
Flower-CDN: A hybrid P2P overlay for Efficient Query
Processing in CDN∗

Manal El Dick
Atlas Team, INRIA and LINA,
University of Nantes, France

manal.el-dick@univ-
nantes.fr

Esther Pacitti
Atlas Team, INRIA and LINA,
University of Nantes, France

esther.pacitti@univ-
nantes.fr

Bettina Kemme
McGill University, Montreal,

Quebec, Canada
kemme@cs.mcgill.ca

ABSTRACT
Many websites with a large user base, e.g., websites of non-
profit organizations, do not have the financial means to in-
stall large web-servers or use specialized content distribution
networks such as Akamai. For those websites, we have de-
veloped Flower-CDN, a locality-aware P2P based content-
distribution network (CDN) in which the users that are in-
terested in a website support the distribution of its content.
The idea is that peers keep the content they retrieve and
later serve it to other peers that are close to them in lo-
cality. Our architecture is a hybrid between structured and
unstructured networks. When a new client requests some
content from a website, a locality-aware DHT quickly finds
a peer in its neighborhood that has the content available.
Additionally, all peers in a given locality that maintain con-
tent of a particular website build an unstructured content
overlay. Within this overlay, peers gossip information about
their content allowing the system to maintain accurate in-
formation despite churn. In our performance evaluation, we
compare Flower-CDN with an existing P2P-CDN strictly
based on DHT and not locality aware. Flower-CDN reduces
lookup latency by a factor of 9 and transfer distance by a
factor of 2. We also show that Flower-CDN’s gossip has low
overhead and can be adjusted according to hit ratio require-
ments and bandwidth availability.

1. INTRODUCTION
Content Distribution Networks (CDN) such as Akamai [1],
are well-known technologies for distributing the content of
web-servers to large audiences. The main mechanism is
to replicate requested content at dedicated and widely dis-
persed machines. By efficiently serving clients’ queries, these
technologies decrease the workload on the original web-servers,
reduce bandwidth costs, and keep the client’s perceived la-
tency low.

∗Work partially funded by the French ANR DataRing
project.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

Unfortunately, non-profit websites (e.g., related to charities,
social organizations, scientific associations, etc.) often can-
not afford the expenses of deploying and administrating a
dedicated CDN infrastructure. Nevertheless, such websites
often attract substantial loads, either due to their interna-
tional audience or by being referenced by other popular web-
sites. Thus, their under-provisioned servers become easily
overloaded with queries and may fail to maintain an accept-
able quality of service to their clients. In this paper, we pro-
pose to use peer-to-peer (P2P) technology to build a CDN
infrastructure that aims at serving popular websites that
cannot afford their own proprietary infrastructure. Peer-
to-peer (P2P) technology is an attractive alternative for re-
distributing content at large scale with low costs, by ex-
ploiting the underutilized resources of clients. In fact, many
projects have demonstrated that users are willing to con-
tribute to websites with content they are interested in (e.g.,
fund-raising and editing in Wikipedia, sharing idle computer
resources in SETI@home, etc.).
Any CDN has to address four main issues: response time,
scalability, hit ratio and liveness. By replicating the content
across the CDN, the CDN can serve many client requests
leading to a high hit ratio and availability despite individ-
ual node failures. Additionally, response times are short if
efficient routing algorithms find replicas close to the client.
Finally, scalability is achieved by increasing the CDN size
as the load increases, thus always providing a balanced net-
work load. When designing such a CDN over a P2P infras-
tructure, particular challenges arise because the peers are
autonomous and volunteer participants. Additionally churn
rate is much higher than in dedicated CDN infrastructures.
In many existing P2P solutions, the queried content is repli-
cated on demand at requesting peers, resulting in a random
replica placement spread over the P2P overlay (e.g., [17,
13]). Different from on demand replication, some approaches
(e.g., [14]) increase the degree of replication by replicating
content among peer neighborhood and thus forcing peers to
store content they may not be interested in. Independently
of who stored replicas, in most existing approaches [10, 14,
17, 18, 19], incoming queries are routed without consider-
ing whether the content requested in the query is available
in a peer that is physically close to the requestor. In con-
trast, traditional CDN generally consider locality-awareness
to take advantage of close-by replicas as it has the poten-
tial to dramatically reduce response times [7] as well as
bandwidth consumption and thus increase system scalabil-
ity. Therefore, we make locality-awareness a top priority in

427

the development of a P2P CDN.
Furthermore, the particular properties of P2P require the
directory service used to locate content to be carefully dis-
tributed over participant peers because no participant peer
should be subject to overload nor should the system expose
a single-point of failure or bottleneck. Many existing P2P
approaches do not sufficiently address this issue: they ei-
ther rely on blind searches which induce heavy traffic and
limit scalability (e.g., [19]), or they centralize the directory
at a single peer, in particular the web-server, which becomes
quickly overloaded (e.g., [17]). In contrast, we believe that
the directory service itself should be implemented in a P2P
manner in order to face churn and assure liveness.
Considering all these issues, we propose a locality and inter-
est aware P2P CDN, Flower-CDN, that enables any under-
provisioned website to efficiently distribute its content, with
the help of the non-profit community interested in its con-
tent. To handle this, Flower-CDN combines efficient DHT
indexing to provide fast lookup with gossip robustness for
replica distribution and self-monitoring. The basic idea is to
let each peer be connected to a content overlay which repre-
sents a cluster of peers that have the same interest and reside
close to each other. Peers in a content overlay keep content
of a certain website. A peer posing a query can find a close-
by content overlay through a special directory service, called
D-ring, which implements a locality-aware DHT. Content
overlays and their connection to the D-ring are maintained
via low-cost gossip techniques among participant peers.
More precisely, this paper makes the following contributions:

• We propose a scalable P2P directory service D-ring.
Each directory peer of D-ring indexes the content of
a specific content overlay. D-ring is based on novel
locality- and interest-aware key management and rout-
ing services. It can be easily integrated into existing
DHT overlays.

• We show how each directory peer interacts with its
related content overlay and how the content overlay
is managed by the use of gossip protocols. Our gos-
sip mechanisms allow directory peers and participant
peers to maintain accurate information despite dynamic
changes and failures.

• We present an efficient query routing algorithm for
Flower-CDN that first seeks for some content in the
content overlay related to the locality of the requestor.
If this search is unsuccessful, the query is forwarded to
other localities or falls back to the web-server.

• Finally, we present a detailed performance evaluation.
Our experimental results show that Flower-CDN can
reduce lookup latency by a factor of 9 and the trans-
fer distance by a factor of 2, compared to an existing
P2P CDN (Squirrel [10]). Moreover, Flower-CDN in-
curs very acceptable overhead in terms of gossip band-
width, which can also be tuned according to hit ratio
requirements and bandwidth availability.

The rest of this paper is structured as follows. Section 2 gives
an overview of Flower-CDN and defines the main terms used
in the paper. Section 3 describes D-ring. It introduces its
locality- and interest-aware key management, and presents

its query routing service. Section 4 presents the details of
the content overlay of Flower-CDN. Section 5 discusses how
Flower-CDN is managed in the presence of churn and fail-
ures. Section 6 presents a detailed simulation-based perfor-
mance analysis. Section 7 discusses related work. Finally,
Section 8 concludes the paper.

2. OVERVIEW OF FLOWER-CDN
In this section, we present a general overview of Flower-
CDN, introducing the main terms and assumptions used in
the remainder of the paper.
Flower-CDN is designed to support a set W of websites,
each of them having its own set of web-pages and docu-
ments. Flower-CDN exploits the willingness of the clients of
a website to cooperate in order to redistribute the content
they are interested in. A website ws is added to W on either
the website’s own initiative or some of its clients’ initiative.
In order to implement locality-awareness in Flower-CDN,
we assume that the Internet is split into network localities,
which can be provided by an existing technique [15]. A peer
measures its RTT to a set of well-known landmarks spread
across the network; and orders them by increasing latency.
Physically close peers are likely to have the same landmark
ordering. Thus, each possible ordering identifies a locality
loc: 1 ≤ loc ≤ k with k the total number of localities.
Participant peers belonging to the same locality loc and
interested in the same website ws build together an over-
lay noted content-overlay(ws, loc), using gossip techniques.
These peers, called content peers and noted cws,loc, store,
manage and exchange content of ws (e.g., web pages, docu-
ments), thus considerably relieving the server of ws from its
query load1. Flower-CDN charges one peer of each content-
overlay(ws, loc), the role of a directory peer (noted dws,loc):
dws,loc knows about all content peers cws,loc and keeps in-
formation about their stored content.
Directory peers are also embedded in a structured overlay
called D-ring based on a Distributed Hash Table (DHT), to
support queries coming from new clients, that request ob-
jects of content provided by any of the websites in W (e.g.,
query for web page with given URL). DHTs are a special
form of overlay over a set of peers that enables queries to be
routed quickly to their destination peers. In our context, we
use D-ring to support queries coming from new clients, that
request objects of content provided by any of the websites in
W (e.g., query for web page with given URL). Furthermore,
directory peers of the same website ws may collaborate to
provide content of ws.
In summary, Flower-CDN relies on a hybrid architecture
consisting of a set of independent content overlays linked via
one directory overlay (i.e., D-ring), as illustrated in Fig. 1.
Instead of querying server ws, a new client located in loc,
submits its query to D-ring and gets directed to the di-
rectory peer in charge of ws wrt. loc i.e., dws,loc. Then,
dws,loc tries to resolve the query while relying on its content
overlay or some other content overlays of ws. The query
is hence redirected to some content peer cws,loc that holds
the requested object; cws,loc serves the query, i.e., it di-
rectly transfers the object to the client. Then, the client

1There must also be some consistency management in place
in case the website changes the content. Consistency mech-
anisms developed for web-caches could be applied. Such
consistency policies are, however, out of the scope of this
paper.

428

Figure 1: Flower-CDN architecture with websites α
and β and four localities

Figure 2: The peer ID structure in D-ring

can join content-overlay(ws, loc) as a content peer cws,loc,
if it is willing to contribute storage resources wrt. content
of ws. For further queries, cws,loc searches directly in its
content-overlay(ws, loc) instead of relying on D-ring.
This means that in Flower-CDN all peers that are willing to
support a certain website ws ∈W become part of one of the
content-overlays of ws helping ws to distribute its content.
We denote this set of peers as Pws:
∀ws ∈W : Pws =

⋃
0≤loc<k content-overlay(ws,loc)

3. D-RING MODEL
In this section, we present the P2P directory overlay, D-
ring, which ensures reliable access to Flower-CDN. D-ring
is a structured overlay with a novel DHT mechanism, that
leverages interests and network localities of peers to con-
struct the overlay and efficiently route queries. We describe
the different aspects of D-ring: key management, routing
service, directory structure and finally query processing.

3.1 Key Management
In order to ensure a fast lookup, D-Ring can be integrated
into any existing structured overlay based on a standard
DHT (e.g., Chord [20], Pastry [16]). For each website ws ∈
W , the directory overlay enables k participant peers from
Pws, where k is the number of localities, to join as directory
peers for ws: each locality loc is covered by a directory peer
dws,loc, to empower locality-aware redirection of queries. In
the example of Figure 1, Flower-CDN covers 2 websites α
and β and 4 localities, i.e., k = 4. Thus, both websites α
and β have 4 directory peers participating in D-ring.
In DHT-based systems, peer identifiers (noted ID) are cho-

sen from an identifier space S = [1 · · 2m − 1]; where m is
the ID length in bits. Based on these identifiers data place-
ment is then typically determined by a hash function which
maps data identifiers to peer identifiers. That is, every ob-
ject receives a key, and the peer with the ID closest to the
object key is responsible for storing the object or pointers
to the locations of object replicas. When a client looks for
an object with a given key, it now contacts any peer in the
DHT and the request is routed through the DHT until the
peer with the ID closest to the object key is found. This
routing service takes typically in the order of log(n) hops
where n is the number of peers in the DHT.
In Flower-CDN, we do not want to map data items to peers
but we want that a query for website ws posed by a peer
in locality loc quickly finds the directory peer dws,loc. To
achieve this and exploit the existing DHT infrastructure, we
only have to assign a directory peer a very specific peer ID,
namely an identifier based on the website and locality it rep-
resents. As shown in Figure 2, the m bits of a peer ID are
split into 2 segments, a website ID and a locality ID :

• locality ID:

– identifier of the locality to which the directory
peer belongs. It is expressed using the lowest bit-
segment of length m1.

– Each locality is mapped to an ID between [0 · · k − 1];
m1 should be chosen such that 2m1 ≥ k.

• website ID:

– identifier of the website which the directory peer
serves. It is expressed using the highest bit-segment
of length m2 = (m−m1).

– The website ID related to ws is obtained by hash-
ing the url of ws (noted hash(ws)). The hash
function assigns identifiers to websites from the
subspace S′ = [1 · · 2m2 − 1].

Directory peers in the same locality have the same locality
ID. Moreover, directory peers for the same website have the
same website ID; they have successive peer IDs and therefore
are neighbors on D-ring. As shown in Figure 1, for website
β, dβ,0 is succeeded by dβ,1, then dβ,2, etc. The same order
applies to website α. If a query for an object of website ws
is now submitted to D-Ring from locality loc, it is not the
object key that is the input for the DHT routing service.
Instead the search key is the concatenation of ws and loc.
The underlying DHT infrastructure will then find dws,loc as
its peer ID exactly matches the search key.
An example is given in Figure 3 with k = 8, W = {α, β}, 4

bits for the website ID and 3 bits for the locality ID. With
hash(α) = 0, the website ID related to α is 0. To obtain
the range of peer IDs assigned to the directory peers of α,
we vary the locality ID from 0 and 7 (i.e., (k − 1)) and
concatenate it to the website ID of α. Thus, peer IDs and
search keys for α range between 0 and 7. Similarly, with
hash(β) = 15, keys for β range between 240 and 247.

3.2 Routing Service
In its stable structure, D-ring has a directory peer for each
tuple (website, locality). A message targeting the website

429

Figure 3: D-ring distribution of keys given that k = 8
and W = {α, β}.

ws and the locality loc is routed using the key composed of
the website ID of ws and the locality ID of loc. Thus, the
message is delivered by the DHT key-based routing service
to its destination, i.e., to the directory peer in charge. How-
ever, the targeted directory dws,loc peer may be momentally
unavailable or it may not have joined D-ring yet. In such
cases, another directory peer of the same website ws should
handle the message. Actually, the DHT key-based routing
service redirects the message to the directory peer that has
an ID that is numerically closest to dws,loc. Since the direc-
tory peers of ws are neighbors on the identifier circle, it’s
highly probable that the message reaches one of them, but it
might be redirected to a directory peer of another website.
Some existing DHT overlays (e.g, Chord) guarantee D-ring
redirection, while others (e.g., Pastry) need to be adapted.
To ensure the appropriate redirection in the latter, we apply
a slight modification to their DHT routing service, in order
to ensure that the message is routed towards a directory
peer belonging to the same website ws as dws,loc.
To clearly show the modifications implied by D-ring, we first
define the key-based routing API for structured overlays,
based on [5]. The operation route(key,msg) is used to
send/forward a message msg towards the peer with the ID
equal or numerically closest to key. Algorithm 1 shows the
DHT standard route, which is run at each DHT peer p that
receives msg. p performs a local lookup using its routing ta-
ble. If it determines it is the closest peer, then the message
has reached its destination and is delivered. Otherwise, p
selects among the peers it knows of the peer p′ whose ID is
the closest to the key. To use D-Ring on top of an existing

Algorithm 1 - DHT Standard route(key,msg)

// find closest peer to key, p′, from routing table or itself
Peer p′ ← local lookup(key)
if p == p′ then

deliver msg
else

forward(key,msg) to p′

end if

structured overlay, 2 steps are added to the standard route;
D-ring version of route is depicted in Algorithm 2. Once
the normal local lookup is performed at peer p, the website

ID of p′ is checked against the website ID of key. Then,
an additional conditional local lookup may be launched:
it searches for the numerically closest peer to key with the
same website ID as key, that p knows about (p′ may have a
different locality ID than key). If no such peer is found, the
previously found p′ is kept as a result.

Algorithm 2 - D-ring route(key,msg)

// find closest peer to key, p′, from routing table or itself
Peer p′ ← local lookup(key);
if p == p′ then

deliver msg
else if p′.websiteID ! = key.websiteID then
// find closest peer to key, p′, with equal websiteID
p′ ← conditional local lookup(key, key.websiteID);

end if
forward(key,msg) to p′;

3.3 Directory Peer Structure
To handle submitted queries, a directory peer dws,loci uses
two local data structures:

1. Directory-index (ws, loci): a directory that indexes the
content of ws stored in content-overlay(ws, loci). The
directory contains an entry for each content peer cws,loci ,
consisting of 3 fields:

• information about the address of cws,loci (e.g., IP
address)

• age field useful for failure and leave detection (pre-
sented in Sec. 4.2)

• list of object identifiers (e.g., hash(url)) describ-
ing the content held by cws,loci

We say that dws,loci has a complete view of its content-
overlay(ws, loci).

2. A small set of Directory-summaries(ws, locj): these
are summaries of directory-indexes maintained by other
directory peers dws,locj (i 6= j). dws,locj refers to any
other directory peer of ws that dws,loci knows via its
routing table. Directory-summary(ws, locj) is repre-
sented by a Bloom filter, in a similar way as has been
done for cache summaries in [9], using the identifiers
of the objects listed in directory-index(ws, locj).

Figure 4 shows a simplified D-ring and focuses on the di-
rectory peer dβ,1 and three content peers for (β, 1), namely
A, B and C. dβ,1 maintains directory-index(β, 1) that lists,
for each peer in content-overlay(β, 1), their objects (e.g., A
holds objects x and y which are initially provided by website
β). Moreover, dβ,1 stores directory summaries received from
its direct neighbors i.e., dβ,0 and dβ,2.

3.4 Query Processing
In the following, we refer by ows to an object of the content
of ws and by query(ows) to the query requesting ows.
When a new client submits query(ows), D-ring routing ser-
vice delivers query(ows) to the directory peer in charge of ws
in the client’s locality loci: the routed key is generated using

430

Figure 4: Query submitted by F , a new client of β
in locality loc = 1

Algorithm 3 - process(query(ows)) at dws,loci

cws,loci ← directory-index(ws, loci).lookup(ows)
if cws,loci != null and cws,loci is alive then

redirect query(ows) to cws,loci ;
else
dws,locj ← directory-summaries.lookup(ows);
if dws,locj != null and dws,locj is alive then

redirect query(ows) to dws,locj ;
else

redirect query(ows) to ws
end if

end if

loci and ws, as described in Sec. 3.1. Upon the reception
of query(ows), dws,loci processes it as shown in Algorithm 3.
dws,loci searches first its directory index for the requested ob-
ject ows. If directory-index(ws, loci) shows that ows is stored
by some content peer cws,loci , dws,loci redirects query(ows)
to cws,loci after checking its aliveness. Otherwise, dws,loci

queries the directory summaries, to check if some dws,locj

might have the requested object in its directory index. In
case dws,locj is found, query(ows) is redirected to dws,locj

which proceeds with process(query(ows)). When no satis-
fying directory or content peer is found, query(ows) is redi-
rected to the website ws.
In the example of Figure 4, let us consider a client F of
website β that submits its query q to D-ring: q requests β’s
object x. Assuming that client F is located in loc = 1, q
is forwarded to the peer dβ,1 which searches its directory
index for x. Then, dβ,1 redirects q to content peer A or C,
which hold a copy of the requested object x and thus can
serve the query. When the client F requests x′, which is
not contained by any peer in content-overlay(β, 1), dβ,1 first
checks its directory-summaries for, (β, 0) and (β, 2) to see if
they might have x′ in their directory index. If it appears so,
dβ,1 redirects q accordingly to either dβ,0 or dβ,2. Otherwise,
dβ,1 redirects q to the website β.
After processing q, the client F becomes a content peer cβ,1.
dβ,1 optimistically adds a new entry in its directory index:
peer F with its requested object, i.e., x or x′, and age zero.
The next section explains how dβ,1 checks for the validity of
its directory entries.
Once a client has become a content peer cws,loc, any subse-
quent queries that the client poses for website ws directly use
the content − overlay(ws, loc) instead of the D-ring (more
details in Sec.4). Thus, D-ring only serves as a first access
to content overlays, letting a new peer located in loc and

interested in ws find its content− overlay(ws, loc).

4. CONTENT OVERLAY MODEL
In this section, we describe how the content overlays are
constructed and maintained via gossip algorithms, and how
they interact with D-ring to process queries.

4.1 Construction
Recall that a content-overlay(ws, loc) consists of one direc-
tory peer dws,loc and several content peers cws,loc, all of
which reside in the same locality loc and are interested in
the content provided by ws.
Content overlays are dynamically built as follows. dws,loc is
the starting point of its content-overlay(ws, loc). After the
directory peer is established, subsequent peers in loc wish-
ing to support ws, join the content overlay as content peers
cws,loc. In practice, this occurs when a peer p performs its
first search for an object ows of ws. Therefore, p first ac-
cesses dws,loc, using the key-based routing service described
in Sec. 3.2. Then, after being served, p keeps its copy of ows
for subsequent requests; p thus becomes content peer cws,loc
and is added to directory-index(ws, loci).
As a client of ws, a content peer cws,loc may wish to access
objects of ws other than those available in its local stor-
age. To avoid having all subsequent queries of content peers
be directed to the directory peer, content peers exchange,
within their overlay, summaries of their stored content of
ws (more details are given in Sec. 4.2). Hence, cws,loc can
search the summaries of its content-overlay(ws, loc) to see
where a copy of its requested object might be stored.
By serving queries, Flower-CDN enables progressive replica-
tion of an object of W throughout content-overlay(ws, loc),
based on its popularity in locality loc. Therefore, at the
redirection of queries for ows by directory peer dws,loc, the
load would tend to be spread rather evenly accross the set
of content peers cws,loc holding copies of ows.

4.2 Gossip-based Management
Gossip-style communication is used throughout a content
overlay to disseminate summaries and their updates in an
epidemic manner [6]. Peers also gossip to discover new mem-
bers in their overlay and to detect failed ones. We chose
gossip-style communication for 3 reasons. First, it enables
robust self-monitoring of clusters: each peer is in charge of
monitoring a few random others, sharing the monitoring cost
and thus ensuring load fairness [21]. Second, it eases infor-
mation dissemination, such that peers discover new content
and new peers providing some content [8]. Finally, it is easy
to deploy, robust and resilient to failure.
Basically, gossip proceeds as follows: a peer pi knows a group
of other peers or contacts, which are maintained in a list
called pi’s view. Periodically (with a gossip period noted
Tgossip), pi selects a contact pj from its view to gossip: pi
sends its information to pj and receives back other infor-
mation from pj . The gossip algorithm used in Flower-CDN
is inspired by gossip-based approaches for P2P membership
management, such as [21, 11].
Each cws,loc manages locally the following data structures:

1. content-list(cws,loc): a list of the object identifiers of
the content currently held by cws,loc. The list is used
during gossip exchanges in two ways:

431

• current content-summary(cws,loc): a summary of
the current content-list(cws,loc) built using a Bloom
filter.

• ∆list(cws,loc): a sublist that reflects the new changes
in the list (i.e., object deletion or insertion) wrt.
a threshold of changes (detailed later in this sec-
tion)

2. view(cws,loc): a partial view of content-overlay(ws, loc),
which contains a fixed number Vgossip of entries, each
one referring to some other c′ws,loc. A view entry re-
ferring to a contact c′ws,loc contains 3 fields:

• information about the address of c′ws,loc (e.g., IP
address)

• age: numeric field that denotes the age of the
entry since the moment it was created (not an
indication of c′ws,loc’s lifetime)

• content-summary(c′ws,loc)

Whenever cws,loc gossips with c′ws,loc, cws,loc updates the en-
try related to c′ws,loc in view(cws,loc) as follows: the age of
c′ws,loc is set to zero, and a current content-summary(c′ws,loc)
is received from c′ws,loc; thus the age zero refers to the most
recent entry status. Periodically (i.e., with period Tgossip),
cws,loc increments by 1 the age of all its view entries. Thus,
a high age reflects that cws,loc has not heard recently about
c′ws,loc in order to refresh its view entry.
When cws,loc joins content-overlay(ws, loc), view(cws,loc) is
initialized upon its first contact with a peer from its con-
tent overlay (i.e., another c′ws,loc or dws,loc). In Figure 4,
the new client F that has contacted dβ,1 for a query, may
initialize its view in two different ways. In case its query is
served from some cβ,1 (e.g., A), F ’s view is initialized from
a subset of A’s view. In all other cases (i.e., query served
from ws or content-overlay(β, 2)), it is dβ,1 that provides F
with a subset of its view, i.e., its directory-index(β, 1); then,
F ’s initial view will not have content summaries but will
progressively fill them via gossip exchanges.
The gossip behavior of each content peer cws,loc is illustrated
in Algorithm 4: the active behavior describes how cws,loc ini-
tiates a periodic gossip exchange, while the passive behavior
shows how cws,loc reacts to a gossip exchange initiated by
some other content peer c′′ws,loc. For simplicity, we refer to
view(cws,loc) in the algorithm by view.
The active behavior is launched after each time interval
Tgossip. After incrementing the age of its view entries, cws,loc
selects from its view: (1) c′ws,loc, the oldest contact via se-
lect oldest() and (2) viewSubset, a random susbet of Lgossip
view entries (0 < Lgossip ≤ Vgossip) via select subset().
Then, cws,loc sends to c′ws,loc gossipMsg, a message that
contains viewSubset and a current content-summary(cws,loc).
cws,loc receives in exchange, gossipMsg′ containing similar
information from c′ws,loc; cws,loc creates viewEntry, a view
entry related to c′ws,loc, with the age 0 and the current sum-
mary of c′ws,loc. The procedure merge() collects in a buffer
all the entries from both the local view and the received
information from c′ws,loc, and discards the duplicates: if 2
entries related to the same contact exist, only the instance
with the smallest age value is kept. Then, the procedure
select recent() selects the most recent Vgossip entries from
the buffer i.e., the ones with the smallest age values, in order

Algorithm 4 Gossip behavior of cws,loc

// active behavior
loop

wait(Tgossip)
view. increment age()
c′ws,loc ← view.select oldest()
viewSubset ← view.select subset()
gossipMsg ← 〈content-summary(cws,loc), viewSubset〉
send gossipMsg to c′ws,loc
receive gossipMsg′ from c′ws,loc
viewEntry ← 〈c′ws,loc, 0, content-summary(c′ws,loc)〉
buffer ← merge(view, gossipMsg′.viewSubset,
viewEntry)
view ← buffer.select recent()

end loop

// passive behavior
loop

waitGossipMessage()
receive gossipMsg′′ from c′′ws,loc
viewSubset ← view. select subset()
gossipMsg ← 〈content-summary(cws,loc), viewSubset〉
send gossipMsg to c′′ws,loc
viewEntry ← 〈c′′ws,loc, 0, content-summary(c′′ws,loc)〉
buffer ← merge(view, gossipMsg′′.viewSubset,
viewEntry)
view ← buffer.select recent()

end loop

to limit the view size to Vgossip.
The passive behavior is triggered when cws,loc receives a gos-
sip messsage containing summary and view information from
some content peer c′′ws,loc. Then, cws,loc answers by sending
back a gossip message with its own summary and view in-
formation, and updates its local view via merge() and se-
lect recent() as described previously.
Through both active and passive behaviors of Algorithm 4,
cws,loc and its gossip partner, i.e., c′′ws,loc or c′ws,loc, exchange
their current content summaries; they add new view entries
of each other in their local views or refresh the existing ones
in case they already know each other.

4.2.1 Directory Management
As a member of content-overlay(ws, loc), a directory peer
dws,loc is also involved in the overlay management. For this
purpose, each content peer cws,loc keeps track of the current
dws,loc and maintains, in its view, a special entry for dws,loc
that only contains its address and age information. cws,loc
periodically increments the age of dws,loc’s entry, as it does
with all its view entries. In every gossip exchange between
content peers, cws,loc sends its view entry related to dws,loc,
along with its gossip message. This process spreads continu-
ous updates about the directory peer throughout its content
overlay, especially to ensure failure recovery (see Sec. 5.2).

In order to update directory-index(ws, loc), content peers
cws,loc communicate with dws,loc via one-way gossip exchange,
refered to as push and depicted in Algorithm 5. Each con-
tent peer monitors the changes, i.e., object deletions and ad-
ditions, in its content-list(cws,loc) noted list for simplicity;
whenever the percentage of new changes reaches a thresh-
old, cws,loc creates ∆list to be pushed to dws,loc (via ex-

432

Algorithm 5 Push behavior of cws,loc

loop
counter ← list. count changes()
if counter ≥ threshold then

∆list← list. extract changes()
pushMsg ← 〈∆list〉
send pushMsg to dws,loc;
reset age(dws,loc)
counter ← 0

end if
end loop

tract changes()). Then, the pushing cws,loc resests to 0 its
age field of dws,loc.

Algorithm 6 Behavior of dws,loc

// active behavior
loop

wait(Tgossip)
view. increment age()

end loop

// passive behavior
loop

waitPushMessage()
receive push from cws,loc
directory-index.update(cws,loc, push.∆list)
reset age(cws,loc)

end loop

Recall that dws,loc maintains a complete view of its content
overlay which is its own directory index (see Sec. 3.3). To
monitor the liveness of its content peers, dws,loc periodically
increments the age fields of its view entries and waits for a
push message as shown in Algorithm 6. When receiving a
push message, dws,loc updates the entry related to the push-
ing cws,loc in its directory index, using ∆list.
A directory peer also has to maintain its directory sum-
maries, which are summaries of the directory-indexes of other
directory peers. A directory peer only sends a refreshed di-
rectory summary to its neighbor directory peers when the
percentage of new object identifiers (that are not reflected in
the old summary) reaches a threshold. This delayed prop-
agation is warranted as [9] has shown that directory sum-
maries do not have to be updated every time the related
directory index changes. Hence, the use of directory sum-
maries has low demand on bandwidth and memory, while
achieving a low probability of false positives.

5. DEALING WITH DYNAMICITY
In this section, we discuss how our system deals with the
dynamicity of peers wrt. failures and leaves, scale up and
change of locality .

5.1 Redirection failure
Recall that a directory peer redirects a query to some con-
tent peer that stores a copy of the requested object. How-
ever, the targeted content peer may have failed or discon-
nected resulting in a redirection failure. In such cases, the
directory peer removes the invalid directory entry and tries

another redirection destination (i.e., another content or di-
rectory peer, or the web-server), until an available copy of
the requested object is found.
Our system minimizes the number of query redirection fail-
ures, by maintaining directory indexes with recently up-
dated entries. For this purpose, we exploit a feature inherent
to P2P systems, the usage of keepalive messages, which are
periodic messages sent to check links between peers. Thus,
cws,loc regularly sends keepalive messages to dws,loc. Upon
the reception of the message dws,loc resets the age of cws,loc’s
entry in directory-index(ws, loc) to zero. Moreover, dws,loc
constantly checks the age of each directory entry and re-
moves it if its age reaches the age limit noted Tdead.

5.2 Directory failure
A directory failure occurs when the directory peer either fails
or leaves voluntarily. Normally, the DHT-based overlays re-
place the failed/departed peer, by reorganizing the DHT and
redistributing the stored data accordingly [20, 16]. However,
our system adopts its own replacement strategy, in order to
preserve the D-ring model.
A directory peer dws,loc’s replacement is done by a peer from
content-overlay(ws, loc), because these peers share the in-
terest in the same website’s content and belong to the same
locality. Thus, in Figure 4, one of peers A, B, C and D
becomes the new directory peer dβ,1 if the old one fails or
leaves voluntarily. The replacing peer is assigned the same
identifier as dβ,1, because they both belong to the same lo-
cality 1 and serve the same website β.
When a directory peer dws,loc leaves voluntarily, it selects a
content peer from its content-overlay(ws, loc) to replace it.
In Example 2, assuming that the chosen content peer is A,
the current dβ,1 transfers to A its directory; A joins D-ring
as the new dβ,1.
When a directory peer dws,loc fails, some content peers cws,loc
detect its failure while sending keepalive or push messages
(recall that content peers regularly contact their directory
peer to update it about their content cf. Sec. 4.2.1). Each
content peer that detects the failure tries to replace dws,loc
as follows: it uses the common key assigned for dws,loc and
attempts to joins D-ring via the normal join procedure of
the underlying structured overlay. If the directory position
has already been appropriated by another content peer, the
join message gets to the new dws,loc; thus the content peer
that was trying to join D-ring gets acquainted with its new
directory peer and informs other content peers while gos-
siping. The new dws,loc gradually builds its directory upon
receiving push messages. Meanwhile, dws,loc answers first
queries from its content summaries.
Subsequent to the directory replacement presented above,
existing peers of the directory overlay should be informed
to update their routing tables. For that, we rely on the sta-
bilization procedures that are normally used in structured
overlays [20, 16]. They will detect the old dws,loc’s departure
and the new dws,loc’s presence.
A directory peer should have the best performance within its
content overlay. A peer profile can be determined by charac-
teristics such as stability, bandwidth and processing capaci-
ties, etc. Thus in Flower-CDN, each cws,loc can monitor its
profile and regularly compare it to the profile of its current
directory (which can be propagated via gossip/push/keepalive
exchanges). If cws,loc has a better profile, dws,loc steps down
so that cws,loc joins D-ring in its stead.

433

5.3 Scaling up
In the basic solution of Flower-CDN, we restrict the number
of participant peers that can contribute to the system, by
limiting the size of each content overlay. This is aimed at
keeping content overlays at a manageable size, so that their
directory peers are not overloaded with the maintenance of
the overlay information. However, in this case the P2P sys-
tem may attract more participant peers than the content
overlay capacity. To address this case and warrant the ex-
tensive deployment of Flower-CDN to larger scale, Flower-
CDN may allow more than one directory peer for each tuple
(website, locality), to consecutively join D-ring. Each of
them manages its own content-overlay, resulting in several
content overlays for the same locality. To achieve this solu-
tion in practice, the peer ID shoud be extended by adding
b extra bits at the end of it (to preserve the locality and
website identification). We plan to further investigate such
scenarios in the future and we adopt the basic solution in
the current performance evaluation.

5.4 Updating Localities
Given that the underlying network dynamically changes,
participant peers might change their locality. Thus, some
peers would have to switch to another content overlay. Flower-
CDN can handle such situations as it manages failures: the
peer p that changes its locality, whether a directory or a con-
tent peer, naturally joins its new content overlay as a new
client and then updates its directory peer about its held
content. When peers from p’s previous overlay contact p
via gossip or query search, they are informed of this change
and thus remove p from their contacts as they do with dead
peers.

6. PERFORMANCE EVALUATION
We evaluate the performance of Flower-CDN through event-
driven simulation using PeerSim [3]. Our performance evalu-
ation consists mainly in quantifying the gains due to locality-
awareness in Flower-CDN. Furthermore, we evaluate the
price to be paid for achieving these gains, by examining the
trade-off between hit ratio and gossip bandwidth consump-
tion. For these purposes, we use the metrics below:

• Background traffic: the average traffic in bps expe-
rienced by a content or directory peer due to gossip
and push exchanges.

• Hit ratio: the fraction of queries satisfied from the
P2P system. Hit ratio is an indicator of the degree of
server load relief achieved, given that the fraction of
queries reflected by the hit ratio are not redirected to
the server.

• Lookup latency: the average latency taken to re-
solve a query and reach the destination that will pro-
vide the requested object (original server or content
peer). Lookup latency is an indicator of the system’s
search efficency, because it measures how fast objects
are found.

• Transfer distance: the average network distance, in
terms of latency, from the querying peer to the peer
that will provide the requested object. Used with

queries satisfied from the P2P system, the transfer dis-
tance reflects how well the system exploits the locality-
awareness in finding close results to clients.

In the following, we first argue the choice of simulation pa-
rameters, then we discuss the results. Recall that in this
paper we do not deal with cache issues such as cache expi-
ration and replacement policies, for both Flower-CDN and
Squirrel [10], an approach chosen for performance compari-
son.

6.1 Simulation Setup
PeerSim enables us to model the latency of each individ-
ual link; however, it does not provide support for simulating
bandwidth and CPU resources. Given that P2P networks
are built on top of the Internet, we generate an underlying
topology of 5000 peers connected with links of variable la-
tencies; the model inspired by BRITE [2] assigns latencies
between 10 and 500 ms. Network localities are modeled us-
ing a landmark-based technique [15]. We use k = 6 localities
which are non-uniformly populated. The simulation param-
eters are summarized in Table 1.
Given that D-ring relies on any existing structured overlay,
we choose to simulate Chord for its simplicity; we adapt its
key management and routing mechanisms as explained in
Sec.3.1, to be able to simulate the D-ring protocol.
We compare Flower-CDN with Squirrel [10], where all par-
ticipant peers are part of one structured overlay based on
a traditional DHT (i.e., Chord here). Squirrel stores for
each requested object a small directory of pointers to recent
downloaders of the object. The storing peer, which is com-
parable to our directory peer, is identified by the hash of the
object’s identifier without any locality or interest consider-
ations. In Squirrel, a query always navigates through the
DHT and then receives a pointer to a peer that potentially
has the object. We chose Squirrel because it shares some
similarities with Flower-CDN wrt. the directory structure.
This makes a comparison easier and at the same time allows
us to see the effects of locality-based content overlays and
their gossip-based management.
For our query workload we use synthetically generated data
because available web traces reflect object accesses while we
are interested in website accesses. Each website provides 500
objects which are requestable and cacheable (e.g., web page
of 10-100 KB, though we do not model object size). Our
simulation model assumes no correlation between different
website communities and applies zipf distribution for object
requests submitted to each single website [4].

Each experiment is run for 24 hours, which are mapped
to simulation time units. Experiments start with a sta-
ble D-ring: for each couple (website, locality), there is one
directory peer with an empty directory. Although we use
|W | = 100 websites in the construction of D-ring, we re-
strict the query generation to 6 websites of W . Content
overlays related to the 6 active websites, are built progres-
sively during the simulation as new clients join in. Queries
are generated with a rate of 6 queries per second, distributed
between the 6 active websites 2. For each query intended to

2We could not submit larger workloads because of the simu-
lator limitations in terms of memory constraints. However,
the chosen workload still gives us a good understanding of
the relative behavior.

434

Table 1: Simulation Parameters
Parameter Values
Latency (ms) 10-500
Nb of localities (k) 6
Nb of websites (|W |) 100
Max content-overlay size (Sco) 100
Nb of participants 2400
Nb of objects/website (nb-ob) 500
Query rate 6 queries per second
Summary size 8*nb-ob bits
Push threshold 0.1; 0.5; 0.7
View size (Vgossip) 20; 50; 70
Gossip period (Tgossip) 1 min; 30 min; 1 hour
Gossip length (Lgossip) 5; 10; 20

a given website ws, two selections are carried out: (1) a new
client or a content peer of ws is chosen from a random local-
ity as the query originator, and (2) the queried object is se-
lected, using zipf law, among ws objects. Then, new clients
become content peers and join their corresponding overlay.
When a content overlay reaches its maximum size noted Sco
(set by default to 100), no new clients may join the overlay.
With this, we avoid that the directory peer is overloaded
with the maintenance of the content overlay information. In
consequence, the content overlays of a given website evolve
at different rythms and sizes. Eventually, we should have up
to N = |W |∗k∗Sco participant peers. However, since we are
only looking at 6 active websites, N = |W | ∗ k+ (6 ∗ k ∗Sco)
which is equal to 4200 participant peers in the current con-
figuration.
We assume that a content peer has enough storage potential
to avoid replacing its content through the experiment’s du-
ration. As a peer only stores content it has requested, this
is a reasonable assumption given the usual browsing activ-
ity of individual users. In Table 1, summary size denotes
the size of the Bloom filter representing the content sum-
mary; we assume that the maximum number of objects held
by a content peer is limited by the total number of objects
provided by its website (i.e., nb-ob), thus we set summary
size according to the analysis in [9], to minimize both false
positives and storage requirements. Push threshold refers
to the percentage of new changes beyond which a content
peer launches a push exchange with its directory peer (cf.
Sec. 4.2.1). View size Vgossip and gossip period Tgossip com-
ply wih the definitions given in Sec. 4.2 while gossip length
Lgossip refers to the size of the view subset exchanged in a
gossip round. To correctly tune the gossip parameters and
adapt them to our protocol, we tested their variation in the
experiments presented in Sec. 6.2.

6.2 Trade off: Impact of gossip
The first experiments evaluates the trade-off of Flower-CDN.
Therefore, we investigate the impact of background traffic,
on the performance of Flower-CDN, by varying the gossip
parameters: gossip length (i.e., Lgossip), gossip period (i.e.,
Tgossip) and view size (i.e., Vgossip). We also varied push
threshold ; but we do not show the results which illustrate
similar performance (i.e., almost same gains and same trade-
off) for different values of push threshold (0,1; 0,5; 0,7). In
each experiment, we vary one of the 3 gossip parameters
(Lgossip, Tgossip, Vgossip) and fix the two other parameters;

Table 2: Effect of Gossip Bandwidth Variation
Lgossip Hit ratio Background BW

5 0.823 37 bps
10 0.86 74 bps
20 0.89 147 bps

(a) Varying Lgossip with (Tgossip = 30 min; Vgossip = 50)

Tgossip Hit ratio Background BW
1 min 0.94 2239 bps
30 min 0.86 74 bps
1 hour 0.81 37 bps

(b) Varying Tgossip with (Lgossip = 10; Vgossip = 50)

Vgossip Hit ratio Background BW
20 0.78 74 bps
50 0.86 74 bps
70 0.863 74 bps

(c) Varying Vgossip with (Lgossip = 10; Tgossip = 30 min)

then after 24 simulation hours, we collect the results for each
parameter value. Table 2 lists the results obtained for the
3 experiments, in terms of hit ratio and background band-
width. Due to lack of space, we do not show lookup latency
and transfer distance results which are quite unaffected by
the gossip parameters’ variation.
Table 2(a) shows the results of the variation of Lgossip.
When increasing the gossip length, more information is sent
at each gossip exchange and thus more background band-
width is consumed at each involved peer. Indeed, if Lgossip
increases from 5 to 20, the background bandwidth increases
by a factor of 4 as shown in Table 2. Yet, the increase in hit
ratio is not substancial.
Table 2(b) shows the results of the variation of Tgossip.
When increasing the gossip period, gossip exchanges are
more spaced and thus less fequent, which has a similar effect
on bandwidth consumption as the decrease of gossip length.
Background bandwidth is reduced by a factor of 60 by aug-
menting Tgossip from 1 minute to 1 hour, while the hit ratio
is decreased by 0.13.
Therefore, the choice of the 2 gossip parameters (Lgossip and
Tgossip) is a trade-off between two factors: (1) the applica-
tion requirements for hit ratio convergence speed, i.e., how
fast Flower-CDN reaches a maximal hit ratio, and (2) the
network available resources in terms of network bandwidth
availability. For relatively fast convergence, i.e., hit ratio of
0.86 within 24 hours, we could set Tgossip = 30 min and
Lgossip = 10. A peer would experience 74 bps, which is
very low bandwidth that could be sustained even by mo-
dem connections. For less demanding applications with lim-
ited bandwidth availability, we could set (Tgossip = 1 hour,
Lgossip = 10) or (Lgossip = 5, Tgossip = 30 min) resulting in
the negligible amount of 37 bps per peer.
Table 2(c) illustrates the results of the variation of Vgossip.
As shown, increasing the view size does not affect bandwidth
consumption, while the hit ratio presents a slight increase
of 0.083 when enlarging the view from 20 to 70 contacts.
In fact, a larger view size only requires more storage space
but does not affect the amount of information exchanged
between content peers.

For the rest of the simulation, we set Tgossip = 30 min,
Lgossip = 10 and Vgossip = 50, because this setting provides

435

Figure 5: Trade off between hit ratio and bandwidth
in Flower-CDN

good performance with an acceptable overhead in terms of
background traffic (i.e., on average 74 bps per peer). How-
ever, we believe that different query workloads and churn
rates may influence the results for Tgossip and Lgossip which
should be tuned accordingly. To conclude, we show in Fig-
ure 5 the variation of background traffic and hit ratio with
time, for the setting chosen above. The hit ratio keeps on
increasing with time, given that copies of queried content
are progressively spread into the different content overlays
as more queries are generated and thus more content peers
are served. While the hit ratio continues to improve, the
background traffic stabilizes at 74 bps after 5 hours.

6.3 Hit ratio
The following results compare Squirrel and Flower-CDN wrt.
hit ratio. Figure 6 shows that the hit ratio eventually con-
verges to 1 for both Squirrel and Flower-CDN, but conver-
gence takes longer for Flower-CDN given that the search
space is partitioned into content overlays. In fact, after 24
hours, the hit ratio of Flower-CDN is less than that of Squir-
rel by 13%. This difference can be justified by the follow-
ing. Once a copy of an object ows is stored in Squirrel, a
subsequent query for ows searches all the overlay and even-
tually finds it in case of a stable environment. In compari-
son, Flower-CDN restricts the search for ows in the targeted
content-overlay(ws, loci) wrt. locality of the client (i.e., loci)
as well as content-overlay(ws, locj) where dws,locj is a direct
neighbor of dws,loci on D-ring (guided by the directory sum-
maries as explained in Sec. 3.3), in order to achieve locality-
awareness. Moreover, an object ows becomes available in
content-overlay(ws, loc) only after a peer from the overlay
has submitted a query for ows. Thus, once a copy of ows
is available in each content-overlay, Flower-CDN achieves a
hit ratio similar to Squirrel wrt. ows.
In general, a smaller hit ratio means less queries are served
from the P2P and instead go to the server. This is not bad
as long as the server is not overloaded. Furthermore, as we
will see in the next section, Squirrel achieves the better hit
ratio by using peers as content providers that are far away
from the requester. In practice, it might be faster to retrieve
requested objects from the server than a far away peer.

6.4 Locality-awareness
In this set of experiments, we evaluate the gains due to
locality-awareness in Flower-CDN, by measuring lookup la-

Figure 6: Comparing hit ratio in Flower-CDN and
Squirrel

tency and transfer distance. Again we compare with Squirrel
which does not leverage locality-awareness.
The first experiment, illustrated in Figure 7, measures the
lookup latency. Figure 7(a) shows the variation of the aver-
age lookup latency of a query with time: the lookup latency
starts by decreasing and stabilizes around 120 ms shortly
after the system warms up (i.e., less than 5 hours in this
experiment). Figure 7(b) shows the latency distribution of
queries for both solutions: 87% of our queries are resolved
within 150 ms while 61 % of Squirrel’s queries take more
than 1050 ms. In Flower-CDN, only first queries of new par-
ticipants have to go through D-ring and result in long lookup
latencies. Afterwards, queries are resolved within the local
content overlay, achieving very short delays. In contrast,
Squirrel routes every single query through the DHT. Thus,
we conclude that the locality-aware hybrid overlay of Flower-
CDN performes very well in providing efficient lookup.
The second experiment focuses on transfer distance. We
are interested in this metric because it has a significant im-
pact on network usage and object download speed which
affects response times perceived by users. At the underly-
ing network level, higher distances generally involve more
intermediate links and nodes to carry the traffic, which con-
tributes to the aggregate network utilization and may over-
laod the network. Furthermore, additional delays are in-
troduced by the extra stages traversed by the data, due to
acknowledgments and retransmissions at each visited node,
etc. Figure 8(a) shows the variation of the average transfer
distance of a query with time: the transfer distance is high
at first when object transfers (i.e., downloads) are done via
the original servers. After the warm-up period the transfer
distance drops significantly to 80 ms when many transfers
start to be performed within the same locality. Figure 8(b)
shows the transfer distance distribution of queries for both
solutions: 59 % of our queries are served from a distance
within 100 ms compared to 17% of Squirrel’s queries. Thus,
Flower-CDN provides excellent results by reducing the av-
erage tranfer distance by a factor of 2 in comparison with
Squirrel. Flower-CDN ensures data transfers over short dis-
tances, which limits the network load and reduces the re-
sponse times perceived by users.

6.5 Discussion
We learnt two main lessons through our experiments. First,
the usage of gossip when confined in content overlays ap-

436

(a) Lookup latency variation in Flower-CDN

(b) Lookup latency distribution in Flower-CDN and Squir-
rel

Figure 7: Lookup latency

pears to be quite efficient with an acceptable overhead in
terms of bandwidth consumption. Moreover, the bandwidth
overhead could be adapted to the available network resources
by tuning the gossip parameters, while respecting hit ra-
tio requirements. Second, combining structured and gossip-
based overlays with locality-aware considerations proved to
be quite performing especially in performing fast searches
(i.e., low lookup latency) and finding close-by results (i.e.,
low transfer distance). In Flower-CDN, D-Ring is only used
to provide a first reliable access, for new participant peers
wrt. a content overlay. Afterwards, they become part of this
content overlay and direct subsequent queries directly to the
content-overlay instead of D-ring. In contrast, Squirrel re-
lies on the DHT-based overlay for every single query leading
to high lookup latencies. Furthermore, Squirrel’s DHT con-
tains all peers while D-ring only contains the subset of direc-
tory peers. Thus, D-ring is smaller and therefore, routing is
faster than in Squirrel. Moreover, although not measured in
our experiments, the high lookup rates very likely also lead
to higher loads on DHT participants.

7. RELATED WORK
Several approaches exist that can be used to store web con-
tent on peer nodes. Many of these approaches rely on DHT
to achieve fast lookup. Built over Pastry, Squirrel [10] pro-
poses two strategies to be applied for organization-wide net-
works. The first strategy (home-store) replicates web ob-
jects at peers with ID numerically closest to the hash of the
URL of the object. Thus, queries find the peer that has the

(a) Transfer distance variation in Flower-CDN

(b) Lookup latency distribution in Flower-CDN and Squir-
rel

Figure 8: Transfer distance

object by navigating through the DHT. To deal with highly
popular objects, object replicas are progressively put along
neighbors as the number of requests increases. The second
strategy (directory) stores at the peer identified by the hash
of the object’s URL a small directory of pointers to recent
downloaders of the object. In this case, a query first navi-
gates through the DHT and then receives a pointer to a peer
that potentially has the object. PoPCache [14] proposes an
approach similar to the home-store strategy while refining
the replication technique along neighbors and computing the
number of replicas per object as a function of its popular-
ity. Backslash [18] applies similar strategies as Squirrel by
inserting an object replica or its related directory at peers
identified by the DHT. However, there are two main draw-
backs in the DHT-based approaches described above. First,
unless using a locality-aware overlay combined with proac-
tive replication, they serve requests from random physical
locations, which may deteriorate the user-perceived latency
and consume considerable network resources. In contrast,
Flower-CDN relies on a locality-aware directory that directs
each query according to the physical location of the client.
Second, the DHT-based approaches force the peers to store
objects that they have not requested by themselves, while
our approach exploits the interests of clients.
Proofs [19] uses an ustructured overlay in which peers’ neigh-
borhoods are continuously changing. This provides each
peer with a random view of the system for each search op-
eration. Peers keep their requested objects and can then
provide them to other participants. To locate one of the

437

object replicas, a query is flooded to a random subset of
neighbors with a fixed time-to-live (TTL) i.e., the max num-
ber of hops. However, searches for not-so popular objects
induce heavy traffic overheads and high user-perceived la-
tency, while Flower-CDN can locate any object within a
bounded number of hops. Moreover, neither the overlay nor
the search incorporate any information about the underly-
ing network topology to forward queries to close results.
OLP [17] adopts a hybrid architecture where the website
plays the role of a super-peer: it maintains a directory of
peers to which its objects have been transferred in the past
and manages the redirection of queries. To avoid redirec-
tion failures in a P2P dynamic environment, OLP models
the object lifetime and proposes a strategy that guides the
website’s selection for peers (i.e., to choose the peer to which
the query should be redirected). Compared to Flower-CDN
where the P2P network shares the redirection workload with
the server, the redirection in OLP may overload the server in
case of intense flash crowds. Moreover, redirection in OLP
does not take into account the physical locations of object
replicas. CoopNet [13] also uses a hybrid architecture rooted
at the web-server. After receiving a request, the web-server
sends a list of nearby peers to the client. CoopNet tries
to avoid the server redirection by creating small groups of
clients. However, it does not elaborate a well-defined and
decentralized structure to support searches within groups.
Moreover, CoopNet does not deal with dynamic aspects such
as detection of peer failures and leaves.
A two-layered overlay has also been used in [12], although
neither in the context of caching or locality awareness. The
authors build a DHT, where each node is a cluster of peers,
whereby the cluster itself is again structured as a DHT.

8. CONCLUSION
In this paper, we proposed Flower-CDN, an interest- and
locality-aware P2P CDN, that enables any under-provisioned
website to efficiently distribute its content, with the help of
the community interested in its content. Flower-CDN com-
bines efficient DHT indexing to provide fast lookup with gos-
sip robustness for replica distribution and self-monitoring.
The basic idea is to exploit peer interests and localities in
order to cluster participant peers in content overlays and to
build a P2P directory service via D-ring. D-ring relies on
a novel DHT mechanism that can be easily integrated into
existing structured overlays. We proposed to use gossip-
based algorithms to spread accurate information through
content overlays and to robustly maintain D-ring and con-
tent overlays in face of churn. Through simulation exper-
iments, Flower-CDN proved to be quite performing espe-
cially in performing fast searches and finding close-by re-
sults. Furthermore, gossip incured acceptable overhead in
terms of bandwidth consumption, which could be adapted to
the available network resources and hit ratio requirements.
We are pursuing this work in several directions. We are
empirically analysing the behavior of Flower-CDN in pres-
ence of churn. We are also investigating the scalabilty of
a content overlay by increasing the number of its directory
peers. Finally, we plan to explore consistency aspects, in
particular, cache expiration and replacement policies.

9. ACKNOWLEDGMENTS
We would like to thank Anne-Marie Kermarrec, Davide Frey
and Vincent Leroy for their insightful discussions.

10. REFERENCES
[1] Akamai. http://www.akamai.com.

[2] Brite. http://www.cs.bu.edu/brite/.

[3] Peersim p2p simulator.
http://www.peersim.sourceforge.net.

[4] L. Breslau, Pei Cao, Li Fan, G. Phillips, and
S. Shenker. Web Caching and Zipf-like Distributions:
Evidence and Implications. In INFOCOM, 1999.

[5] F. Dabek, B. Zhao, P. Druschel, and J. Kubiatowiczet.
Towards a common api for structured P2P overlays. In
IPTPS, 2003.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In PODC, 1987.

[7] M. El Dick, V. Martins, and E. Pacitti. A
topology-aware approach for distributed data
reconciliation in P2P networks. In Euro-Par, 2007.

[8] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulieacute. Epidemic information
dissemination in distributed systems. IEEE Computer,
37(5), 2004.

[9] Li Fan, Pei Cao, J. Almeida, and A. Z. Broder.
Summary cache: A scalable wide-area web cache
sharing protocol. In SIGCOMM, 1998.

[10] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel:
a decentralized P2P web cache. In PODC, 2002.

[11] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
experimental evaluation of unstructured gossip-based
implementations. In Middleware, 2004.

[12] N. Ntarmos and P. Triantafillou. Aesop:
Altruism-endowed self-organizing peers. In DBISP2P,
2004.

[13] V. N. Padmanabhan and K. Sripanidkulchai. The case
for cooperative networking. In IPTPS, 2002.

[14] W. Rao, Lei Chen, Ada Wai-Chee Fu, and YingYi Bu.
Optimal proactive caching in P2P network: analysis
and application. In CIKM, 2007.

[15] S. Ratnasamy, M. Handley, R. M. Karp, and
S.Shenker. Topologically-aware overlay construction
and server selection. In INFOCOM, 2002.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale P2P systems. In Middleware, 2001.

[17] Y.-S. Ryu and S.-B. Yang. An effective P2P web
caching system under dynamic participation of peers.
IEICE Transactions, 88-B(4), 2005.

[18] T. Stading, P. Maniatis, and M. Baker. P2P caching
schemes to address flash crowds. In IPTPS, 2002.

[19] A. Stavrou, D. Rubenstein, and S. Sahu. A
lightweight, robust P2P system to handle flash crowds.
In ICNP, 2002.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable P2P lookup
service for internet applications. In SIGCOMM, 2001.

[21] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon:
Inexpensive membership management for unstructured
P2P overlays. J. Network Syst. Manage., 13(2), 2005.

438

