
CourseCloud: Summarizing and Refining
Keyword Searches over Structured Data

Georgia Koutrika Zahra Mohammadi Zadeh Hector Garcia-Molina
Computer Science Department, Stanford University

353 Serra Mall, Stanford, CA 94305, USA
{koutrika, zahram}@stanford.edu

hector@cs.stanford.edu

ABSTRACT
In this demo, we show data clouds that summarize the re-
sults of keyword searches over structured data. Data clouds
provide insight into the database contents, hints for query
modification and refinement and can lead to serendipitous
discoveries of diverse results. In this demo paper:

• we summarize the main issues for generating data clouds

• we give an overview of our framework for keyword search-
ing with summaries (clouds)

• we describe our system CourseCloud that allows search-
ing for courses and their evaluation.

1. MOTIVATION AND OUTLINE
Our work on summarizing keyword search results using

data clouds has been implemented as part of CourseRank, a
social tool we have developed in InfoLab at Stanford. Cours-
eRank displays official university information and statistics,
such as bulletin course descriptions, grade distributions, and
results of official course evaluations, as well as unofficial in-
formation, such as user ratings, comments, questions and an-
swers. Students can search for classes, give comments and
ratings, and organize their classes into a quarterly sched-
ule or devise a four year plan. CourseRank maintains a
relational database that stores information about courses,
instructors, books, student comments, and so forth. (Fig-
ure 2 provides a small, simplified snapshot of the database
schema.) A little over a year after its launch, the system
is already used by more than 9,000 Stanford students, out
of a total of about 14,000 students. The vast majority of
CourseRank users are undergraduates, and there are only
about 6,500 undergraduates at Stanford.

Students in the university are offered a wide variety of
learning opportunities. They can choose among courses re-
quired for their degree (e.g., a course on advanced program-
ming), courses outside their degree they can take for credit
(e.g., a dance class), seminars, and so forth. In order to fa-
cilitate course planning, CourseRank offers two standard in-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

terfaces: one for browsing courses based on department and
a keyword-based search interface. Keywords are searched in
the title and description of courses.

When browsing courses based on department, students
have to sift through long lists of courses and read their de-
scriptions in order to find out the topics covered and iden-
tify useful courses depending on their needs and preferences.
Many courses may cover common topics and different de-
partments may offer courses on similar topics making locat-
ing, in the first place, and then sorting out the available
options very tedious. Often, students rely on word of mouth
to make their course decisions.

Keyword searching offers flexibility and freedom because
users can form queries without any knowledge of the under-
lying database schema or a structured query language but
it has limitations as well. An inherent problem of keyword
searching is that the user still needs to guess what are the
right keywords to describe her information need and how
to refine or modify a search depending on the contents of
the database in order to get the results that would satisfy
her need. Furthermore, following current trends in database
keyword searching that think of keyword search results in
terms of database tuples (e.g., [3, 4, 5]), standard keyword
search in CourseRank returns tuples of the Courses table that
contain the search keywords. Nevertheless, people naturally
think in terms of entities or objects, not tuples. Hence, when
searching for “Java”-related courses, students may be inter-
ested not only in courses that explicitly mention this word in
their title or description but also in courses with implicit ref-
erences to “Java”, such as in their comments. Such courses
are missed by the system.

CourseCloud has been implemented as part of CourseR-
ank and has many novel characteristics that set it apart from
traditional searching and browsing systems. CourseCloud
allows thinking of searches more naturally, i.e., in terms of
looking for “search entities” rather than tuples. Hence, it
enables searching for courses using keywords that can be
found in different parts of a course (e.g., title, description,
comments, etc). These pieces of information may be physi-
cally stored in different relations in the underlying database
but the system hides these details from the users.

Furthermore, we couple the flexibility of keyword searches
over structured data with the summarization and visualiza-
tion capabilities of tag clouds to help users search a database.
Tag clouds have been traditionally used for navigation and
visualization purposes over unstructured data (e.g., [1]). Tags
are the most important or popular terms in the underlying
content and they are typically listed alphabetically and in

1132

Figure 1: Searching for “dance”.

Departments(DepID, DepName)
Courses(CourseID, InstrID, DepID,Title, Description, Units)
Instructors(InstrID, InstrName)
Comments(SuID, CourseID,Year,Term,Text, Rating, Date)

Figure 2: An example database for courses.

different color or font size based on their importance [2].
CourseCloud generates a tag cloud to summarize the re-
sults of a keyword search over the course database. In this
case, the cloud contains the most significant or representa-
tive terms (concepts) found within these results, and we call
it data cloud [7]. The terms are aggregated over all parts
that make a course entity, such as the title, the comments,
etc, and may be stored in different tables in the database.

A data cloud can guide users through search results and
for search refinement. Terms in the data cloud (as in tradi-
tional tag clouds) are hyperlinks. The searcher can click on
a cloud term to refine search results. The cloud is updated
accordingly to reflect the new, refined, results. Different
users may choose different terms from a data cloud refining
their searches in diverse ways.

Example. A student interested in taking a dance class can
type the keyword “dance” and get a list of matching courses
along with a cloud summarizing course information in this
list, as shown in Figure 1. The keyword “dance” is searched
in different fields and relations in the database that con-
tain information related to courses. For example, if there
are comments that mention “dance”, the respective courses
will appear (in some position) in the results. The cloud pro-
vides many concepts related to“dance” that are found in the
matching courses, such as “performance”, “social dance”,
and “Latin”. These words may be found in different parts of
the database related to the current search. For example, the
term “performance” is found in many user comments that
refer to “dance” courses with live performances.

The data cloud conveniently categorizes courses in a di-
gestible way under different concepts. In this way, the stu-

Figure 3: Refining “dance” courses.

dent can find out that there are courses offered not only by
the DANCE program (identified by the course code in the re-
sults) but also from other programs that study dance from
different aspects, such as the DRAMA or HUMANITIES
programs, and can get an overall picture for such courses ir-
respective of their program or department. In addition, the
data cloud can identify interesting concepts that the student
did not know beforehand. For example, she might not know
that there were courses related to “Latin America dance”.
The data cloud can help reveal unexpected or unknown con-
nections and refine searches in serendipitous ways. Figure
3 shows the search result page when refining the results of
“dance” into “Latin America”. The cloud now shows terms
that occur in the refined results. The matching courses are
13 out of the 122 “dance”-related courses that the initial
search returned.

As another example to highlight the diversity of terms
that arise in clouds, consider the words found in the cloud
of a search for “Greek”-related courses depicted in Figure
4. Users are given several, diverse, options to refine their
searches, such as“Greek tragedy”, “Greek vases”or“Plato”.
Different students may chose different paths and end up in
different course selections. The data cloud may reveal hid-
den relationships, such as the connection between “Greek”
and “science” that a user might not have thought of.

There are a number of interesting questions to tackle in
data clouds, such as what is a good word in the results for in-
cluding in the data cloud, how to support keyword searching
for complex objects that span multiple tables, and so forth.
The data cloud framework and methods are described in de-
tail in [7]. In the following sections, we briefly touch some
issues and give an overview of our current approach and the
CourseCloud system.

2. DATA CLOUDS FOR KEYWORD SEARCH
Keyword Search. In information retrieval, the infor-

mation unit that is searched is well-defined: documents are
the units returned for keyword searches. In databases, how-
ever, information that“conceptually”refers to a single entity

1133

Figure 4: Words in an example data cloud “Greek”.

(unit) may be found in different relations due to database
structuring and normalization. For example, in Courser-
ank, courses can be thought of as having several pieces of
information associated with them, such as title, description,
comments, and ratings, but these are stored in different ta-
bles. Hence, when searching for courses, the system may
need to look for the query terms into several places that
may be connected to courses.

We model a database D as a collection V of search enti-

ties. A search entity v is conceptually a complex object with
attributes B1, ... Bn. An attribute B i can map to a column
in the underlying database (e.g., the course title) or to an
object or list of objects that essentially group information
into one attribute for the search entity v (e.g., the ratings
given to a course). The collection V can be thought of as a
“view” that collects and groups together information related
to an individual entity from the stored relations in D and
represent it as a single unit of information.

For example, we can think of a “course entity” as a com-
plex object shown in Figure 5, which has attributes coming
from different relations in the database. This course entity
reads the title and description of the course from the cor-
responding tuple in the Courses table, the instructor name
by joining the Courses table with the Instructor table on the
instructor id, and so forth.

A keyword query q is formulated as a conjunction of key-
word terms. A term k may be a single word, e.g., “dance”,
or a phrase, e.g., “database systems”. Given a query q and
a collection V defined over the database D , the answer for
q is the set Vq ⊆ V , that contains all search entities from
V that have all keywords of the query q at least once.

For example, consider the database instance shown in Fig-
ure 5 and the query “Java”. While following a traditional
approach to keyword search for databases in CourseRank,
we could only locate the course with code C245 that men-
tions Java both in its title and its description, considering
search entities allows go deeper in the database and finding,
in addition, C145 because its comments talk about Java.

There are many questions to tackle. How deep in the
database should we go when searching for “search entities”
that contain the query keywords? For example, when search-
ing for“courses”, should we also look into the instructors and
books relations? We can have a domain expert specify the
default, as in the current CourseCloud system, or automat-
ically determine the “search depth” in the spirit of [6].

A very important issue is how we rank search entities that
match a keyword search. Existing approaches to keyword
search over databases rank tuples (or sets of joining tuples)
that match a keyword search. Thinking of search entities
as the equivalent of “documents”, we can make use of IR-
standard ranking methods. For instance, given the set Vq

CourseID

C145

A234

D123

C245

InstrID

I1

I2

I3

I1

Title

Advanced Graph Algorithms

Geography : Asia and Africa

Introduction to Laws

Programming with Java

Description

Fast algorithms for graph optimization problems …

Global patterns of demography , …

The structure of the American legal system …

Hands-on experience to gain practical Java ...

Units

2

3

2

1

DepID

D1

D2

D3

D1

InstrID

I1

I2

I3

I1

InstrName

John Doe

Mary Higgs

Dan Brown

SuID

SU333

SU777

SU333

SU555

CourseID

C145

C145

D123

C245

Year

2007

2008

2008

2008

Text

Very nice course on complex graph problems ...

A lot of Java programming …

I completely agree with …

Extremely detailed lecture slides ...

Rating

A

B

A

A

Date

23 Oct 2008

…

…

...

DepID

D1

D2

D3

DepName

Computer Science

Humanities and Science

Law

Courses

Instructors Departments

Comments

Course

Title : Advanced Graph Algorithms

Description : Fast algorithms for
graph optimization problems ...

CourseID : C145

DepName : Computer Science

InstrName : John Doe

Text : Very nice course on complex
graph problems ...

Rating : A

Text : A lot of Java programming ...

Rating : B

Stored Relations

Comments

Figure 5: A search entity.

of results for a query q, we can compute the tf*idf weight
of any query term k in any entity v in Vq. Then, we can
add up the tf*idf weights of all query terms found in v to
compute a score for v w.r.t. query q.

score(v, q) =
∑

k∈q

tfk,v ∗ idfk (1)

One issue with this approach is that it does not take into
account the position of a query term. For example, when
searching for “Java”, a course that contains “Java” in its
title should probably be given a higher score than a course
that mentions the same word in its comments. For this
purpose, we use attribute weights [7]. An attribute weight
depicts the significance of a term’s occurrence depending on
the attribute where the term is found. Then, the formula
for computing the tfk,v is refined as follows:

tfk,v =

∑

B of v

wB ∗ nB

nv

(2)

where wB is the weight of attribute B . We can manually
assign weights to attributes in a database. For example, in
CourseCloud, we currently give higher weights to attributes,
such as the title of a course, and less weight to attributes,
such as the text of a comment.

Data clouds. Generating a data cloud for summariz-
ing the results of a keyword query over structured data has
many challenges compared to generating tag clouds for more
traditional purposes, such as for showing user tags in a social
bookmaking system. One challenge is finding “good” words
to include in the data cloud.

Consider, for example, a query about “photography” and
assume that everything in our database is about digital pho-
tography. A typical tag cloud shows the most popular, i.e.,

1134

frequent, terms. Following the same approach, we could
score words in the results based on the number of their oc-
currences in the results. Then, the word “digital” would
surface in the data cloud. However, “digital” is not a good
term for the cloud: it may be very popular but it is not
useful for refining the search results of “photography”.

Our approach to selecting cloud keywords for a search q is
to treat each candidate term x in the search results as a one
word query and compute the similarity between that term
and each matching entity v in Vq . For this purpose, we can
compute the tf*idf weight of term x in v. Then, we sum
up over all v in the results Vq for the query in order to find
how significant x is for the results of q.

score(x, q,Vq) =
∑

v∈Vq

tfx,v ∗ idfx (3)

When computing the tf values in the formula above, we can
consider the term positions in the database using attribute
weights, as we discussed above for ranking search entities.

3. SYSTEM OVERVIEW
CourseCloud’s system architecture is depicted in Figure

6. In off-line mode, we need to deal with many issues, such
as deciding how to tokenize text fields, how to combine the
same words found in different fields, what structures and
statistics are required in order to support searching with
dynamic summaries, and so forth. The Tokenizer reads the
relations and the fields in the database that should be search-
able w.r.t. selecting courses and stores n-grams, with n ≤ 2.
It removes common parts of speech, such as personal pro-
nouns (e.g., “I”, “he”) and prepositions (e.g., “on”, “during”).
It also cleans the words found in the database to remove
words found in comments that may spam the clouds. The
result of this preprocessing is a tuple-based inverted index
that stores term occurrences in the database tuples.

We search at the level of search entities. Search entities
serve as a useful abstraction but in practice we do not want
to materialize them over the physical database. On the other
hand, using directly the tuple-based inverted index at query
time to generate the set of entities that match a query is not
straightforward and is time-consuming. Each occurrence of
a query term in the index must be linked to the search entity
it conceptually belongs to. For example, if the word “dance”
is found in a comment in the course database of Figure 2,
then the system needs to find which course the comment is
attached to. This lookup must be done for all tuples in the
index where the query keywords are located. Instead, we
store the information of which entity each term belongs in
advance in an entity-based inverted index.

An entity-based inverted index stores word occurrences per
search entity and is used to speed up query processing times.
The Entity-tier creates an entity-based inverted index based
on the tuple-based inverted index and with the help of a set
of parameterized queries that attach entity ids to each term
recorded. An entity id maps to a primary key in the actual
database. The Statistician computes additional statistics,
such the idf weight per word, and stores them in the entity-
based inverted index and in auxiliary tables. Finally, it gen-
erates all required database indexes to speed up searches at
query time.

The Search&Summarize is the online component that im-
plements the searching and summarizing algorithms and sup-
ports different ranking methods for entities and terms. It

...

Auxiliary
structures

Off-line

On-line

Tokenizer
database

...

Tuple-based
inverted index

Entity-tier ...

Entity-based
inverted index

Statistician

Search&
Summarize

Cloud UI

Figure 6: CourseCloud system architecture

completely relies on the entity-based inverted index and the
set of auxiliary statistics.

4. DEMONSTRATION
In the demo, users can play a student role and search for

courses offered in Stanford using the CourseCloud. They
will be able to refine their searches by adding or removing
terms in a search and navigate using the data clouds. Dif-
ferent search scenarios will be demonstrated, such as finding
a course for English, learning about civil rights or taking a
course that would help control weight, and we will show how
we can find diverse and serendipitous results for different
types of users. In addition, two more traditional interfaces
will be offered, one based on standard keyword search (us-
ing no clouds) and a catalog browsing interface. In this way,
users will be able to compare different options live and un-
derstand the circumstances under which each interface may
work better.

5. REFERENCES
[1] Flickr: url: http://www.flickr.com/.

[2] Wikipedia: http://en.wikipedia.org/wiki/tag cloud.

[3] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In ICDE, pages 5–16, 2002.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-based keyword search in
databases. In VLDB, pages 564–575, 2004.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440,
2002.

[6] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The
essence of a query answer. In ICDE, pages 69–78, 2006.

[7] G. Koutrika, Z. Mohammadi Zadeh, and
H. Garcia-Molina. Data Clouds: Summarizing keyword
search results over structured data. In EDBT, 2008.

1135

