
Fair, Effective, Efficient and Differentiated Scheduling in an
Enterprise Data Warehouse

Chetan Gupta, Abhay Mehta, Song Wang, Umesh Dayal
Hewlett-Packard Labs

firstname.lastname@hp.com except for songw@hp.com

ABSTRACT
A typical online Business Intelligence (BI) workload consists
of a combination of short, less intensive queries, along with
long, resource intensive queries. As such, the longest queries
in a typical BI workload may take several orders of mag-
nitude more time to execute, compared with the shortest
queries in the workload. This makes it challenging to design
a good Mixed Workload Scheduler (MWS). In this paper
we first define the design criteria that make a ‘good’ MWS.
We then use these criteria to design rFEED, a MWS that
is fair, effective, efficient, and differentiated. We simulate
real workloads and compare our rFEED MWS with models
of the current best of breed commercial systems. We show
that the rFEED MWS works extremely well.

1. INTRODUCTION
Many organizations are creating and deploying Enterprise

Data Warehouses (EDW) to serve as the single source of cor-
porate data for business intelligence (BI). Not only are these
EDWs expected to scale to enormous data volumes (hun-
dreds of terabytes), but they are also expected to perform
well under increasingly mixed and complex workloads, con-
sisting of batch and incremental data loads, batch reports
and complex ad hoc queries. A key challenge for an EDW
is to manage complex workloads to meet stringent perfor-
mance objectives. Workload management is the problem of
scheduling, admitting and executing queries and allocating
resources so as to meet these performance objectives.

1.1 BI Workload Characteristics
A typical distribution of BI queries is shown in Figure

1. In this figure, we have taken one day’s worth of queries
(about 50,000) from an actual large EDW. The query sizes
(execution times) have been binned on the x-axis, and the
frequency of each bin is plotted on the y-axis. As can be
seen from the distribution, the majority of the queries are
small in size (they take a short amount of time to run). A
small number of queries are very large in size. The largest

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

query is over 10,000 times larger than the smallest query.
This is a classic heavy-tailed distribution [14,21].

0

5000

10000

15000

20000

25000

30000

0.1 1 10 100 1000 10000

Query Size (Seconds)
F

re
q

u
en

cy

Figure 1: Distribution of Query Sizes

Furthermore, we can understand a typical BI workload by
means of the Pareto principle or the 90-10 rule. If we assume
that the execution time of a query is an approximation of
the amount of load that the query puts on the system, then
10% of the largest queries make up approximately 90% of the
load on the system. This can be seen in Figure 2, where the
x-axis represents the queries arranged in descending order
of size and the y-axis represents the cumulative load placed
on the system. To compute the load placed on a system
by a single query, we took its execution time (in seconds)
and divided it by the sum of the execution times of all the
queries in the workload (also in seconds). The workload was
defined by all the queries that were run in a specific twenty
four hour period.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Queries

L
o

ad

Figure 2: Distribution of Workload Across Queries

These two characteristics of BI workloads are in sharp con-
trast to traditional OLTP systems which have been the main
topic of study in the past, where most of the transactions are

696

of similar sizes and the load is uniformly distributed across
the queries. This makes it particularly challenging to design
a ‘good’ Mixed Workload Scheduler (MWS) for the complex
BI workloads of tomorrow.

1.2 Desired Properties of an MWS
It is important to clearly define what ‘good’ means in

the context of an MWS. ‘Good’ can mean that the work-
load scheduler is fair in that no query starves for resources.
‘Good’ can also mean that the workload scheduler is effec-
tive, in that it reduces the average execution time of all
queries. ‘Good’ can also mean that the workload scheduler
is efficient, in that it does not place a large overhead on the
system to run. Finally, ‘good’ can mean that the workload
scheduler is differentiated, in that it is service level aware
and can provide different levels of service to different queries.
Together, we call these criteria the FEED criteria for Fair,
Effective, Efficient, and Differentiated.

Note that providing different service levels for different
types of queries is an important requirement of a good MWS.
A higher service level means that queries assigned to that
level will experience better average performance character-
istics compared with queries assigned to lower service levels.
Typically, batch queries have lower service level objectives
than interactive queries. Additionally, the service level ob-
jectives for an interactive query may depend on a user’s role
and position in the corporation.

The four different FEED criteria mentioned above are all
important in a ‘good’ MWS. Notice that these four criteria
are often at odds with each other. One can design a ‘fair’
system by executing in a ‘first in first out’ (FIFO) mode, but
this would not be ‘effective’ because a short query stuck be-
hind a long one might have to wait for a long time. Similarly,
one can design an ‘effective’ system by executing queries in a
‘shortest job first’ (SJF) scheme, but this might cause some
large queries to starve and never get executed. Similarly,
one can design a ‘differentiated’ system by always giving
a higher preference to the queries that belong to a higher
service level. However, this system might be neither ‘fair’,
nor ‘effective’. In this paper we will systematically study
the tradeoffs between these different criteria, and design a
‘good’ MWS for heavy-tailed BI workloads.

1.3 Studying Stretch
Another key differentiator between past research on OLTP

systems and our work on BI systems is the perspective that is
used to evaluate the system. In OLTP systems, the key met-
ric used to evaluate the performance is the average response
time, or equivalently, the flow of a set of transactions [2].
This is often reported as a throughput number (queries per
hour). Most OLTP transactions are similar to each other, so
an aggregate measure representing the system perspective of
performance is sufficient.

On the other hand, in BI systems, it is the user perspec-
tive, not the system perspective that is important. In talking
to end users and Database Administrators (DBAs), we have
concluded that a better metric to use, to evaluate the system
from the user perspective is ‘stretch’, not ‘throughput’. The
‘stretch’ of a query is the ratio of observed processing time
to the ideal processing time. Within a service level, ‘stretch’
captures the idea of fairness from a user perspective: if a
user has a small query he/she will expect a quick response,
whereas if the query is large he/she might be willing to wait

proportionally longer to get results.
If there is a large variation in the execution time of queries

as is the case with BI workloads, the order of execution
may not have a large effect on the average response time of
the queries, but it may have a big impact on the average
stretch of the queries. The example shown in Figure 3 helps
illustrate this effect (For this illustrative example, we assume
a single queue and a single threaded server).

4951 ART = 74.50
AS = 1.48

5149 ART = 75.50
AS = 1.52

199 ART = 50.50
AS = 1.00

ART = 99.50
AS = 50.50

1 99

OLTP BI

a)

b)

c)

d)

4951 ART = 74.50
AS = 1.48

4951 ART = 74.50
AS = 1.48

5149 ART = 75.50
AS = 1.52

5149 ART = 75.50
AS = 1.52

199 ART = 50.50
AS = 1.00

199 ART = 50.50
AS = 1.00

ART = 99.50
AS = 50.50

1 99 ART = 99.50
AS = 50.50

1 99

OLTP BI

a)

b)

c)

d)

Figure 3: Average Response Time and Average
Stretch of Different Workloads

In workload ‘OLTP’, there are two queries of size 49 and
51. If the shorter query goes in first (Figure 3.a), the average
response time (ART) is 74.50 and the Average Stretch (AS)
is 1.48. If the longer query goes in first (Figure 3.b) the
ART is 75.50 and the AS is 1.52. Since both queries are
approximately the same size, the order has only a small effect
on both the ART and the AS.

In the second workload ‘BI’, the two queries are of size
1 and 99. If the short query goes in first (Figure 3.c), the
ART for the workload is 50.50. If the long query goes in first
(Figure 3.d), the ART roughly doubles to 99.5. Contrast this
to the increase in stretch, which is much more pronounced:
If the short query goes in first (Fig 3.c), the average stretch
is approximately 1. However, if the long query goes in first
(Fig 3.d), the average stretch is 50.50. So, although the
reordering of queries caused only a factor of 2 increase in
average response time (system perspective), it caused a 50
fold increase in the average stretch (user perspective).

Another advantage of using stretch is that typically, min-
imizing stretch will also result in lower values of response
time, since stretch essentially is response time divided by
the expected execution time. In our experimental section,
we show that our approach works well for response time too.

Most of the past work studied average response time or
throughput, which measures the system performance from
the system perspective. In this research, we will be focusing
on the user perspective (stretch metric), which is extremely
relevant in BI systems, where the query distributions are
heavy-tailed and where the ratio between the long queries
and the short queries are very large.

1.4 Varying BI Workloads
A challenge with the past and current mixed workload

schedulers is that they require a significant amount of man-
ual input and tuning, which in turn depends on the expected
mix of the workload. This is a big challenge in typical BI en-
vironments because the mix of the workload can vary widely
and can change continuously. This dynamically changing
nature of the workload mix makes it very challenging, if not

697

impossible for a human to manually tune the mixed work-
load scheduler.

1.5 Our Solution
We address all of the above challenges by designing a new

MWS, called rFEED. rFEED is fair, effective, efficient, and
differentiated. rFEED is parameterized and we compute
the various parameters for practical BI workloads, so it can
run without any tuning or manual intervention. We simu-
late workloads and compare our rFEED MWS with models
of the current best of breed commercial systems. We run
experiments and show that the rFEED MWS outperforms
these methods. Overall, in terms of the average stretch of
queries, rFEED does up to 120 times better than the current
best-of-breed models. We make four main contributions in
this work:

1. We identify the important design criteria for a good
Mixed Workload Scheduler (MWS).

2. We design a MWS based on these criteria and com-
pute the various parameters needed to implement this
design for complex, mixed BI workloads.

3. We model the current best-of-breed workload sched-
uler, and compare them with rFEED.

4. We show that rFEED does not need any manual tun-
ing, and works very well even with dynamically chang-
ing, mixed workloads.

In section 2, we discuss related work. In section 3 we
identify the important design criteria. Then in section 4
we present the design of our MWS. We first describe our
MWS, and then we compute the various parameters needed
for the MWS. In section 5, we describe our experiments.
We also model current best of breed workload management
systems and then we go head to head against the best of
breed models, and show that our MWS does extremely well.
Finally we summarize and conclude in section 6.

2. RELATED WORK
The scheduling work in academic settings aims towards

proving hard bounds for a metric of interest, for example
minimizing the average value of stretch. If precise bounds
are difficult, approximation results are presented with worst
case guarantees. On the other hand, the work in industrial
settings in DBMSs aim towards a more hands-on approach
where the user specifies various parameters based on expe-
rience.

In the academic setting there has been much work in the
area of scheduling [6,18]. We are interested in online schedul-
ing, i.e., the query properties are not known in advance. On-
line scheduling is discussed extensively in [18]. Scheduling
is also studied as preemptive and non-preemptive. We take
a non-preemptive approach to scheduling since it can be ex-
pensive to preempt really small queries that make the bulk
of a BI workload.

The scheduling literature focuses on minimizing some met-
ric as a measure of goodness. In our case we are inter-
ested in stretch. Two related metrics are flow, which mea-
sures the amount of time an item spends in the system
and weighted flow, where the flow is weighted with some
quantity. Stretch, can be thought of as a special case for

weighted flow, where flow is weighted with the processing
time. For both these metrics, minimization of the average
and the maximum value has been studied. We summarize
the work with regards to these metrics below.

It is a well-known result that the Shortest Job First (SJF)
minimizes the average value for flow and First In First Out
(FIFO) minimized the maximum value for flow. The weighted
case [2,9,10] of flow is known to be NP-hard even on a single
machine.

The metric we are interested in is the stretch metric. The
stretch metric was first analyzed by Bender [4] in the con-
text of scheduling. They proved that no online algorithm
can approximate the maximum stretch to within a factor
of O(n0.5−ε) unless P = NP for the non-preemptive case.
Their algorithm though, requires them to know the actual
value of max stretch and is not sublinear in complexity. In a
further development [5], they describe an algorithm for max
stretch that has a much lower complexity then their previous
work. Maximum stretch is also considered in Legrand [17]
and they provide a heuristic for the online multiprocessor
case. Bender et. al. [5] also provide a 1 + ε-polynomial time
approximation scheme for average stretch. Muthukrishna
et. al. [20] provide some bounds for the average stretch.

Our approach is different from these in two significant
ways: (i) We do not wish to just minimize the average or the
max stretch, but try to strike a balance between the two, i.e.,
we don’t just want to minimize the average stretch but while
doing that we also want to control for the maximum value
of stretch; (ii) Also, unlike these past studies we address the
issue of different service levels.

In the industrial setting, scheduling has been studied ex-
tensively in various scenarios from job shop scheduling to op-
erating systems. Various heuristics like Most Requests First,
First Come First Served and Longest Wait First were con-
sidered in wireless context by Kalyan [16], in web servers by
Friedman [13] and Crovella [12]. Another interesting piece
of work is by Bedekar [3] in the context of CDMA. Our ap-
proach and our results are different, since we study stretch
in the context of DBMS towards meeting the FEED require-
ments. Query suspend and resume [8] has been used as a
internal scheduling strategy in DBMS. Such techniques can
be used in conjunction with rFEED.

In the database scenario, scheduling has been considered
by Schroeder [22]. Another study that talks about schedul-
ing but in terms of multi-query optimization and operators
is that of Sharaf [23]. Like [23] we are interested in the
non-preemptive case of the related problem of stretch.

Our scheduling function uses a composite function of pro-
cessing time and wait time of the queries to be scheduled.
A similar idea was used in the context of web scheduling
in [11], called alpha-scheduling. Different from their work,
we study the stretch of a query. More importantly, we intro-
duce different service levels and suggest specific values for
the constants in our rank function.

In the industrial DBMS context, IBM’s workload sched-
uler is called Query Patroller [15]. Different from our pro-
posed approach, in Query Patroller a user (or an adminis-
trator) has to specify a number of parameters. They could
be: the number of large queries that can be run, the max-
imum number of queries per user etc. This is done in a
mixed workload setting to mitigate the adverse impact of
large queries on the smaller queries. Teradata’s workload
scheduler [7] involves specifying particular time shares for

698

different users based on service levels and their needs. Their
approach also requires manual intervention. Oracle deploys
an approach similar to that of the IBM query patroller.

To the best of our knowledge, there is no existing work
that studies stretch in the context of a system being both
fair and effective (as discussed later, this requirement can be
formalized to an l2 norm) while at the same time providing
differentiated service to different service levels. (A shorter
version of this paper is slated to be published [19]). We aim
to satisfy these requirements while eliminating the need for
manual intervention by data base administrator.

3. MIXED WORKLOAD SCHEDULER
As mentioned previously, we will use stretch as the metric

of choice to study our scheduling approach.

Definition 1. The stretch of a query j at time t is:

Sj =
t− aj

pj
(1)

And when t = cj, we get the final stretch for a query:

Sj =
cj − aj

pj
=

wj + pj

pj
(2)

Where t is the current time, cj is the completion time of a
query, aj is the arrival time and pj is the execution time of
a query and wj is the wait time time of the query.

As we discussed before stretch captures the idea of fairness
from a user’s perspective, i.e., a user of a short query expects
a short response time and a user of a large query expects a
large response time.

Remark 1. By minimizing the stretch of a query we mean
minimizing the final stretch. In our text, we use stretch in-
stead of final stretch unless the meaning is not clear from
the context.

Definition 2. By the size of query q we mean the pro-
cessing time pq of the query.

Remark 2. In this work when we say processing time,
we mean the time it would take a query to execute if it was
run by itself on a DBMS. Prediction of the execution time
is a complex problem. In absence of a mechanism for pre-
dicting execution time precisely, the optimizer’s estimated
execution cost can be used as the processing time. In the
experimental section, we introduce error in execution time
to account for errors in optimizer’s cost estimate. Our ap-
proach is independent of the method of computing the ex-
pected execution time and more complex execution time es-
timation approaches can be adopted.

We want to create a mixed workload scheduler (MWS) that
follows the FEED properties:

Fair: In an unfair system, queries will have very different
values for stretch, i.e., some queries might have a very small
value for stretch, whereas others might have a very large
value for stretch. A way for obtaining a fairer DBMS is for
the MWS to minimize the maximum value of stretch for the
queries in the system.

Effective: Effectiveness for a system can be measured by
the average value for stretch. A way to make the DBMS
more effective then, is for the MWS to minimize the average
stretch for queries in the system.

Efficient: In an efficient online system the complexity of
the scheduling algorithm should be low otherwise the algo-
rithm might be too expensive to use in a real life scenario.
A way for making an MWS more efficient is to make the
implementation sub-linear in complexity.

Differentiated: In a differentiated DBMS, different query
types and users (based on their importance, needs etc.)
should be offered different performance in terms of the av-
erage value of stretch, i.e., queries with higher service level
requirement should have a lesser stretch than a correspond-
ing query with a lower service level requirement. A way of
making an MWS differentiated is to incorporate service level
requirements directly into the scheduling function.

4. rFEED MWS DESIGN
As mentioned earlier, the challenge for any good MWS is

to achieve these goals simultaneously, since these goals can
be at odds with each other. We call our approach rFEED
since it meets the FEED criterion through a rank function.

We have an external scheduling mechanism that decides
on which query is to be let into the DBMS. (Single queue
can serve multiple servers.) At all times we maintain a single
queue L of queries outside the DBMS. Every query q ∈ L is
assigned a rank Rq. At the time of execution the query with
the highest rank is admitted into the DBMS for execution.
Precisely:

Definition 3. Let Rq be a rank assigned to a query. Then
at any time, the rFEED scheduling scheme first admits for
execution the query q with the highest rank Rq in the queue
of queries L.

Unlike traditional designs, we maintain a single queue
of queries ordered on the rank function. Having multiple
queues can lead to the local optimization of some metric
(for example stretch or flow) for every queue. For global
optimality we would require to consider all the queries in
the various queues. Since, global optimality is the desired
outcome, we are better off having a single queue. Note that
while the single queue determines the order in which queries
are admitted into the DBMS, the execution can have multi-
ple queues for a parallel DBMS.

Remark 3. In the discussion below we assume without
any loss of generality that the minimum possible query size
is 1. This can be done by dividing the processing time of each
query with that of the smallest query. We will use ψ for the
processing time of the query with the largest processing time.

4.1 Rank Function
We denote the rank of a query q with Rq and we aim to

achieve the FEED goals simultaneously through the use of
a rank function.

4.1.1 Effectiveness
Our first aim is to make our scheduling effective, i.e., we

want to minimize the total value for stretch for a set of
queries (which is the same as minimizing the average value).

Consider two queries, with processing times p1 and p2 and
wait times w1 and w2 respectively. We need to decide their
order such that the total stretch is minimized. Let the order
be: first p1 and then p2. Then the total stretch S would be:

p1 + w1

p1
+

p2 + p1 + w2

p2
=⇒ 2 +

w1

p1
+

w2

p2
+

p1

p2
(3)

699

In Equation 3, only the last quantity depends on the order
and hence to minimize the above quantity, p1 should be less
than p2. This gives us our first rule: give a higher rank to
the query with the lesser execution time.

To give the highest rank to the shortest query we take the
inverse of the processing time. Then the rank becomes:

Rq =
1

pq
(4)

Where, pq is the processing time for a query q.
Equation 4 is nothing but Shortest Job First or SJF. (As

discussed in the previous section, SJF is known to be prov-
ably optimal for minimizing total flow).

4.1.2 Fairness
We want our scheduling scheme to be fair. This means

that a larger query, if it has waited for some time, should
have a higher rank (and have precedence) compared with
a similar sized query that has just arrived. Hence, to dis-
cuss fairness we study queries with the same processing time
but different waiting times. Mathematically, fairness can be
thought of as an attempt to minimize the maximum stretch
for any query.

Consider a set of queries with waiting times w1, w2, . . . , wn

and the processing time equal to 1. If they are executed in
the order, 1, 2, . . . , n, then their stretches would be: 1 +
w1, 2 + w2, . . . , n + wn. To minimize the maximum value
of stretch, we need to execute the query with the highest
wait wmax first, since if it is kept waiting the highest stretch
would become wmax plus some positive quantity.

With this insight, we add a component to Equation 4 for
waiting time, i.e., the higher the wait time, the higher the
rank should be.

Rq =
1

pq
+ Kwq (5)

Where, wq is the waiting time for a query and K is some
constant. For K > 0, the longer the query waits, the higher
its rank becomes. We add the waiting time and not perform
some other operation since we want our equation to be linear
in waiting time with a constant slope for efficiency. We
discuss this in detail in a section 4.1.4.

Later in the text, we discuss how to assign the value of K
such that the two competing goals of fairness and effective-
ness can be balanced.

4.1.3 Differentiation
Our third goal is to provide differentiated service levels to

queries based on their QoS requirement, i.e., we want the
query with higher service levels to have a higher rank. This
can simply be achieved by multiplying the inverse of pro-
cessing time in Equation 5 by the service level requirement
to get:

Rq =
∆q

pq
+ Kwq (6)

Where, ∆q ≥ 1 is the normalized service level for a query q.
The number of distinct values of ∆q is equal to the number

of distinct service levels and every query belonging to the
same service level will have the same ∆q. For the queries
at the lowest service level the value of ∆q is 1 and a higher
service level queries will get higher ∆q values.

Equation 6 indicates that, for two queries arriving at the
same time and having the same processing time, the query

with the higher ∆q will have a higher rank. The effect of
multiplying by the normalized service level is to shift the
rank of queries of different service levels by ∆. We explain
with the help of an example.

Example 1. Imagine that the there are two sets of queries
with average processing times of 1 and 10 respectively and
all of them arrive at the same time. If they have the same
∆q, the smaller queries on average will be executed first. If
the smaller queries have ∆q = 1 and larger queries have
∆q = 10,then the two sets will be executed interchangeably.
If the smaller queries have ∆q = 1 and larger queries have
∆q = 100, the larger queries will be executed first.

There is no need to manually compute the ∆q correspond-
ing to the service level. Later on in the text we explain how
to obtain a value of ∆q given a Quality of Service (QOS)
requirement.

4.1.4 Efficiency
In an online setting, the scheduling algorithm should have

sub-linear complexity. In our context, we cannot afford to
sort the queue of queries to obtain the highest rank query
every time a new query is to be executed. (For example, on
a normal day our customer EDW received more than 67000
queries. Such a large number of queries can easily result in
a very long waiting queue).

To avoid this, a priority queue, which is a well known
data structure, can be used. If implemented as a heap, it
has O(logn) complexity for both insertion and updating of
the queue.

In rFEED, we use the rank function to insert queries into
the priority queue. Every time a new query q comes in, we
insert the new query in the order of its rank Rq. To insert a
query in order, for the new query q, we compute its rank Rq

and also of those queries with which it is compared during
insertion. For a new query the waiting time is zero, i.e.,

t = aq. Then, Rq =
∆q

pq
, and for the existing queries, the

rank of each query can be computed as Rq =
∆q

pq
+ Kwq,

where w is the waiting time for that query.
Typically, in a priority queue, the priority of an inserted

element does not change after insertion. In our case, since
the rank is a function of time, the rank of every query
changes with time. However, since the rank is linear in time
and changes at the same rate K for all the queries, the rela-
tive order of queries does not change, i.e., if query a is ahead
of query b at the time of insertion, it will continue to remain
so. Similarly, if a query a is behind query b at the time of
insertion, it will continue to remain so. In other words, the
queue maintains the order of queries once the queries are
inserted.

This means that, as time progresses we do not need to
update the rank of every query but only of those queries with
which the query to be inserted is to be compared. As with
priority queues in general, this gives us O(logn) complexity.

4.1.5 Discussion
The idea behind the rank function is to look at both the

processing time and wait time in a single equation so that
while the smaller queries are executed quickly, the larger
queries do not have to wait infinitely to get executed. This
is done so that the minimization of the average value for
stretch does not lead to a large increase in the maximum

700

value of stretch. For rFEED to be efficient, the fact that our
rank equation is linear in wait time gives us nice properties,
in that it can be converted to a sub-linear algorithm using
priority queues. Finally, multiplying the rank function with
∆q has the effect of giving a higher rank to queries coming
from higher service levels.

4.2 Computing K for ∆q

Based on our value of K, our rank function generalizes
some well known scheduling functions. If K = 0, then the
algorithm becomes Shortest Job First (SJF). Having a non-
zero K ensures that ranks of the larger queries increases
and at some point their ranks starts becoming greater then
new smaller queries. For values of K greater than some
constant, the algorithm becomes First In First Out (FIFO),
i.e., queries are scheduled without regard for their processing
times.

For the analysis below, recall that the shortest possible
waiting time and smallest query size is 1 and the size of the
largest query is ψ. For ease of illustration, in the discussion
below we assume that all queries have the same normalized
service level.

Our scheme will behave as a FIFO scheme when the largest
query with waiting time of 1 has a higher rank than a newly
arrived smallest query. In that case, using Equation 6:

1

ψ
+ K × 1 >

1

1
+ K × 0 =⇒ K > 1− 1

ψ
(7)

So for all values of K > 1− 1
ψ

, our scheme will behave as a
FIFO queue.

Equation 7 includes the largest query size, which is un-
known in advance. In practice a reasonable estimation based
on experience is used. In our experiments we have shown
that the precise value is not necessary but an approximation
is sufficient.

In the related works section we mentioned that SJF is
considered optimal for minimizing the total flow and FIFO
minimizes the maximum flow. In other words, K = 0 would
give us an effective algorithm and K = 1− 1

ψ
will give us a

fair scheme. So, if we use a value of K such that 0 < K <
1− 1

ψ
, we should get a scheme that is fair and effective.

Now we show how to compute K to achieve our goal of
fairness and effectiveness in the context of stretch. For the
rFEED scheme, query b supersedes another query a iff, Rb >
Ra, i.e. From Equation 5 (Assuming ∆a = ∆b = 1):

1

pa
+ Kwa <

1

pb
+ Kwb =⇒ K <

pa − pb

pbpa

1

wa − wb
(8)

We first look at effectiveness. Imagine that the query of
the largest size ψ arrives at time tq = t. For effectiveness,
we want any query that arrives at time t + δt (for ease of
argument we assume δt ≥ 1) to have a higher rank than the
largest query. In Equation 8, assuming query a is the one
with the size ψ and query b arrives at time t + δt, we get
(since query b arrives later wa − wb = δt):

K <
ψ − pb

δtψpb
(9)

In Equation 9, as the value of pb increases, the value of K
decreases. To ensure that all queries are able to overtake the
largest query with size ψ, we need the lower bound for K,
which we can obtain with pb = ψ− 1, the size of the second

smallest query. With this we get the first bound for K:

K <
1

δtψ(ψ − 1)
(10)

In Equation 10, as the value of K decreases the system be-
comes more and more unfair. For example, in Equation 10,
if we were to stipulate that any query b, even if it arrives
at time t + 2, should be able to overtake query a of size ψ
arriving at time t, i.e. δt = 2. We get: K < 1

2ψ(ψ−ε)
. This

means that as δt →∞, K → 0.
This follows the intuition that as K tends to zero the

system behaves more and more like a SJF system, which
though being highly effective is also very unfair. To obtain
a fair behavior while maintaining effectiveness, we equate K
to its upper bound, which can be obtained by δt = 1. Hence:

K <
1

ψ(ψ − 1)
≈ 1

ψ2
(11)

Equation 11 means that we take K to be the inverse of the
square of the largest query size, where query sizes have been
normalized by the size of the smallest query.

Since ψ > 1, 1
ψ(ψ−1)

is always greater than 1 − 1
ψ

, hence

form Equation 7 rFEED MWS does not behave as a FIFO
and since K 6= 0, rFEED never behaves as an SJF.

Remark 4. In this discussion ψ, is assumed to be the
largest query size historically. In practice (as we show in
the experiments), it is not required that ψ be known precisely,
but an approximation would suffice.

4.2.1 Avoiding Starvation
A problem with scheduling algorithms can be starvation,

i.e., the query never gets to execute. Shortest Job First
(SJF) which is known to be optimal for the non-preemptive
case of average flow time can suffer from this problem in an
online scenario as some long running job might never get a
turn to execute. Our rFEED never causes starvation. The
rank of a newly arrived query is

∆q

p
. This will be largest for

the query with the smallest processing time, p = 1, and the
largest value of ∆q = ∆max in which case the rank will be
∆max. The longest time a query may wait before its rank
becomes ∆max is:

∆q

p
+ Kw = ∆max =⇒ w =

1

K
(∆max − ∆q

p
) (12)

The largest value for waiting time w from Equation 12 is
1
K

(∆max − ∆q

ψ
) , where ψ is the size of the largest query.

After waiting for this long a query q will necessarily have a
higher rank than any incoming query and will be the first
one to get executed.

4.3 Mapping Service Levels
Now, we show how service levels can be mapped to Quality

of Service (QoS) requirements, i.e., we map ∆q in Equation
6 to QoS.

Service level requirements can come in various forms but
very often they are specified in terms of system performance,
i.e., a query a from a higher service level should receive r
times the system resources as compared to a query b from
a lower service level. This directly translates to query per-
formance, i.e., for two same sized queries a and b, query a
from a higher service level will have a stretch that is 1

r
times

the stretch of query b from a lower service level. In the dis-
cussion below, we discuss how to achieve this type of service

701

level requirement, i.e., what should the value of ∆q be, for
a query to achieve a particular QoS.

We take the case of two normalized service levels 1 and
∆. Let there be N1 queries whose normalized service level
is 1 and N∆ queries whose normalized service level is ∆.
Let’s consider a query with execution time slightly greater
than p + ε, where ε is an arbitrary small number. Having
a normalized service level ∆q = ∆ means that the rank of
a newly arrived query of size p from ∆q = 1 is the same as
the rank of a newly arrived query of size p∆ from ∆q = ∆.

The ratio r of stretches of a query of size p + ε for the
two different service levels will give us a way to map ∆ to
service level requirements. (In the analysis below all terms
with subscript ∆ mean that they have ∆q = ∆ and with
subscript 1 mean that they have ∆q = 1).

From Equation 1 we know that the stretch requires us
to know the waiting times and the processing times. We
base our analysis on the assumption that all queries arrive
at the same time. Then, the waiting time of a query is the
sum of the execution times of all the queries that would be
executed before it based on the rank function. For exam-
ple, assume there are three queries {q1, q2, q3} with execu-
tion times {1, 2, 3} respectively, at the same service level.
According to the rank function their order of execution is
{q1, q2, q3}. Then the wait time for q1 is 0, for q2 is 1, and
for q3 it is 1 + 2 = 3. Once the waiting time is computed,
computing the stretch is straightforward.

Now, we consider a query of size p + ε. For a query with
∆q = 1, the total waiting time for a query of size p + ε will
be the sum of the following two quantities:

1. The total execution time of all queries with ∆q = 1,
which have a processing time less than or equal to p.
Let this number be T1,p.

2. The total execution time of all queries with ∆q = ∆,
which have a processing time less than or equal to p∆.

To compute this, we look at the rank function. A query
with ∆q = ∆ is executed before query with ∆q = 1 if
R∆ > R1. Now, since the waiting time at the time
of insertion is zero for all queries, this means: ∆

p∆
>

1
p1

=⇒ p∆ < p1∆.

This means that all queries with normalized service
level ∆ with size up to and including p∆ will be ex-
ecuted before the query of size p + ε from the service
level with normalized service level 1. Let the total ex-
ecution time of these queries be T∆,p∆

Similarly, for a query with ∆q = ∆, the total waiting time
will be the sum of the following two quantities:

1. The total execution time of all queries with ∆q = ∆,
which have a processing time less than or equal to p.
As before, let this number be T∆,p.

2. The total execution time of all queries with ∆q = 1,
which have a processing time less than or equal to p

∆
.

A query with ∆q = 1 is executed before query with
∆q = ∆ if R1 > R∆. Now, since the waiting time at
the time of insertion is zero for all queries, this means:
1

p1
> ∆

p∆
=⇒ p1 < p1

∆
.

This means that all queries with normalized service
level ∆ with size up to and including p

∆
will be exe-

cuted before the query of size p + ε from the service

level with normalized service level 1. Let the total ex-
ecution time of these queries be T∆, p

∆
.

The ratio r of the stretches for a query of size p + ε with
normalized service level ∆ to that of a query of size p + ε
with normalized service level 1 is (ε → 0):

r =
T1,p + T∆,p + p

T∆,p + T∆, p
∆

+ p
(13)

It is important to note that the quantity T∆, p
∆

= 0 for all
p
∆

< 1, i.e., no queries exist whose size is smaller than 1.
The distributions of the query can be modeled using some

distribution and a closed form for ∆ can be obtained. For
instance, for Pareto distribution (with Minimum Value 1 and
Pareto Index 1) using the same analysis as above we obtain
(For the full derivation please refer to the Appendix):

∆ = e
(r−1)(N1 ln p+N∆ ln p+p)

N∆+rN1 (14)

A similar computation can be done for the ratio of waiting
times, to get a more simplified expression. We illustrate that
with an example below:

Example 2. The QoS might be of the form: “For an av-
erage size query, a query from a higher service level should
have a wait time of less than r as compared to a query from
a lower service level”. We will now compute ∆ for this QoS,
assuming N1 = N∆. From Equations 14 and 13(The pro-
cessing times need not be taken into account for ratio of wait
times):

r =
ln p + ln p∆

ln p
∆

+ ln p
=⇒ r =

ln p2∆

ln p2

∆

=⇒ ln p2∆ = r ln
p2

∆
=⇒ p2∆ =

p2r

∆r

=⇒ ∆ = p
2(r−1)

r+1

This would mean for example that for an average size of 10,
and r = 3, ∆ = 10, i.e, the waiting time of a query of size 10

and normalized service level 3 will be 1
10

th
the waiting time of

corresponding query of size 10, but with a normalized service
level of 1.

5. EXPERIMENTAL RESULTS
In this section we will show that rFEED has the desired

FEED properties of fairness, effectiveness and differentia-
tion. The fourth property of efficiency is built into the rank
function as discussed previously.

Creating an MWS, testing it and comparing it with other
schemes on a live production system can be prohibitively
expensive. Hence, our experimental results were obtained
from simulations. (All our simulations were done on the
Extend Simulation Environment).

We perform three different experiments. For each exper-
iment we compare rFEED with the state of the art, which
has been modeled as a resource share system, RSopt. For
each experiment we compare the l2 norms for stretch. We
provide a comparison of the average values of stretch as well.
The details are presented below.

We begin our discussion by presenting a single metric by
which we simultaneously measure fairness and effectiveness.

702

5.1 The l2 Norm for Stretch
We have previously discussed that the two requirements

of fairness and effectiveness can be at odds with each other,
i.e., a fair system could be ineffective or an effective system
could be unfair. Effectiveness can be understood as the aver-
age case performance and hence is measured by the average
value and the fairness can be thought of as the worst-case
performance and measured by the maximum value. We need
a metric that captures both.

A common trade-off between the average case and the
worst-case performance is the l2 norm [1, 23]. We use the
l2 norm for stretch to demonstrate ‘goodness’ of our results.
The l2 norm for stretch is defined as:

Definition 4. The l2 norm of stretch, for a set of queries
{qi : i = 1 . . . n} with stretches {si : i = 1 . . . n} is

√
(
∑n

1 s2
i).

The aim of a good MWS should be to lower the l2 norm
for stretch. We will use this metric to compare rFEED with
the resource share system(RSopt) and show that the l2 norm
for stretch for rFEED is consistently less than that for RSopt

and sometimes by an order of magnitude.

5.2 Experimental Framework

5.2.1 Experiments
We have done three sets of simulations with different ap-

proaches to set the query processing time for scheduling pur-
pose. This processing time is assumed to be the time the
query would take to run if run by itself on a system.

Pareto Distribution: We simulate a set of queries whose
processing times are drawn from a Pareto distribution with
minimum value 1 and the Pareto Index of 1.

Optimizer Cost Estimate: Next we introduce a opti-
mizer cost estimate with error. Our rank function would
work with this cost the same way as it would with actual
processing times, if the cost were directly proportional to
the actual processing time. However, very often even this is
not the case. To account for such an error, for each query we
multiply the processing time with a function to give us the
estimated cost. We draw the error from a normal distribu-
tion with N(1, 0.2). In real life we would have the optimizer
cost and the actual processing time would be an error of the
optimizer cost.

Actual Processing Times: We obtained the execution
data from a production system of a customer. We used
these execution times as processing times for queries. The
execution times however were obtained when the system was
loaded, i.e., a number of queries were running concurrently.
The system was fully loaded all the way and we assume that
all queries were equally affected. Hence, this data is clean
enough to be used as an approximation of processing time.
(It is very impractical to get the execution time data from
queries running by themselves on a production system.)

5.2.2 Simulation Environment
For each of the experiments above, we compare rFEED

with a generalization of the state of the art resource share
system RSopt. For rFEED we model two different scenarios,
rFEED1 and rFEED10 to study differentiation with different
normalized service levels. The settings of the three scenarios
for corresponding service levels are listed in Table I.

The distribution of queries are independent from the query
execution time. The settings of service levels are based on

Table 1: Parameter Settings for Service Levels

Service Level High Medium Low

% in Query Workload 30% 50% 20%
Resource % in RSopt 30% 50% 20%
∆s in rFEED1 1 2 3
∆s in rFEED10 1 10 100

some typical scenarios.
In RSopt the CPU is divided among the three service levels

in exact proportion of the number of queries of different ser-
vice levels. Thus, for example, a query with ideal processing
time of 1 second with medium service level will run at least
(without waiting for others) 2 seconds in the RSopt. We call
it “optimal” in the sense that the proportional resource slic-
ing will keep the CPU always busy, without finishing queries
from one service level earlier than others. Within each ser-
vice level, queries are scheduled using a FIFO queue. Note
that in real life this will not be the case. We tried to compare
with the best scenario.

We create two scenarios for arrival rates of queries, steady
state and peak load. We use Poisson arrival for online
queries. We first estimate the mean execution time either
through repeated samples (in the case of Pareto Distribu-
tion) or through the actual data (in the case of Optimizer
Cost Estimate and Actual Processing Times). We then use
Little’s Law to set the mean arrival intervals of the queries.
Little’s law states that at steady state the arrival rate is
same as the mean service rate. So for the steady state the
mean arrival interval is set as the mean execution time. For
peak loads we take the square root of the steady state arrival
interval.

For rFEED we need the size of the largest query, ψ. For
experiments with a Pareto Distribution, this might not be
known precisely. Instead we take the average value of the
largest value from several samples. Thus the value of ψ used
could be away from the real value. This situation is similar
with the real life scenarios since the largest query size might
not be known in advance. Our experiments show that our
rFEED strategy still work well with only approximate ψ.

For each of the six experimental configuration (3 different
sets of execution time and two arrival rates) we did 10 differ-
ent runs. We used 1000 queries per run. The reported results
are averages over the 10 different runs. The DBMS is mod-
eled as a concurrent system with the multi-programming
level (MPL) fixed to ten.

We now describe our results. For each experiment, we
have computed the l2 norms of stretch under all three schedul-
ing mechanisms for the overall set of queries and also for
each of the three different service levels. We plot the l2
norms as a ratio, where each value is normalized by the value
of rFEED1. As discussed earlier, the lower the l2 norm of
stretch, the better the MWS is. Hence, the ratio of the l2
norm of stretch of RSopt to that of rFEED, if greater than
1, indicates that rFEED is superior to RSopt. We also plot
the average values of stretch for all the experiments in a
separate chart.

Since comparing the l2 norm for different service levels be-
tween RSopt,rFEED1 and rFEED10 is not fair, we instead fo-
cus on studying the l2 norm between these scheduling strate-
gies for the same service level. Our results clearly differen-

703

tiates our rFEED from others.

5.3 Exp. 1: Execution Time with Pareto Dis-
tribution

This was the experiment as described before where the
execution times are drawn from a Pareto distribution with
minimum value 1 and the Pareto index 1.

In Figure 4 and Figure 5, we have plotted the results for
this experiment. The mean execution time was approxi-
mated to 10. Hence the two different arrival rates corre-
sponding to steady state and the peak load were λ1 = 10
and λ2 = 3.16. We found ψ (as discussed before) to be
equal about 4000. K in the Equation 6 was computed using
Equation 11 and was found to be 6.3× 10−8.

L2 Norm for Pareto Distribution with Steady State Load

0

0.5

1

1.5

2

2.5

3

3.5

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 4: L2 Norm for Pareto Distribution with
Steady State Load

In Figure 4 we have plotted the results for the steady
state system. As described before, we have plotted the ra-
tios which are obtained by dividing the values with corre-
sponding values from rFEED1. From the l2 norm for all the
queries, we can observe that the l2 norm of the RSopt is 3.19
times rFEED1 and 2.79 times rFEED10. In other words,
rFEED1 provides 319% improvement and rFEED10 provide
279% improvement over the state of the art.

rFEED has better l2 norm for all the service levels for
both rFEED1 and rFEED10.

In Figure 5 we have plotted the results for peak load.
Here the percentage improvement for rFEED1 is 2734% over
RSopt and for rFEED10 it is a 433% improvement. This
shows that rFEED provides significant improvement with
peak loads.

There is differentiation that can be seen by comparing dif-
ferent service levels between RSopt, rFEED1 and rFEED10.
The ratio of l2 norm for the highest service level between
rFEED10 and rFEED1 is 0.77, i.e., for rFEED10, the l2 norm
was 77% of that of rFEED1. This indicated that rFEED10

has higher differentiation than rFEED1.
If we compare rFEED10 and RSopt we see for the lowest

service level, the l2 norm for RSopt is 1.42 times that for
rFEED10, for the medium service level it is 31.05 times that
of RSopt and for the highest service level RSopt’s l2 norm
is 40.32 times that of rFEED10. It can be seen that as we
go to higher service levels the ratio of the l2 norms steadily
increases indicating that rFEED10 differentiates very well.

L2 Norm for Pareto Distribution with Peak Load

0

5

10

15

20

25

30

35

40

45

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 5: L2 Norm for Pareto Distribution with
Peak Load

Even with such high differentiation, overall rFEED10 is 433%
better than RSopt.

5.4 Exp. 2: Execution Time with Optimizer
Estimate

This was the experiment as described before where the
execution times are drawn from a Pareto distribution with
minimum value 1 and the Pareto index 1 and cost was com-
puted by multiplying the processing time by an error derived
from N(1, 0.2). The scheduling was done using the error and
the results were computed with the processing time.

In Figure 6 and Figure 7, we have plotted the results for
this experiment. Like the previous experiment the mean
execution time was approximated to 10, arrival rates corre-
sponding to steady state and the peak load were λ1 = 10
and λ2 = 3.16 and K was 6.3× 10−8.

L2 Norm for Cost with Steady State Load

0

0.5

1

1.5

2

2.5

3

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 6: L2 Norm for Cost with Steady State Load

In Figure 6 we have plotted the results for the steady
state system. As before the ratios have been plotted. For
the overall l2 norm, RSopt’s l2 norm is 2.01 times that of
rFEED1 and 1.18 times that of rFEED10. Both rFEED1

and rFEED10 have better l2 norm than RSopt for all service
levels.

There is some differentiation as the ratio of l2 norm of

704

rFEED10 and rFEED1 increases from highest service level
to lowest service level.

L2 Norm for Cost with Peak Load

0

5

10

15

20

25

30

35

40

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 7: L2 Norm for Cost with Peak Load

In Figure 7 we have plotted the ratios for peak load.
Here the percentage improvement for rFEED1 is 2522% over
RSopt and for rFEED10 it is a 557% improvement.

Again, like Experiment 1, by comparing rFEED10 and
RSopt we can see that rFEED10 provides significant differ-
entiation without paying a very high cost in the overall re-
sults. For the lowest service level, the l2 norm for RSopt is
1.14 times that for rFEED10, for the medium service level it
is 28.95 times and for highest service level it is 33.69 times
that of rFEED10.

When comparing with the results of Experiment 1, it can
be seen that our performance does not suffer significantly be-
cause of the error in cost estimation. It seems that rFEED is
robust to modest mis-estimates in computation of processing
times.

5.5 Exp. 3: Execution Time with Actual Pro-
cessing Time

As mentioned before, we obtained actual execution times
from a customer and used them as an approximation of pro-
cessing times.

We had more than 65000 actual processing times. For
each run, we sampled a 1000 of these processing times. The
average execution time was 24.5 seconds, so the steady state
arrival rate, λ1 was 24.5 and the peak arrival rate, λ2 was
4.7. The largest query was close to 10000 seconds, so K was
10−8.

In Figure 8 and Figure 9, we have plotted the results for
this experiment.

In Figure 8 we have plotted the ratios for the steady state
system. The results are interesting here, in that we see dif-
ferentiation even for a steady state scenario. For the overall
l2 norm, RSopt’s l2 norm is 2.47 times that of rFEED1 and
1.58 times that of rFEED10. In terms of service levels how-
ever, rFEED performs better than RSopt only for the highest
service level. This behavior is an example of differentiation
and is not undesirable since we want the highest service lev-
els to perform better than the other two service levels but
not at a significant cost to the overall quality of results.

In Figure 9 we have plotted the results for the peak load
scenario. The results this time are really impressive.

L2 Norm for Customer X Queries with Steady State Load

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 8: L2 Norm for Customer X Data with
Steady State Load

L2 Norm for Customer X Queries With Peak Load

0

20

40

60

80

100

120

140

160

180

Overall Highest SL Medium SL Lowest SL

Metric

R
at

io RSopt

rFeed1

rFeed10

Figure 9: L2 Norm for Customer X Data with Peak
Load

The overall l2 norm, for RSopt is 110 times that for rFEED1

and 89.7 times for that of rFEED10. The ratios are in a sim-
ilar large for all three service levels.

5.6 Average Stretch
Customers are also often interested in the average value

of stretch. In Figure 10, for each experiment we have plot-
ted two bars. The first bar indicates the ratio of the av-
erage stretch value for RSopt to the average stretch value

for rFEED1 (
RSoptAverageStretch

rFEED1AverageStretch
) and the second bar in-

dicates the ratio of the average stretch value for RSopt to the

average stretch value for rFEED10 (
RSoptAverageStretch

rFEED10AverageStretch
).

For all the three experiments rFEED1 and for both steady
state and peak load scenarios, the ratios are greater than
1 indicating that rFEED1 has lower average stretch than
RSopt for all cases.

For rFEED10, the ratio is more than 1 for five out of the
six scenarios, where it is slightly higher (20%) for the steady
state case of Experiment 3.

Again, with peak loads the ratios are much larger as com-
pared to steady state, with the highest value being 123. This
means that the average stretch for RSopt was 123 times that

705

of rFEED1 for the experiment with actual processing times.

Average Values of Stretch

0

20

40

60

80

100

120

140

Exp1 - S Exp1 - P Exp2 - S Exp2 - P Exp3 - S Exp3 - P

Experiment

R
at

io rFeed1

rFeed10

Figure 10: Average value for Overall Stretch for
Various Experiments

5.7 Response Time
Although, in this work our primary metric of interest is

stretch, response time is also an important consideration.
In general, rFEED does very well with response time but it
requires a different computation for the value of K. Due,
to lack of space we present two experimental results to com-
pare rFEED with other techniques. We compare with FIFO,
SJF and a technique called Greedy With Rounding(GWR).
GWR is like our technique suitable for online scheduling and
also requires an estimate of the largest query size.

We did two sets of experiments both with Pareto distribu-
tion with minimum value 1 and the Pareto index 1. For each
experiment we present the mean of 10 runs, and there were
10000 queries in each run. The mean arrival rate λ was 10
in Experiment 1 and was 3.16 in Experiment 2. We assumed
ψ = 10000. We used a single server model with no service
levels. The results are tabulated in Table II, where it can be
seen that rFEED does much better than FIFO and GWR.
SJF is optimal for response time and rFEED performs very
closely to SJF. SJF is unsuitable for online scheduling since
it causes starvation. Furthermore, if we were to compute
K = 1

ψ3 , our performance would is same as SJF.

Table 2: Results for Response Time
FIFO GWR SJF rFEED

λ = 3.16 17589.66 9314.27 1150.312 1165.91
λ = 10 22024.52 13852.97 2816.87 4920.169

5.8 Discussion
From the experiments the following things can be ob-

served:

1. rFEED performs better than a resource sharing system
for the l2 norm of stretch under various experimental
conditions.

2. For a peak load scenario, where the waiting queues
could be large in length rFEED does significantly bet-
ter than a resource share system.

3. Both rFEED1 and rFEED10 provide differentiation,
where rFEED10 provides more differentiation.

4. Differentiation does not come at a large cost to the
overall results.

5. rFEED is robust to moderate mis-estimates in process-
ing times.

6. rFEED does significantly better than RSopt even when
the average value of stretch is used as a metric.

7. Although, rFEED works well in practice it has a few
limitations:

(a) It depends on knowing the query execution time
which is not always known. However, in this case
the optimizer cost can be chosen.

(b) If the value of ψ is very large, it can lead to small
values for K, which could result in ignoring of the
wait time.

6. CONCLUSIONS
There are four major challenges with managing mixed

workloads. First, a typical BI workload is heavy-tailed, with
many small queries and a few large queries. In fact, just 10%
of the queries often account for up to 90% of the load on a
typical EDW. Second, the user perspective is critical in mea-
suring the performance of an EDW, thus making the stretch
metric extremely important. Third, a good MWS needs to
be fair, effective, efficient and differentiated, all at the same
time. Fourth, the BI workloads change dynamically so man-
ual tuning is not practical.

We have designed an MWS that tackles all these chal-
lenges. Our design, called the rFEED scheduler, is simple
in design, powerful in its performance, and is practical for
implementation. We have presented a general scheduling
function and then shown how to compute the various param-
eters to make it implementable. Furthermore, we have mod-
eled the best-of-breed commercial schedulers, and have run
our new rFEED scheduler head-to-head against this model.
rFEED does significantly better.

The rFEED scheduler has been slated for incorporation
into HP’s commercial, enterprise class, DBMS offering.

7. ACKNOWLEDGMENTS
We thank Michael Fisher, Rao Kakarlamudi, Vijay Bel-

lam, Zbigniew Omanski, Hans Zeller, Seetha Laksmi, Ahmed
Ezzat, Gary Melnik and the many other engineers that have
helped with several practical aspects of this work.

8. REFERENCES
[1] N. Bansal and K. Pruhs. Server scheduling in the lp

norm: a rising tide lifts all boat. In STOC, pages
242–250, 2003.

[2] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela,
and K. Pruhs. Online weighted flow time and deadline
scheduling. J. Discrete Algorithms, 4(3):339–352, 2006.

[3] A. Bedekar, S. Borst, K. Ramanan, P. Whiting, and
E. Yeh. Downlink scheduling in CDMA data networks.
GLOBECOM, 5:2653–2657, 1999.

706

[4] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan.
Flow and Stretch Metrics for Scheduling Continuous
Job Streams. In SODA, pages 270–279, 1998.

[5] M. A. Bender, S. Muthukrishnan, and R. Rajaraman.
Improved algorithms for stretch scheduling. In SODA,
pages 762–771, 2002.

[6] P. Brucker. Scheduling Algorithms. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1995.

[7] Carrie Ballinger. The Wild World of Mixed Workload:
Priorities and resources learn to get along. Teradata
Magazine Online.
http://www.teradata.com/t/go.aspx/?id=114533.

[8] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang.
Query suspend and resume. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 557–568,
New York, NY, USA, 2007. ACM.

[9] C. Chekuri and S. Khanna. Approximation schemes
for preemptive weighted flow time. In STOC, pages
297–305, 2002.

[10] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for
minimizing weighted flow time. In STOC, pages
84–93, 2001.

[11] L. Cherkasova and T. Rokicki. Alpha Message
Scheduling for Packet-Switched Interconnects.
Technical Report HPL-94-71, HP Labs, August 1994.

[12] M. Crovella, R. Frangioso, and M. Harchol-Balter.
Connection scheduling in web servers. In USENIX
Symposium on Internet Technologies and Systems,
1999.

[13] E. J. Friedman and S. G. Henderson. Fairness and
efficiency in web server protocols. In SIGMETRICS,
pages 229–237, 2003.

[14] J. R. M. Hosking and J. F. Wallis. Parameter and
quantile estimation for the generalized pareto
distribution. Technometrics, 29(3):339–349, 1987.

[15] IBM. DB2 Query Patroller. http://www-
306.ibm.com/software/data/db2/querypatroller/.

[16] B. Kalyanasundaram, K. Pruhs, and
M. Velauthapillai. Scheduling Broadcasts in Wireless
Networks. In Proceedings of the 8th Annual European
Symposium on Algorithms (ESA), pages 290–301,
2000.

[17] A. Legrand, A. Su, and F. Vivien. Minimizing the
stretch when scheduling flows of biological requests. In
SPAA, pages 103–112, 2006.

[18] J. Leung, L. Kelly, and J. H. Anderson. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Inc., Boca Raton, FL, USA,
2004.

[19] A. Mehta, C. Gupta, S. Wang, and U. Dayal. rfeed: A
mixed workload scheduler for enterprise data
warehouses. In ICDE ’09, Accepted, 2009.

[20] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and
J. E. Gehrke. Online scheduling to minimize average
stretch. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (FOCS), page
433, 1999.

[21] V. Paxson. End-to-end internet packet dynamics.
IEEE/ACM Trans. Netw., 7(3):277–292, 1999.

[22] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. M.

Nahum, and A. Wierman. How to Determine a Good
Multi-Programming Level for External Scheduling. In
ICDE, page 60, 2006.

[23] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Efficient scheduling of heterogeneous
continuous queries. In VLDB, pages 511–522, 2006.

APPENDIX
A. COMPUTING ∆ FOR A PARETO DIS-

TRIBUTION
We now demonstrate the computation ∆ given a statisti-

cal distribution. For this demonstration we assume a Pareto
distribution. However, the methodology for computing ∆ is
general and can be used with any distribution.

We consider a Pareto distribution where the minimum
value is 1 and the Pareto Index is also 1. Then, for such
a Pareto distribution we get the frequency distribution as:
f(x) = 1

x2 .
Assume that a number of queries |S| arrive at time, t = 0

and they are from two different SLs, one with service level
modifier ∆q = 1 and the other with service level modifier
∆q = ∆.

Now we compute the total execution time of queries with
execution time less than or equal to say t. Let this quantity
be Tt. To compute Tt, consider a sample of size S that
follows our Pareto distribution. Let |St| be the number of
queries with execution time less than t and let there expected
value be E(St). Then: Tt = (|St|)Et . We first compute |St|:

|St| = |S|
∫ t

1

1

x2
dx =⇒ |St| = |S|(1− 1

t
) (15)

To compute E(St), we need to consider a truncated Pareto
distribution, with maximum value of the random variable

being t. A truncated distribution has the form: f(x)
F (x)

, where

F is the cumulative distribution function. Now:

E(St) =

∫ t

1
x 1

x2 dx∫ t

1
x

=⇒ E(St) =
ln t

1− 1
t

(16)

Then from Equation 15 and 16, we get:

Tt = |St|E(St) =⇒ Tt = |S| ln t (17)

We are now ready to compute the ratio of interest in Equa-
tion 13. Let the ratio r, be the ratio of stretches for a query
from ∆ = 1, and execution time p to ∆ = ∆, and execution
time p.

Let N1 be the number of queries with ∆ = 1 and N∆ be
the number of queries with ∆ = ∆. Then from Equation 17
and Equation 13 we get:

r =
N1 ln p + N∆ ln p∆ + p

N1 ln p
∆

+ N∆ ln p + p
(18)

Note that the first term in the denominator is zero if p < ∆.
Now we compute ∆ from this. From Equation 18, after some
basic manipulation we get:

ln∆(N∆ + rN1) = ln p((r − 1)(N∆ + N1)) + (r − 1)p

=⇒ ∆ = e
(r−1)(N1 ln p+N∆ ln p+p)

N∆+rN1 (19)

707

