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ABSTRACT 

Modern enterprise data warehouses have complex workloads that 

are notoriously difficult to manage. An important problem in   

workload management is to run these complex workloads 

‘optimally’. Traditionally this problem has been studied in the 

OLTP (Online Transaction Processing) context where MPL 

(Multi Programming Level) is used as a knob to achieve 

optimality. However, MPL is a tricky knob in a BI (Business 

Intelligence) scenario, since a low MPL can easily result in 

underload and a high MPL can easily result in overload and 

‘thrashing’. 

In this work we present BI Batch Manager, a workload 

management system to run batches of queries ‘optimally’ on an 

Enterprise Data Warehouse (EDW). It is comprised of three 

components: an admission control component, a scheduler and an 

execution control component. In order to automatically avoid 

underload and overload, we introduce a novel execution control 

mechanism, PGM (Priority Gradient Multiprogramming). In 

PGM, a priority gradient is created for the workload, with each 

query running at a distinctly different priority level. We 

demonstrate that this stabilizes the execution of a workload across 

a wide operating range. We use memory as the controlling factor 

for our admission control policy – admitting batches of queries 

such that their memory requirement equals the available memory 

on the system. Our scheduling policy of largest memory query as 

the highest priority query further stabilizes the execution. 

We validate our BI Batch Manager using varying workloads on a 

commercial, enterprise class DBMS. We show that it effectively 

avoids underload and overload (thrashing) and can automatically 

run BI workloads with ‘optimal’ performance. 

1. Introduction  
 

Many organizations are creating and deploying Enterprise Data 

Warehouses (EDW) to serve as the single source of corporate data 

for business intelligence. Not only are these enterprise data 

warehouses expected to scale to enormous data volumes 

(hundreds of terabytes), but they are also expected to perform well 

under increasingly complex workloads, consisting of batch and 

incremental data loads, batch reports and complex ad hoc queries.  

A key challenge for an EDW is to manage complex workloads to 

meet stringent performance objectives: for instance, batch load 

tasks are required to finish within a specified time window before 

reports or queries can be serviced, batch reports may issue   

thousands of “roll up” (aggregation) queries that are required to 

complete within a specified time window; ad hoc queries may 

have user-specified deadlines and priorities etc. Workload 

management is the problem of admitting, scheduling and 

executing queries and allocating resources so as to meet these 

performance objectives.  

A common use of an enterprise data warehouse is to run a 

workload consisting of a batch of queries. The objective in this 

case is to minimize the response time of a workload.  The batch 

problem is an important problem since an EDW (Enterprise Data 

Warehouse) system often spends a considerable fraction of its 

time running batch workloads such as rollups and reports. 

Typically, these batch workloads are distinct from the more 

interactive, ad hoc queries submitted by a user. Our focus in this 

paper is on the batch workloads. The trend is towards even larger 

queries and batches as data mining and predictive BI (Business 

Intelligence) reports are increasingly becoming central activities 

for a large data warehouse.  

The response time of a batch workload running on a system 

depends on many things: the number and type of queries, the 

system configuration, the number of concurrent streams of queries 

running on the system etc.  One metric of measuring the response 

time of a workload is throughput. The throughput is measured in 

queries completed in a unit time.  Throughput has been 

extensively studied in the literature by various communities. It is 

important to note that in the context of a batch of queries, the 

individual response time of a query is not important. Rather what 

is important is the overall response time for a batch of queries and 

it is this problem that we focus on in this work. 

A common way of looking at throughput is by means of 

throughput curves where the throughput is plotted against the 

‘load’ on the system.  In the case of a DBMS the load is usually 

measured in number of queries running concurrently on the 

system. This number is known as the multiprogramming level or 

MPL. MPL is also typically used to control the load on the 

system. In Figure 1 we have plotted the ‘typical’ throughput 

curves of two different hypothetical workloads: A workload 

consisting of several large, resource intensive queries (‘large 
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workload’) and another workload consisting of several medium 

queries (‘medium workload’). The x-axis is the multiprogramming 

level or MPL and the y-axis is throughput. Both throughput 

curves can be divided into three regions: (i) Underload (where, by 

increasing the MPL, a higher throughput can be achieved) (ii) 

Optimal load (also known as saturation, where by increasing the 

MPL, there is no significant change in throughput) (iii) Overload 

(or ‘thrashing’, where increasing the MPL results in significantly 

lower throughputs).  The goal of a workload manager is to keep 

the execution of a workload within the optimal load region. 

When a user first confronts a new workload the precise shape of 

the throughput curve is unknown to him/her and the user has to 

determine the MPL at which to execute the workload. Typically 

the user does not want to be on the left part of the curve since 

increasing the MPL can lead to an increase in throughput. But as 

the MPL is increased there is a danger of entering the overload 

region where higher MPLs mean a significantly lower throughput. 

At the boundary between the optimal region and the overload 

region (which we will call the ‘right knee’), increasing the MPL 

by even one, can cause severe performance deterioration rather 

than a gradual decline in performance.  

The problem is further compounded in the enterprise data 

warehouse space, by the fact that a typical Business Intelligence 

(BI) workload can fluctuate rapidly between long, resource 

intensive queries, and short, less intensive queries. As time 

progresses, the system can experience a different mix of queries 

and thus, to be in the optimal region, an EDW requires a different 

optimal setting of MPL as the workload changes. This 

dynamically changing nature of the optimal MPL setting makes it 

very challenging, if not impossible for a human (or a system) to 

keep the workload in an optimal region by adjusting the MPL 

setting. 

In this paper, we introduce BI Batch Manager, which is a database 

workload management system for running batches of queries 

while protecting against both underload and overload and keeping 

the system in the optimal region. 

Our main contributions in this work are the following: (i) We 

have created a new way of executing queries, PGM, Priority 

Gradient Multiprogramming, that stabilizes the system over a 

wide operating range. (ii) Our scheduling algorithm further 

enhances the stability of execution. (iii) We have created a 

mechanism for using memory as a basis for admission control in 

EDWs. There has been a significant amount of work in the OS 

community on memory and thrashing. We discuss that in the 

related works section and we build upon that work in our solution.  

The rest of the paper is as follows: In section 2 we present the 

related work. In section 3 we give a brief overview of the BI 

Batch Manager. Sections 4, 5, 6 present the execution control, 

admission control, and scheduler respectively.  We present our 

results and a general discussion in section 7. Finally we conclude 

with section 8. 

2. Related Work 
 

The related work falls into three areas: thrashing control in 

operating systems; creative memory management in DBMSs; 

feedback control of workloads. 

Multiprogramming was invented in the 1950s. The basic idea was 

that if a job was waiting for an I/O request to complete, the CPU 

could process another job in the meanwhile. This would increase 

the throughput of the number of jobs being processed by the 

system. Then, in the 1960s, the concept of Virtual Memory (VM) 

was introduced. Multiprogramming combined with VM enabled 

higher throughputs, but also created the potential for a system to 

‘thrash’, where more time is spent replacing pages in physical 

memory, and less time is available for the actual processing of 

those data pages. The problem of thrashing is inherent in all 

multiprogramming VM systems, and we continue to this day, to 

creatively work around this problem. 

The problem of oversubscription of memory, the primary cause of 

thrashing has been studied extensively since the 1960s. The 

techniques are very often admission control in one form or the 

other.  

A very well known solution to over subscription of memory is the 

Working Set model [DENN68-WS] [DENN80] . The working set 

model is based on the assumption of locality. The basic idea is to 

examine the last n page references. The set of pages in the last n 
page references constitutes the working set of the process. A 

process is not allowed to take a page from another process’ 

working set, and a new process is only introduced if there’s 

enough free memory to accommodate its (predicted) working set.  

Thus, at its core, the working set mechanism is a feedforward 

mechanism that prevents problems from occurring.  

The Working Set model has a few drawbacks: a process’ working 

set is unknown at the time it is launched; a process’ locality can 

change suddenly and drastically; additional hardware may be 

required to keep track of a process’ working set.  For instance, If 

the working set is overestimated, memory may be under-utilized 

resulting in sub-optimal performance. Similarly, if the working set 

for a process is underestimated, it will incur a high cost of page 

faults, and thus sub-optimal performance. Since, in a working set 

model, a process can not take memory away from another process, 

it results in a local page replacement policy. Local page 

replacement policies can result in serious inefficiencies because 

overestimation and underestimation errors add together instead of 

canceling out. Some of these drawbacks have been addressed by 

[CARR81] [DENN80] [RODR73] .  

Several heuristics have been proposed for doing admission control 
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either by explicitly controlling the MPL or otherwsie. These 

include the Knee Criterion, the L=S criterion, the Page Fault 

Frequency algorithm, and the 50% rule [DENN76]. However, 

thrashing is still an unsolved problem in operating systems and 

work continues in this area [JIAN02] .  

Our focus, in this paper, is in preventing thrashing in a database. 

We benefit from the existing technologies that are built into the 

operating system to control overload. We use the characteristics of 

databases to control overload in the database. The most important 

characteristic is that a database query has a plan and therefore its 

behavior is inherently more predictable than an arbitrary program 

presented to the operating system. Our work takes advantage of 

the added predictability of database queries and we propose an 

execution mechanism that stabilizes the system so that it becomes 

less sensitive to estimation errors.  

The second area of related work is in the design of memory 

managers for DBMSs. Several proposals have been made: 

[CARE89] [BROW93] [BROW94]. The drawback of these 

methods is that the internal workings of the database memory 

manager have to be changed. Our approach achieves the goal of 

preventing overload and underload without any internal changes 

to the DBMS. 

The third area of related work is in the feedback control of 

workloads. The basic idea in the feedback approach is to sample 
some performance metric. If the performance metric exceeds a 

certain target value then the rate of admitting jobs into the system 

is reduced. If the performance metric is less than a certain 

minimum, then the rate of admitting jobs into the system is 

increased. Thus, the performance metric is kept at an optimal rate, 

by controlling the admission of jobs into the system. Most of the 

previous work using this approach has been targeted towards 

OLTP (On-line Transaction Processing) systems where thrashing 

due to data contention has been the main problem. Some 

examples of the feedback approach include: Adaptive control of 

the Conflict Ratio, Half and Half method, Analytic model using a  

fraction of blocked transactions as the performance metric, Wait-

depth limitation, etc. Several of these methods have been 

summarized in [MOEN92] . Another good demonstration of this 

approach is provided by [PANG94] that deals with real-time 

database systems, and by [SCHR06] . More recently, Web servers 

have employed a feedback loop approach [LIU03] [CHEN01] 

[KAMR04] [ELNI04] . 

The main problem with the feedback approach is in choosing the 

sampling interval over which the performance metric is measured. 

If this sampling interval is too small, then the system could 

oscillate and could end up being very unstable. Similarly, if the 

sampling interval is too large, then the system could end up being 

very slow to react to a changing workload and thus not be quick 

enough to prevent overload and underload behavior. Typical 

Business Intelligence workloads shift rapidly between small 

queries and huge queries. A performance metric and an associated 

sampling interval which is appropriate for one kind of workload 

may not work for a different kind of workload that runs only an 

instant later on the system. Thus the feedback loop approach is 

not appropriate for a rapidly changing BI workload. 

There has been very little published in the area of workload 

management of BI workloads. These workloads are very different 

from OLTP and Web server workloads, which has been the main 

focus of workload management research. To our knowledge, the 

most common approach used by commercial BI systems is a 

‘static MPL’ approach. In this approach, a ‘typical workload’ is 

run multiple times through the system. Each run is performed at a 

different MPL setting, and the corresponding throughput is 

measured. An optimal MPL is then chosen based on these trial 

and error experiments, or based on guesswork on the part of the 

DBA (Database Administrator). The workload is then ‘throttled’ 

down to this static MPL, which may be different for different 

times of the day.  

There are several problems with this approach. Firstly, it is 

expensive to perform the trial and error experiments that this 

method calls for. Secondly, it results in a very approximate and 

inaccurate setting. The resulting MPL might work marginally well 

for the workload that was used in the testing, but is unlikely to 

work well with other workloads. Thirdly, it is static, and therefore 

cannot handle a dynamic shift in the workload. However, even 

with all its failings, it is still used by commercial systems because 

it is relatively easy to do. Unfortunately, the difference between 

the throughput of a well managed BI workload versus a poorly 

managed one can be an order of magnitude or more. 

In the BI Batch Manager, we borrow the feedforward idea from 

the working set model and build upon it. We stabilize the system 

through a novel execution control component, so that it is tolerant 

of a wide range of prediction errors. The result is a workload 

management system that automatically avoids overload (and 

underload) while consistently running batch workloads at 

‘optimal’ performance.  

3. Overall System Design 
 

Our BI Batch Manager has three primary components: An 

Admission Control component, a Scheduler and an Execution 

Manager. A schematic has been depicted in Figure 2. (The 

components are the solution components and we will discuss each 

of them in the text) The overall approach we follow to design 

these components is summarized as a four step process: 

1. Identify a manipulated variable whose predicted value is 

suitable for BI workload management (for example: 

memory). 

Figure 2: Component Design for BI Batch Manager 
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2. Use the manipulated variable for admission control, i.e. 

admit queries based on some value of the manipulated 

variable. 

3. Schedule the queries so that the system behaves 

optimally for the admitted batch. 

4. Make the system stable over a wide range of this 

variable, i.e., the system should not go into either 

underload or overload over a wide range of prediction 

errors for this manipulated variable. 

Traditionally, MPL has been used as the manipulated variable of 

choice for workload management. A problem with MPL is that as 

the workload changes, the MPL needs to be changed too. This is 

illustrated in Figure 3, where we have plotted the throughput 

curves for three different workloads.  These workloads are 

composed of multiple copies of TPC-H Query X at three different 

SFs (Scale Factors, which indicate the size of the database. Higher 

the scale factor, larger the database). The workloads were 

executed on a 32 node enterprise class, commercial database 

system. It can be clearly seen that the three different workloads 

have very different optimal regions. SF100 has an optimal region 

from MPL 7 to MPL 20, for SF200 the optimal region is from 

MPL 5 to MPL 10, whereas SF400 has an optimal region around 

5.  This figure clearly illustrates the problems with using MPL, as 

identified in Section 1. Namely, that it is impractical to fix an 

MPL for a mixed workload and then dynamically change the MPL 

as the workload progresses.  

Memory, however, behaves much more predictably as a 

manipulated variable. We demonstrate this with the help of an 

experiment.. In Figure 4 we have plotted the same curves from 

Figure 3, with a different x-axis. Instead of MPL, the independent 

variable is now the total memory required by the workload per 

CPU (sum of the peak memory per CPU required by individual 

queries in the workload). It can be seen that the different SFs 

become suboptimal around 4 GB of memory per CPU, which is 

the average amount of free memory available per CPU for that 

experiment. (For the sake of simplicity we are assuming at this 

point that all CPU’s have the same amount of available memory, 

and that the queries are fully parallelized, using the same amount 

of memory per CPU). This shows that the overload behavior can 

be predicted more accurately with memory than with MPL. A 

workload thrashes whenever its cumulative peak memory 

requirement per CPU exceeds the available memory per CPU.  

A good choice of a manipulated variable would be any resource 

that causes a bottleneck when processing queries on the system, 

i.e., CPU, disc, memory, lock contention and message buffers. 

Saturation of CPU, disc or message buffers or lock contentions 

are limiting factors, i.e., if they are saturated the throughput 

cannot be improved. Any of these variables could be used as a 

manipulated variable for a feedforward system. Memory is 

different than these other variables. As we have seen, over 

subscription of memory can lead to serious degradation in 

performance because of thrashing. So, in this work we focus on 

memory and use it as the manipulated variable.   

We introduce a memory based admission control scheme, where 

each batch is divided into sub-batches such that the memory 

requirement of queries in each sub-batch adds up to the available 

memory on the system. Our admission control uses memory to 

admit queries in a feedforward manner, i.e., compute a value for 

the manipulated variable (in our case: memory) that would give us 

desirable system behavior and then feed the system such that the 

manipulated variable has that desired value. The advantage is that 

the system behaves optimally. The obvious disadvantage to a 

feedforward system is that the system is vulnerable to errors in the 

value of the manipulated variable. We tackle this problem with 

the help of our scheduler and the execution control. 

Before going further we present two definitions that we will use 

throughout the paper: 

Definition 1: For a query Qi, with execution time Ei its memory 
requirement mi is given as: 

 mi = max {avg(mict) | 0 <  t  ≤  Ei } 

Where mict is the memory required by query Qi at time t at CPU c 
and the average is taken over all the CPUs at time t.  

The memory requirement of a workload W, denoted by Mw is: 

 Mw = Σmi 

Definition 2:For a batch of queries Q1, Q2, …, Qn ε W , where a 
query Qi belongs to a workload W and the minimum available 
memory across all CPUs is M, the size of the workload is given as 
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xF where: 

 x = Mw / M 

This means that the workload is a factor x times the size of the 
minimum available memory across all CPUs and F is a unit that 
indicates the factor of memory available. This is also called the F 
factor of the workload. 

Example 3: Suppose that the memory requirement of queries in 
the workload add up to 12 GB and the minimum available 
memory across all CPUs is 4 GB, then the workload is of size 3F. 

Remark: We have  assumed that the queries use the same amount 
of memory per CPU but it varies over time, hence we take the 
maximum of the averages in Definition 1. We have assumed that 
there are no dependencies between queries in a workload. We 
also assume that the memory requirement of queries are 
independent of each other. 

The heart of the technique is in stabilizing the system for 

prediction errors in the size of the workload. We begin by 

describing our execution control in section 4, which is the key 

component that stabilizes the system against estimation errors. We 

then describe our scheduling policy in section 5, which is 

designed to further stabilize the execution over a range of 

prediction errors. These lead to a simple admission control policy, 

which is described in section 6.  

4. Execution Control 
 

We saw in Figure 4 that if the size of the workload is greater than 

the amount of memory available on the system it can result in 

thrashing, which in turn results in severe performance 

deterioration. The queries in Figure 4 were executed at the same 

priority. We call this method of execution EPM or Equal Priority 

Multiprogramming. EPM is robust for a reasonable range of 

overestimates, i.e., if we overestimate the size for a workload and 

actual memory required is less then that, the throughput would 

still be in the optimal region. However, EPM is very unstable for 

underestimates, as depicted in Figure 4 where there is a sudden 

drop in throughput as the size of the workload increases beyond 

the available memory.  For instance, from Figure 4, it can be seen 

that the example workload is optimal under the EPM execution 

control between the workload sizes of 1/3 F and 1F (there was 

approximately 4 GB of memory available per CPU during the 

experimental runs). To overcome the sensitivity to thrashing for 

workloads of sizes greater than 1F, we introduce Priority Gradient 

Multiprogramming, or PGM.  

In PGM, queries are executed at different priorities such that a 

gradient of priorities is created. This results in queries asking for,  

and releasing resources at different rates (especially memory 

which is a primary cause for thrashing). This solution has proved 

to be very effective in protecting against overload.  This makes 

admission control based on memory more feasible. 

In our experiments, typically, PGM extends the stable region to 

workloads of size between 1/3 F and 3F. We will now describe 

PGM in detail, demonstrate its efficacy through some experiments 

and discuss why it works. 

4.1 Priority Gradient Multiprogramming 
PGM is a mechanism for executing queries in a database system 

where every query is assigned a different priority. More precisely:  

Definition 4: A mechanism for executing a batch of queries Q1, 
Q2, …, Qn ε W , where a query Qi belongs to a workload W,  in a 
DBMS is understood to be a Priority Gradient Multiprogramming 
mechanism if it has the following characteristics: 

1. Order all queries: Specifically, all queries are 
uniquely ordered according to some ordering function 
Ford, such that, Ford(Qi) = j, where j ε [1, …, n] and 
for all i, j ε n, Ford(Qi) ≠ Ford(Qj). 

2. Pick queries in order and assign priorities in that 
order:  Specifically, pick query Qa, where for Qa, 
Ford(Qa) = 1 and assign the  highest priority P1 to it. 
Then, pick query Qb where for Qb, Ford(Qb) = 2 and 
assign a priority P2 such that P2 < P1. This is done 
until all the queries in the workload have been 
assigned a priority or the range of permissible 
priorities runs out. 

 

The difference between any two successive priorities, Pi+1 and Pi 

is known as the step size and is a constant k.  Since some 
operating systems have a fixed number of allowable priorities, 

setting k = 1, permits for the largest possible number of queries 
being assigned a valid priority. For some systems where different 

operations of a query are assigned different priorities by the 

executor, k can be larger. For instance in our experiments we have 
had to use k = 2. 

Example 5:  Suppose there are ten queries in a workload: Q1, …, 
Q10 and the highest permissible priority for a query is 200. Say 
we choose Ford(Qi) = i and k = 1. Then the priority of Q1 is 200, 
Q2 is 199 and so on, assigning Q10 a priority of 191. Then admit 
the workload with these priorities into the executor. Note that, in 
this example a priority of 200 is higher than a priority of 199. 

The ordering function, Ford, could be a function that assigns order 

based on say CPU, memory or some other system variable. One 

useful function would be a function that assigns a random order. 

This would be useful because it doesn’t require hard-to-compute 

characteristics of a query like: expected time taken, expected 

memory usage or some such resource requirement. Later, we 

introduce a memory based ordering that is useful in our context. 

Even in such a case, precise computations are not required, only 

an ordering is required. For example, there is no need to say Qa 

requires x memory, just that Qa requires more or less memory than 

Qb.  

An important consideration with PGM is that it requires that the 

operating system has a preemptive priority scheduler. A 

preemptive priority scheduler is a scheduler such that, when a 

process arrives at the ready queue, its priority is compared with 

the priority of the currently running process. If the priority of the 

currently running procedure is lower than the priority of the newly 

arrived process, the newly arrived process will preempt the CPU. 

This feature is standard on many commercial systems, including 

the HP NonStop Kernel, LINUX etc. [BOVE2000] 

4.2 Experimental Evidence for PGM 
To evaluate the performance of PGM we ran the workloads that 

have been plotted in Figure 3 and Figure 4. We now give the 

complete test bed specification: 

1. Machine: 2 Segment (32 Node) commercial, enterprise 
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class EDW, with 8GB physical memory per CPU. 

2. Database: TPC-H. Scale Factors 100, 200, 400. 

3. Workload: Complex Workload (multiple copies of 

Query X from the TPC-H benchmark). 

4. The order function, Ford, for the complex workload is 

not important since they are multiple copies of the same 

query. We specifically choose this type of construction 

to get results that are independent of the order of 

queries.  

A run is comprised of a workload, a scale factor, the number of 

streams used, and the strategy used (EPM or PGM). The time of a 

run is converted to a throughput number. For example, if 50 

queries take 30 minutes to complete, then the throughput = 

(50q/30m)*60m = 100qph. Each run is then represented by this 

single throughput number. We create a workload and run it with 

different MPLs under both schemes. 

Figure 5 shows the throughput curves of three different workloads 

composed of multiple copies of a TPC-H Query X. (Please note 

that due to sensitivity considerations we cannot publish the query 

numbers) The top two curves are for a workload with SF = 100, 

the next two are for a workload with SF = 200 and the bottom two 

are for a workload with SF = 400. For each workload, two 

throughput curves have been plotted: a PGM curve and an EPM 

curve.  

Most of Figure 5 is self evident. For all the three different scale 

factors for EPM, as the memory increases, the throughput first 

increases a little (underload), stabilizes at some high value 

(optimal) and finally falls down (overload). The initial rise is 

because the CPU has spare cycles which can be used with higher 

values of MPL. In the stable part of the region, there are not many 

spare cycles and the system is fully utilized. Finally as the MPL 

values are increased further (as indicated in the figure by 

increasing in the size of the workload), thrashing occurs and 

throughput falls.  

If we look at the grey region we can see that using PGM has 

stabilized the execution. As memory increases from 1.5GB 

(approx 1/3F) to 13 GB (approx 3F), PGM stays in the optimal 

region, whereas after 4.5GB (approx 1F) EPM enters the overload 

region, and thrashes. 

More specifically, if we compare the EPM curves with those of 

PGM we observe the following three differences: 

1. For the first two regions (underload and optimal) the 

behavior is similar to that of EPM. However, for SF = 

100 and SF = 200, PGM has no overload region - even 

as the size of the workload is increased, the system does 

not thrash and we continue to achieve high values for 

throughput. This means that for these two workloads we 
have eliminated thrashing.  

2. For the SF = 400 workload, beyond a certain memory 

requirement value there is a drop in throughput for 

PGM.  But the workload size at which this occurs is 

greater than 3F. So for the SF = 400 workload, PGM 

increases the memory requirement at which thrashing 
occurs and reduces the amount of thrashing (as 
measured by drop in throughput).  

3. For all three scale factors, PGM extends the optimal 
region to 13 GB which is greater than 3 times the 
average available memory on the system. For SF = 100, 
the EPM optimal region is from memory = 1 GB to 

memory = 4 GB whereas for PGM the optimal region is 

memory = 1 GB to memory = 11 GB. For SF = 200, the 

region is extended from 1 – 3.5 GB of memory for EPM 

to 1 - 11 GB for PGM and for SF = 400 the region is 

extended from 1 – 4.0 GB of memory for EPM to 1 – 13 

GB for PGM. 

Additionally, we have conducted a series of experiments where 

we looked at a mixed workload (small queries intermixed with 

large queries). These are presented in the experimental results 

section. These were created by randomly mixing multiple copies 

of TPC-H queries. The behavior was similar to that of the 

previous experiments where PGM extends the optimal region. 

The experimental results show that with the help of PGM we can 

achieve the following things: 

1. Eliminate Thrashing in some cases. 

2. In other cases, we increase the memory/MPL at which 

thrashing occurs and reduce the amount of thrashing. 

3. Extend the region of memory/MPL in which a workload 

can run optimally. 

We can further extend the optimal region by creating a suitable 

scheduling policy. 

4.3 Why PGM Works 
PGM is a mechanism for stabilizing the throughput curve over a 

wide range of workload memory (the manipulated variable). PGM 

stabilizes the right side of the throughput curve, i.e., it protects 

against overload, or in other words thrashing. The primary cause 

of thrashing is severe memory contention. The PGM scheme helps 

in regulating the peak memory requirement for a batch of queries, 

and effectively moves the right knee further to the right. 

Consider a system where all queries are running with the same 

priority (EPM). In such a system, when a process p page faults, it 
goes to the wait queue, and when its page arrives, it goes to the 

end of the ready queue. All the processes prior to p in the ready 
queue are either finished or they page fault before the CPU gets to 
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p. In this way all the processes in the system get a ‘fair’ share of 
the resources.  

In a PGM setting the sharing of resources is not so ‘fair’. Say the 

highest priority process q page faults. When the page required by 

q arrives in memory, then instead of going to the back of the ready 
queue, q will preempt the currently running process in the CPU. 
Process q will get an ‘unfair’ share of resources. Thus, in a PGM 
mechanism (as in all priority based mechanisms) the highest 

priority query gets an unfair share of system resources – it gets 

what it needs quickly and efficiently. The remaining resources are 

automatically allocated to the query running at the second highest 

priority level. This continues down the priority gradient.   

There can be a valid concern with resource starvation for low 

priority queries in that they might take very long to finish. 

However, in the case of a batch workload, the response time of an 

individual query is not important, rather the response time for the 

whole workload is of importance. As the higher priority queries 

finish, they leave the system and the lower priority queries get a 

larger share of system resources. 

Let’s look at thrashing a bit more carefully, to see why PGM 

works so effectively. Thrashing is caused by memory contention. 

We explain it in the context of a global page replacement policy – 

it replaces pages regardless of the process to which they belong. 

Suppose that a process needs more frames. It starts page faulting 

and taking away frames from other processes. These processes 

need those pages and so they also fault, taking frames from other 

processes. These faulting processes must use a paging device to 

swap pages in and out. As they queue up for the paging device the 

ready queue empties. As processes wait for the paging device the 

CPU utilization drops. The CPU scheduler sees the decreasing 

CPU utilization and increases the number of processes. The new 

processes start by taking frames from the existing running 

processes further exacerbating the problem and CPU utilization 

drops further. As a result the CPU kicks in more processes. 

Thrashing has occurred and the throughput plunges significantly,  

since processes are spending most of their time  page faulting.  

In Figure 6 we plot the CPU utilization and memory pressure 

against time for a system where thrashing occurred.  As can be 

seen in the figure, once the workload starts, the CPU quickly 

attains a 100% utilization. The memory pressure (percentage of 

physical memory that is being used by a processor – averaged 

across all the processors) slowly begins to build up as an 

increasing number of processes demand memory. Once the 

memory pressure builds up beyond a certain point, the CPU starts 

to drop and very quickly falls to around 20 % utilization. Only 

after the memory pressure begins to go down do we see the CPU 

utilization going up. From this discussion we can reasonably say 

that if the rise in memory pressure can be halted without losing 

too much CPU utilization then we have a solution to the problem 

of thrashing. This is precisely what PGM achieves. We explain 

this with the help of Figure 7. 

Figure 7 depicts two memory profiles (Memory used as function 

of time) for a typical workload. The smooth light curve indicates 

the memory profile for a scheme where every query in the 

workload is assigned the same priority – the EPM Scheme. The 

dark, jagged curve indicates the memory profile for a PGM 

scheme.   

From the curves, it can be noted: 

1. The peak memory requirement for PGM is substantially 

lower than that of EPM. This clearly indicates that PGM 

reduces the peak memory requirement. This happens 

because PGM starts freeing memory sooner than EPM. 

The higher priority queries get all the resource they 

need and get done quicker. They then free their 

memory. The saw-toothed behavior of the PGM curve is 

an indicator that, as the higher priority queries get done, 

they release their memory hence reducing the peak 

value of memory pressure.  

2. The initial slope of the PGM memory profile has a 

lesser slope than that of the EPM memory profile. This 

happens since the queries lower down in the priority 

order do not get a chance to ask for all the memory they 

need. 

 

So, by asking for memory at a slower rate and releasing memory 

quicker, PGM reduces/eliminates thrashing. Thrashing is 

eliminated if the peak memory requirement never gets so high as 

to cause thrashing and even if it does become high, the peak 

values are still less compared to an EPM scheme.  
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5. Scheduler 
 

Our execution control requires that the queries be given a priority, 

or in other words, they need to be arranged in some order Ford. 

The Scheduler component performs this task. 

If a workload is in the optimal region the order of priorities is not 

significant (There is further discussion on this in the experiment 

section). The throughput penalty for being in the overload region 

is much higher than being in the underload region. Hence we 

designed a scheduling order that stabilizes the system for memory 

underestimation errors (the overload region). 

We call our ordering scheme LMP, or Largest Memory Priority. 

Under this ordering scheme the queries are assigned a priority in 

the order of their memory requirement. As the name suggests, the 

query with the largest memory requirement is given the highest 

priority. 

Definition 6: An order FLMP of a batch of queries Q1, Q2, …, Qn ε 
W , where a query Qi belongs to a workload W,  in a DBMS is 
understood to be a Largest Memory Priority order iff: 

 mi > mj  => FLMP(Qi) > FLMP(Qj), i,j є [1..n] 

LMP works for our purposes since the query with the largest 

memory requirement gets the highest priority and is amongst the 

earliest to be done and releases its memory. Typically, in a 

workload, the queries start building up their memories and the 

memory requirement continues to rise unless some memory is 

released. In EPM this causes thrashing since all queries have the 

same priority.  In PGM we extend the optimal region as queries 

finish up and release their memories. LMP further extends the 

PGM stability by giving the highest priority to the query that 

would consume and then release the largest amount of memory.  

5.1 Some Experiments with LMP 
We compared the performance of LMP with a few other candidate 

scheduling strategies: 

1. Random ordering of queries. 

2. The shortest job was given the highest priority (SJP) 

3. A Mix of priorities was created so that the memory was 

dispersed over priorities. For instance, consider the 

queries with the three largest memory sizes.  Under this 

scheme, the query with the largest memory requirement 

would be given the highest priority, the query with the 

second largest memory requirement would be given the 

lowest priority and the third query would get the middle 

priority. 

Since we are interested in the overload region we looked at 

workloads with size in and around 3F. In Figure 8 we have 

presented the results from five such experiments. Here the y-axis 

indicates throughput and the x-axis indicates the size of the 

workload (recall that size is measured in terms of memory). 

It can be seen from Figure 8 that, for such large memory 

requirement workloads, LMP has greater throughput than any of 

the other ordering schemes. 

In the next section we present the admission control component of 

the BI Batch Manager. 

6. Memory Based Admission Control  
 

With memory as the manipulated variable, PGM as the execution 

control and LMP as the scheduling policy, the admission policy is 

a simple three step process: 

1. Divide the batch of queries (a Workload) into sub-

batches such that each sub-batch is of size 1F. 

2. Admit a sub-batch into the system and assign priorities 

to the queries based on the LMP scheduling policy. 

3. When a sub-batch is ‘done’, introduce a new sub-batch 

into the system and repeat until all the sub-batches are 

done. 

The division of a batch of queries into sub-batches can be reduced 

to the problem of a 1-Dimensional bin packing problem (The 

problem of packing irregular 1-Dimensional object into bins of 

fixed size such that the number of bins is minimized) with 1F 

being the size of the bin and the queries as the packages that need 

to be packed in the bins. This problem is a NP-Hard problem. A 

number of approximate algorithms have been suggested in the 

literature [JOHN74].  A simple and useful one is FFD or First Fit 

Decreasing. FFD has known bounds of the number of bins being 

at most (11/9) + 1 times the optimal number of bins. In our 

context FFD can be rewritten as: 

Algorithm 7 - FFD: 

1. Arrange queries in a descending order of memory 
requirement mi 

2. For every query Qi in this order, insert Qi into the first 
sub-batch Ssub that can accommodate the query 
(without the size of the sub-batch exceeding 1F). 

3. Repeat Step 2 till all the queries have been assigned a 
batch Ssub. 

We now define ‘done’: 

Definition 8: We say a batch of queries is done when all three of 
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the following conditions are satisfied: 

1. When a threshold Tfinish fraction of the queries in the 
workload finish execution. 

2. The minimum memory pressure over all CPUs falls 
below a threshold Tmem, where memory pressure is 
understood as the ratio of memory used to that of 
available memory. 

3. The Average CPU utilization falls below a threshold 
Tcpu. 

We can now state the admission control policy: 

Definition 9: Admission Control Policy: A Query Memory based 
Admission Control Policy for executing a batch of queries Q1, Q2, 
…, Qn ε W , where a query Qi belongs to a workload W, and the 
system has average memory available as M is: 

1. For each query Qi compute the memory requirement 

mi. 

2. Divide the queries into sub batches using FFD such 
that for a sub batch ΣMi < M. Repeat Steps 3 to 4 till 

the all the queries in workload W finish. 

3. Pick a batch Ssub that is not done. Prioritize all queries 

in sub batch Ssub using LMP.  

4. Execute the queries in Ssub. When the batch Ssub is 

‘done’ (Definition 8), goto Step 3. 

Sub-batches do not have to be run serially. They can be 

overlapped, using definition 8 of when a sub-batch is considered 

‘done’. In practice, however, we have observed that the CPU 

utilization stays at an average of close to 100% to the point where 

the batch finishes.  Hence, as a practical simplification, we can let 

the whole sub-batch of queries complete, before introducing a 

new sub-batch. 

As discussed before, the idea of using memory for admission 

control has been around for a while in the OS community, for 

example the Working-Set approach is based on this idea. The 

challenge with these approaches is to find out how many frames a 

process might need or to keep track of a processes’ working set 

(The working set model starts by looking at how many frames a 

process is currently using).  

In the world of DBMS, we are more fortunate. Every query has to 

have a plan before it is executed. This plan details the cardinality 

of each and every operator in the plan. This information can be 

used to estimate the memory requirement of a query. Literature 

suggests that memory can be predicted to a reasonable level of 

accuracy [SACC86].  

A drawback of predicting memory in a real DBMS is that the 

cardinalities of various operators can sometimes be off by an 

order of magnitude or more. However, to deal with this, 

commercial DBMSs often restrict the maximum memory that can 

be consumed by a large memory operator. This gives an upper 

bound on the memory estimation error for a query. This is the key 

reason that enables us to use memory prediction as a manipulated 

variable for BI Batch Manager. 

Furthermore, the memory estimation error of an entire workload is 

less than the estimation errors of the individual queries, since 

some overestimates cancel out underestimates. We present this 

analysis more formally in the next section below. 

7. Experiments and Discussion 
 

We have done a series of experiments to test various aspects of 

our BI Batch Manager. Recall that the BI Batch Manager (Figure 

2) consists of three components (i) Admission Control with 1F 

memory and FFD as the algorithm (ii) Scheduler with LMP as the 

algorithm and (iii) Execution Control with PGM as the technique. 

The experiments were conducted in the following framework: 

1. Machine: Same as discussed previously, namely, a 2 

Segment (32 Node) commercial class Enterprise Data 

Warehouse , with 8GB physical memory per CPU 

2. Database: TPC-H, SF50, SF100, SF200. 

3. Workload: 48 mixed workloads of random sizes were 

created by uniform random sampling (with replacement) 

of TPC-H queries. 

We also introduce some workload metrics to measure the 

performance.  

1. Ideal Throughput (IT) Compute the CPU work done by 
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each query in the workload (in CPU seconds) by finding 

the area under the CPU utilization curve. This is 
sometimes called the ‘path length’ of a query. Add up 
the CPU work done for all the queries in the workload. 
Divide by 1 (100% utilization). This gives a lower 
bound on the amount of time the workload can take to 

run under ideal conditions.  Convert this to a 
throughput number. This is the Ideal Throughput (IT), 

which is the upper bound on the throughput that can be 

achieved for this workload. 

2. BI Batch Manager throughput (BT): Actual workload 

throughput under the BI Batch Manager system. 

3. EPM throughput (ET): Actual workload throughput 

under the default Equal Priority Multiprogramming. 

Note that, in practice it is impossible to obtain the ideal 

throughput, since even for a highly parallelized query there are a 

number of serial operations. Thus, the ideal throughput should be 

viewed as a good upper bound, but not necessarily achievable. 

The aim of a BI Batch Manager is to maximize the throughput of 

BI Batch Workloads while protecting against underload and 

overload. 

Our overall claim for the BI Batch Manager is the following: 

Claim 12: If the workload size is 1F then the BI Batch Manager 
does not go into underload or overload. Hence it works in the 
optimal region of the throughput curve.  

This is easy to see why: we know that if the CPU is kept busy then 

there is no underload. If the memory is full, then in the case of 

queries, some big memory operator (BMO) is using memory.   

The CPU needs to process the data in the memory and that will 

keep it busy, hence avoiding underload. Similarly, if the memory 

does not exceed 1F then there is no reason for the system to go 

into overload. Since the BI Batch Manager does not allow the 

system to go into underload or overload, it works in the optimal 

region of MPL. 

A similar claim can be made for EPM, but what makes the BI 

Batch Manager useful is that it is stable for underestimates in the 

size of the workload. Both EPM and BI Batch Manager are stable 

for overestimates in the size of the workload.  

We begin with experiments and a discussion that shows that the 

BI Batch Manager avoids underload for overestimation errors in 

the workload size. We then present experiments and discussion 

that shows that BI Batch Manager avoids overload for 

underestimation errors in the workload size. Finally we present 

overall results that show a BI Batch Manager extends the optimal 

range and performs optimally in it. 

7.1  Avoiding Underload 
Overestimation errors in the size of the workload might cause 

workloads of a small size being executed. This can cause 

underload. Experimentally, we show that for a left bound of 

workload size 1/3F, the BI Batch Manager on our system does not 

cause underload. In Figure 9 we have plotted the average CPU 

utilization across different CPUs for experiments run with the BI 

Batch Manager, for workloads of size from 1/10F to 1/3F. It can 

be seen that the CPU consumption is higher than 60 % which is 

understood to be not an underload situation. 

7.2 Avoiding Overload 
Underestimates in the size of the memory might cause workloads 

of a large size being executed. We show empirically, that our BI 

Batch Manager system is robust up to a workload size of 3F. In 

Figure 10 we have plotted the throughput results for fifteen mixed 

workloads of size varying from F to 3.5 F that were executed both 

under EPM and BI Batch Manager. The throughputs have been 

plotted as a percentage of the ideal throughput. For the same 

workload, the black dots are the ratio of the BI Batch Manager 

Throughput (BT) to that of the Ideal Throughput (IT) and the 

bottom of the vertical lines indicate the ratio of the EPM 

throughput (ET) to the ideal throughput (IT). The x-axis is an 

enumeration of the memory requirement for fifteen different 

experiments. 

It can be seen from the plots that for all the workloads, BI Batch 

Manager outperforms EPM. The EPM results with low 

throughputs are the result of overloading. BI Batch Manager 

outperforming EPM clearly indicates that for a BI Batch Manager,  

either there was no overload or significantly reduced overload. 

For fourteen of the fifteen workloads BTF is at least 80 % of IT.  
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80% of ideal throughput is certainly considered good by most 

practitioners. 

7.3 Optimal Region 
To study PGM’s optimal region, we created two separate sets of 

workloads. Each workload set consisted of workloads that varied 

in size from very small to very large.  

The first set had twelve mixed workloads from TPC-H SF200. 

Workloads were created by first choosing a memory number 

between 1.33GB (approximately 1/3F) and 12GB (approximately 

3F). Then, queries were randomly chosen from the set of TPC-H 

queries (with replacement) until the memory size of the workload 

equaled the desired memory size. In Figure 11 we have plotted 

throughput results for these workloads. It can be clearly seen that 

for all the workloads, BI Batch Manager has a ratio of BT to IT of 

greater then 80 %. It can also be seen that EPM has a large drop 

in throughput for workload sizes greater than 1F.  

Finally, we present results for a wide variety of workload sizes, 

measured as F values. These demonstrate that PGM behaves 

optimally for the span of 1/3F to 3F. This set had 10 mixed 

workloads, chosen from a broad set of workloads. We used 

queries from 3 different scale factor TPC-H databases (SF50, 

SF100, SF200) as the candidate set of queries. We randomly 

chose queries from this diverse candidate set (with replacement) 

and in this manner created workloads of various sizes. Before the 

execution of every workload, we computed the actual available 

memory on the system, and used it to compute the F factor. In 

Figure 12 we have plotted the throughput results for these 

workloads. It can be clearly seen from this figure that PGM 

behaves optimally for our experimental setup between 1/3F and 

3F. 

These experiments experimentally validate the usefulness of BI 

Batch Manager. 

8. Conclusions 
 

We have seen that running batch workloads is an important 

activity of BI systems. Batch workloads include the rollups that 

need to aggregate daily warehouse data to more usable 

information. Batch workloads also include Business Intelligence 

reports that are typically created daily (or nightly) on an EDW. 

The trend is to have larger and more complex reports being 

created daily. An EDW can spend a significant portion of its time 

running batch rollups and reports. BI workloads typically consist 

of a wide variety of small and large queries, and the workload mix 

can change in an instant. This makes the current static MPL 

techniques, or feedback based MPL control techniques 

insufficient to manage a BI workload. The BI Batch Manager is a 

feedforward, priority-based workload management system that 

complements the built-in operating system controls for load 

control.  

The BI Batch Manager consists of three main components:  a 1F 

Admission control policy, the PGM (Priority Gradient 

Multiprogramming) Execution control component, and an LMP 

(Largest Memory Priority) scheduling or packing policy. The 

PGM execution control is the key component. It is a novel 

execution control policy that runs queries on a priority gradient 

and stabilizes the memory range over which workloads will 

experience optimal throughput. The other two components serve 

to make the BI Batch Manager a complete system that is practical 

for commercial systems. 

The BI Batch Manager has been experimentally validated on a 

real commercial, enterprise class DBMS. We have shown that the 

BI Batch Manager can automatically manage real mixed-

workloads and consistently attain high throughputs, with overload 

and underload avoidance, and with stability across a wide 

operating range. As a next step, we will be extending the BI Batch 

Manager to handle interactive, ad hoc queries as well. 
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10. Appendix  A: Statistical Results for 

Addition of Memory Prediction Errors 
 

For the purpose of analysis, we assume that the memory 

estimation errors are distributed normally.  Let there be n queries 
in the workload. Let the memory prediction for the ith query, qi 
denoted by Q(mi)  ~ N(µi, σi

2). It is well known that sum of n 
independently distributed normal random variables is Normal: 

More formally if Q(mi)  ~ N(µi, σi
2)  then Q(M) = ΣQ(mi)  ~ N(µ, 

σ2):  

ΣN(µi,σi
2) = N(µ,σ2) where µ = Σµi and σ

2 = Σσi
2. Then: 

N(µ,σ2) = ΣN(µi,σi
2)  

=>N(µ,σ2) = N(Σµi,Σσi
2)  

=>N(µ,σ2) = N(Σmi,Σσi
2)                                  (1) 

=>N(µ,σ2) = N(M,Σσi
2)                                    (2) 

A point on the normal distribution such that 99% of the 

probability lies to the left of the point is given by µi + 3σi.  Let this 
point be k times the value of the mean. Then: µi + 3σi = kµi. This 
implies: σi=(k-1)µi/3. 

We consider two cases: 

Case I: All queries are the same. Then mi = M/n => σi=((k-
1)M)/(3n).   

        Since N(µ,σ2) = N(M,Σσi
2)                                  From (2) 

=>N(µ,σ2) = N(M,((k-1)M/3)2/n) 

=>σ = ((k-1)M))/(3√n) 

We compute the z-value for a point that is F times the mean, This 
point is given by M + FM . We know  z = (x-µ)/σ. This implies: 

=>z = (M+FM-M)/((k-1)M/(3√n)) 

=>z = 3F/(k-1)*√n                                             (3) 

Case II: All queries lie on a gradient. Then mi=m
*i, where m* is 

some factor such that: Σm*i=M. This implies mi=(2Mi)/(n(n+1)) 
=> σi=((k-1)2Mi)/(3n(n+1)). This implies:  

        Since N(µ,σ2) = N(M,Σσi
2)                                  From (2) 

=>N(µ,σ2) = N(M,((k-1)2M/3)2*(2n+1)/(6n(n+1))) 

=>σ =((k-1)2M/3)*√(2n+1)/(6n(n+1)) 

We compute the z-value for a point that is F times the mean, This 
point is given by M + FM . We know  z = (x-µ)/σ. This implies: 

=>z = (M+FM-M)(/((k-1)2M/3)*√(2n+1)/(6n(n+1))) 

=>z = 3√6F/(2(k-1))*√(n(n+1))/√(2n+1)          (4) 

We can state the result formally now for a workload W such that 

the memory requirement of a query qi є W be predicted with ~ 
N(µi ,σi) and Σmi = M where mi is the memory requirement  of qi 
and M is the memory requirement of the W and the number of 
queries in W is n. 

Theorem 10: For n ≥ 10 and m1=m2=…=mn, if each predicted mi 
is within 10 times the actual  99 % of the time then the  predicted 
value for M will be within 3 times the actual M 99% of the time 
under the assumption of normality and the memories being 
independent. 

Proof: Substituting k=10, F=3 and n = 10 in Eq. 3, we get a z-

value 3.16. And z-value increases as n increases.                       =  □ 

Theorem 11: For n ≥ 12 and mi=m
*i for some m*,  if each 

predicted mi is within 10 times the actual,  99 % of the times then 
the  predicted value for M will be within 3 times the actual M, 
99% of the time under the assumption of normality and the 
memories being independent. 

Proof: Substituting k=10, F=3 and n = 12 in Eq. 4, we get a z-

value 3.06. And z-value increases as n increases.                         □        
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