
Caching Content-based Queries for Robust and Efficient
Image Retrieval

Fabrizio Falchi
ISTI-CNR
Pisa, Italy

fabrizio.falchi@isti.cnr.it

Claudio Lucchese
ISTI-CNR
Pisa, Italy

claudio.lucchese@isti.cnr.it

Salvatore Orlando
Università Ca’ Foscari

Venezia, Italy
orlando@dsi.unive.it

Raffaele Perego
ISTI-CNR
Pisa, Italy

raffaele.perego@isti.cnr.it

Fausto Rabitti
ISTI-CNR
Pisa, Italy

fausto.rabitti@isti.cnr.it

ABSTRACT
In order to become an effective complement to traditional
Web-scale text-based image retrieval solutions, content-based
image retrieval must address scalability and efficiency issues.
In this paper we investigate the possibility of caching the
answers to content-based image retrieval queries in metric
space, with the aim of reducing the average cost of query pro-
cessing, and boosting the overall system throughput. Our
proposal exploits the similarity between the query object
and the cache content, and allows the cache to return ap-
proximate answers with acceptable quality guarantee even
if the query processed has never been encountered in the
past. Moreover, since popular images that are likely to be
used as query have several near-duplicate versions, we show
that our caching algorithm is robust, and does not suffer
of cache pollution problems due to near-duplicate query ob-
jects. We report on very promising results obtained with
a collection of one million high-quality digital photos. We
show that it is worth pursuing caching strategies also in sim-
ilarity search systems, since the proposed caching techniques
can have a significant impact on performance, like caching
on text queries has been proven effective for traditional Web
search engines.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—information search and retrieval, search process

General Terms
Algorithms, Performance.

Keywords
content-based retrieval, query-result caching, metric space,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

query popularity, near-duplicate images.

1. INTRODUCTION
With the widespread use of digital cameras, more than

80 billion photographs are taken each year [15], and a sig-
nificant part of them, over one billion1, are published on
the Web. According to [15], already in 2003 digital images
contributed for the largest part of Web content, and their
management promises to emerge as a major issue in the next
years.
In this context, the interest in searching such huge col-
lections of images by their content is rapidly growing [6].
The challenge of Web-scale Content–Based Image Retrieval
(CBIR) systems is thus the ability to scale up, and to be-
come, in the near future, a valid complement to the consol-
idated multimedia search paradigm based on textual meta-
data only.
Content-based similarity queries ask for retrieving from the
indexed collection the most relevant objects, i.e. the closest
to the query object according to the adopted distance func-
tion. Unfortunately, this search paradigm is inherently very
expensive due to the curse of dimensionality that holds for
image visual features, and the query processing cost grows
very rapidly with the size of the collection indexed.

In this paper, we tackle the scalability issues of CBIR
by investigating the possibility of retrieving the results of
content-based queries from a cache located in front of the
system. Our aim is to reduce the average cost of query
resolution, thus boosting the overall performance. Being a
very general and well studied paradigm, we based our cache
on the mathematical foundations of metric spaces [24, 18,
12, 4, 1, 6, 2]. To the best of our knowledge, this is the
first proposal of a caching framework designed to exploit
the results of previously submitted content–based similarity
search queries. In text-based Web Search Engines (WSEs),
query logs and caching were extensively studied [7]. In par-
ticular, researchers discovered that topic popularity follows
a Zipf-like distribution that allows also small caches to be
very effective in capturing most popular queries and reduc-
ing the pressure to the WSE back-end.
Although large query logs are not yet available for CBIR
systems, we argue that also for content-based queries, the
distribution of topic popularity existing for text queries will

1source http://www.lyra.com

780

Figure 1: Top results for the query “mona lisa”.

be confirmed to some extent. This is suggested for example
by the distribution of popularity rank scores on large-scale
photo sharing sites [20].

However, the cache we propose is very different from a
traditional cache for WSEs, which can be thought as a sim-
ple hash table, whose keys are the submitted queries, and
the stored values are the associated pages of results, with
some policy for replacement of cache entries based on the
recency and/or frequency of references. In our case, the
possible (and measurable) similarity among the query sub-
mitted and the cached objects can be exploited in order
to increase the number of queries answered directly by the
caching system. In fact, our cache is able to return an an-
swer without querying the underlying content-based index
in two very different cases: (a) an exact answer when exactly
the same query was submitted in the past, and its results
were not evicted from the cache; (b) an approximate answer
composed of the closest objects currently cached when the
quality of such approximated answer is acceptable according
to a given measure. Obviously, the effectiveness of such a
metric cache cannot be evaluated in terms of the usual hit-
ratio, but has to consider also the quality of the approximate
results returned.

Moreover, we want our cache to be robust with respect
to the problem of near-duplicate images. A popular image
has in fact thousands of slightly different versions in the
Web. See for example Fig. 1, which show the top results
returned by Google Images for the query “mona lisa”. In
[10], Zobel et al. analyzed this phenomenon, and discovered
that such images are usually variants derived from the same
original image. Since it is very likely for these near-duplicate
images to be used as query objects, a traditional cache that
answers exact matches only, would be soon polluted with
a lot of very similar result sets. In fact, even in the case

of a slight resizing or cropping of the original image, the
visual features used for specifying the content-based query
would be different. For example, let us consider the first and
second image shown in Fig. 1: in the case these two near-
duplicate images would be subsequently used as queries to
a CBIR, they would correspond to two different entries in
a traditional cache. Our cache instead exploits the metric
property of the distance measure for evaluating the quality
of the approximate results that can be returned. In case
of a near-duplicate variant of a previously cached query, we
can thus return a high-quality answer without querying the
search engine back-end, thus avoid inserting in the cache a
duplicated result set.

It is worth noting that although this paper deals with
CBIR, the caching technique proposed is completely general,
and can be adopted in any scenario in which we need to
boost large-scale similarity-based search services for metric
objects (e.g., medical data, DNA sequences, financial data).

The rest of the paper is organized as follows. Section 2
briefly review related work, while Section 3 discusses the is-
sues related to caching the results of similarity search queries,
proposes a novel theoretical background, and a framework
for evaluating the efficiency and effectiveness of integrating
a caching subsystem within an actual search by content sys-
tem. Section 4 describes experimental settings, and reports
on the promising results of the experiments conducted. Fi-
nally, Section 5 draws some conclusions.

2. RELATED WORK
The research topics more related to our work are query re-

sult caching in WSEs, and techniques for performing or mea-
suring effectiveness of approximate search in metric spaces.

Query result caching. Query logs constitute the most
valuable source of information for evaluating the effective-
ness of caching systems storing the results of past WSE
queries. Many studies confirmed that users share the same
query topics according to an inverse power law distribu-
tion [23, 19]. This high level of sharing justifies the adoption
of a caching system for Web search engines, and several stud-
ies analyzed the design and the management of such server-
side caches, and reported about their performance [16, 14,
7]. Lempel and Moran proposed PDC (Probabilistic Driven
Caching), a query answers caching policy based on the idea
of associating a probability distribution with all the possible
queries that can be submitted to a search engine [14]. PDC
uses a combination of a SLRU cache (for queries regarding
the first page of results), and a heap for storing answers of
queries requesting pages next to the first. Priorities are com-
puted on previously submitted queries. The distribution is
built over statistics computed on the previously submitted
queries. For all the queries that have not previously seen, the
distribution function evaluates to zero. This probability dis-
tribution is used to compute a priority value that is exploited
to order the entries of the cache: highly probable queries are
highly ranked, and have a low probability to be evicted from
the cache. Indeed, a replacement policy based on this prob-
ability distribution is only used for queries regarding pages
subsequent to the first one. Furthermore, PDC is the first
policy to adopt prefetching to anticipate user requests. To
this purpose, PDC exploits a model of user behavior. A user
session starts with a query for the first page of results, and

781

can proceed with one or more follow-up queries (i.e. queries
requesting successive page of results). When no follow-up
queries are received within τ seconds, the session is consid-
ered finished. This model is exploited in PDC by demoting
the priorities of the entries of the cache referring to queries
submitted more than τ seconds ago. To keep track of query
priorities, a priority queue is used. PDC results measured on
a query log of AltaVista were very promising (up to 53.5%
of hit-ratio with a cache of 256, 000 elements and 10 pages
prefetched).

Fagni et al. showed that combining static and dynamic
caching policies together with an adaptive prefetching pol-
icy achieves even a higher hit ratio [7]. In their experiments,
they observe that devoting a large fraction of entries to static
caching along with prefetching obtains the best hit ratio.
They also showed the impact of having a static portion of
the cache on a multithreaded caching system. Through a
simulation of the caching operations they showed that, due
to the lower contention, the throughput of the caching sys-
tem can be doubled by statically fixing a half of the cache
entries.

Unfortunately, since Web-scale search engines and asso-
ciated logs are not yet available for content-based image
queries, we cannot directly generalize results and analyses
of caches for text-based WSEs. In particular, we cannot
assume in a stream of content-based queries the presence
of the same level of locality present in text-based searches.
On the other hand, caching content-based similarity search
queries has the interesting opportunity of exploiting simi-
larities between the current query and the objects stored in
the cache with the aim of giving efficiently also approximate
answers.

In this paper we will make some pragmatic assumptions
for characterizing user querying behavior: we will use real
data coming from a popular photo-sharing site to build both
the data collection (1 million digital photos), and the query
logs (built synthetically by considering the actual usage of
this million photos by real users).

Approximate search in metric spaces. Due to the gen-
erally expensive cost of similarity search in metric spaces,
several approximate techniques have been studied to im-
prove efficiency at the price of obtaining less accurate result-
sets. A general justification for the use of approximation is
given by the fact that similarity measures are indeed an ap-
proximation of user perception.

As suggested in [9], approaches to approximate similar-
ity search can be broadly classified into two categories: ap-
proaches that exploit transformations of the metric space,
and approaches that reduce the subset of data to be exam-
ined. In the transformation approaches, approximation is
achieved by changing the object representation and/or dis-
tance function with the objective of reducing the search cost.
The second category of approaches is based on reducing the
amount of data examined. To this aim, two basic strategies
are used: early termination, and relaxed branching strate-
gies, where the first stops the similarity search algorithm be-
fore its “precise” end, while the second avoids accessing data
regions that are not likely to contain close objects. Surveys
of approximate similarity search techniques can be found in
[24] and [18].

In this paper we study how a cache, storing content-based
similarity queries and associated results, can be used to re-

Figure 2: The architecture of our CBIR system,
with cache C placed in the front-end.

turn approximate answers with acceptable quality guaran-
tee, even when an exact image match is not found in the
cache. Thus, our proposal introduces a novel class of ap-
proximation techniques, based on reusing the results of pre-
viously submitted queries.

3. CACHING CONTENT-BASED QUERY
RESULTS

Let C be a cache placed in front of a CBIR system, stor-
ing recently / frequently submitted queries and associated
results (see Figure 2). The rationale of exploiting cache
C is that, when a hit occurs, we can avoid submitting the
content-based query to the back-end of the information re-
trieval system, and we can soon return the results stored in
the cache, thus saving the computational cost of processing
the query and improving the overall throughput.

In order to compute the similarity between the cache con-
tent and the submitted query, our method needs to keep
in cache not only the identifiers of the objects returned by
a cached query, but also the features associated with these
objects. Object features are in fact needed to measure the
metric distances between them and a new submitted query
object. As a consequence, look-up, insert, and delete opera-
tions on such a similarity-based, metric cache are much more
complex and expensive than those performed on a simple
hash-based cache. On the other hand, processing content-
based similarity search queries is highly demanding, with
a computational cost growing rapidly with the size of the
collection indexed [24, 21].

3.1 Using cache content for approximate an-
swering

Let D be a collection of objects belonging to the universe
of valid objects U , and let d be a metric distance function,
d : U × U ⇒ R, which measures the similarity between two
objects of U . (U , d) corresponds to a metric space, which is
the basic assumption of our work.

The database D can be queried for similar objects by using
two different kind of queries: range queries, and k nearest
neighbors queries. A range query RC(q, r) returns all the
objects in the database at distance at most r from a given

782

Figure 3: A query object q falling into two hyper-
spheres containing kNN(qi, k) and kNN(qh, k), i.e. the
k nearest neighbors of either a cached query object
qi or qh. The radius sq is set by using Lemma 1.

query object q ∈ U , i.e. RD(q, r) = {o ∈ D | d(q, o) ≤ r}.
A kNN query, kNND(q, k), returns instead the k nearest
objects to query q. We call rq the radius of the smallest
hypersphere centered in q and containing all its k nearest
neighbors in D. Note that the above definition of kNN is
sound if there is only one object in D at distance rq from q,
otherwise the k-th nearest neighbor is not unique. For the
sake of simplicity, and without loss of generality, we assume
that the above condition is always satisfied, and therefore
that |RD(q, rq)| = k which implies kNND(q, k) = RD(q, rq).

We will focus on kNN queries (for some fixed k) since
such query are more interesting in similarity search applica-
tions such as CBIR. However, the case of range queries is
very similar and even simpler. Thus, we assume that cache
C stores a set of past queries and their k results. We use
an overloaded notation, saying that qi ∈ C if the cache con-
tains the query qi along with all the objects in kNND(qi, k).
Moreover, we say that o ∈ C if object o belongs to any set
kNND(qi, k) associated with a cached query qi. Note that
o always belongs to collection D, while qi may not.

Let us now consider a query q arriving to the CBIR sys-
tem. If another occurrence of q was previously submitted,
and still not evicted from C, then its exact results are known,
and they can be immediately returned to the user. Con-
versely, if q is currently not present in C, but some similar
query was previously seen, we are interested in understand-
ing whether the cached objects could be used to return some
approximate results for kNND(q, k), and, if so, we would
like to provide some a-priori measure for the quality of such
results. In the following we will show that it is possible to
understand whether or not some of the objects stored in the
cache are among the top k′ ≤ k neighbors of the new query
q.

Let RC(q, r) and kNNC(q, k) be the results of the above
defined range and kNN queries processed over the collection
of cached objects. The following theorem and corollary hold:

Theorem 1. Given a new incoming query object q, and
a cached query object qi ∈ C such that d(q, qi) < rqi , let

sq(qi) = rqi − d(q, qi)

be the safe radius of q w.r.t. the cached query object qi. The
following holds:

RC(q, sq(qi)) = RD(q, sq(qi)) = kNND(q, k′)

where k′ = |RC(q, sq(qi))| ≤ k.

Proof. Let o be an object in RD(q, sq(qi)). From the
triangle inequality property, we can derive that d(o, qi) ≤
d(o, q) + d(q, qi). Since d(o, q) ≤ sq(qi), we have that

d(o, qi) ≤ d(o, q) + d(q, qi)

⇒ d(o, qi) ≤ sq(qi) + d(q, qi)

⇒ d(o, qi) ≤ rqi − d(q, qi) + d(q, qi)

⇒ d(o, qi) ≤ rqi

which means that o ∈ RD(qi, rqi), and since we are assuming
no ties, RD(qi, rqi) = kNND(qi, k), meaning that o ∈ C,
being kNND(qi, k) a cached result set.

We have proved that o ∈ RD(q, sq(qi)) implies o ∈ C, and
therefore o ∈ RC(q, sq(qi)), i.e.RD(q, sq(qi)) ⊆ RC(q, sq(qi)).
Moreover, C ⊆ D impliesRC(q, sq(qi)) ⊆ RD(q, sq(qi)). Thus
RC(q, sq(qi)) = RD(q, sq(qi)). Finally, |RD(q, sq(qi))| = k′

and, by definition of kNN, RD(q, sq(qi)) = kNND(q, k′).

Corollary 1. Given a new incoming query object q, let

sq = max(0, max
qi∈C

(rqi − d(q, qi)))

be the maximum safe radius of q w.r.t. the current con-
tent of cache C. We can exactly solve in C the range query
RD(q, sq), i.e. RC(q, sq) = RD(q, sq).

The above Theorem and Corollary state that there is a
radius sq for which we can solve the range query RD(q, sq)
by only using the cached objects. In turn, the result of such
range query corresponds to the top k′, k′ = |RC(q, sq)| ≤ k,
nearest neighbors of q in D. The result of such range query
can be used to build an approximate result set for query
kNN(q, k), where the top k′ objects of the approximate an-
swer are the same as the top k′ results of the exact answer.

Figure 3 shows a simple example with objects and queries
in a two-dimensional Euclidean space. Intuitively, every
cached query qi induces complete knowledge of the metric
space up to distance rqi from qi. If any subsequent query
q is found to be inside the hypersphere centered in qi with
radius rqi , then, as long as we look inside this hypersphere,
we also have complete knowledge of the k′, k′ ≤ k, nearest
neighbors of q.

In a preliminary work [8] we introduced two different algo-
rithms, RCache (Result Cache), and QCache (Query Cache),
to manage cache C by exploiting the above results. Since
QCache resulted to be more efficient than RCache, whereas
the quality of the returned approximate results were compa-
rable, in this paper we only sketch the RCache cache algo-
rithm, and focus the attention on discussing and evaluating
QCache in a scenario where near-duplicate images, which
abundantly populate the Web, are submitted as query ob-
jects by the users of a large-scale CBIR system.

3.2 The RCache algorithm
RCache exploits a hash table H used to store and re-

trieve efficiently query objects and their result lists. RCache
also adopts a metric indexM that is used to perform kNN
searches over the cached objects in order to return approxi-
mate answers when possible.

783

Whenever the cache is looked-up for the k objects that
are the most similar to a given query object q, H is first
accessed to check for an exact hit, which occurs when q and
its kNN results are already stored in the cache. In this case,
the associated result set kNND(q, k) is promptly returned.
In case this exact hit does not occur, the cache metric index
M is accessed for finding the k objects closest to q among
all the objects stored in cache.

Along with each returned object o ∈ M.kNN(q, k), M
stores qo, the query object of the kNN query that returned
o among the results. By using this information, RCache is
able to compute the maximum safe radius sq. Using sq we
can check if there exists some k′, k′ ≤ k, for which the top
k′ results obtained from C are guaranteed to be among the
results that would be retrieved from D.

Unfortunately, RCache requires to build a metric index
over all the objects returned by the kNN queries stored in
C. This makes cache management very complex, and the
computational cost of (approximate) query hits high. On
the other hand, QCache, whose algorithm is discussed in the
next Section, needs to build a metric index over the query
objects only. As a consequence, cache management results
less expensive and more efficient.

3.3 The QCache algorithm
The RCache algorithm can be considered, to some ex-

tent, the most straightforward way for realizing our metric
cache, where the approximate hits are returned only if the
requested quality guarantee can be ensured. Given a query
object q, if no exact hit is found, all the cached objects are
used to determine the best possible result set, i.e. to com-
pute kNNC(q, k). Later RCache uses the cached information
relative to the the result set to determine the maximum safe
radius sq, in turn used to evaluate how many objects in the
approximate result set are the same as in the exact answer.

Unlike RCache, QCache maintains a metric index only
over the query objects of previously submitted kNN queries,
whose result sets are stored in the cache. This reduces by a
factor k, where k is the parameter of the kNN queries, the
number of objects indexed in the the metric index.

The main idea of QCache is to solve a kNN query in an ap-
proximate way by first finding a set of suitable query objects
among the cached ones, and then using their neighbors, i.e.
the result sets of the corresponding kNN queries, to produce
the approximate answer. Using this set of suitable query ob-
jects, QCache can also determine the maximum safe radius
sq, and only if it turns out to be not trivial (sq > 0), it pro-
ceeds with the query resolution. Note that QCache works in
the opposite way of RCache, which first determines the com-
plete result set of the kNN query, and then the safe radius
sq to evaluate the quality of the result set.

Let us detail the QCache algorithm, by first discussing how
it computes the maximum safe radius q of an approximate
query. Given a query object q, suppose that sq is not trivial
(sq > 0). Let bq be the query associated with it:bq = argmaxqi∈C(rqi − d(qi, q))

Given the cached query object bq, the cached result set of
kNND(bq, k) contains the k′ objects that are guaranteed to
be the top-k′ nearest neighbors of q in D, k′ ≤ k.

In order to provide the best possible approximate an-
swer, we need: 1) to find efficiently bq among all the cached
query objects; 2) to choose the additional k − k′ objects

that are needed to complete the approximate result set of
kNNC(bq, k).

Unfortunately, discovering bq, or equivalently the maxi-
mum safe radius sq, is not straightforward. We have seen
that sq is the maximum value (if greater than 0) of (rqi −
d(q, qi)) for the various qi ∈ C. If we assume that the various
values of rqi have a stable mean r, we can approximate sq

by maximizing (r− d(q, qi)). This can be done by searching
for the cached query qi being the nearest to q.

This strategy may not find bq. As an example, consider
Figure 3, which shows that, in order to determine the largest
safe radius sq, we may need to consider a cached query (qi)
that is not the closest one (qh) to new incoming query q.

In order to increase the chance of success in finding bq, we
thus pick the kc cached query objects that are the closest one
to q, i.e. the kc queries maximizing (r−d(q, qi)), and search
among them the one that actually maximizes the safe radius
(rqi − d(q, qi)). The rationale of this method is to leverage
the variance of rqi , still avoiding to explore exhaustively all
the queries stored in cache.

Let us denote with esq the resulting approximated value
of sq, and with eq the corresponding query object. It holds
that esq is a lower bound of sq. Given eq and esq, we can
guarantee that the cached result set kNNC(eq, k) contains
k∗, k∗ ≤ k, of the k nearest neighbors of q in D. These k∗

objects o ∈ kNND(eq, k) are at distance at most esq from q.
Finally, we need to choose a set of k−k∗ additional objects

to produce the approximate answer. Still, we want to avoid
searching among all the cached objects, and thus limit the
search to the kNN objects close to the kc cached queries
previously selected. Intuitively, by having selected the kc

cached queries being the closest ones to q, the probability of
finding a good results within the cached k nearest neighbors
of such queries is very high.

Algorithm 1 Algorithm QCache

1: procedure LookUp(kNN(q, k))
2: if q ∈ H then
3: Rq,k ← H.get(q)
4: else
5: Q←M.kNN(q, kc)
6: O ← {o ∈ kNND(qj , k) | qj ∈ Q}
7: Rq,k ← O.kNN(q, k)
8: eq ← arg maxqi∈Q sq(qi)
9: esq ← sq(eq)

10: if sufficientQuality(Rq,k, esq) then
11: H.move-to-front(eq)
12: else
13: Rq,k ← kNND(q, k)
14: H.put(q,Results)
15: M.put(q)
16: end if
17: end if
18: return Rq,k

19: end procedure

In Algorithm 1 we show the pseudocode of our QCache
algorithm. We make use of a hash table H which is used to
store and retrieve efficiently queries and their result lists, by
using queries as hash keys.

Given a new incoming query object q, the first step is to
check whether q is present or not in cache (line 2).

If this is not the case, the algorithm tries to use stored

784

results to devise an approximate answer. This step uses the
metric index M, which contains only the recent past query
objects qi ∈ C, to find the kc cached queries that are the
closest to q (line 5). The resulting set of queries Q is first
used to retrive all the associated result lists, and to extract
from them only the k closest to the query q (line 7). Such
objects form the approximated result list Rq,k. Then Q,
is used to find an approximation esq of the maximum safe
radius and the corresponding query eq (lines 8–9). The safe
radius esq is needed to understand which of the top results
are guaranteed to be correct according to Theorem 1.

The expected quality of the approximate answer, consid-
ering also the safe radius esq, is then evaluated (line 10). If
this quality is not sufficient, then the query is forwarded to
D, and its (exact) results are added into the two indexing
structures H and M (lines 13–15).

Note that the hash table H is managed with a simple LRU
policy. If a new insertion cannot be satisfied because the
cache is full, a pair 〈qi, kDDD(qi, k)〉 is evicted from H, and
M is updated consequently. Also, if eq was used to produce
an good approximate result, then a move-to-front is applied
to eq (line 11), i.e. it is marked to be the most recently used,
thus allowing useful queries to persist in cache.

It is worth noticing that different quality measures can be
used to decide on the acceptance of an approximate result
set. In our implementation, we chose empirically a very sim-
ple measure that accepts any answer set associated with a
non trivial value of esq. As discussed above, unlike RCache, in
QCache we can anticipate this quality check, by calculatingesq before constructing the result set. In this way, if esq ≤ 0,
we can avoid merging multiple answer sets (line 7), which
requires a number of distance computations.

Speeding-up result construction. In principle, search-
ing the objects that are the closest ones to q among kc an-
swer sets requires kc × k distance computations. In order
to avoid those expensive distance computations, we imple-
mented a sort of pivot-based filtering technique [3], which
uses the information about the distance of an object from
its corresponding query to skip a priori some of the kc × k
candidates. In more detail, we take advantage of the in-
formation stored along with kNND(qi, k), ∀qi ∈ Q, where
Q = M.kNN(q, kc). The query object qi can be seen as a
pivot for all the objects in x ∈ kNND(qi, k).

Let z be the k-th candidate approximate result found dur-
ing this searching process. Because of the triangular inequal-
ity, given the result oj of the query qi, |d(qi, oj)− d(qi, q)| ≥
d(q, z) implies d(q, oj) ≥ d(q, z), i.e. oj is not closer than
z. Since d(qi, oj) is stored in cache, and d(qi, q) was calcu-
lated at line 5, the candidate result z can be pruned without
computing its distance from q.

3.4 Space and time cost modeling
In order to build an approximate result, QCache must be

able to compute the similarity between every cached object
o ∈ C and the submitted query object q. We denote with
Sz the capacity of the cache, measured as the number of ob-
jects (i.e. the associated features) stored. Assuming that for
each cached query object, only the top-k results are stored,
the cache can contain the result sets of Sz/k queries. Also
notice that some redundancy may occur whenever an object
belongs to the result set of multiple cached queries.

Regarding the time complexity, this is affected by the ap-
proximate results construction phase. A cache hit costs O(1)

to retrieve the result set from the hash table H, just as tra-
ditional caches for web search engines. In case of a miss,
the metric index M is accessed with a cost proportional
to its size, i.e. to the number of queries stored O(Sz/k).
In fact, the cost of searching with metric space based data
structures grows linearly with the size of the collection in-
dexed [21]. If the result quality is not considered sufficient,
then also the image database must be accessed with a cost
O(|D|), and the new result must be inserted into the cache
by updating M with a cost of O(Sz/k). Suppose that the
hit rate (Hit%), the approximate hit rate (AHit%) and the
miss rate (Miss%) are known, then we can model the cost
as follows:

Cost = O(1) ·Hit% + O(Sz/k) ·AHit% +

(2 ∗O(Sz/k) +O(|D|)) ·Miss% (1)

In the experimental section we will show that even if the
cost of an approximate hit is linear w.r.t. to the cache size,
the improvement in performance is significant, since this cost
is actually very small compared with the cost of accessing
the underlying image database.

4. RESULTS ASSESSMENT

4.1 The data used
There are two important data sources we needed to set up

for our experiments: the image database and the stream of
queries.

The collection of images we used consists of a set of one
million objects randomly selected from the CoPhIR collec-
tion2. CoPhIR is the largest publicly available collection of
high-quality images metadata. Each contains five MPEG-7
visual descriptors (Scalable Color, Color Structure, Color
Layout, Edge Histogram, Homogeneous Texture), and other
textual information (title, tags, comments, etc.) of about
60 million photos (still increasing) that have been crawled
from the Flickr photo-sharing site3.

With regard to the query stream, although there exist sev-
eral CBIR prototypes4, there is no public query log available.
Moreover, even if some of such prototypes offer an on-line
demo, none of them aims to give a large-scale service to
several users. Thus, even if their query logs were made pub-
lic, they would not be representative of the actual use of a
large-scale search-by-content service.

Thus, we generated a synthetic query log according to
a web-based scenario, where most of the queries consist of
images available on the web. It makes sense to assume that
a query object provided by a user is an image found on a
popular web-page, or one of the results obtained from the
image search facility of a web-search engine.

First, we took into consideration the usage information
made available by Flickr and stored in CoPhIR. In fact, for
each image, we know the number of times it was seen by
any internet user. Note that the views distribution follows a
Zipf-like distribution (see Fig. 4), and it results to be similar
to the query topic distribution present in the query logs
of textual web search engines [7]. Thus, we assumed that

2CoPhIR stands for COntent-based Photo Image Retrieval,
see http://cophir.isti.cnr.it.
3http://www.flickr.com
4See, for example, the list of CBIR systems in http://en.
wikipedia.org/wiki/Content-based_image_retrieval

785

Figure 4: Number of times each Flickr image in our
1 million photo collection has been viewed.

the probability of an image to be used as a query object
submitted to a web-scale CBIR system is proportional to
the number of times it was viewed.

Second, we took into account the presence of near dupli-
cates in web images. According to a human labeling ex-
periment described in [11], (1) a large number of images
in the web are duplicates; (2) these are generated via ma-
nipulations of the original image such as cropping, scaling,
contrast adjustment; (3) the more an image is popular the
larger is its duplication rate. Given the results of this study,
we can estimate that about 8% of the images in the web are
near-duplicates. Due to the setting of the experiment, only a
subset of the images considered were labeled, and therefore,
8% is actually an underestimate.

Thus, to build an image query log, we took a different
collection of 1 million images from which we sampled the
queries. The use of another collection makes our algorithm
less biased towards the presence in the query log of objects
that exist in the database. We first injected a total of 8% of
near duplicate images, by applying a duplication rate to each
image proportional to its popularity, i.e. number of views.
Also, we divided evenly the popularity of an image among
the image itself and its duplicates.

Near-duplicate images were obtained from their original
version by applying random scaling, or cropping, or contrast
adjustment, or border addition, or a combination of crop-
ping and contrast adjustment according to the presence of
these alterations measured in [11]. Finally, we sampled with
replacement 100,000 objects from such collection, where the
probability of a photo to be selected is proportional to its
popularity.

4.2 Experimental settings
We used a publicly available M-Tree [5] implementation5

for indexing both the one million images dataset and the
queries cached by QCache.

The dissimilarity (or distance) between two images was
evaluated with a weighted sum of the distances between each

5http://lsd.fi.muni.cz/trac/mtree/

of the five MPEG-7 descriptors used. The distance function
applied to each MPEG-7 descriptor we used is the one pro-
posed by the MPEG group [13, 17]. The distance between
two images in our database is thus metric, according to our
assumption.

As a rule for deciding whether or not the approximate re-
sults retrieved from the cache can be returned to the user, we
checked whether the maximum safe radius defined in Corol-
lary 1 is greater than zero. We will show in the following
that this condition is able to guarantee a good quality of the
results.

The main goal of our proposal is to answer approximate re-
sults whenever the exact results are not found in the cache.
Therefore, the choice of quality measure for the approxi-
mated results is particularly important. Given a result set
Rq,k of k objects considered as the closest ones to query
object q, we define the following error measures:

• Relative Error on the Sum of distances (RES)

RES(q,Rq,k) =

P
x∈Rq,k

d(q, x)P
y∈kNND(q,k)) d(q, y)

− 1

• Relative Error on the Maximal distance (REM)

REM(q,Rq,k) =
maxx∈Rq,k d(q, x)

rq
− 1

We conducted several tests for validating our proposal. To
measure cache effectiveness we used the first 20, 000 queries
of the log as training-set to warm-up the cache, while we
measured efficacy on the remaining test-set of 80, 000 queries.
Every query performed was a kNN with parameter k = 20.

Most of the tests were conducted by varying the size of the
cache. We measure the size of the cache as the number of
objects for which we need to store the associated features, as
discussed in Section 3.4. Consider that the 100% of images’
features must be indexed by the underlying database, while
only a smaller x% of objects features are maintained by the
cache, and only x%

20
are actually managed by the metric in-

dexM of QCache, assuming that the top k = 20 results are
stored for each cached query.

Finally, in our setting, the size of the features associated
with an image is about 1KB, which corresponds to the size of
the five MPEG-7 visual descriptors discussed above. There-
fore, a cache of size 5% of our image collection stores about
50,000 objects, has a size of about 50MB, but indexes 2,500
queries only.

4.3 Cache hit-ratios
Fig. 5 reports exact, approximate, and total hit ratios as

a function of the size of the cache. First of all, we note that
the number of exact hits is not very high, meaning that a
traditional cache would not be effective in a similar scenario.
This is both due to the presence of duplicates, and to the α
value of the Zipfian image views distribution which is smaller
than in traditional text-search query logs.

Conversely, the approximate hit ratios achieved are re-
markably higher. With the largest cache we experimented,
it is possible to answer more than one fourth of the queries
by storing only one tenth of the database. Since processing a
similarity query over a metric index has a cost proportional
to the size of the indexed collection [22], this result shows

786

Figure 5: QCache exact and approximate hit ratios
as a function of cache size.

that the proposed caching technique can have an impres-
sive impact on the overall performance of a CBIR system.
According to Eq. 1, a total number of hits of about 25%, re-
duces the average cost query answering by about the same
amount. In addition, being the cache kept in the main mem-
ory, in case the CBIR system adopts a disk-resident index,
the improvement in throughput would be much larger.

4.4 Approximation quality
In the following we will show also that the quality of the

approximate answers returned by QCache is very good so
that our metric cache can be considered effective also for
approximating similarity queries on the basis on the reuse
of results of past queries.

Fig. 6(a) plots the values of the RES and REM error mea-
sures. The plot reports RES and REM errors measured for
the approximate results actually returned by the cache, but
also for the potential results that could be extracted from
QCache and were not returned in case of a cache miss, i.e.
when the expected quality of the result set was not con-
sidered good enough. The error measured for the misses is
always much larger than the one measured for the hit cases,
meaning that, on average, the estimate of the results qual-
ity was correct. Finally, the error of approximate answers
is quite low, slightly above 5% for all cache sizes but the
smallest one.

In Fig. 6(b) we report also the RES distribution in case
of approximate hit. With a cache size of 5%, almost 90% of
the returned results have an error smaller than 10%, while
the number of results having an error greater than 20% is
negligible.

In all the above experiments we used kc = 10, that is we
allowed the QCache algorithm to use only 10 result lists to
build an approximate answer and to approximate the maxi-
mum safe radius. In Figure 7 we show the sensitivity of the
algorithm to this parameter. In order to discover the exact
maximum safe radius sq, in principle all the cached queries
should be checked. Our intuition was that the cached query
object bq associated with sq is likely to fall very close the user
submitted query object q. Indeed, with kc = 1 we have that

the approximated radius esq is very close to sq (esq/sq > .94),
and that esq is exactly equal to sq almost 90% of the times
(Figure 7(a)). While esq is not strongly affected by kc, the
error in the answer set may degrade significantly for small
values of kc. This is because for smaller kc we must use a
smaller collection of objects to build the answer set. How-
ever, for kc ≥ 5 the error becomes stable and kc = 10 seems
to be an optimal trade-off (Figure 7(b)).

Finally, we show in Fig. 8 a comparison between the top-k
most similar images returned by the QCache algorithm and
the exact results of three different queries taken from our
query log. The three queries are photos of a bug, a portrait
and a sunset, whose approximate results provide an error of
RES = 0.07, RES = 0.09 and RES = 0.12 respectively.
For the sake of fairness, we are not showing the result sets
with the smallest error, but the ones having an error close
to the average error provided by the QCache algorithm, i.e.
RES = 0.055. For the bug query, the top-4 approximate
results are in the top ten exact results, meaning a recall
of 40%. The portrait query has a smaller 30% recall with
respect to the top ten exact results, even if the top-5 approx-
imate results are probably perceived more interesting than
the top-5 exact results. As expected from the high RES
value, the recall of the sunset query is only 10%, but also in
this case the approximate results provided are perceived to
be almost as important as the exact ones.

In conclusion, we have shown that, for an error level slightly
larger than the average error measured for the QCache algo-
rithm, the approximate results provided have a good recall
(objectively relevant), and they are also “visibly” similar to
the query (subjectively relevant). Thus, we can claim that
we succeeded in our goal of using past query results to con-
struct new results sets relevant for the user.

5. CONCLUSIONS
We have proposed the exploitation of a metric cache for

improving throughput and response time of a large-scale
CBIR system adopting the paradigm of similarity search
in metric spaces. Unlike traditional caching systems, our
proposal might return a result set also when the submitted
query object was never seen in the past. In fact, the metric
distance between the current and the cached objects is used
to drive cache lookup, and to return a set of approximate re-
sults when some guarantee on their quality can be given. As
a result, our caching algorithm is efficient and even robust
with respect to the near-duplicate images which abundantly
populate the Web and might be very commonly used to for-
mulate popular content-based queries. The validity of the
proposed approach was confirmed by several tests conducted
on a collection of one million digital photos and a query log
synthetically built on the basis of a popularity-based sam-
pling, where the frequency of the occurrences of a photo in
the query log is proportional to the number of times that
photo was actually viewed in the flickr photo-sharing site
from which it was taken.

We measured very interesting hit ratios. As an exam-
ple, with a cache which is, in size, the 5% of the total size
of the whole index, we obtained hit ratios slightly smaller
than 20%. More importantly, the quality of approximated
results returned by our caches are very good, and the largest
contribution to the hit ratios due to approximate cache an-
swers. This strongly motivate our proposal, and show that
it is worth pursuing this research direction. The generality

787

(a) (b)

Figure 6: Average error (a), and error distribution (b) of approximate answers returned by QCache to the
users.

(a) (b)

Figure 7: Sensitivity of the QCache algorithm to parameter kc, i.e. the number of the closest cached query
objects used by the algorithm to answer a query: effects of kc (a) on the approximate computation of sq, and
(b) on the average error in computing the approximate result set.

of metric spaces that are the only assumption at the basis
of our work, makes our contribution even more important
as it can be applied at a large variety of scenarios.

6. ACKNOWLEDGMENTS
This work was partially supported by the SAPIR (Search

In Audio Visual Content Using Peer-to-Peer IR) project,
funded by the European Commission under IST FP6 (Con-
tract no. 45128) and by the NeP4B (Networked Peers for
Business) project, funded by the Italian Ministry of Research
and high education on the Basic research funds (FIRB 2005).

7. REFERENCES

[1] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Comput. Surv., 33(3):322–373, 2001.

[2] T. Bozkaya and M. Ozsoyoglu. Indexing large metric
spaces for similarity search queries. ACM Trans.
Database Syst., 24(3):361–404, 1999.

[3] B. Bustos, G. Navarro, and E. Chávez. Pivot selection
techniques for proximity searching in metric spaces.
Pattern Recogn. Lett., 24(14):2357–2366, 2003.

[4] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
Marroqúın. Searching in metric spaces. ACM

788

Figure 8: Three queries: bug (RES = 0.07), portrait (RES = 0.09) and sunset (RES = 0.12). For each query
object we report the exact top-k results (top row) and the approximate ones returned by QCache (bottom
row).

Computing Surveys (CSUR), 33(3):273–321, 2001.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An
efficient access method for similarity search in metric
spaces. In Proceedings of VLDB’97, August 25–29,
1997, Athens, Greece, pages 426–435, 1997.

[6] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys, 2007.

[7] T. Fagni, R. Perego, F. Silvestri, and S. Orlando.
Boosting the performance of web search engines:
Caching and prefetching query results by exploiting
historical usage data. ACM Trans. Inf. Syst.,
24(1):51–78, 2006.

[8] F. Falchi, C. Lucchese, S. Orlando, R. Perego, and
F. Rabitti. A metric cache for similarity search. In 6th
Workshop on Large-Scale Distributed Systems for
Information Retrieval (LSDS-IR’08) - in conjunction
with ACM CIKM’08, October 2008.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and
A. El Abbadi. Approximate nearest neighbor searching
in multimedia databases. In Data Engineering, 2001.
Proceedings. 17th International Conference on, 2001.

[10] J. J. Foo, J. Zobel, R. Sinha, and S. M. M.
Tahaghoghi. Detection of near-duplicate images for
web search. In CIVR ’07: Proceedings of the 6th ACM
international conference on Image and video retrieval,
pages 557–564, New York, NY, USA, 2007. ACM.

[11] J. J. Foo, J. Zobel, R. Sinha, and S. M. M.
Tahaghoghi. Detection of near-duplicate images for
web search. In CIVR ’07: Proceedings of the 6th ACM
international conference on Image and video retrieval,
pages 557–564, New York, NY, USA, 2007. ACM.

[12] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces (survey article). ACM Trans.

Database Syst., 28(4):517–580, 2003.

[13] ISO/IEC. Information technology - Multimedia
content description interfaces. Part 6: Reference
Software, 2003. 15938- 6:2003.

[14] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In
WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 19–28, New
York, NY, USA, 2003. ACM Press.

[15] P. Lyman and H. R. Varian. How much information,
2003. retrieved from
http://www.sims.berkeley.edu/how-much-info-2003.

[16] E. P. Markatos. On Caching Search Engine Query
Results. Computer Communications, 24(2):137–143,
2001.

[17] P. Salembier and T. Sikora. Introduction to MPEG-7:
Multimedia Content Description Interface. John Wiley
& Sons, Inc., New York, NY, USA, 2002.

[18] H. Samet. Foundations of Multidimensional and
Metric Data Structures. Computer Graphics and
Geometric Modeling. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[19] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[20] R. van Zwol. Flickr: Who is looking? In In proceedings
of the 2007 IEEE / WIC / ACM International
Conference on Web Intelligence (WI 2007), November
2007.

[21] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In A. Gupta,
O. Shmueli, and J. Widom, editors, VLDB’98,
Proceedings of 24rd International Conference on Very

789

Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 194–205. Morgan
Kaufmann, 1998.

[22] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. 24th Int.
Conf. Very Large Data Bases, VLDB, pages 194–205,
1998.

[23] Y. Xie and D. O’Hallaron. Locality in search engine
queries and its implications for caching. In Proceedings
of IEEE INFOCOM 2002, The 21st Annual Joint
Conference of the IEEE Computer and
Communications Societies, 2002.

[24] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity SearchThe Metric Space Approach,
volume 32 of Advances in Database Systems. 233
Spring Street, New York, NY 10013, USA, 2006.

790

