

LEMMA 2. Given an Rnet hierarchy, a shortcut S(b,b")
between two border nodes of a level i Rnet R can be derived
based on those shortcuts of level i+1 Rnets. a

Proof. Suppose node b and b" are inside the level i+1 Rnets
Ry, and Ry, respectively. If Ry = Ry, S(b,b') must be the
same as the shortcut linking b to b’ of Rnet Ry. Otherwise,
Ry # Rpr. If Ry and Ry are not adjacent, there must be at
least one level i4+1 Rnet R that bridges Ry to Ry . Conse-
quently, the shortcut S(b, b’) starts at Ry, passes through R,
and reaches Ry . As the border nodes are the only entrances
to/exits from Rnets, S(b,b’) must go through border nodes
of Rp, R, and R,. Consequently, the shortcuts which link
border nodes must be taken. On the other hand, if R4 and
Ry are adjacent, there should be at least one border node in
common. Through a border node, shortcuts in both Rnets
are connected. For all those cases, S(b,b’) of a level i Rnet
can be constructed by shortcuts in level i+1 Rnets and the
proof completes. |

Besides, explored shortcuts in Rnets can be used to deter-
mine other shortcuts of Rnets in the same level as indicated
in Lemma 3. Lemma 2 and Lemma 3 can help efficiently
compute and update shortcuts (as will be discussed later).
To alleviate the storage cost for shortcuts, some shortcuts
S(b,v’) that are composed of other shortcuts in the same
Rnets do not need to be maintained, as stated in Lemma 4.
Hence, when a search reaches b, it can transitively reach b’



through other shortcuts in the same Rnet. Similarly, for
cases that a shortcut S(n,n’) covers completely a reverse
path of S(n’,n), the detail of either one can be omitted for
storage space saving and the distances of those shortcuts can
be retained.

LEMMA 3. Given Rnets R and R’ at the same level in an
Rnet hierarchy, if a shortcut S of R covers an edge (n,n’)
of R, there must be a shortcut S' corresponding to R’ that
covers (n,n') and S must include S’. |

Proof. Without loss of generality, we assume that a short-
cut S(a,b) reaches Rnet R’ at node n; and leaves it at node
ne, and the path P between n; and ms inside R’ passes
by edge (n,n’). We prove this lemma by contradiction.
Assume that i) no shortcut of R’ passes by edge (n,n’),
and ii) S passes by edge (n,n’) but not any shortcut of
Rnet R’. As S reaches Rnet R’, and the border nodes
are the only entrance to/exits from an Rnet, nodes n; and
no must be border nodes. As S is a shortcut, its distance
lla,b]| = |la, n1|| + | P| + ||n2, b|| must be minimized. Conse-
quently, |P| = ||n1, n2|| which means P must be the shortest
path between ni and ns, i.e., the shortcut. This violates
both assumptions i) and ii), and the proof is completed. W

LEMMA 4. Within an Rnet R, a shortcut S(b,b") between
border nodes b and b” can be safely discarded if there ewists

another border node b’ such that S(b,b") exactly covers both
S(b,b') and S(V',b") in R. o

Proof. We omit the proof to save space. |

3.4 RouteOverlay and Association Directory

To facilitate network traversals that explore a network in
a node-by-node fashion, we adopt a node-oriented storage
scheme that associates nodes with edges and their corre-
sponding distances to their neighboring nodes. As the net-
work is formulated as a hierarchy of Rnets, one straight-
forward storage scheme is to store all Rnets where border
nodes and shortcuts are nodes and edges as separate net-
works in addition to the original network as suggested in [10,
11]. This implementation, however, has to maintain separate
structures and thus may complicate the search traversals,
since search mechanisms need to switch between different
networks. Based on Definition 4 that the border nodes in
parent Rnets are always the border nodes in some of their
child Rnets, our novel index structure, namely Route Over-
lay, that naturally flattens a hierarchical network into a plain
network can effectively avoid all the shortcomings of the sep-
arate network implementation.

In Route Overlay, nodes are indexed by a Bt-tree with
unique node IDs as search keys?. Each leaf entry of B*-
tree points to a node, together with a shortcut tree, i.e.,
a specialized tree index structure that organizes shortcuts
and edges to facilitate search traversals. The structure of a
shortcut tree is generally similar to N-ary tree [17] except
that i) non-leaf nodes that represent Rnets are associated
with shortcuts and ii) number of branches associated with
any node (i.e., the number of child Rnets) that is dependent
on the number of child Rnets is not fixed. If a given node
n is a border node, every non-leaf entry in n’s shortcut tree
maintains the shortcuts from n to other border nodes, corre-
sponding to one Rnet, for which n serves as a border node.

?Besides BT -tree, alternatives such as Hash index can be
used.

Also, in a shortcut tree, parent Rnets are stored immediately
above their child Rnets. The leaf entries store all the edges
to the neighboring nodes of n. The shortcut tree for a non-
border node has only one leaf node containing edges to its
neighboring nodes. Figure 6 shows a Route Overlay for our
network presented in Figure 5. Take ng (a non-border node)
as an example. Its shortcut tree has only one leaf node that
contains edges to ng’s neighboring nodes, e.g., n, and n.
For ng (a border node of Rnets Ri, and Ri;), its shortcut
tree has two levels. The first level points to Rnets R, and
Ry, together with shortcuts to other border nodes, e.g., n1
and n2. The second level keeps the edges to neighboring
nodes, i.e., Ny, ne, ng and ny.
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Shortcut trees

Figure 6: Route Overlay

Next, our proposed efficient object lookup mechanism in
ROAD, called Association Directory also adopts BT-tree
with unique node IDs or Rnet IDs as the search key. Associ-
ated with node n (n') is an object 0 in O(n, n’) together with
its distances §(o,n) (6(o,n’)). Similarly, associated with R is
the object abstract of an Rnet R. As an Rnet may contain a
number of objects, techniques such as aggregated attribute
values [20], bloom filter [1], signature [5] can be used to
represent an object abstract with fewer storage overheads.
Besides, those nodes and Rnets that do not have objects are
not kept in the B*-tree to further reduce the storage cost.
If the search cannot find a node (Rnet) in an BT-tree, no
object is implied for the node (Rnet).

B'-tree
(on node IDs and Rnet IDs),
ny g 3 Ry
1 eee l 1 eooe
o1:5(0,ny) o1:8(01,1y) {0102} {0102}

Figure 7: Association Directory

Figure 7 depicts an Association Directory for objects o1
and oz in our example. In the index, an object o; on edge
(nf,ng) is pointed by the nodes ny and ng. Moreover, ob-
jects 01 and o2 in Rnet Rs;, and its parent Rnet Rs are
associated as {01, 02} with the Rnets in the Association Di-
rectory. Depending on application needs, other objects, say
0a, Ob, 0. can be placed into the same Association Directory
or in a separate Association Directory. This provides flexi-
bility of mapping various objects on the same road network.
Moreover, up to the application needs, multiple Association
Directories that carry different types of objects can be ac-
cessed simultaneously.

4. SEARCH ALGORITHMS

While ROAD is designed to support different types of LD-
SQs, in this paper, we focus on k-nearest neighbor (kNN)



queries and range queries. A kNN query (e.g., Q1 in Sec-
tion 1) returns the k objects of interest closest to ng. A
range query (e.g., Q2 in Section 1) sets a distance range and
retrieves all objects of interest with their distances from nq
within the range. Our algorithms based on the idea of net-
work expansion upon ROAD can perform searches efficiently
since they navigate Rnets in detail only if those Rnets con-
tain objects of interest; otherwise they bypass those Rnets.

We first discuss the evaluation of kNN query. At the first
place, we illustrate the basic idea with a simple network that
consists of a chain of nodes in Figure 8. The network is par-
titioned into 3 Rnets and each of them is further divided
into two smaller Rnets. On this network, an NN query is
issued at na, and two objects 01 and o2 are located on edges
(ni1,m12) and (n12,n13), respectively. Also, in this network,
nodes ns, ns, n7 and ng are border nodes. The search first
expands from nz to ni and ns inside Ri,. The expansion
is shown as a sequence of annotated arrows (arranged verti-
cally) in the figure. Instead of following the physical edges to
the right side of the network for objects, a shortcut S(ns, ns)
at ns, i.e., the border node of Rnets Ri, and Ri;, can be
taken to bypass Ri1, (as no object is indicated by the corre-
sponding object abstract) to reach ns.

local edges * P .

-y >
S(ngnin),  “reach o, on
bypass Rsa edge (1,,1:5)

Figure 8: Example 1NN query

S(ns,ns), S(ns,ny),

inside R, bypass Ry, bypass R

Next, a longer shortcut S(ns,ng) at ns is taken to skip Ra
from detailed traversal. Further, the search at ng reaches n11
via S(ng,n11). Now, as Rgz, contains objects, the traversal
follows the original edges and the object o1 is found after
exploring n11. From the figure, we can see the search only
takes three jumps from n3 to ni1, that significantly saves
the traversal cost, compared with traversing original edges
between the query node and the objects.

With the logic of network expansion as the basis, our Al-
gorithm kNNSearch (outlined in Figure 9) incorporates
shortcuts in Route Overlay and object abstracts in Asso-
ciation Directory to speed up the search. In general, it iter-
atively expands the search in a network from n, by visiting
the closest unexplored node. This gradual expansion guar-
antees the first £ objects satisfying search condition to be
the kNN objects to the query point. We maintain a priority
queue P to sort pending entries in the non-descending dis-
tance order from ng. Each entry (e,d) in P records a node
or an object (€) and its distance (d) from ng.

The algorithm takes a Route Overlay (RO), an Associate
Directory (AD), a query node (ng), and a desired number of
NNs (k) as inputs, and has all nodes and objects marked “un-
visited’. To start, P is initialized with (ng, 0) (line 1). Then,
the algorithm repeatedly examines the head entry (e, d) from
P until k answer objects are retrieved or the network is com-
pletely traversed (lines 2-12). The label “visited” of € is used
to avoid visiting (line 4). Otherwise, if € refers to a node, two
tasks need to be performed. SearchObject is first called
to look up AD for objects o associated with the node € and
put them as (o,d + (o, €)) to P for later examination (lines

6-8). Next, Algorithm ChoosePath is invoked to decide
subsequent nodes from € to continue the network expansion
(line 9) that will be discussed next. When € is an object, it
is collected into a result set Res (lines 10-11). Thereafter, €
is marked “visited” (line 12). Finally, the answer objects are
output and the search completes (line 13).

Algorithm kNNSearch(RO, AD, ng, k)

Input. Route Overlay (RO), Associate Directory (AD),
query node (ng) and the number of NNs (k)
Local. Priority queue (P)
Output. Result set (Res)
Begin
1. enqueue(P,(ngq,0)); Res = 0;
2. while (P is not empty AND |Res| < k) do
3. (e,d) <+ dequeue(P);
4. if (e is marked “visited”) then goto 2;
5. if (e is a node) then
6. O — SearchObject(AD, €); // look up AD
7. foreach (o,6(o,€)) € O do
8. enqueue(P,(o,d + 6(0,€)));
9. ChoosePath(RO,AD, P, ¢, d); // see Figure 10

10. else // € is an object.
11. Res «— Res U {e}; // € is one of result objects.
12. mark e visited; // this indicates € visited.
13. output Res;

End.

Figure 9: Algorithm kNNSearch

With shortcut trees organizing shortcuts and edges in ac-
cordance with the Rnet hierarchy, Algorithm ChoosePath
(depicted in Figure 10) can quickly identify appropriate short-
cuts and edges to expand the search from a node n. In brief,
it examines the shortcut tree of n loaded from Route Over-
lay in a depth-first traversal manner (lines 2-12). For every
non-leaf level, an Rnet R is checked against Association Di-
rectory. If no object of interest is found, R, together with
all its child Rnets, are bypassed. The border nodes reach-
able by the shortcuts are enqueued to P. Otherwise (i.e., R
contains objects of interest), the lookup goes down to the
next lower level to examine its child Rnets in a similar fash-
ion (lines 9-10). Once the search reaches the leaf level of
the shortcut tree, all neighboring nodes connected by edges
are collected (lines 11-12). If n is a non-border node, its
shortcut tree contains only edges and all the corresponding
neighboring nodes are put into P.

Algorithm ChoosePath(RO, AD, P, n, d)

Input. Route Overlay (RO), Associate Directory (AD),
a priority queue (P), a node (n), distance (d);

Local. Stack (S)
Begin

1. T < LoadShortcutTree(RO,n);

2. push(S, T.root);

3. while (S is not empty) do // search in shortcut tree.

4. s+ pop(S);

5. if (s is not leaf) then

6. foreach R of s do

7. if (SearchObject(AD,R) has no object) then

8. enqueue(P, (b, d+||n,b||)) for all S(n,b) of R;

9. else
10. push all s’s children to S;
11. else // leaf node.
12. enqueue(P, (n’, d+ |n,n’|)) for all edges (n,n’) in s;

End.

Figure 10: Algorithm ChoosePath
To visualize Algorithm kINNSearch based on ROAD in
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Figure 11: Illustrations on 3NN query

comparison with other existing approaches, Figure 11 shows
the evaluation of a 3NN query on 5 objects based upon Cal-
ifornia road network [14] (see Section 6 for details). As in-
dicated, our algorithm takes the shortest search time and
the lowest I/O costs as it quickly expands the search range
and reaches the objects via shortcuts. It outperforms other
existing works that include network expansion based ap-
proaches, Euclidean distance bound approach and distance
index. Network expansion based approaches span a very
large network area. Euclidean distance bound approaches
include false candidate objects. Distance Index incurs a high
1/0 cost and long search time due to loading a large number
of distance signatures, although it has pre-computed paths
towards the answer objects. Our algorithm constantly out-
performs all those representative approaches, as evaluated
in extensive experiments to be presented in Section 6.

Algorithm RangeSearch that supports range query is
pretty similar to Algorithm AINNSearch with a slight dif-
ference that the search ends upon a portion of a network
within a distance bound is completely traversed, instead of
a specified number of objects having been found. All visited
objects are the answer objects. To save space, we omit the
discussion of the algorithm.

5. ROAD FRAMEWORK MAINTENANCE

In this section, we present the ROAD maintenance in pres-
ence of updates that include object changes and network
changes. Owning to its clear separation between the objects
and network, ROAD handles these two aspects of updates
efficiently. We present the update mechanisms below.

5.1 Object Update

Object changes are handled in Association Directory, in-
dependently of Route Overlay. To insert an object located
on a certain edge (n,n’) enclosed by an Rnet R, we asso-
ciate the object to the nodes n and n’ and update the object
abstracts of corresponding Rnet R and its ancestor Rnets in
an Association Directory. For object deletion, we can sim-
ply remove the association of the objects from corresponding
edges and from the object abstracts of corresponding Rnets
in an Association Directory. On the other hand, for the
changes of object attributes, we update the object abstract
associated with nodes and Rnets.

5.2 Network Update

Road condition and road network structure change over
time. Instead of immediately rebuilding a Route Overlay
upon changes that is expensive, we propose several tech-
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niques to incrementally update Route Overlay for edge dis-
tance changes, and network structure changes.

5.2.1 Change of Edge Distance

In ROAD, when the distance of an edge that represents
the travel distance, trip time or cost of a road segment
changes (increases or decreases), some shortcuts that rep-
resent shortest paths might become invalid and have to be
updated. Here, these updates only affect Route Overlay but
not objects. To save unnecessary shortcut re-computations,
ROAD adopts a filtering-and-refreshing approach that con-
sists of two steps. In the “filtering” step, shortcuts that
may be affected by the change are identified. The identified
shortcuts are then updated in the “refreshing” step. Accord-
ing to Lemma 2 defined in Section 3, the update of shortcuts
related to level ¢ Rnets in an Rnet hierarchy is not neces-
sary unless shortcuts related to level i+1 Rnets are updated.
Thus, in the following, we only explain how to re-compute
shortcuts in the bottom level. The same idea can be applied
to upper levels. Also, based on Lemma 3, an edge, which is
not covered by shortcuts in its own Rnet, is definitely not
covered by shortcuts in other Rnets at the same level. There-
fore, we examine the shortcuts in an Rnet that encloses the
changed edge first. If no shortcut update is incurred, the
update can be safely terminated. Suppose an edge changes
its distance |n,n’| from d to d’, detailed update procedure
is discussed below.

Edge distance increased (i.e, d < d'). When the distance
of an edge (n,n’) in an Rnet R is increased from d to d’, only
those shortcuts that cover (n,n’) might become invalid and
need to be refreshed. In the filter step, we identify shortcuts
that pass through (n,n’). Observing that a shortcut S(b,b")
covering (n,n’) should have ||b,b’|| equal to ||b, n||+|n,n|+
[|n',b'|| (where we consider |n,n'| before update, i.e., d),
we search affected shortcuts by finding the shortest paths
from each of end nodes (n and n’) to the border nodes in R
and then identifying shortcuts whose distances are equal to
the path passing through (n,n’). In the second phase, all
the identified shortcuts are re-evaluated. If no shortcuts are
refreshed, the update terminates. Otherwise, the update is
propagated up to the parent level, with border nodes and
shortcuts at the current level treated as nodes and edges,
respectively.

Edge distance decreased (i.e., d > d’). When the dis-
tance of an edge (n,n’) in an Rnet R is decreased from
d to d’, it may contribute to paths shorter than some ex-
isting shortcuts. In this case, those shortcuts need to be
identified and refreshed. In the first filtering step, we test
if the distance of a path from border node b via (n,n’) to



another border node b’ (with |n,n’| = d’, the new edge dis-
tance) is shorter than the distance of the shortcut S(b,5").
Here we expand from n and n’ to reach border nodes and
to determine the distances as shown in Figure 12(a). Once
[|b,n|| + [n,n'| + [|n/,b']] < ||b,b']|, S(b,b") between border
node b and b is identified to be affected. In the second
phase, those identified paths are replaced by the new paths
passing by edge (n,n’). Again, the update process will be
propagated to the parent level if there are shortcuts updated.

add (ne,ny)

Rnet R, Rnet R,

nn'| =d'
(new edge distance)

nodes

add (ng,np)
(b) Edge addition and deletion

Border nodes

(a) Edge dist. decrease

delete (nsng) delete (n,,ny)

Figure 12: Network changes

5.2.2 Change of Network Structure

When new roads are constructed or existing roads are
closed, the corresponding network topology is changed. We
model these changes as addition or deletion of nodes and
edges. As changes of nodes result in changes of edges, we
treat changes of nodes as special cases of changes of edges,

and only consider addition and deletion of edges below. Again,

we update the network at the bottom level first and propa-
gate the updates to the parent levels if necessary.

Addition of a new edge. A newly added edge (n,n’)
directly connects two nodes n and n’, assuming that n and
n’ belong to Rnet R and R’, respectively. There are two
possible cases: (1) R = R’ and (2) R # R'. We handle
them in the following.

e Case 1: R = R’ (i.e., both nodes are located inside
the same Rnet). Adding an edge connecting two nodes
(e.g., (nq,np) in Figure 12(b)) can be treated as chang-
ing the distance of an edge from infinity to the edge
distance. The previously discussed edge distance up-
date mechanism can be applied here. Accordingly, the
Route Overlay is updated as well to store the new edge
and the new nodes (if any).

Case 2: R # R’ (i.e., nodes are located in different
Rnets). Since an edge can only be included by one
Rnet (say R), the node n’ which does not belong to
R, has to be promoted to a border node between R
and R’. In Figure 12(b), the introduction of (n.,nq)
to R1 gets mg promoted to the border node. Also,
the new edge (n,n’) might affect some shortcuts. The
update approach for the change of edge distance can
be applied here. As a new border node is introduced,
new shortcuts linking the new border node to other
border nodes in the same Rnet have to be created.

Deletion of an existing edge. Deleting an edge (n,n’)
breaks the link between two nodes n and n’. Consider delet-
ing (ne,nys) in Ry in Figure 12(b). Its deletion can be man-
aged as handling the change of its edge distance to infinity
and updating affected shortcuts. In addition, it is possible
that one of the end nodes of a deleted edge is a border node.
If all the edges of n are within one Rnet after the deletion of

1026

edge (n,n’), n is no longer a border node. As shown in Fig-
ure 12(b), after deleting (nyf,ng), ng becomes a non-border
node. Then, the shortcut trees of n and other border nodes
in related Rnets in Route Overlay have to be updated.

6. PERFORMANCE EVALUATION

This section evaluates our proposed ROAD framework
in terms of indexing overhead, maintenance overhead, and
query performance. We applied ROAD (labeled as ROAD,
hereafter) on three real road networks, namely, CA, NA and
SF obtained from [14]. CA and NA consist of highways
in California, USA and North America, respectively. SF is
composed of streets and roads in San Francisco. In this eval-
uation, we simulate one type of objects based on which all
the queries are evaluated, while ROAD can handle diverse
objects. Objects, with number varying from 10 to 1000, are
evenly distributed over those road networks®. The fewer the
number of objects is in the network, the larger the search
subspaces that contain no objects can be pruned. Thus, an
efficient approach should be able to return the search result
quickly when a small number of objects is experimented.
Table 1 summarizes the evaluation parameters, their values
and defaults used in the experiments.

In addition to ROAD, we implement network expansion [16],
Euclidean-based approach [16, 19] and Distance Index [6]
(labeled as NetExp, Euclidean, and Distldx, respectively), in
GNU C++ for comparisons. We adopt CCAM [18] to or-
ganize network nodes in storage for all the approaches. For
NetExp, objects are stored with network nodes. For Euclidean,
objects are indexed by an R-tree and the A* algorithm [3]
is used to determine objects’ network distances from query
nodes. For Distldx, distance signatures are stored with net-
work nodes. We adopt exact object distances in the distance
signature to provide the optimal search performance.

Parameter
Network

Value (*=default)

CA* (21,048 nodes, 21,693 edges)
NA (175,813 nodes, 179,179 edges)
SF (174,956 nodes, 223,001 edges)
10, 50, 100*, 500, 1000

4*

2, 3,4%, 5, 6 for CA, and

6, 7, 8,9, 10 for NA and SF
kNN query™* and range query

1, 5%, 10

0.05, 0.1*, 0.2 of network diameter

No. of objects (]O])
Partition factor (p)
No. of levels (1)

Query
No. of NNs (k)

Search range (r)

Table 1: Evaluation parameters

We measure the performance of all the approaches accord-
ing to four commonly used performance metrics, namely,

e [ndex construction time. This measures the elapsed
time to construct an index.

Index size. This measures storage consumed to store
an index.

Index update time. This measures the time spent on
updating an index in presence of object and network
changes.

(Query) Processing time. This represents the time du-
ration from the time when the query is initiated to the
time that a complete result is obtained.

3ROAD can benefit more from uneven object distribution
that more empty subspaces can be pruned.



All indices are stored on disk. In our disk storage, the page
size is fixed at 4KB. We also employ a memory cache of
50 pages with LRU replacement scheme to buffer loaded
pages. In every run, a query is initialized with an empty
cache. All experiments were conducted upon Linux 2.6.9
servers with Intel Xeon 3.2GHz CPU. In what follows, we
evaluate the index overhead, index maintenance overhead,
query performance followed by Rnet hierarchy settings.

6.1 Indexing Overhead

The first set of experiments evaluates the index construc-
tion time and index sizes of all the approaches for various
number of objects and networks. We consider NetExp that
has no index on objects as the baseline in this evaluation.
Because of various network sizes, we fix p to 4 for all the
networks, while [’s for NA and SF are set to 8 and that for
CA is set to 4. We shall study the impacts of the settings
of Rnet hierarchy level (I) later. Figure 13 shows the index
construction time (in second) and index sizes (in metabyte)
of varying number of objects on CA (in log scale). As shown
in the figure, NetExp, Euclidean, and ROAD incur almost con-
stant index construction time (in a few minutes) and index
size (in a few MBs) while Distldx increases drastically in both
construction time and index size. For 1,000 objects, Distldx
takes more than 240MB for index storage and nearly half an
hour to build an index! The trend keeps increasing with the
increase of the number of objects. This finding reveals that
Distldx is not practical for use in realistic applications.

Index construction time (CA) Index size (CA)
__ 10000 1000 ) -u-NetExp ~ -o-Euclidean ., o
g 000 o -a-Distldx  --ROAD
g 100 2 100 125M8
3 — 3 3
T v -+ NetExp o-Euclidean 310 e 25M8
£ ! -4-Distldx  -e-ROAD 3 S gus Qe e
3 Ol o E 1 e o O o
é [0 R — e D ~#=-omaee d
0.001 01
10 50 100 500 1000 10 50 100 500 1000
Number of objects (|O|) Number of objects (|O])
(a) Index time (b) Index size
Figure 13: Index on various cardinalities
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Figure 14: Index on various network

Figure 14 shows the index construction time and index
size for different networks with the number of objects fixed
at 100. As shown in the figure, NetExp and Euclidean incur
very short index construction times and take less storage.
Both Distldx and ROAD vary with networks. However, they
differ a lot in terms of efficiency. Distldx takes more than 4
hours to build and more than 210MB to store an index for
NA and SF. ROAD incurs considerably shorter construction
time (about 1 hour) and less storage space (<100MB). For
SF, ROAD is about ~ 25% of indexing time and ~ 33% of
index size of Distldx. Recall that the cost of Distldx increases
if more objects are included. However, the index construc-
tion cost for ROAD is only attributed to the formation of
Route Overlay, which is totally independent of the number

of objects included. For a large system that needs to sup-
port a huge amount of different types of objects, this index
construction time and index storage incurred by ROAD can
be amortized, but the costs incurred by Distldx that are re-
lated to the number of objects cannot. While the indexing
costs of ROAD are expected to be higher than NetExp and Eu-
clidean, as to be shown next, ROAD is actually very efficient
for updates and query processing.

6.2 Maintenance Over head

Here, we evaluate the index update time for object changes
and network changes. We first evaluate the update time for
object changes. In this experiment, we delete one randomly
picked object from a network and then add it back at a ran-
dom location. We repeat deletion/insertion for 100 times.
The average performances of insertions and deletions are
presented in Figure 15. Distldx incurs several orders of mag-
nitude higher update costs than others. For NA and SF, it
takes about 2 minutes to finish one object deletion or addi-
tion. This is because it has to traverse entire networks to
update all distance signatures. In contrast, NetExp, Euclidean
and ROAD can handle update within 0.1 second for all the
networks.

Object deletion time (second)

Edge deletion time (second)

Object deletion (|O[=100) Object insertion (|O|=100)

=
5 O NetEx|
100 O NetExp ] 100 o |’dp
O Euclidean 3 uclidean
10 - mDistldx g 1 ] RDglAlgx
[}
1 W ROAD :] .
<
.2
0.1 £ 01
3
0.01 £ 001
B
0.001 % 0.001
CA NA SF o cA NA SF

Network Network

(a) Object deletion (b) Object insertion

Figure 15: Object update

Similarly, we perform network change by randomly re-
moving one edge by setting its edge distance to infinity and
adding it back by recovering its original distance. The aver-
age performance of 100 trials is presented in Figure 16. The
edge change almost has no observable impact on NetExp and
Euclidean. However, for Distldx, distance signatures of many
nodes have to be reexamined and updated that involves a lot
of disk-write operations. Differently, ROAD only needs to up-
date affected shortcuts between some border nodes. Thus, it
has considerably lower update costs than Distldx and it takes
less than 2 seconds for NA and SF. NetExp and Euclidean are
very update-efficient. However, they are not query efficient
as to be evaluated next.

Edge deletion (|O}=100) Edge insertion (|O|=100)

O NetExp
[ NetEx|
0 Elidean 100 | @Euclidean
10 @ Distldx 10 . @ Distldx
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1
0.1
0.01

0.001

Edge insertion time (second)

NA
Network

SF NA

Network
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(a) Edge deletion
Figure 16: Network update

6.3 Query Performance

Further, we measure the query performance of all the ap-
proaches over different numbers of objects, networks and
query types. We evaluated 100 queries issued at random
positions and report the average performance in terms of
processing time.

(b) Edge insertion
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Evaluation based on kNN query. Our first experi-
ment evaluates the query performance based on kNN query
against different factors, namely, the query parameter k, the
number of objects in the network and different networks.
We first evaluate the query parameter k varying from 1 to
5 and to 10 while the network and the number of objects
are fixed at CA and 100, respectively. The results for all
approaches are plotted in Figure 17(a). From the figure, we
can see that Euclidean takes the longest processing time for
all evaluated k’s as it suffers from false hits and incurs re-
dundant shortest path searches over the same portion of the
network. Distldx performs slightly better than NetExp since
Distldx has distance signatures to guide the search towards
result objects that saves network traversal overhead, but on
the other hand, these bulky distance signatures incur higher
1/0 that outweighs the performance gain. For all evaluated
k’s, ROAD performs constantly the best, attributed to the
effectiveness of search space pruning.

Figure 17(b) plots the results obtained by varying the ob-
ject cardinality from 10 up to 1,000 while both network and
k are fixed at CA and 5. In general, increases of object car-
dinalities will reduce the average distance of objects from
a query point; thus the search range is reduced. As a re-
sult, performance (i.e., processing time) is improved (short-
ened). However, as shown in the figure, the performance for
Euclidean and Distldx increase initially and then drop. For
Euclidean, this is because of an increase of false hit. For Dis-
tldx, it is caused by the increased size of distance signatures.
On the other hand, the performance for both NetExp and
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ROAD improves continuously as we expected. It is notewor-
thy that the difference between them narrows since ROAD
is also expansion-based; when the objects are close to query
points, objects are likely to be found within the same Rnets
where query points are located.

Finally, we evaluate kNN query on different approaches
upon various networks where k and |O| are fixed at 5 and
100, respectively. The result is depicted in Figure 17(c).
As observed from the results with CA, Euclidean performs
the worst. It is noteworthy that NA and SF have different
numbers of edges and different node densities though similar
numbers of network nodes, approximation of Euclidean dis-
tance to network distance is more appropriate for SF than
NA. Distldx perform slightly better than NetExp. Last, ROAD
performs the best.

Evaluation based on range query. Our second evalu-
ation is on range query against different approaches. We
first evaluate the query parameter, r, that represents the
search range. Figure 18(a) shows the results obtained by
varying r from 0.05 up to 0.2 of the network diameter while
we use CA and fix |O| at 100. In general, processing times
of all approaches increase when r increases. Among all the
approaches, ROAD consistently performs better than all the
others. Distldx takes shorter processing time when small r is
used. However, when r is increased, due to the high cost of
loading of a number of distance signatures, the performance
of Distldx drops. At last, Euclidean performs the worst.
Next, we evaluate the impact of object cardinality (|O])
that ranges from 10 up to 1,000. The result is plotted in



Figure 18(b). Due to fixed range (r = 0.1), the network
traversal cost is reasonably fixed. Thus, we can see that Ne-
tExp aligns with our expectation. However, due to different
reasons, all the other approaches have their processing time
increased. The processing time of Euclidean is caused by false
hits and that of Distldx is attributed to the increased size
of distance signatures. Finally ROAD gains performance im-
provement by exploiting search space pruning. When object
cardinality increases, the performance of ROAD gets closer
to NetExp as ROAD performs almost the same as network ex-
pansion. Finally, the results based on various network are
plotted in Figure 18(c). In general, the observation is pretty
much the same as what obtained from experiments on kNN
query and it can be explained similarly.

6.4 Evaluation of Rnet hierarchy

Last, we evaluate the impact of the number of levels (1)
on the index overhead and query processing time. In this
evaluation, we vary [ for CA from 2 to 6 and that for both
NA and SF from 6 to 10. To be specific, we measure the
index construction time and processing time for kNN query
(k = 5) while the numbers of objects for all the networks
are fixed at 100 and p is fixed at 4. The results are shown in
Figure 19. With the increase of Rnet hierarchy levels, the
index time increases and query processing time drops ex-
ponentially. Although there are no absolute optimal points
found, we can see a significant drop in query performance
when [ = 4 for CA and I = 8 for NA and SF that we used
as default Rnet hierarchy levels in our experiments.

7. CONCLUSION

The rapid growth of LBSs fosters a need of efficient search
algorithms for LDSQs. In the mean time, the on-going trend
of web-based LBSs demands a system framework that can
flexibly accommodate diverse objects, provide efficient pro-
cessing of various LDSQs, and support different distance
metrics. To meet those needs, we propose ROAD, a system
framework for efficient LDSQ processing, in this paper. The
design of ROAD achieves a clean separation between objects
and network for better system flexibility and extensibility.
It exploits search space pruning, an effective and powerful
technique for object search. Upon the framework, efficient
search algorithms for common LDSQs, namely, range and
kNN queries, are devised and incremental framework main-
tenance techniques are developed. Via comprehensive exper-
iments on real road networks, ROAD is shown to outperform
the state-of-the-art techniques. As our future works, we are
going to derive an analytical model of ROAD and to develop
a prototype to evaluate its performance of the framework as
well as to devise algorithms to support LDSQs other than
those discussed in the paper.
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