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ABSTRACT
While shared-nothing parallel infrastructures provide fast
processing of explosively growing digital content, manag-
ing data efficiently across multiple nodes is important. The
value–range partitioning method with parallel B-tree struc-
tures in a shared-nothing environment is an efficient ap-
proach for handling large amounts of data. To handle large
amounts of data, it is also important to provide an efficient
concurrency control protocol for the parallel B-tree. Many
studies have proposed concurrency control protocols for B-
trees, which use latch-coupling. None of these studies has
considered that latch-coupling contains a performance bot-
tleneck of sending of messages between processing elements
(PEs) in distributed environments because latch-coupling is
efficient for a B-tree on a single machine. The only pro-
tocol without latch-coupling is the B-link algorithm, but it
is difficult to use the B-link algorithm directly on an entire
parallel B-tree structure because it is necessary to guaran-
tee the consistency of the side pointers. We propose a new
concurrency control protocol named LCFB that requires
no latch-coupling in optimistic processes. LCFB reduces
the amount of communication between PEs during a B-tree
traversal. To detect access path errors in the LCFB proto-
col caused by removal of latch-coupling, we assign boundary
values to each index page. Because a page split may cause
page deletion in a Fat-Btree, we also propose an effective
method for handling page deletions without latch-coupling.
We then combine LCFB with the B-link algorithm within
each PE to reduce the cost of Structure Modification Op-
erations (SMOs) in a PE, as a solution to the difficulty of
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consistency management for the side pointers in a parallel
B-tree structure. To compare the performance of the pro-
posed protocol with conventional protocols MARK-OPT,
INC-OPT, and ARIES/IM, we implemented them on an
autonomous disk system with a Fat-Btree structure. Ex-
perimental results in various environments indicate that the
system throughput of the proposed protocols is always supe-
rior to those of the other protocols, especially in large-scale
configurations, and LCFB with the B-link algorithm is ef-
fective at higher update ratios.

1. INTRODUCTION
Recently, digital data has grown explosively in real life.

On the Internet, large amounts of data is daily transferred
between enterprises, and a great volume of content such
as web information, audio and video streams, is provided
to end customers. This growth means that computer sys-
tems must handle large storage spaces capable of support-
ing high throughput to enable users to access the data in
parallel with high bandwidth, in order to realize such sys-
tems as high-performance B2B systems, web servers, and
video-on-demand systems. To meet these demands, dis-
tributed storage systems in shared-nothing parallel environ-
ments have become increasingly widespread. However, ac-
cesses from many users in a distributed environment exhibit
high skew, and huge distributed storage systems complicate
extremely the management of storage, even though they pro-
vide high throughput. Distributed directory structures, in-
cluding parallel B-tree structures, provide data placement
that facilitates dynamic management and reduces compli-
cations. Storage systems with these structures can handle
skew efficiently and can provide efficient accesses. There-
fore, these structures provide not only simpler management
to administrators but also higher throughput to users. They
can support the high demands of recent years and are im-
plemented in many systems.

The technique of virtualization helps to reduce the com-
plication of storage systems. Virtualization is the pooling of
physical storage from multiple network storage devices into
what appears to be a single storage device that is managed
from a central console. Storage virtualization is commonly
used in Storage Area Networks (SANs) [24], for example,
as the IBM Storage Tank [19]. The management of storage
devices can be tedious and time consuming. Storage virtual-

133



ization helps the storage administrator perform the tasks of
backup, archiving, and recovery more easily, and in less time,
by disguising the actual complexity of the SAN. In storage
systems that use SANs, metadata servers that manage data
placement and accesses from users are separated from the
nodes that store data, and the metadata servers implement
virtualization. Distributed file systems such as the Google
File System [7] and Cluster File System (Lustre) [4] also use
metadata servers to manage data placement.

The simplest approach is to manage data placement with
a centralized metadata server. However, a highly redundant
centralized server needs to be implemented with high relia-
bility parts in order not to create a single point of failure.
Moreover, this approach leads to performance bottlenecks
so it is important to implement a highly scalable metadata
server. Therefore, in practice, distributed metadata servers
are used. To manage data placement efficiently in dis-
tributed servers, distributed indexes are implemented (e.g.,
Autonomous Disk [29], Boxwood [18], and Bigtable [3]). In
particular, parallel B-tree structures simplify the manage-
ment of storage data [29, 18]. On the other hand, in some
systems, the nodes that store the data manage the data.
As an efficient virtualization in these systems, methods in
which nodes cooperate by using distributed directories are
proposed. Parallel B-tree structures also function efficiently
as distributed directories.

To support the performance demands of users in rapidly
growing storage systems, it is important to provide not only
an efficient update-conscious parallel B-tree structure like
the Fat-Btree [30] but also an efficient concurrency control
protocol for the parallel B-tree or Fat-Btree. One exam-
ple is the INC-OPT protocol, which is suited to parallel
B-trees on shared-nothing parallel machines [21]. The INC-
OPT protocol outperforms conventional B-tree concurrency
control protocols such as the B-OPT protocol [1] and the
ARIES/IM protocol [22]. However, the cost of spreading an
X latch in the protocol is still high when structure modifi-
cation operations (SMOs) occur frequently, degrading total
performance.

A concurrency control protocol that is an improvement
over the INC-OPT protocol, the MARK-OPT protocol [31]
has been developed. It reduces the frequency of restarts
traversing from the root node compared with the INC-OPT
protocol. Experimental results on an autonomous disk sys-
tem [29] using Fat-Btree as the distributed directory struc-
ture indicated that the MARK-OPT protocol outperformed
the INC-OPT protocol. However, transferring access re-
quests to another PE requires three network messages per
transfer, because the traversal uses latch-coupling. As we
have indicated, the cost of latch-coupling is high in a dis-
tributed environment. Moreover, the frequency of request
transfers in a large-scale configuration is high. Therefore,
the performance of MARK-OPT does not scale well with
system size.

In this paper, we propose a new concurrency control proto-
col called the latch-coupling-free parallel B-tree (LCFB) con-
currency control protocol, which is suited to Fat-Btrees. It
reduces the cost of request transfers compared with MARK-
OPT. In addition, we combine LCFB with the B-link al-
gorithm, which reduces the cost of SMOs. The B-link can
achieve excellent concurrency control, however it was diffi-
cult to effectively apply the B-link to a parallel Btree struc-
ture because it was necessary to guarantee the consistency

of the side pointers. The combination is a solution to the
difficulty of consistency management for the side pointers in
a parallel B-tree structure. We implemented the proposed
protocols and MARK-OPT, INC-OPT, and ARIES/IM1 on
an autonomous disk system [29] using Fat-Btree as the dis-
tributed directory structure, and we measured the system
throughput as a function of system size. Experimental re-
sults indicate that the proposed protocols are effective and
scalable, and LCFB with B-link is especially effective for
higher update ratios. The only protocol existing to date
without latch-coupling is the B-link algorithm, but it is diffi-
cult to directly use the B-link algorithm on an entire parallel
B-tree structure. We focus on the cost of latch-coupling in
distributed environments, and propose a protocol without
latch-coupling and B-link.

The remainder of this paper is organized as follows. First,
the methods for partitioning data among PEs, parallel B-
tree structures and the concept of the Fat-Btree structure
are reviewed in Section 2. Section 3 then describes exist-
ing concurrency controls for parallel B-trees. Our new con-
currency control protocols for parallel B-tree structures are
explained in Section 4. Experimental results are reported
in Section 5. Section 6 presents a discussion of recovery in
parallel B-trees. We review related work in Section 7. The
final section presents the conclusions of this paper.

2. BACKGROUND
There are several ways to partition a large amount of

data among PEs: value–range, round robin, and hashing [6].
Value–range partitioning can determine which PE should
contain object data for strict match queries. It can also
treat range queries, and cluster I/O operations to reduce the
number of I/O operations for near values. However, it can
degrade load distribution because it can potentially skew the
distribution of data. Even though the initial data allocation
has no skew, repeated updates may destroy the balance be-
cause partitioning criteria are statically fixed. On the other
hand, round-robin partitioning can produce no skew. All
PEs, however, must participate in every query for strict or
range matches, because there can be no information about
value location.

2.1 Hash Partitioning
Hash partitioning can provide fast access methods as well

as partitioning strategies for parallel database environments.
Hashing is not only a partitioning strategy, but is also an
access method for fast retrieval. There are several papers on
using hashing as a parallel index mechanism, such as [16, 5].
However, as described above, hashing cannot handle range
queries, I/O clustering. In hashing, dynamic data migration
handling access skews among PEs also has a high cost.

2.2 Parallel B-tree Structures
To exploit the virtues of value–range partitioning and to

provide a fast access method for each PE, parallel B-trees
have been proposed as parallel directory structures [27]. Par-
allel B-trees are useful because they can manage strict match
and range queries and clustering I/O operations, and they
can balance the amount of data in each PE via index nodes

1We implemented ARIES/IM based on [22], but we did not
include its recovery mechanism because we do not focus on
recovery in this paper.
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of a B-tree. They can also locally perform dynamic data
migration whose cost is low.

2.2.1 SMOs
Structure Modification Operations (SMOs) are page splits

and page merges. Page splits are performed when pages be-
come full, whereas page merges are performed when pages
become empty. B-trees in real database systems usually per-
form page merges only when pages become empty; nodes
are not required to be at least half full, because in practi-
cal workloads this is not found to decrease occupancy by
much [11]. Because the consistency of the B-tree must be
guaranteed when SMOs occur, concurrency control for the
B-tree is necessary. Moreover, concurrency control is very
important because it largely influences the system through-
put when SMOs occur.

2.2.2 Request Transfers
Sometimes, an access request cannot be served from the

current PE, as the destination leaf node is stored elsewhere.
Such requests must be transferred to the PE that has the
appropriate child node. To enable smooth and quick access
transfers, such a parent node must have pointers that indi-
cate remote child nodes. Moreover, each interaction between
PEs for transferring access requests to another PE requires
communicating across a network, with the number of the in-
teractions influencing system performance. It is important
to reduce the number of interactions for high scalability be-
cause the number of interactions increases as the number of
PEs increases.

2.3 Partitioned B-tree Structures
A partitioned B-tree consists of a two-tier index structure.

The first tier directs the search to the PE where the data
is stored, and the data is range partitioned. The second
tier is a collection of B+-trees, one at each PE. Each B+-
tree independently indexes the data at its PE. However, the
partitioned B-tree structure is not height balanced because
the number of records on each PE can be different, and
differing heights on the PEs degrade the total performance.

An aB+-tree [14] is another two-tier index structure de-
signed to maintain the global height-balanced property of
indexes on all the PEs. The first tier of an aB+-tree is
similar to that of a partitioned B-tree, but each PE has a
variation of a B+-tree in the second tier, and the root node
can be a fat node. Furthermore, all the B+-trees across all
PEs are of the same height. However, balancing the heights
has a cost.

2.4 The Fat-Btree Structure
A Fat-Btree [30] is a form of parallel B-tree in which the

leaf pages of the B+-tree are distributed among the PEs.
Each PE has a subtree of the whole B-tree containing the
root node and intermediate index nodes between the root
node and leaf nodes allocated to that PE. Fat-Btrees have
the advantage of parallel B-trees (which hashing does not
have) and Fat-Btrees are naturally height balanced. Figure 1
shows an example of a Fat-Btree using four PEs.

Although the number of copies of index nodes increases
with proximity to the root node of the Fat-Btree, the update
frequency of these nodes is relatively low. On the other
hand, leaf nodes have a relatively high update frequency,
but are not duplicated. Consequently, nodes with a higher

PE0 PE1 PE2 PE3

root page

leaf page

index page

Figure 1: Fat-Btree.

Table 1: Latch matrix.
Mode IS IX S SIX X

IS © © © ©
IX © ©
S © ©

SIX ©
X

update frequency have a lower synchronization overhead.
Moreover, with Fat-Btrees, index pages are only required

for locating the leaf pages stored in each PE. Therefore,
Fat-Btrees can have a high cache hit rate if the index pages
are cached in each PE. Because of this high cache hit rate,
update and search processes can be processed quickly, com-
pared with a conventional parallel B-tree structure.

3. CONCURRENCY CONTROL METHODS
Some kind of concurrency control method for the B-tree

is necessary to guarantee consistency. Instead of locks, fast
and simple latches are usually used for concurrency control
during a traversal of index nodes in a B-tree [9]. A latch is
a form of semaphore, and the latch manager does not have
a deadlock detection mechanism. Therefore, concurrency
control for a B-tree node should be deadlock free.

3.1 Latch Modes
In this paper, a latch is assumed to have five modes: IS,

IX, S, SIX, and X, as shown in Table 1 [9]. The symbol “©”
means that the two modes are compatible, i.e., two or more
transactions can hold a latch at the same time.

Because parallel B-tree structures, including the Fat-
Btree, have duplicated nodes, a special protocol for the dis-
tributed latch manager is required to satisfy latch semantics.
Requested IS and IX mode latches can be processed only on
a local PE, whereas the other modes must be granted on all
the PEs storing the duplicated nodes to be latched. That
is, the IS and IX modes have much smaller synchronization
costs than the S, SIX, and X modes, which require commu-
nication between the PEs. The S, SIX, and X mode latches
on remote copies are acquired by using their pointers. In
addition, such latches must be set in linear order to avoid a
deadlock (e.g., the order of logical PE number). This means
the synchronization cost grows in proportion to the number

135



of PEs storing a copy of the node to be latched.

3.2 Concurrency Control for a Fat-Btree
As described above, concurrency control of the access path

should be deadlock free. Moreover, on index nodes at upper
levels of the Fat-Btree, which are replicated in many PEs,
the use of S, SIX, and X mode latches that require synchro-
nization should be avoided as much as possible.

An alternative concurrency control protocol, suggested by
Mohan et al. [22], acquires an X-tree latch to protect the en-
tire B-tree when SMOs occur. This protocol in a parallel B-
tree in a distributed environment is simplified by allocating
one PE to manage the tree latch. However, this PE becomes
a bottleneck as the number of PEs increases. Moreover, the
synchronization overhead is large, as latches on the entire
tree are acquired.

In light of the preceding discussion, a good concurrency
control protocol for parallel B-trees should satisfy the fol-
lowing conditions [21].
Condition 1. A concurrency control method for parallel
B-trees should satisfy the following conditions.

(a) No concurrency control protocol method for index
nodes causing deadlocks should be used.

(b) Use of S, SIX, and X mode latches on index nodes at
upper levels of the B-tree should be avoided as much
as possible.

(c) The entire tree should never be latched, even for short
periods.

B-OPT [1], OPT-DLOCK [28], and ARIES/IM [22] are
excellent concurrency control methods for a B-tree on a sin-
gle machine. However, they do not satisfy Condition 1: B-
OPT does not satisfy Condition 1–(b), OPT-DLOCK does
not satisfy Condition 1–(a), and ARIES/IM does not satisfy
Condition 1–(c). Therefore, these concurrency controls are
unsuitable for parallel B-trees such as Fat-Btree.

3.3 The INC-OPT Protocol
The INC-OPT protocol satisfies Condition 1 [21].
With INC-OPT, searching for a key is simple. An IS mode

latch is held on the root node initially, and then the following
steps are performed during traversal of the parallel B-tree.

1. Derive a pointer to a child node by comparing the key
in the parent node.

2. Acquire an IS mode latch on the child, and release the
latch on the parent.

3. Repeat the above steps until the traversal reaches a
leaf node.

The above procedure is usually called latch-coupling2. When
the traversal arrives at a leaf node, it acquires an S latch on
the leaf and reads data from it.

The INC-OPT protocol for an update consists of two
phases.

The first phase: The B-tree is traversed using latch-cou-
pling with IX latches. At the leaf node, an X latch
is acquired. If the leaf node is not full, the updater
updates it. Otherwise, if the leaf node is full, the leaf is

2Latch-coupling is called crabbing in [9].

split, the latch is released immediately, and the request
shifts to the second phase.

The second phase: INC-OPT tries to acquire X mode
latches on the lower two nodes, i.e., the leaf node and
its parent. If the parent node must also be split, INC-
OPT releases all latches and tries to acquire X mode
latches on the lower three nodes. This process contin-
ues until all the nodes involved in the SMO are pro-
tected by X latches.

The INC-OPT protocol is defined precisely in [21].
When an SMO occurs, INC-OPT may require multiple

restarts. When the SMO involves the root node, INC-OPT
requires as many phases as the height of the B-tree. This
increases the response time of update operations. In addi-
tion, it decreases overall system throughput because of the
multiple X latches used on upper-level index nodes.

3.4 The MARK-OPT Protocol
The MARK-OPT protocol [31] is suitable for a parallel

B-tree. It marks the lowest SMO occurrence point during
latch-coupling operations. MARK-OPT improves response
time by reducing the frequency of restarts. In addition,
MARK-OPT produces higher system throughputs by reduc-
ing the intermediate phases of distributing X latches and
removing unrequired X latches.

The procedure that MARK-OPT uses to search for a key
is identical to that of INC-OPT, whereas its update consists
of the following two phases.

The first phase: The traversal reaches a leaf with latch-
coupling using IX latches. If an index node is not full,
MARK-OPT marks the height of the node from the
root node. If subsequent nodes are not full, the marked
height is carried forward to the subsequent nodes. At
the leaf, an X latch is acquired. If the leaf node is not
full, the update occurs. If the leaf node is full, a split
occurs in the leaf, this latch is released immediately,
and the procedure shifts to the second phase.

The second phase: The height of the tree is marked as
in the first phase. MARK-OPT tries to acquire the
X mode latches on the leaf node and the index nodes
below the height marked in the previous phase. If any
node involved in the SMO is not protected by an X
latch, it releases all latches and restarts. This process
continues until all the nodes involved in the SMO are
protected by X latches.

The MARK-OPT protocol is precisely defined in [31].
Because MARK-OPT decides the range of the X latch

based on the state of the previous phase obtained by mark-
ing, it may require multiple restarts when SMOs have
spread. However, the maximum number of phases in
MARK-OPT is the height of the tree, as is the case for
INC-OPT. MARK-OPT often requires only one restart be-
cause SMOs rarely spread. MARK-OPT does not require
as many restarts as INC-OPT, even when SMOs occur on
nodes at upper levels.

3.5 Blink-tree
A Blink-tree [15, 13] links all nodes at each level together.

A node contains a side pointer connecting a sibling index
node and its key (high key). Figure 2 shows an example
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Key_1

Key_high

Key_2

Key_n

Figure 2: Blink-tree node.
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FuE  Fun  
t r y t r y + l

FuI  

(c) After key propagation.

Figure 3: A Blink-tree page split.

Blink-tree node, and Figure 3 shows an example page split.
A process with a search key higher than the “high key” uses
the side pointer to find the appropriate page. Moreover, in
the Blink-tree, neither processes for searching nor processes
for updating latch-couple on their way down to a leaf node.

In the Blink-tree, a process that is searching holds an IS
mode latch on the root node initially, and then the following
steps are performed during traversal of a B-tree.

1. Derive a pointer to a child node or a sibling node by
comparing the key in the parent node.

2. Release the latch on the parent, and acquire an IS
mode latch on the child or the sibling.

3. Repeat the above steps until the traversal reaches a
leaf node.

When the traversal arrives at a leaf node, acquire an S latch
on the leaf and read data from it. A process for updating
traverses to a leaf node in the same way as the process for
searching. However, an X latch is held in the leaf node. If
the leaf is not full, the updater updates it. If the leaf is full,
a split occurs in the leaf, and the updater performs the split
in the leaf. After the latch on the leaf is released, SMOs
are propagated to the parent. To perform SMOs, X mode
latches for each page are held. At this time, the updater does
not latch-couple. Therefore, readers and updaters acquire
the latch only on one node at a time.

The B-link algorithm is very effective for a B-tree in a
single machine. However, there is a high cost in using the B-
link algorithm on an entire parallel B-tree structure. Details
are given in Section 4.5.1

In [10], the balance of of the B-link tree is maintained at
all times, so that a logarithmic time bound for a search or

request transfer

l atc h  o n C h i l d

unl atc h  P arent

jP E

l o c ate C h i l d

l o c ate C h i l d

unl atc h

ac k no w l ed g e

iP E

(a)

request transfer

l atc h  o n C h i l d

unl atc h  P arent

jP E

l o c ate C h i l d

l o c ate C h i l d

iP E

(b)

Figure 4: Request transfer protocols.

an update operation and deletions. This algorithm also does
not consider parallel B-tree structures.

4. LCFB
Our new concurrency control protocol, which improves the

performance of parallel B-trees, is called the latch-coupling-
free parallel B-tree (LCFB) concurrency control protocol.

In traditional INC-OPT and MARK-OPT, a traversal
reaches a leaf using latch-coupling with IS or IX latches.
Therefore, transferring access requests to another PE re-
quires three sequential messages per transfer (see Figure
4–(a)). First, a message (“request transfer”) is sent to a
destination PE to acquire a latch on the child. Next, a mes-
sage (“unlatch”) is sent to the source PE to release the latch
on the parent. Finally, a message (“acknowledge”) is sent to
the destination PE to process on the child in the destination
PE. On the other hand, if a traversal reaches a leaf without
latch-coupling, as in LCFB, only one message per transfer
is required (see Figure 4–(b)). Therefore, LCFB improves
response time by reducing the frequency of network com-
munication. Because the cost of network communication
is large in traversal, LCFB can have some dramatic effects
with small changes.

4.1 Access Path Error Detection
Traversal without latch-coupling may follow a pointer to

an incorrect page. If this happens, the traversal restarts on
the root page after the acquired latch is released.

An example of an access path error because of a split is
shown in Figure 5. In Figure 5–(a), before index page (I2)
splits, let process A acquire a latch on (I1). Then process
A finds the next page (I2) for the key “Key i” from (I1)
and releases the latch on (I1) without acquiring the latch
on (I2). Therefore, other processes may modify the index
pages in Figure 5–(a) into the index pages in Figure 5–(b).
Process A then acquires a latch on (I2) and locates (I2), so
it does not follow a link to the correct page (I3), but to an
incorrect page (I2).

In this case, the traversal restarts on the root page in
LCFB. However, a process cannot detect an access path
error from the index pages shown in Figure 5. From the
information contained in (I2), it cannot determine that key
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Figure 5: Splitting an index page.
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Key_n

Key_i
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Key_i
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Figure 6: Data structure of index pages with bound-
ary values.

“Key i” is not contained in (I2), so the following problem
occurs when a search key is greater than “Key i – 1”. If
a process determines that a search key is not contained in
(I2) and restarts on the root page, it cannot traverse to a
child page of (I2). On the other hand, if it determines that
the key is contained in (I2) and it follows the access path,
process A follows an incorrect access path.

To detect the access path error, we use index pages as
shown in Figure 6. The pages have boundary values at both
ends. By using the boundary values contained on the page,
a process can determine whether the page is correct. In the
above example, process A can find that “Key i” is greater
than the boundary value “Key i” and can determine that
page (I2) is incorrect.

A step with access path error detection gives a higher ex-
ecution time in a node than traditional protocols. However,
this step requires only two comparisons with the boundary
values. Therefore, the additional execution time is minimal.

In the B-link algorithm [15, 13] and the ARIES/IM [22]
algorithm, access path errors can also occur. In the B-link
algorithm, such errors occur because neither readers nor up-
daters acquire the latch on only one node at a time. In this
case, links chaining together all nodes at each level lead to
correct access paths. In ARIES/IM, the traversal reaches a
leaf with latch-coupling. However, readers or updaters can

access an updated child node ((I2) in Figure 5–(b)) even be-
fore a parent node is updated because updaters acquire the
X latch on only one updated node at a time. Therefore, ac-
cess path errors can still occur. In this case, returning to a
page in which the value of the Log Sequence Number (LSN)
is not updated leads to a correct access path.

In these methods, updaters acquire X latches bottom-up
for SMOs. Therefore, many access path errors occur in top-
down traversals. On the other hand, in LCFB, updaters
acquire X latches top-down for SMOs. Therefore, the fre-
quency of access path errors is low compared with the B-link
algorithm or ARIES/IM3.

In the proposed method, retraversing from the root is nec-
essary when an access path error is detected. However, a
process can retraverse from a middle node by the technique
using LSNs as well as ARIES/IM and that of [25]. If a
request transfer happens during a traversal, this technique
may bring the process back to a former PE. This is not as
efficient as retraversing from the root. The technique using
LSNs should therefore be used only within the same PE.

4.2 Search
The LCFB process for searching does not use latch-cou-

pling. An IS mode latch is held on the root node initially,
and then the following steps are performed during traversal
of a parallel B-tree.

1. If an access path error is detected, release the latch on
the parent and restart at the root node.

2. Derive a pointer to a child node by comparing keys in
the parent node.

3. Release the latch on the parent, and acquire an IS
mode latch on the child.

4. Repeat the above steps until the traversal reaches a
leaf node.

When the traversal arrives at the leaf node, acquire an S
latch on the leaf and read data from it.

4.3 Update
The LCFB process for updating consists of the following

two phases.

The first phase: The traversal reaches a leaf without
latch-coupling using IX latches. If an access path error
is detected, release the latch on the parent and restart
at the root node. At this time, the mark made on
the last traversal is not used. If an index node is not
full, LCFB marks the height of the node from the root
node. If subsequent nodes are not full, the marked
height is carried forward to the subsequent nodes. At
the leaf, an X latch is acquired. If the leaf node is not
full, the update occurs. If the leaf node is full, a split
occurs in the leaf, this latch is released immediately,
and the procedure shifts to the second phase.

The first phase: The height of the tree is marked as in the
first phase. LCFB tries to acquire the X mode latches

3In LCFB, the frequency of access path errors is very low.
Therefore, the difference in approaches to return to the cor-
rect access path will hardly affect performance. In the ex-
periments in Section 5, the maximum frequency of access
path errors was less than 0.00002.
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1 l := H ;
2 P := null; C := ROOT; h := 1; m := 1;
3 while h < l do begin
4 Unlatch P, IX latch on C ;
5 if Access path error is detected then
6 Unlatch C ; goto 2;
7 if C is safe then
8 m := h; /* Marking */
9 Determine NewC ;

10 P := C ; C := NewChild; h := h + 1;
11 end;
12 if h < H then
13 X latch on C and its copies, Unlatch P ;
14 else begin
15 Unlatch P, X latch on C ;
16 if Access path error is detected then
17 Unlatch C ; goto 2;
18 end;
19 while h < H do begin
20 Determine NewChild;
21 P := C ; C := NewChild; h := h + 1;
22 X latch on C and its copies;
23 end;
24 if X latches are not sufficient for SMOs then
25 Release all granted latches; l := m; goto 2;
26 else begin
27 Update including SMOs;
28 Release all granted latches;
29 end;

Figure 7: The LCFB protocol.

on the leaf node and the index nodes below the height
marked in the previous phase. If any node involved
in the SMO is not protected by an X latch, it releases
all latches and restarts. This process continues until
all the nodes involved in the SMO are protected by X
latches.

More precisely, the level of node (h) is one for the root
node, and the height of the tree H for the leaf node. Let l
denote the level of the B-tree at which LCFB must start us-
ing X latches. The variable l is initially set to H. The height
marked during a traversal is denoted by m. The parent is
denoted by P and the child is denoted by C. LCFB is shown
in Figure 7.

The LCFB protocol satisfies Condition 1. The reasons
are:

1. It is deadlock free because it acquires latches top-down.

2. It does not latch the index nodes with the S, SIX
modes, and does not acquire needless X mode latches
on nodes not relating to SMOs.

3. It never uses a tree latch.

Therefore, LCFB is a concurrency control protocol suited to
parallel B-trees.

4.3.1 Delete
A page with no entries is deleted. When latch-coupling

guarantees a pointer to a correct page, a pointer to a deleted
page is not acquired. However, as latch-coupling is not used
in LCFB, a process may attempt to access deleted pages.

To prevent accesses to deleted pages, we combine the drain
technique [12] and a delete bit. The delete bit is usually set
to “0”. A page scheduled for deletion is not deleted immedi-
ately, but has its delete bit set. With the drain technique,
the actual deletion of the page is delayed until the termina-
tion of all processes that began traversal while pointers to
the page still existed. Such processes can then determine an
access path error based on a value of the delete bit.

Full entry
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Figure 8: Splitting in the Fat-Btree.
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Figure 9: Swapping a deleted page and a nondeleted
page.

4.3.2 Insert
With Fat-Btrees, a page may be deleted even when an

index node is split by an insert operation. If an index page
only has pointers to remote pages, the index page is deleted
to satisfy the properties of the Fat-Btree.

Splitting in Fat-Btrees falls into three patterns (see Figure
8). In Figure 8–(a), no page is deleted. In Figure 8–(b), (I3)
is deleted. However, no pointer to (I3) exists. Therefore, no
process can access the deleted page. On the other hand, in
Figure 8–(c), (I2) is deleted, but a pointer to (I2) remains.
In this case, a process may access the deleted page.

To prevent access to pages deleted by splitting, we use
the following procedure. Entries in (I3) are copied to (I2),
and (I3) is deleted instead of (I2). There is no pointer to
(I3) (see Figure 9). Therefore, a process may not access the
deleted page.

In this case, using the delete bit can also block an access
to the deleted page. However, the method shown in Fig-
ure 9 is more effective than using the delete bit because the
method restarts only those processes that access pages not
containing the key (the frequency of restarts is halved).

4.4 Correctness
Concurrency control of B-trees guarantees that all pro-

cesses correctly terminate within a finite length of time. We
show that LCFB guarantees this.

When an updater realizes that it did not acquire all re-
quired X latches for an SMO, the updater releases all the
latches without modifying any data. Thus, LCFB essen-
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tially follows the two-phase locking/latching (2PL) protocol,
which ensures physical consistency of the B-tree structure
for each update [2].

Traversals without latch-coupling are correctly executed
when SMOs do not occur, but traversals without latch-
coupling may access incorrect pages when SMOs occur. The
SMOs occur due to insert requests or delete requests. Ac-
cessing an incorrect page due to an SMO for an insert request
is detected by comparing a key whose process accesses an in-
correct page with the boundary values stored in each page.
Accessing an incorrect page due to an SMO for a delete re-
quest is detected by checking delete bit in each page. There-
fore, LCFB can detect accessing incorrect pages due to all
SMOs. Moreover, because consistency of the B-tree is guar-
anteed, boundary values in each page show correctly the
range of values in each page (the delete bit in each page
show correctly whether each page is valid) and it restarts
at the root page when a process accesses an incorrect page.
Therefore, LCFB does not read incorrect data in nondesti-
nation leaf pages, it does not update incorrect pages, and it
does not incorrectly terminate.

LCFB is deadlock free and certainly terminates because it
acquires latches top-down. Moreover, it restarts at the root
page when a process accesses an incorrect page, but shifting
to traversal with latch-coupling after a number of restarts
can avoid the situation of livelock, or an infinite number of
restarts. Denote the level of node by h, and the value that
limits restarts by r. At worst, accessing h∗ (r+1) pages can
provide the acquisition of latches on the above destination
pages. Because LCFB is deadlock free, it accesses h∗ (r+1)
pages within a finite length of time, and LCFB terminates
within a finite length of time.

Because LCFB does not incorrectly terminate and it ter-
minates within a finite length of time, LCFB guarantees that
all processes correctly terminate within finite time.

4.5 LCFB with B-link
We combined LCFB with the B-link algorithm within each

PE to reduce the cost of SMOs in a PE.
LCFB can process searches quickly. This is because LCFB

reduces the cost of request transfers by not latch-coupling.
However, LCFB must acquire X latches on all nodes involved
in an SMO, and the cost of updates is large. B-links can
reduce the frequency of X latches and the cost of SMOs.
However, it is difficult to use the B-link algorithm on an
entire parallel B-tree structure. By combining LCFB with
B-link, the extension can utilize the advantages of the B-
link, which can process both update processes and search
processes effectively.

4.5.1 Application of B-link to the Fat-Btree
In the Blink-tree, an index node links to a sibling node.

Moreover, in the Fat-Btree, an index page is deleted if the
index page only has pointers to remote pages. Therefore, a
link from an index page (1, 2) to an index page (3, 3) must
be deleted if index pages (1, 3), (2, 3), and (3, 3) split, as
in Figure 10. This deletion requires an X latch on the index
page (1, 2). The index page (1, 2) does not exist on the path
from the root to the leaf. The advantage is lost because the
acquisition is an inefficient process.

To avoid losing the advantage of the B-link, we linked
between index pages within each PE with side pointers,
and we did not link between index pages in different PEs

(1, 2) (1, 3 ) (2, 3 )

(3 , 3 )
(3 , 4 )

(1, 1) (2, 1)
(3 , 1)

(a) Before split.

(1, 2) (1, 3 ) (2, 3 ) (3 , 4 )

(1, 1) (2, 1)
(3 , 1)

(2, 5 )

(3 , 5 )
(b) After split.

Figure 10: A page split on the Fat-Btree using B-
link.

Figure 11: Fat-Blink-tree.

(see Figure 11). The side pointer is deleted when splitting
links between index pages in different PEs (see Figure 10).
Therefore, the B-link algorithm operates effectively if the
side pointers link between index pages within each PE.

In the Blink-tree combined with LCFB, an index page has
a lower boundary value (see Figure 12).

4.5.2 Switching Processing Protocols
There may be copies of index pages that do not have side

pointers. The B-link algorithm cannot guarantee that all
processes behave correctly if index nodes are not all linked
together at each level. We therefore combine the B-link
algorithm with the LCFB algorithm. LCFB performs SMOs
when the nodes involved in the SMOs are protected by X
latches, and it guarantees that all processes behave correctly
on index pages having copies.

The cost of updates in LCFB is higher than with the B-
link algorithm. However, few index pages have copies4. The
B-link algorithm performs most SMOs because the nodes
having multiple pages exist at upper levels of the B-tree5.
Therefore, LCFB with B-link performs SMOs effectively.

4.5.3 Search
LCFB with the B-link process for searching for a key is ba-

sically identical to LCFB, as it does not use latch-coupling.
IS mode latches are acquired on index pages and the S mode
latches are acquired on leaf pages.

In LCFB, a traversal restarts on a root page if access
path errors occur. In LCFB with the B-link algorithm, the
process follows the side pointer if the side pointer can lead

4In the Fat-Btree for the experiments in Section 5, only
about 7.0% of all index nodes had multiple copies.
5In the experiments in Section 5, SMOs involving nodes with
multiple pages were about 0.9% of all update requests.
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Figure 12: Blink-tree node with LCFB.

to a correct access path.

4.5.4 Update
The LCFB with the B-link algorithm process for updating

consists of the following two phases.

The first phase: The traversal to a leaf is basically identi-
cal to search. However, IX mode latches are acquired
on index pages and X mode latches are acquired on
leaf pages. If the leaf node is not full, the updater up-
dates it. If the leaf node is full, the updater performs
bottom-up updates according to the B-link algorithm.
If an SMO involves an index node having multiple
pages, the procedure shifts to the second phase.

The second phase: According to LCFB, all the nodes in-
volved in other SMOs are protected by X latches. The
process then propagates to an appropriate parent and
performs SMOs at levels above the parent. If an X
latch is acquired on an index node having a single page,
the latches on levels above the node are released imme-
diately, and the procedure shifts to the first phase to
propagate the appropriate parent instead of updating
a leaf.

More precisely, the level of node (h) is one for the root
node, and the height of the tree H for the leaf node. Let
l denote the level of the B-tree at which LCFB must start
using X latches. The variable l is initially set to H. The
height marked during a traversal is denoted by m. Finally,
the level of the parent into which an SMO propagates is
denoted by r. The parent is denoted by P and the child is
denoted by C. LCFB with the B-link algorithm is shown in
Figure 13.

4.5.5 Correctness
Because LCFB with the B-link algorithm proceeds accord-

ing to just the B-link algorithm when an SMO involving an
index node having only single pages occurs, the B-link algo-
rithm processes correctly. Therefore, we need to show that
the B-link algorithm processes correctly when an SMO in-
volving an index node having multiple pages occurs.

When an SMO involving an index node having multiple
pages occurs, a switch between LCFB and the B-link algo-
rithm occurs. We show that LCFB with the B-link algo-
rithm guarantees that all processes behave correctly, even
when a switch between LCFB and the B-link algorithm oc-
curs.

When the procedure shifts from LCFB to the B-link algo-
rithm, all latches acquired in LCFB are released. Therefore,
the shift does not cause deadlock. Because SMOs are per-
formed until all the nodes involved by them are protected
by X latches, the shift does not cause an incomplete B-
tree. When the procedure shifts from the B-link algorithm
to LCFB, SMOs break, and the shift may cause an incom-
plete B-tree. However, all processes will behave correctly
because the side pointers link sibling nodes. Moreover, no

1 l := H ; r := H ;
2 P := null; C := ROOT; h := 1; m := 1;
3 while h < min(l, r) do begin
4 Unlatch P, IX latch on C ;
5 if Access path error is detected then
6 Unlatch C ; goto 2;
7 Determine NewChild;
8 P := C ; C := NewChild;
9 if C is not sibling of P then begin

10 if P is safe then
11 m := h; /* Marking */
12 push(P); h := h + 1;
13 end;
14 end;
15 if C has no copy then begin
16 Unlatch P, X latch on C ;
17 while C is not target do begin
18 Determine NewChild;
19 P := C ; C := NewChild;
20 Unlatch P, X latch on C ;
21 end;
22 while C is unsafe do begin
23 Update including SMO on C ;
24 Unlatch C ;
25 C := pop(); h := h - 1;
26 X latch on C ;
27 if C has its copies then
28 Unlatch C ; l := m; r := h; goto 2;
29 end;
30 Update; Unlatch C ;
31 end;
32 else begin
33 X latch on C and its copies, Unlatch P ;
34 while h < r do begin
35 Determine NewChild;
36 P := C ; C := NewChild;
37 if P is safe then
38 m := h; /* Marking */
39 push(P); h := h + 1;
40 if C has no copy then
41 Release all granted latches; l := H ; goto 3;
42 X latch on C and its copies
43 end;
44 if X latches are not sufficient for SMOs then
45 Release all granted latches; l := m; goto 2;
46 else begin
47 Update including all SMOs;
48 Release all granted latches;
49 end;
50 end;

Figure 13: The LCFB with B-link protocol.

index nodes are processed by both LCFB and B-link algo-
rithms, because the procedure checks whether index pages
have copies whenever latches are acquired.

Therefore, LCFB with the B-link algorithm guarantees
that all processes behave correctly even when switches be-
tween LCFB and the B-link algorithm occur.

5. EXPERIMENTS
To show that the proposed protocols are effective, we used

an implementation of an autonomous disk system [29] using
blade systems. We used a Fat-Btree, and evaluated the per-
formance under a number of conditions.

5.1 Experimental Environment
We used an experimental system of an autonomous disk

distributed storage technology. The experimental system
was implemented on a 160-node blade system using the Java
programming language under Linux. We used 128 nodes for
storing data and 32 nodes as clients sending requests. A
preliminary experiment showed that the backbone network
switch had adequate performance. The experimental envi-
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Table 2: Experimental environment.
# Nodes: 4–128 (Storage), 32 (Clients)
CPU: AMD Athlon XP-M 1800+ (1.53GHz)
Memory: PC2100 DDR SDRAM 1GB
Network 1000BASE-T
Hard Drives: TOSHIBA MK3019GAX

(30GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.5.0 03 Server VM

Table 3: Parameters used for the experiments.
Page size: 4KB
Tuple size: 350B
Max no. of entries in an index node (fanout): 64
Max no. of tuples in a leaf node: 8

ronment is summarized in Table 2.

Initial Fat-Btree Construction
We prepared a leaf node on each PE, to seed the Fat-Btree.
The key of the initial leaf node was used as a lower bound
on the key values of nodes stored in that PE. The initial leaf
node keys were set in ascending order of PE number. There-
fore, the leaf node stored in each PE by follow-on insertion
was divided statically. We then repeatedly inserted random
elements in the initial Fat-Btree. Table 3 shows the basic
parameters we set for the experiments. These parameters
were chosen to distinguish clearly the differences between
the protocols. Traditional methods store only a list of keys
in a node of the B-tree. On the other hand, the proposed
method also stores the upper and lower boundary values in
a node. Therefore, the traditional methods and the pro-
posed methods should have different fanout. Because the
difference is very small, we ignored it in this paper.

The experiments for this paper were organized as follows.
First, we evaluated the performance as a function of the
number of PEs storing data by counting the frequency of
request transfers. Next, we evaluated the performance as a
function of the update ratio and counted the frequency of X
latches.

5.2 Comparison with Differing Numbers of PEs
Thirty-two clients (32 threads in parallel per blade) sent

requests to the PEs containing the Fat-Btree with 5120 tu-
ples per PE, for 10 seconds. The access frequencies were
uniform, and the update ratio was fixed at 20%.

Figure 14 shows the performance of the five concurrency
control protocols and the frequency of request transfers, and
Figure 15 shows the frequency of sent messages per operation
when the number of PEs varied from four to 128.

The throughputs of INC-OPT and MARK-OPT increased
more slowly as the number of PEs increased. This is be-
cause the frequency of request transfers increases (see Fig-
ure 14). INC-OPT and MARK-OPT with latch-coupling
require three network messages per request transfer. There-
fore, the high frequency of request transfer increases the
network communication overhead. This is also shown in
Figure 15. On the other hand, the proposed protocols can
transfer a request with just one network message. Therefore,
the throughput of the proposed protocols increased more
rapidly with the number of PEs. Moreover, the frequencies
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Figure 15: Comparison of message ratio with differ-
ing numbers of PEs.

of request transfers in each protocol are the same. These ex-
perimental results indicate that the proposed protocols have
the highest scalability in those protocols.

5.3 Comparison with Changing Update Ratio
Thirty-two clients (32 threads in parallel per blade) sent

requests to the PEs containing the Fat-Btree with 5120 tu-
ples per PE, for 10 seconds. The access frequencies were
uniform, and the number of PEs was fixed at 64.

Figure 16 shows the performance of the five concurrency
control protocols, Figure 17 shows the frequency of acquisi-
tions of X latches per operation and the frequency of restarts
with access path error in LCFB as the update ratio changes
from 0% to 100%.

When the update ratio is low, the proposed protocols
have much better performance than INC-OPT and MARK-
OPT, but the efficacy of LCFB drops as the update ratio
increases. This is because LCFB and MARK-OPT are ba-
sically the same when processing the SMOs that occupy the
entire large processing time. The decline in the throughput
of LCFB with the B-link algorithm is much slower than that
of LCFB alone. This is because LCFB with B-link reduces
the frequency of acquisition of X latches (see Figure 17).

The frequency of request transfers is update independent,

142



0

1 0000

2 0000

3 0000

4 0000

5 0000

6 0000

0 2 0 4 0 6 0 8 0 1 00
R a t i o  o f  U p d a t e  O p e r a t i o n s  ( % )

Th
ro
ug

hp
ut 

in 
Op

era
tio

ns
 pe

r S
ec

on
d L C F B  w i t h  B -l i n k

L C F B
M A R K -O P T
I N C -O P T
A R I E S / I M

Figure 16: Comparison of concurrency control pro-
tocols with changing update ratio.
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Figure 17: Comparison of X latch ratio and restart
ratio with changing update ratio.

and the frequency of access path errors is highest when the
update ratio is 100%. Therefore, LCFB has the greatest
disadvantage when the update ratio is 100%. Experimen-
tal results also indicate that the frequency of restarts with
access path errors in LCFB increases as the update ratio
increases. However, the throughput of LCFB is higher than
that of conventional protocols and it is low enough not to
affect system performance even when the update ratio is
100%. Experiments on all update ratios includes situations
in practice, and the disadvantage of access path errors never
exceeds the advantage of efficient request transfers in all sit-
uations.

6. RECOVERY
Before our protocol can be incorporated into real database

systems or storage systems, recovery strategies are needed.
The recovery strategies must treat three types of failures:
transaction failures, system failures, and media failures. For
recovery from each failure, it is important to treat all trans-
actions as atomic actions [17], to log all transactions, and to
keep the logs of noncommitted transactions.

Atomic actions in distributed environments require dis-
tributed commit protocols such as the two-phase commit
protocol. Moreover, we have also proposed BA-1.5PC [23],

which can efficiently do logging and handle transaction fail-
ures in a distributed environment. BA-1.5PC adopts Fat-
Btree and our proposed protocol as the distributed index
and the concurrency control, respectively. Moreover, it is
able to recover from system failures and media failures if
the logs are kept. It significantly outperforms several well-
known commit protocols in terms of transaction throughput.

It would be possible to adapt the techniques used in the
ARIES/IM [22] for recovery from system failures. Viable
recovery strategies for the B-link algorithms have also been
proposed [17]. To improve data availability in the face of
media failures, we can choose systems with primary-backup
declustering like autonomous disk [29]. Recovery from media
failures in the Fat-Btree has been discussed in [20].

While a discussion of recovery issues is beyond the scope
of this paper, the point to be noted is that viable approaches
do exist.

7. RELATED WORK
Graefe uses fence keys in leaf pages that are similar to

our boundary keys [8]. In [8], adding techniques of log-
structured file systems to traditional B-trees without adding
a layer of indirection for locating B-tree nodes on disk im-
proves write performance. By using this technique, B-tree
pages migrate to new locations when they are updated.
However, in the traditional B+-tree, there exist three point-
ers to a leaf page (parent and two siblings). Therefore, those
pages must also migrate to a new location. To solve this
problem, they retain in each page a lower and upper fence
key that define the range of keys that may be inserted in the
future into those pages. This change decreases the number
of required updates of pointers when a leaf page migrates to
a new location, and decreases update costs. An important
use of the fence keys is consistency checking that the cor-
rectness of a commercial database has not been corrupted
by hardware or software errors. Moreover, the fence keys af-
fect key range locking. Therefore, the fence keys are similar
to our boundary keys, but their uses are different.

8. CONCLUSION
We propose a new concurrency control for Fat-Btrees

suitable for shared-nothing parallel machines. To reduce
the cost of request transfers in Fat-Btrees, LCFB does not
use latch-coupling during optimistic operations. In the dis-
tributed environment of a shared-nothing parallel machine,
the overhead of latch-coupling is high. LCFB gains a sig-
nificant amount of system throughput by avoiding latch-
coupling. To detect access path errors in LCFB, index pages
have boundary values at both ends. Moreover, by combin-
ing the drain technique with a delete bit, access to a deleted
page by processes is blocked. In a Fat-Btree, a page split
may cause page deletion. Swapping deleted pages with non-
deleted pages in the protocol is more effective than normal
page deletion.

To reduce the cost of SMOs in LCFB, we also combine
the LCFB protocol with the B-link algorithm within each
PE. The combination of LCFB and the inside B-link is an
effective approach to attack the problem of difficulty of the
consistency management for the side pointers in parallel B-
tree structures. The B-link algorithm reduces the frequency
and the range of the X latches for a single B-tree. The exper-
imental results with changing system size indicate that the
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proposed protocols are always effective, especially in large-
scale configurations. The experimental results with chang-
ing update ratio indicate that LCFB with the B-link algo-
rithm reduces the frequency of X latches and is effective at
higher update ratios. Any prootocol has not existed like
LCFB with high scalability.

In future years, parallel B-tree structures will become
more important in contents servers such as the SAS Scalable
Performance Data Server [26]. Therefore, we have found
that there are significant advantages to providing efficient
right concurrency control for parallel B-tree structures. We
have achieved a substantial amount of scalability for the
content servers by designing LCFB.
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