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ABSTRACT
The goal of the Semantic Web is to support semantic in-
teroperability between applications exchanging data on the
web. The idea heavily relies on data being made available in
machine readable format, using semantic markup languages.
In this regard, the W3C has standardized RDF as the ba-
sic markup language for the Semantic Web. In contrast to
relational databases, where data relationships are implicitly
given by schema information as well as primary and for-
eign key constraints, relationships in semantic markup lan-
guages are made explicit. When mapping relational data
into RDF, it is desirable to maintain the information im-
plied by the origin constraints. As an improvement over
existing approaches, our scheme allows for translating con-
ventional databases into RDF without losing general con-
straints and vital key information. As much as in the rela-
tional model, those information are indispensable for data
consistency and, as shown by example, can serve as a basis
for semantic query optimization. We underline the practica-
bility of our approach by showing that SPARQL, the most
popular query language for RDF, can be used as a constraint
language, akin to SQL in the relational context. As a the-
oretical contribution, we also discuss satisfiability for inter-
esting classes of constraints and combinations thereof.

1. INTRODUCTION
The goal of the Semantic Web [3] is to support seman-

tic interoperability between applications exchanging data on
the web. In order to provide a standardized machine read-
able data format, different semantic markup languages have
been proposed. Together with various OWL dialects [22],
the World Wide Web Consortium has recommended the Re-
source Description Framework (RDF) [25] as a standard for-
mat for representing data in the Semantic Web.

RDF databases are collections of so-called triples of knowl-
edge over certain resources, which are represented by URI
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references and literals. Each such triple (a, b, c) states a
binary relationship, in which a appears in the role of the
subject, b in the role of the predicate also called property,
and c in the role of the object. An RDF database typi-
cally is represented by a graph. The edges of the graph are
directed from the subject to the object, and labeled with
the property. The W3C RDF recommendation [25] provides
an abstract syntax for the knowledge triples and defines a
small base vocabulary. RDF Schema (RDFS) [26] extends
the RDF vocabulary to impose more structure on an RDF
graph. Supplementary, a formal semantics for RDF and
RDFS has been fixed in [27]. This semantics standardizes
the meaning of the RDF and RDFS vocabularies and, in re-
spect thereof, forms the basis for semantic interoperability.

The vision of the Semantic Web necessitates data being
made available in a machine readable format. Today, large
amounts of data reside in relational databases. Making this
data accessible to Semantic Web applications thus requires
a translation into semantic markup languages. Based on
this requirement, up-to-date several approaches for mapping
relational data to RDF have been proposed [2, 4, 6, 5].

Surprisingly, existing approaches to translating relational
data into RDF mostly disregard relational constraints, in
particular key and foreign key definitions. We argue that,
in line with the prominent role of constraints in relational
databases, constraints over RDF are important for multiple
reasons. First, they can serve as a mechanism for restrict-
ing the number of valid states (RDF graphs) and, in respect
thereof, are indispensable for both checking and maintain-
ing data consistency. Second, constraints imply a seman-
tics on the data. Queries typically exploit such constraints,
e.g. build upon primary and foreign keys. Whenever con-
straints from the relational database are ignored, it might
become hard to write appropriate queries. Finally, it is well-
known that constraints in relational (and also deductive)
databases offer valuable support for semantic query opti-
mization techniques [15, 29, 10]. One might expect that sim-
ilar optimizations are possible for queries over constrained
RDF data. Exemplarily, we will show that SPARQL [30], a
declarative RDF query language, which has been standard-
ized by the W3C, is suitable for semantic optimization in a
similar fashion as relational database languages are.

Based on the previous argumentation, which is further
supported by an in-depth discussion of an example presented
in [16], we suggest to extend RDF by constraints akin to re-
lational databases. By the best of our knowledge, this is the
first approach for fully integrating relational constraints into
RDF. By maintaining origin key and foreign key constraints,
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our scheme supports a mapping from relational databases to
RDF without losing vital restrictions and key information.

On the one hand, our approach to constraints for RDF is
strongly related to the way constraints are treated in SQL.
We propose an explicit statement of key and foreign key con-
straints by extending the RDF vocabulary. Moreover, for
the definition of general constraints we shall allow arbitrary
query expressions in SPARQL akin to the ASSERTION clause
in SQL. On the other hand, our constraints also include the
constraints that can be expressed by the standard RDFS
vocabulary, such as subclass and subproperty specifications.
We will finally show that minor extensions to SPARQL are
sufficient to make the language an excellent candidate for
both expressing and checking constraints over RDF.

Contributions. We make the following contributions.

• We extend RDF by a set of constraints, which allow for
mapping relational data to RDF without loss of vital
restrictions and key constraints.

• We study the satisfiability for combinations of different
types of constraints.

• We demonstrate that SPARQL is qualified for deal-
ing with constraints. In particular, it can be used for
extracting constraints from an RDF database and for
checking an RDF database against sets of constraints.

• We exemplarily show that semantic optimization of
SPARQL queries based on constraint-implied knowl-
edge is a very promising optimization approach.

Structure. In Section 2 we introduce the basic formal
framework for relational databases and RDF. Subsequently,
we propose to extend the RDF vocabulary in Section 3, in
order to be able to represent general keys, foreign keys, and
other types of constraints in RDF. Section 4 addresses the
satisfiability problem of constrained RDF vocabularies. To
underline the practicability of our approach, we show in Sec-
tion 5 that SPARQL can be used for both extracting con-
straints from RDF graphs and checking key and foreign key
constraints. We also present SPARQL queries that check
other natural constraints, such as min/max-cardinalities.
Practical benefits of constraints for RDF are outlined in
Section 6, where we show how SPARQL can be empow-
ered by constraints in a similar way as SQL. In particular,
we discuss a sample scenario, where semantic optimization
of a SPARQL expression bases upon the knowledge of the
respective constraints. Related work then is presented in
Section 7, before we conclude with a short summary of our
results and a discussion of future work in Section 8.

2. FRAMEWORK
We first shall introduce some basic terminology from re-

lational databases, then, in larger detail, present a formal
exposition of RDF, and finally present a simple, preliminary
mapping from a relational database to an RDF graph.

A relational database schema R is descibed by a set of
relational schemata identified by R, R = (R1, ..., Rn). We
use Att(Ri) to denote the set of attributes of the relation
symbol Ri. An instance I of R is a tuple (I1, ..., In), where
for i ∈ [n]1 Ii is a finite instance of Ri, i.e. a finite subset of
the n-ary cartesian product over an underlying domain. An

1By [n], we denote the set {1, ..., n} for any n ∈ N\{0}.

element µ ∈ Ii is called tuple. Let a ∈ Att(R), we use µ.a
to denote the value of the attribute a of the tuple µ.

A key over R is an expression of the form R[a1...ak] → R,
where R ∈ R and for i ∈ [k] it holds that ai ∈ Att(R).2 Let
I be an instance of R. I satisfies R[a1...ak] → R if and only
if ∀µ1, µ2 ∈ I (

V

1≤i≤k(µ1.ai = µ2.ai) → (µ1 = µ2)).
A foreign key over R is an expression of the form

R[a1...ak] ⊆ R′[a′1...a
′
k], where R,R′ ∈ R, {a1, ..., ak} ⊆

Att(R) and {a′1, ..., a
′
k} ⊆ Att(R′). R is called child and

R′ parent of the foreign key. Then I satisfies the foreign
key R[a1...ak] ⊆ R′[a′1...a

′
k] if and only if ∀µ1 ∈ I ∃µ2 ∈

I ′ (
V

1≤i≤k µ1.ai = µ2.a
′
i) and I ′ |= R′[a′1...a

′
k] → R′.

Now we are going to introduce the basic RDF framework
needed for this paper. The definitions are based on [21],
however adapted for our purposes. Since we only discuss
graphs obtained from translations of relational databases
into RDF, all our graphs are free of blank nodes. Thus,
in order to keep the framework simple, we do not consider
blank nodes. Moreover, restricting ourselves to the database
domain, we consider an RDF vocabulary V = (NC , NP ),
where NC is a finite set of classes and NP is a finite set
of properties. Classes and properties are denoted by URI
references. As we will see soon, relation schemata will be
mapped to classes, while attributes will always be mapped
to properties. Finally, we use literals in a less general way,
because literals for us are simply attribute values taken from
the tuples in the relations.

Given a vocabulary V , an interpretation I of V,
I = (∆I ,∆D, .

IC , .IP ) is given as

• ∆I is a possibly infinite, nonempty set, called object
domain,

• ∆D is a possibly infinite, nonempty set, called the data
domain, which we assume to be disjoint from ∆I , i.e.
∆I ∩ ∆D = ∅,

• .IC is the class interpretation function assigning to
each class A ∈ NC a finite subset AIC ⊆ ∆I ,

• .IP is the property interpretation function assigning to
each property Q ∈ NP a finite subset QIP ⊆ ∆I ×
(∆I ∪ ∆D).

Based on a given interpretation we can introduce a corre-
sponding RDF graph. Among the nodes of an RDF graph
we distinguish between URIs and literals. Literals in our
framework are the elements of the data domain, and URIs
are used to identify the elements of the object domain. By
requiring that the object domain and the data domain are
disjoint, we assume that literal values cannot be identified
by URIs [27]. Therefore, in an RDF graph resulting from
our definitions, each occurrence of a literal will be repre-
sented by a unique node in the graph. This fact makes the
following definitions a bit more complicated.

Let I = (∆I ,∆D, .
IC , .IP ) be an interpretation. The

RDF graph GI = (NI , EI) of I is a directed labeled graph,
where

• for the set of nodes NI we have NI = NC ∪ {a, b |
(a, b) ∈ QIP , Q ∈ NP , b ∈ ∆I} ∪ {a, ba,Q | (a, b) ∈
QIP , Q ∈ NP , b ∈ ∆D}, and

2We consider for each schema only one key, the primary key.
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Figure 1: The result of mapping a relational

database to an RDF graph by treating all tuples

independently. Classes are indicated by bold font

and typing by dotted edges.

• for the set of labeled arcs EI we have EI = {(a,Q, b) |
(a, b) ∈ QIP , b ∈ ∆I}∪{(a,Q, ba,Q) | (a, b) ∈ QIP , b ∈
∆D} ∪ {(a, rdf : type, C) | a ∈ CIC , C ∈ NC}.

Several approaches described in the literature elaborate on
mappings of a relational database to an RDF graph (e.g. [2,
6, 5]). Our interest are generic mappings that can be applied
automatically and make semantic properties of the relational
database explicit in the resulting RDF graph. Powerful, ex-
plicitly defined mappings as described in [6, 5] are a different
issue. It is not clear how both approaches can be combined.

We will now introduce a very naive mapping scheme, which
maps all attribute values into the RDF data domain. As
we will point out, this simple approach has severe deficien-
cies. In Section 3.1.1 we will improve on our naive mapping
scheme, and finally present an approach that uses both the
data and the object domain for mapping attribute values.

Let R be a relation schema, where Att(R) = {A1, . . . , Ak}.
We introduce a class CR and properties QR,A1

, . . . , QR,Ak
.

Further let I be an instance of R. Then for every tuple
µ = (a1, . . . , ak) in I we set up a unique RDF node nµ ∈ ∆I

and a labeled edge (nµ, rdf : type, CR). In addition, for
every nonnull value µ.A of µ, A ∈ Att(R), we introduce
an edge (nµ, QR,A, (µ.A)nµ,QR,A), where, due to the value-
based nature of the relational data model, (µ.A)nµ,QR,A is
a literal taken from the data domain. Let us denote an
RDF graph constructed in the described way by GI

Rel =
(NI

Rel, E
I
Rel).

We will demonstrate this approach by means of a small
running example and then see immediately its deficiencies.
We consider the well-known scenario of teachers, students,
and courses. Starting from the scratch, we discuss the fol-
lowing relational sample instance.
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Figure 2: Key and foreign key values as URIs.

Key attributes are marked in bold font. Further, attribute
taught_by is a foreign key w.r.t. Teachers, Attribute c_id is
a foreign key w.r.t. Courses, and Attribute s_id is a foreign
key w.r.t. Student.

Applying the mapping introduced so far results in the
RDF graph depicted in Figure 1. The problem with the
mapping is that information about key and foreign key con-
straints is completely lost. Key and foreign key constraints
constitute valuable semantic information and we will subse-
quently show how such constraints can be stated in RDF.

3. CONSTRAINTS

3.1 Constraints Stated Inside RDF

3.1.1 Relational Constraints
We have argued that the mapping from a relational data-

base to RDF (cf. Figure 1) as introduced so far is insuffi-
cient, as all key and foreign key information is completely
lost. Moreover, as properties in RDF are multi-valued in
general, we also lose the information that, according to our
mapping, properties are resulting from attributes and there-
fore are functional (i.e. at most single-valued). In addition,
whenever an attribute was defined NOT NULL, and conse-
quently in the RDF graph the corresponding property must
be defined for all objects of a certain class, then this informa-
tion shall not be lost in the RDF representation. In partic-
ular, in Section 6 we will show that this kind of information
is a valuable input for a semantic RDF query optimizer.

We start by showing how key and foreign keys can be rep-
resented in RDF. Obviously, to represent key and foreign
key values in an RDF graph, we should use the object do-
main and not the data domain of RDF. Therefore, URIs are
the appropriate means to represent key and foreign key val-
ues (cf. [6, 5]). For example, instead of introducing an edge
from object s2 to value 11111, we can lift the value 11111 of
property matric to a URI and introduce an edge from p1 to
that URI. This approach is demonstrated in Figure 2; note
that URIs appear only once in the graph and consequently
nodes previously representing foreign key and corresponding
key values now have collapsed.

Applying this mapping to a given database instance, the
resulting RDF graph is denoted by GI

URI = (NI
URI, E

I
URI).

However, different to [6, 5], we argue that also key and for-
eign key constraints should be stated explicitly in the RDF
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graph, because otherwise it is difficult or even impossible to
extract this important semantic information from a given
RDF graph. To make this possible we need additional def-
initions and mechanisms, which we are going to present now.

Let I = (∆I ,∆D, .
IC , .IP ) be an interpretation. Let

C ∈ NC , Q,Qi ∈ NP , 1 ≤ i ≤ n. First we define func-
tional constraints. A functional constraint Func(C,Q) de-
fines a property Q to be functional over objects of class C.
I satisfies Func(C,Q), I |= Func(C,Q), if there holds:

{x | #{y | (x, y) ∈ QIP } ≤ 1} ⊇ C
IC .

A functional property Q is called total with respect to a class
C, whenever on every object of class C propertyQ is defined.
We write Total(C,Q) and define I satisfies Total(C,Q), I |=
Total(C,Q), if there holds:

{x | #{y | (x, y) ∈ QIP } = 1} ⊇ C
IC .

Next we formally define keys and foreign keys for RDF. We
write Key(C, [Q1 . . . Qn]) to state a key assigned to class C
over properties Q1, . . . , Qn and we write FK(C, [Q1 . . . Qn],
C′, [Q′

1 . . . Q
′
n]) to state a foreign key over the respective

properties of child C and parent C′. Semantics of keys and
foreign keys is as follows.

• I satisfies Key(C, [Q1, . . . , Qn]),

I |= Key(C,Q1, . . . , Qn),

if, whenever ∃o1, o2 ∈ CIC such that ∃vi ∈ ∆I ∪
∆D, 1 ≤ i ≤ n, where (o1, vi), (o2, vi) ∈ Q

IP
i , then

o1 = o2. Moreover, I |= Total(C,Qi) must hold for all
i ∈ [n] as well.

• I satisfies FK(C, [Q1 . . . Qn], C′, [Q′
1 . . . Q

′
n]),

I |= FK(C, [Q1 . . . Qn], C′
, [Q′

1 . . . Q
′
n]),

if, whenever o1 ∈ CIC , then ∃o2 ∈ C′IC such that
(o1, vi) ∈ Q

IP
i implies (o2, vi) ∈ Q

′IP
i , 1 ≤ i ≤ n.

Moreover, it must hold I |= Key(C′, [Q′
1, . . . , Q

′
n]);

thus the parent properties referred to must form a key.

To get a clean and general solution for expressing func-
tional properties, keys, and foreign keys inside an RDF graph
we now propose to make that information explicit. To this
end, we extend the RDF vocabulary by a new namespace,
which will be identified by prefix rdfc. This namespace
extends the RDF vocabulary by two classes rdfc:Key and
rdfc:FKey, allowing to type properties and to introduce new
objects representing key and foreign key constraints.

We believe that explicitly stating constraints as part of an
RDF graph will alleviate the construction of RDF processing
technology. In Section 6 we will show how constraints can
be used for optimizing RDF query expressions.

Let us first concentrate on keys and foreign keys. Keys
and foreign keys may be built out of several components
which are of type rdf:Bag. Using properties rdfc:Key and
rdfc:FKey we are able to associate keys and foreign keys
with the classes for which they apply and finally, by property
rdfc:ref we link a foreign key to the key of the respective
class. The construction we propose is akin to SQL and is
demonstrated in Figure 3 with respect to the keys of classes
inProject and respFor and the foreign key of class respFor.

Let GI
URI = (NI

URI, E
I
URI) be an RDF graph under con-

sideration. We add new nodes and arcs to the graph to

Participants

P_Key

s_idc_id
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Teachers Students
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Figure 3: Keys and foreign keys of classes Teachers,

Students and Participants are explicitly represented;

class Courses is omitted.

make functional properties, keys, and foreign keys explicit.
Starting from the graph depicted in Figure 2 we proceed as
follows. As exemplified in Figure 3, for classes Teachers,
Students and Participants we introduce objects P_Key,
T_Key and S_Key, respectively. In addition we introduce
objects P_FKey1 and P_FKey2 to represent the foreign keys
of class Participants. We add corresponding typing edges
from the newly introduced objects to class rdfc:Key and
class rdfc:FKey, respectively. Next, we add the correspond-
ing edges labeled with rdfc:Key, respectively rdfc:FKey, in
order to relate a key and foreign key to its respective class;
we add edges labeled with rdfc:ref to relate foreign keys
to their parent keys. Finally, as keys and foreign keys are
of type rdf:Bag as well, we add corresponding typing edges
and also indicate the components of keys and foreign keys
by the edges labeled with rdf:_1 and rdf:_2.

To type properties, we introduce a new node for each prop-
erty into the RDF graph. The property then is typed by
class rdf:Property. To express functionality (respectively
totality) of property Q over class C, we introduce an edge
labeled rdfc:funct (respectively rdfc:total) from C to Q.

3.1.2 RDFS Constraints and More
Now let us first look at the kind of constraints that are

part of RDFS [26], however used as axioms for inferencing
in that context. We argue that inferencing is a separate is-
sue; we will further comment on this difference in Section 7.
Independently hereof, these constraints are interesting for
checking an RDF graph as well. The following types of con-
straints can be used to express subclass relationships, sub-
property relationships and domain and range definitions of
properties. RDFS provides an appropriate vocabulary to
express these constraints as part of an RDF graph.

Let be given a vocabulary V = (NC , NP ) of RDF and
a corresponding interpretation I = (∆I ,∆D, .

IC , .IP ). Let
C,D ∈ NC and R,S ∈ NP . Let φ be one of the constraints
mentioned above. We define I satisfies φ, I |= φ, if depend-
ing on φ there holds:

SubC(C,D) : CIC ⊆ DIC ,

SubP (R,S) : RIP ⊆ SIP ,

P ropD(R,C) : {x | ∃y : (x, y) ∈ RIP } ⊆ CIC ,

P ropR(R,C) : {y | ∃x : (x, y) ∈ RIP } ⊆ CIC .
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The following constraints are not part of RDFS, however
are well-known from other representation languages. First
we introduce cardinality constraints, which are well-known
from Entity-Relationship modelling, respectively UML de-
sign of a relational database. Let n ≥ 0 and C ∈ NC , R ∈
NP . We write Min(C, n, R), respectively Max(C,n, R), to
specify that for any object o ∈ CIC , on which a propertyR is
defined, R associates o with at least, respectively at most, n
other objects. Let ψ be either a min-cardinality constraints
Min(C, n,R) or a max-cardinality constraints Max(C, n,R).
We define I satisfies ψ, I |= ψ, if there holds:

Min(C, n, R) : {x | #{y | (x, y) ∈ RIP } ≥ n} ⊇ CIC

Max(C, n,R) : {x | #{y | (x, y) ∈ RIP } ≤ n} ⊇ CIC .

Next we introduce subproperty-chain constraints. This
kind of constraints resembles path-constraints known from
object-oriented databases, XML and also OWL 1.1 [23].
For a class C ∈ NC and properties S,Ri ∈ NPo, 1 ≤
n, we introduce a constraint SubPChain(C,R1, . . . , Rn, S),
which allows to define a subproperty-chain constraint. Let
◦ denote the composition of binary relations. Let φ =
SubPChain(C,R1, . . . , Rn, S). We define I satisfies φ, I |=
φ, if there holds:

{(x, y) | (x, y) ∈ R
IP
1

◦ . . . ◦RIP
n , x ∈ CIC } ⊆

{(x, y) | (x, y) ∈ SIP , x ∈ CIC }.

The final two kinds of constraints we shall discuss are
mostly interesting for technical reasons (cf. Section 4). For
a class C, the singleton constraint Single(C) guarantees
the existence of a single element. We define I satisfies
Single(C), I |= Single(C), if there holds |CIC | = 1. The
anti-key constraintAntiKey(C, [Q1 . . . Qn]) states that prop-
erties Q1, . . . , Qn do not constitute a key for class C. We de-
fine I satisfies AntiKey(C, [Q1 . . . Qn]), I |=
AntiKey(C, [Q1 . . . Qn]), if ∃o1, o2 ∈ CIC , o1 6= o2, such
that ∃vi ∈ ∆I ∪ ∆D, 1 ≤ i ≤ n, where (o1, vi), (o2, vi) ∈

Q
IP
i .

3.2 Constraints Stated Outside RDF
To allow also application specific constraints, we propose

to state them explicitly by RDF query language expressions.
This approach is inspired by SQL, where general constraints
can be defined in the CHECK-clause by means of appropriate
SQL query expressions. We do not elaborate on this any fur-
ther. However, in Section 5 we will provide corresponding
SPARQL query expressions for all kinds of constraints dis-
cussed so far. While this is primarily done to demonstrate
how constraint checking can be implemented, it also shows
how constraints can be expressed in SPARQL in general.

4. SATISFIABILITY
Relational constraints (Section 3.1.1), i.e. functionality of

properties, keys, and foreign keys, as well as the constraints
taken from RDFS (Section 3.1.2), i.e. subclass, subproperty,
property range and domain restrictions, are stated as part of
an RDF graph by means of a dedicated vocabulary. They are
called vocabulary constraints in the sequel. All other kinds
of constraints will be called non-vocabulary constraints.

Let V be a given RDF vocabulary and C a set of arbi-
trary constraints over V. We call VC = (V , C) a constrained
RDF vocabulary. We will now discuss the satisfiability of a
constrained RDF vocabulary VC . We call VC satisfiable iff

there exists an interpretation I of V which satisfies all the
constraints in C, where additionally, for some class C of V
we have CIC 6= ∅ and for some property P of V we have
P IP 6= ∅. Obviously, a constrained vocabulary whose set
of constraints is not satisfiable should be revised, because
certain classes and properties cannot be populated.

Assume first that C contains only vocabulary constraints.
The question of satisfiability for this mixture of constraints
turns out to be trivial, i.e. satisfiability is always guaranteed.
To see this, let o ∈ ∆I and define CIC = {o} and RIP =
{(o, o)} for all classes and properties.

Lemma 1. Let V be a RDF vocabulary, C be a set of con-
straints over V containing arbitrary vocabulary constraints,
max-cardinality, subproperty-chain and singleton constraints.
There exists an interpretation I of V, such that I |= C.

When – in addition to the vocabulary constraints – we also
allow arbitrary non-vocabulary constraints, satisfiability be-
comes undecidable in general. We are interested in the kind
of mixtures of constraints that are responsible for undecid-
ability, and those mixtures that still guarantee decidability
when combined with the vocabulary constraints.

For undecidability, as known undecidable reference prob-
lem we refer to the implication problem for keys by keys and
foreign keys in relational databases (Lemma 3.2 in [12]). Let
R be a (relational) schema, Σ a set of keys and foreign keys
over R, and ϕ a key over R. Does Σ |= ϕ, i.e. does any
interpretation I which satisfies all the keys and foreign keys
in Σ also satisfy the key ϕ?

From the undecidability of the implication problem Σ |= ϕ
we can immediately conclude the undecidability of the satis-
fiability problem with respect to Σ∧¬ϕ. This means, when-
ever we allow a set of constraints being formed out of key,
foreign key and anti-key constraints, we cannot algorithmi-
cally test for satisfiability. However, as anti-key constraints
are not natural constraints from a practical point of view,
other mixtures of constraints are still of interest. We can
proof the following theorem.

Theorem 1. Let V be a RDF vocabulary, and let C be
a set of constraints over V containing arbitrary vocabulary
constraints, cardinality constraints and either subproperty-
chain or singleton constraints. Then testing satisfiability of
the constrained RDF vocabulary VC is undecidable.

Appendix A provides the proof for singleton constraints.
Note that we do not consider RDF blank nodes in this sec-
tion. We claim that they do not play a role in our proofs.
In particular, when considering decidability, a blank node
states the existence of e.g. a resource, which could replace
the blank node. In our undecidability proof, we reduce from
a problem in relational databases, where we simply have
plain values, which can be represented as resources in RDF.
Consequently, blank nodes are immaterial for us here.

Next we investigate, whether restricting to only unary for-
eign keys makes the satisfiability problem easier. A foreign
key FK(C, [Q1 . . . Qn], C′, [Q′

1 . . . Q
′
n]) is called unary if and

only if n = 1. The following lemma shows that this is not the
case. The proof of the lemma can be found in Appendix B.

Lemma 2. Let ϕ be a foreign key and V a RDF vocabu-
lary. Then, there exists a vocabulary V ′ of RDF and a finite
set Π of unary foreign key, key and subproperty-chain con-
straints such that ϕ is satisfiable with respect to V iff Π is
satisfiable with respect to V ′.
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Let us now turn our focus towards decidable cases. The
satisfiability of constrained RDF vocabularies, where sub-
class, subproperty, property domain and range, min-cardina-
lity, max-cardinality, unary foreign key and unary key con-
straints are allowed, can be decided using a reduction to the
description logic ALCHIQ. For ALCHIQ it is known that
satisfiability can be decided in exponential time [32].

Corollary 1. Let VC = (V , C) be a constrained RDF
vocabulary, where C only contains subclass, subproperty, prop-
erty domain and property range, min- and max-cardinality,
as well as unary foreign key and unary key constraints. The
satisfiability of VC can be decided in ExpTime.

The translation to ALCHIQ is shown in Appendix C.
An important property of description logics is that their ex-
pressions can be nested. Observe that in our translation to
ALCHIQ neither arbitrary, nor arbitrarily nested expres-
sions can occur. For this reason, we believe that even better
complexity bounds can be shown, and we are planning to
address this issue in future investigations.

As a final remark, we mention that there are also descrip-
tion logics that incorporate keys directly [11, 34, 18, 33, 17,
9]. However, these approaches typically do not provide the
same set of constraints, e.g. number restrictions are missing.

5. SPARQLING CONSTRAINTS
In this section we show that the SPARQL query language

is a good candidate for stating constraints and checking RDF
graphs against constrained RDF vocabularies. For space
limitations, we omit an introduction to SPARQL, but refer
the interested reader to [30] for the language definition.

In Section 5.1 we show how SPARQL can be used to ex-
tract constraints that have been specified with the rdfc vo-
cabulary. Then, in Section 5.2 we present queries for check-
ing the validity of RDF graphs against different constraint
types. We finally propose extensions to SPARQL, and dis-
cuss the complexity of constraint checking in Section 5.3.

5.1 Extracting Constraints
The following SPARQL query extracts all keys and for-

eign keys defined with the rdfc vocabulary on top of RDF.

SELECT ?keyname ?class ?keytype ?keyatt ?ref

WHERE {

{

?class rdfc:Key ?keyname.

?keyname rdf:type ?keytype;

?bagrel ?keyatt.

FILTER (?keytype=rdfc:Key &&

?bagrel!=rdf:type)

} UNION {

?class rdfc:FKey ?keyname.

?keyname rdf:type ?keytype;

?bagrel ?keyatt;

rdfc:ref ?ref.

FILTER (?keytype=rdfc:FKey &&

?bagrel!=rdf:type &&

?bagrel!=rdfc:ref)

}

} ORDER BY DESC(?keytype) ?keyname

The first part of the Union extracts all keys. Here, vari-
able ?keyname binds to the different keys, ?class binds to the

?keyname ?class ?keytype ?keyatt ?ref

P_Key Particip. rdfc:Key c_id

P_Key Particip. rdfc:Key s_id

S_Key Students rdfc:Key matric

T_Key Teachers rdfc:Key name

P_FKey1 Particip. rdfc:FKey c_id T_Key

P_FKey2 Particip. rdfc:FKey s_id S_Key

Figure 4: Result of constraint extraction from the

graph in Figure 3.

class the current key is defined on, ?keytype always binds to
rdfc:Key, and ?keyatt binds to all attribute URIs of the
current key. As a consequence, for an n-ary key, the result
contains n tuples, which only differ in their ?keyatt value.
Foreign key extraction in the second part of the Union is
similar. There, variable ?keytype binds to rdfc:FKey, and
variable ?ref, which was not used in the first part, binds to
the name of the referenced key. Note that we sort the result
in descending order by ?keytype (i.e. list keys before foreign
keys), and by ?keyname in ascending order, to group keys
by their name. Figure 4 shows the result of the extraction
query executed on the graph in Figure 3.

5.2 Checking Constraint Violation
We realize a check whether an RDF instance satisfies (a set

of) constraints by querying constraint-violating situations in
the respective RDF instance. Whenever no violation is de-
tected, all constraints are satisfied. We use the SPARQL
“Ask” query form to check violation of constraints. Ask

queries are the Boolean counterparts of Select queries,
i.e. they return yes if the specified query pattern contains
one or more solution mappings, and no otherwise. We de-
fine constraint violation check queries as follows.

Definition 1

Let Q be a query and C be a constraint. We say that query
Q checks the violation of C if, for each graph G, it returns
yes if and only if G violates C. �

For simplicity, we study each type of constraint individ-
ually and discuss only queries that check violation of one
constraint at a time. As it turns out, according to our defi-
nition all types of our constraints except anti-key constraints
can be checked with SPARQL queries. We claim that, for
the latter type, it is only possible to provide an Ask query
that returns no (instead of yes) exactly if the constraint is vi-
olated. We will discuss implications, and finally propose ac-
cording extensions to the SPARQL language in Section 5.3.

We now present check queries for the different types of
constraints. We have verified the correctness of all queries
with the ARQ SPARQL Processor for Jena [13].

5.2.1 Key Constraints
We start with the violation check for key constraints. Ac-

cording to Definition 1, we provide an Ask query that returns
yes exactly if the key is violated. Given a key constraint
Key(C,[p1,. . . ,pn]), the idea is to check for two distinct ob-
jects that bind to the same nodes through p1, . . . , pn.

Note that, by definition key constraints comprise totality
constraints, more precisely one constraint Total(C,pi) for
each property pi. We defer the discussion of totality con-
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straints to Section 5.2.3, only showing how to encode the
violation check for the uniqueness property. However, we
emphasize that the totality checks can easily be integrated.

ASK {

?x rdf:type C.

?y rdf:type C.

?x p1 ?p1; [...]; pn ?pn.

?y p1 ?p1; [...]; pn ?pn.

FILTER (?x!=?y)

}

The query introduces variables ?x and ?y, which are bound
to objects of type C. Next, the same variables ?p1, . . . , ?pn
are used to bind these objects along properties p1, . . . , pn.
The Filter expression then asserts that variables ?x and
?y bind to different objects. Clearly, the body computes
exactly all pairs of violating objects.

5.2.2 Foreign Key Constraints
Next, we encode the violation of foreign key constraints. A

foreign key constraint FK (C,[p1,. . . ,pn],D,[q1,. . . ,qn]) speci-
fies that the attributes [p1,. . . ,pn] of objects of type C refer
to an existing key [q1,. . . ,qn] over class D. According to its
semantics, a foreign keys is violated if (1) there is an object
of class C that does not reference an object of class D through
p1,. . . ,pn, or if (2) the referenced properties do not consti-
tute a key. The check for condition (2) has been discussed
before, so we restrict ourselves to the check for condition (1).

ASK {

?x rdf:type C; p1 ?p1; [...]; pn ?pn.

OPTIONAL {

?y rdf:type D; q1 ?p1; [...]; qn ?pn.

} FILTER (!bound(?y))

}

As required, the query returns yes if there is an object ?x
of type C for which no object ?y of type D exists s.t. ?x and
?y bind to the same nodes through properties p1, . . . , pn,
and q1, . . . , qn, respectively. Only if, for an object of type C,
no associated object of type D exists, variable ?y is unbound
and the respective mapping will pass through the filter.

5.2.3 Cardinality, Functionality, and Totality
When checking for max-cardinality constraints of the form

Max(C,n,p), we try to witness an object of type C with at
least n + 1 p-properties. To this end, we introduce n + 1
“witness” variables ?p1, . . . , ?pn+1 and try to bind them to
distinct-valued p-labeled properties. The shortcut

allDist([?p1,...,?pn])
def
:=

V

1≤i≤n(
V

i<j≤n ?pi!=?pj)

enforces that variables ?p1, . . . , ?pn are pairwise distinct.
Violation of max-cardinality then is checked as follows.

ASK {

?x rdf:type C.

?x p ?p1; [...]; p ?pn+1.

FILTER (allDist([?p1,...,?pn+1]))

}

To check min-cardinality constraints Min(C,n,p), we first
compute all non-violating objects, i.e. those objects with at

least n distinct p-property labels. In a second step, we “sub-
tract” these non-violating objects from the set of all objects.
Clearly, this strategy returns exactly the violating objects.
We implement the approach as follows.

ASK {

?x rdf:type C.

OPTIONAL {

?y rdf:type C.

?y p ?p1; [...]; p ?pn.

FILTER (allDist(?p1,...,?pn) && ?x=?y)

} FILTER (!bound(?y))

}

The part inside the Optional computes all constraint-
satisfying objects of type C. This result is then negated
under closed-world assumption, using a combination of op-
erators Optional, Filter, and (not) bound.

It is easy to see that both functionality and totality con-
straints are special cases of cardinality constraints. In par-
ticular, a functionality constraint Func(C,p) is equivalent to
the cardinality constraint Max(C,1,p). A totality constraint
Total(C,p) can be expressed by the conjunction of the car-
dinality constraints Max(C,1,p) and Min(C,1,p).

5.2.4 SubProperty-Chain Constraints
A subproperty-chain constraint SubPChain(C,p1,. . . ,pn,q)

enforces that, for each object o of type C, if there is a chain
of properties p1,. . . ,pn starting from o, then this chain al-
ways references a node that is also directly referenced via
property q of o. Violation can be checked as follows.

ASK {

?x rdf:class C; p1 ?p1.

?p1 p2 ?p2.

?p2 p3 ?p3.

[...]

?pn-1 pn ?pn.

OPTIONAL { ?x q ?q. FILTER (?pn=?q) }

FILTER (!bound(?q))

}

The outer statement binds variable ?x to RDF nodes of
type C, and variables ?p1 through ?pn along the property
chain. Note that the outer part selects only those nodes for
which such a property chain is defined, i.e. exactly those that
may violate the constraint. For the latter, ?pn is bound to
the node that, according to the constraint, must be deter-
mined by the q-property of ?x. Then, inside the Optional

clause, the fresh variable ?q is bound to the node referenced
by property q if and only if this node is identical to the node
?pn has been bound to. The outer Filter expression finally
asserts that exactly those result mappings, for which such
a binding is not possible, appear in the result. Clearly, the
result contains exactly the constraint-violating mappings.

5.2.5 Singleton Constraints
A singleton constraint Single(C) enforces that there is ex-

actly one object of class C. In the following we assume that
the RDF graph contains at least one triple. Otherwise, the
constraint is trivially violated.3 The singleton constraint vi-

3We claim that, in this case, a constraint violation check
cannot be implemented.
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olation check then is implemented as follows.

ASK {

{ ?x1 rdf:type C.

?x2 rdf:type C.

FILTER (?x1!=?x2) }

UNION

{ ?x1 ?y ?z.

OPTIONAL { ?x2 rdf:type C. }

FILTER (!bound(?x2)) }

}

Here, the first part of Union returns the non-empty result
iff there is more than one object of type C, while the second
returns the non-empty result iff there is no object of type C.
Note that the second part fails on the empty graph.

5.2.6 Anti-key Constraints
An anti-keys of the form AntiKey(C,[p1,. . . ,pn]) states that

properties p1, . . . , pn do not constitute a key for class C.
While a “positive” key is satisfied if no two distinct objects
with identical values for properties p1 through pn exist, an
anti-key enforces the existence of at least one violating pair.

We claim that it is impossible to write a SPARQL query
that returns yes exactly if the anti-key is violated. However,
from the semantics of anti-keys it is clear that the violation
check query of the related key constraint Key(C,[p1,. . . ,pn])
returns yes exactly if the anti-key holds, and no otherwise.

Although one could easily invert our definition of violation
check queries for this special type of constraints, the com-
bined check for violation of anti-key constraints and other
constraint types within a single query, as required for check-
ing full schema satisfaction, is impossible. Motivated by this
observation, we next propose a straightforward language ex-
tension that empowers SPARQL to deal with this problem.

5.3 Wrapping Up

5.3.1 SPARQL and CHECK
It would be particularly nice to have a reserved construct

for checking constraints, akin to the SQL Check clause. We
propose to extend SPARQL by new clauses PosC (“Positive
Constraint”) for encoding “positive” constraints, and NegC

(“Negative Constraint”) for encoding “negative” constraints,
such as anti-keys. The semantics of these clauses is defined
as follows. PosC returns yes exactly if its body returns the
empty result, while NegC returns yes exactly if its body
returns the non-empty result, just like Ask.

We emphasize that, although anti-keys (the only nega-
tive constraints in this work) might rarely occur in practice,
NegC is required for encoding other user-defined, negative
constraints. In particular, the clause is essential to express
that certain relationships between objects do not hold.

In addition to the clauses, we finally introduce a new query
form called Check, which must consist of a (non-empty) list
of PosC- and NegC-clauses. We also restrict PosC- and
NegC-clauses to occur only inside lists of the new query
form. The Check form then simply computes the logical
conjunction of all clauses inside its list, i.e. returns yes if
and only if all PosC and NegC clauses do so.

The user then might encode positive constraints in a PosC

clause, i.e. in form of an expression that returns the empty
result exactly if the constraint holds. Negative constraints

are represented by NegC clauses containing expressions that
return the non-empty result exactly if the constraint holds.
Clearly, by merging all PosC and NegC constraint clauses
into a single Check query, we obtain a query that returns
yes iff all specified constraints are satisfied. Using this novel
construct, we can easily specify a single SPARQL query that
checks whether a constrained schema (which may consist of
both positive and negative constraints) is satisfied.

5.3.2 Complexity of Constraint Checking
We have shown that SPARQL queries can implement con-

straint checks. Hence, the SPARQL semantics implies an
upper bound for the complexity of constraint checking. It
is known that SPARQL is PSpace-complete [24]. However,
it is reasonable to assume that the number of constraints is
considerably smaller than the size of the data, and that the
size of constraints is limited. The complexity of checking a
fixed number of constraints then is given by the complexity
of evaluating fixed-size queries. This complexity, also called
data-complexity, is in LogSpace for SPARQL [24].

LogSpace is known to be contained in PTime, thus we
conclude that evaluation of fixed-size SPARQL queries can
be realized efficiently. Note that LogSpace is exactly the
data complexity of First-Order Logic, which is strongly re-
lated to Relational Algebra and SQL.

6. EXPLOITING CONSTRAINTS
We now turn towards a discussion of the practical benefits

of constrained RDF vocabularies. In particular, we highlight
different properties of constraints that might be exploited for
semantic query optimization (SQO). Although SPARQL is
the language of our choice, similar optimization approaches
may be equally useful for other query languages over RDF.
While an exhaustive discussion of SQO for SPARQL over
constrained RDF instances is beyond the scope of this paper,
our intention here is to demonstrate that constraints over
RDF, just like constraints in relational databases, indeed
offer various resources for semantic query optimization.

We consider the scenario of teachers, students, and courses
that has been introduced in Section 2. Recall that the fol-
lowing RDF constraints were defined (cf. Figure 3).

Keys

Class Attributes
Teachers [name]
Courses [taught_by]
Students [matric]
Particip. [c_id,s_id]

Foreign Keys

Class Attributes Referenced Key
Courses [taught_by] Teachers

Particip. [c_id] Courses

Particip. [s_id] Students

In addition, let us assume that the name property of class
Students is (exactly) single-valued, i.e. Total(Student,name)
holds. As argued in Section 3, this constraint might result
from a NOT NULL constraint for the name attribute in the
relational database. Since both keys and foreign keys in
the relational database are restricted to be NOT NULL, we
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also have Total(C,p) for each key and foreign key property p

over its class C.4 Recalling that NULL values in the relational
database are ignored in the RDF graph, we also know that
the remaining properties q have either cardinality one or
zero; for those, we derive constraints of the form Func(C,q).

We now discuss optimization approaches for the following
SPARQL query, assuming that the constraints above hold.

SELECT ?teachername ?coursename ?studentname
WHERE {
?course rdf:type Courses;

taught_by ?teachername;
name ?coursename.

?participant rdf:type Participants;
c_id ?teachername;
s_id ?studentmatric.

?teacher rdf:type Teachers;
name ?teachername.

OPTIONAL {
?student rdf:type Students;

matric ?studentmatric;
name ?studentname.

}
}

The SPARQL operator “.” is the equivalent of the rela-
tional Join operator, while operator Optional by idea is
very similar to the relational Left Outer Join [24]. More
precisely, the Optional operator joins its inner expression
with the outer one, thereby retaining outer result mappings
for which no join partner exists. Note that “;” is not an
operator but only a syntactical convention, i.e. each block
denotes a sequence of triple patterns with the same subject,
connected through operator “.”. Hence, the blocks in the
query only function as logical arrangements of patterns.

Stage 1: Operator replacement. We now show that
the Optional operator can be replaced by operator “.”, thus
basically we replace the more complex Left Outer Join

by a standard Join.5 As in relational databases, this clears
the way for other optimizations, such as join reordering.

Outside the Optional clause, three (logical) blocks intro-
duce variables ?course, ?participant, and ?teacher. These
blocks are interconnected through variable ?teachername.
Variable ?studentmatric then connects the blocks outside
with the block inside the Optional. From a relational per-
spective of view, we compute the left outer join between the
outer and inner part on variable ?studentmatric.

Basing on this observation, it is easy to see that opera-
tor Optional could be replaced by “.” if, for each binding
of variable ?studentmatric in the outer part, there is join
partner in the inner part, i.e. inside the Optional clause all
variables can always be bound. Note that variable ?student-
matric outside is bound to the value of the foreign key prop-
erty s_id on top of Participants, which is also the value
of the key property matric of a Students object. It fol-
lows that variable ?student is always bound to the Students

object identified by ?studentmatric. From the constraint
Total(Students,name), we conclude that also ?studentname
will inevitably be bound. Hence, the Optional clause is
redundant, because a join is always possible. Consequently,

4Note that this totality restriction is also captured by the
semantics of key constraints.
5The SPARQL semantics defines operator Optional as a
combination of Join and Set Minus, while operator And

is put down to a Join [24].

the following query is equivalent under the given constraints.

SELECT ?teachername ?coursename ?studentname
WHERE {
?course rdf:type Courses;

taught_by ?teachername;
name ?coursename.

?participant rdf:type Participants;
c_id ?teachername;
s_id ?studentmatric.

?teacher rdf:type Teachers;
name ?teachername.

?student rdf:type Students;
matric ?studentmatric;
name ?studentname.

}

Stage 2: Removing redundant joins. Another opti-
mization approach arises from the fact that foreign key con-
straints, which link together objects of different types, may
imply rdf:type relations on variables in the query. While in
relational databases, type information are valuable for query
optimization, in the RDF model these information always
constitute an additional join, thus it is desirable to remove
redundant triple patterns that enforce such relationships.

We observe that the second block of the query binds vari-
able ?participant to an object of type Participants. Now
let us consider the foreign key property s_id in the second
block. This property enforces that variable ?studentmatric
is always bound to a key value of a Students object. It
is clear that, according to this key restriction for variable
?studentmatric, variable ?student in the fourth block will
automatically be bound to the Students object identified
by its designated key ?studentmatric. Hence, the key and
foreign key constraints enforce that the node, to which vari-
able ?student is bound, must be of type Students. Conse-
quently, we can remove ?student rdf:type Students from
the query. Arguing similarly, we also drop the type restric-
tions for ?teacher and ?course. We get the following.

SELECT ?teachername ?coursename ?studentname
WHERE {
?course taught_by ?teachername;

name ?coursename.
?participant rdf:type Participants;

c_id ?teachername;
s_id ?studentmatric.

?teacher name ?teachername.
?student matric ?studentmatric;

name ?studentname.
}

In principle, the elimination of redundant triple patterns
comes along with a simplification of the query. In case that
there are indices defined on property rdf:type of objects, it
might not always be an advantage to eliminate triples that
specify rdf:type relationships, as they might provide fast
access paths to the triples. However, given that such indices
are available, one could instead try to exploit the constraints
to derive implied rdf:type relations on variables, in order
to create efficient access paths. Therefore, in both situations
constraints can be very useful for query optimization.

Next, we observe that, according to the second block in
the query, variable ?teachername is bound to the key of a
Teachers object. Hence, the variable identifies exactly one
Teachers object, which will be bound to variable ?teacher.
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But ?teacher does not occur in the result, and consequently,
we can simply remove ?teacher name ?teachername from
the query without affecting the output. This finally results
in the following simplified query expression.

SELECT ?teachername ?coursename ?studentname
WHERE {
?course taught_by ?teachername;

name ?coursename.
?participant rdf:type Participants;

c_id ?teachername;
s_id ?studentmatric.

?student matric ?studentmatric;
name ?studentname.

}

Stage 3: Join Reordering. Triple patterns that are
connected through operator “.” can be evaluated in arbi-
trary order. Changing the evaluation order of joins might,
just like in relational databases, minimize the size of interme-
diate results and significantly speed up query evaluation [1].
Also in this regard, constraints offer valuable optimization
resources. In particular, we can exploit totality, functional-
ity, and general cardinality constraints.

While an exhaustive discussion of triple pattern reorder-
ing for the example scenario lies beyond the scope of this
paper, we exemplarily discuss the execution order of the
first two triple patterns ?course taught_by ?teachername

and ?course name ?coursename. First recall that variable
?course is always bound to Courses objects, and that we
have two constraints Total(Course,taught_by), as well as
Func(Course,name) defined on top of the properties men-
tioned in the triple patterns. According to these constraints,
the result size of the first pattern is given by the number of
Courses objects, while for the second pattern, the result
size is smaller or equal to the number of Courses objects.
In order to minimize the size of intermediate results, it is
preferable to evaluate the patterns in reversed order.

To summarize, we have shown by example that constraint
knowledge can significantly contribute to different semantic
query optimization approaches for SPARQL.

7. RELATED WORK
Relational Databases and RDF. Relational databases

are typically used in the context of RDF as a back end to
store the RDF-statements, e.g. in Jena [14] and Sesame [28].
The underlying, very basic idea common to these approaches
is to save all RDF triples in a relational table with schema
(subject,predicate,object), on top of which SQL can be
used to access (parts of) RDF triple patterns efficiently.

It has repeatedly been observed that mappings from the
relational to the RDF data model are important to bring
forward the vision of the Semantic Web [2, 35, 4, 31]. For
instance, in [2] Tim Berners-Lee emphasizes the role of such
mappings and discusses relations between both data models.
With the same focus, the W3C has proposed universal ap-
proaches to define n-ary relations on the Semantic Web [35].
Bizer [4] presents a language for the specification of map-
ping rules. These ideas are implemented in the D2RQ sys-
tem [5]. Rather than materializing translated RDF graphs,
user-defined mapping rules imply a virtual RDF graph over
the relational database. The system finally offers support
for SPARQL queries on top of the virtual graph. A similar
approach, called RDF views, is implemented in the Virtu-

oso system [6]. However, all these approaches mostly dis-
regard the issue of mapping relational key and foreign key
constraints. Moreover, the focus of these systems is on com-
plex, user-defined mappings, while we are interested in an
automated, generic translation of relational databases.

Constraints. Constraints for the Semantic Web have
been studied before in different contexts of description log-
ics (cf. [9, 18, 36]), respectively OWL-DL [22]. However,
having a different focus, virtually all existing approaches
model constraints as axioms. The integration of these ax-
ioms into inference systems then forms the basis for deriving
constraint-satisfying models, given that such models exist.
Thus, unlike constraints in the relational context, axioms do
not immediately restrict the state space of the database. In
particular, with this approach it is not explicitly possible to
check whether a model satisfies a set of constraints. This
fundamental difference has recently been clarified in [20],
and [19, 8] present possible ways of integration. However,
all these approaches differ from our approach, as they em-
phasize the description logic point of view. In contrast, we
focus on model checking, and consequently constraints in
form of axioms are not suited for our purpose.

In the past, semantic query optimization techniques on
top of constraints has been studied extensively for relational
databases, and also for deductive databases like Datalog
(e.g. [15, 29, 10]). Resulting approaches to constraint-based
optimization have found broad acceptance and, nowadays,
various query engines exploit such techniques. However, the
optimization of SPARQL under constraints has not been
proposed before, last but not least because an approach for
expressing constraints in RDF was missing up-to-date.

The theoretical results in Section 4 are related to work
on the incorporation of key constraints into description log-
ics [9, 18, 36]. Functional dependencies and unary foreign
key constraints for description logics have already been stud-
ied in [36] (unary foreign key constraints are called “inverse
features” there). Our undecidability result is of different na-
ture as we do not use union of concepts. The undecidability
proof in [9], on the other hand, uses negation and union of
concepts. We claim that these features can not be expressed
in our framework.

8. CONCLUSION AND FUTURE WORK
We have proposed to extend RDF by typical constraints

from relational databases, such as primary and foreign key
restrictions. Constrained RDF offers support for the trans-
lation of relational databases into RDF without losing vi-
tal information encoded in general restrictions and key con-
straints. The benefit of our novel approach is twofold. First,
in maintaining original constraints from the relational source
database we preserve important information that are indis-
pensable for asserting data consistency. Second, as shown
by example, constraints offer valuable resources for semantic
query optimization. In this respect, constraints may improve
the performance of query engines on top of RDF data.

As a theoretical contribution, we have analyzed the satisfi-
ability of constrained RDF vocabularies over different classes
of constraints. Although, for combinations of arbitrary types
of our constraints the satisfiability problem is undecidable,
checking whether an RDF graph satisfies a set of constraints
can be realized in LogSpace. We also have discussed rela-
tionships to the description logic ALCHIQ, to indicate a
decidable class of constraints for our framework.
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In order to underline the practicability of our approach,
we have demonstrated that the SPARQL query language can
deal with constraints in different ways. On the one hand,
SPARQL can easily be used to extract constraints defined on
top an RDF schema, since our approach naturally embeds
constraints into the RDF data definition using a fixed RDF
vocabulary. On the other hand, SPARQL can be used for
checking RDF graphs against all types of constraints.

Our novel ideas open up a broad area of interesting re-
search topics. First, the study of other types of constraints
for RDF might be worth being considered, e.g. constraints
in the context of XML data. Second, efficient algorithms for
checking instances against constraints might be of practical
interest. Finally, an algorithmic approach to semantic query
optimization under constrained RDF should be developed,
in order to speed up query engines in the Semantic Web.
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APPENDIX

A. PROOF OF THEOREM 1
Due to Lemma 3.2 in [12] the implication problem for

keys by keys and foreign keys is undecidable, thus it suffices
to show that its complement can be reduced to our prob-
lem here. Therefore, take an arbitrary relational schema
R = (R1, ..., Rn) and Σ a set of keys and foreign keys over
R and ϕ = R[X] → R a key, where X = A1...Ak and
{B1, ..., Bl} = Att(R)\{A1, ..., Ak}. Note that R = Ri0 for
some i0 ∈ [n]. We encode R into a constrained RDF vocab-
ulary VR = ((NC , NP ), C) such that

there exists I |= R satisfying Σ ∧ ¬ϕ ⇔ VR is satisfiable.

This gives us the desired reduction from the implication
problem for keys by keys and foreign keys to our satisfia-
bility problem.

VR has the following components.

NC = {r,R′, single,R1, ..., Rn}

NP =
Sn

i=1
Att(Ri)

.
∪ {m,m′}

C = {PropR(m,R′), SubC(R′, R), P ropR(m′, r)}
∪ { Key(C, [B]) | C[B] → C ∈ Σ }
∪ { FK(C, [B], D, [B′]) | C[B] ⊆ D[B′] ∈ Σ }
∪ {Key(R′, [B1, ..., Bl]), FK(R′, [X], single, [X])}
∪ {Single(single),Min(r, 2, m)}
∪ { Max(single, 1, R),Min(single, 1, R) | R ∈ X }
∪ { Min(C, 1, R) | C ∈ R, R ∈ Att(C) }
∪ { Min(C, 1,m′) | C ∈ NC }
∪ { Max(C, 1, R) | C ∈ R, R ∈ Att(C) }

Assume that I |=
V

Σ ∧ ¬ϕ. We incrementally construct

a model I of VR. Choose i ∈ [n] and µ ∈ Ii. Add µ to RIC
i

and (µ, µ(A)) to AIP for all A ∈ Att(Ri). Furthermore, we
add the tuple (µ, spy) to mIP , in order to later ensure the
violation of ϕ.

Choose µ1, µ2 ∈ Ii0 such that µ1 and µ2 witness the vio-
lation of ϕ, thus they agree on their values of A1, ..., Ak but
disagree on some value of some other attribute of R. Add
(spy, µ1), (spy, µ2) to mIP , spy to rIC and µ1, µ2 to R′IC .

Finally, for any object o created so far, we also add (o, spy)
to m′IP . The resulting interpretation is a model of VR.

Conversely, assume that I |= VR. We incrementally
construct a model I of Σ ∧ ¬ϕ. Choose some B ∈ NC

such that BIC 6= ∅ and x ∈ BIC . Then, there exists
spy ∈ rIC such that (x, spy) ∈ m′IP . Furthermore, there
exist µ1, µ2 ∈ ∆I such that µ1 6= µ2, (spy,µ1), (spy, µ2) ∈
mIP and µ1, µ2 ∈ R′IC . This shows that the following con-
struction is not trivial.

For any i ∈ [n] and µ ∈ R
IC
i do the following construc-

tion. For all A ∈ Att(Ri) there exists bA ∈ ∆I such that
(µ, bA) ∈ AIP . Add { µ[A 7→ bA] | A ∈ Att(Ri) } to Ii.

We show that I := (I1, ..., In) |= Σ ∧ ¬ϕ. I |= Σ is satis-
fied due the definitions of keys and foreign keys in our RDF
framework. It remains to show that ϕ is violated. The ob-
jects µ1, µ2 are suitable candidates for this. As they are
members of the class R′ and Key(R′, [B1, ..., Bl]) ∈ C they
disagree on at least one value among {B1, ..., Bl}. We need
to see why they agree on the values of the attributes from X.
Choose A ∈ X and a, b ∈ ∆I such that
(µ1, a), (µ2, b) ∈ AIP . This is possible because of the min-
cardinality constraint Min(R, 1, A). Choose s ∈ singleIC

and observe that |singleIC | = 1.

Due to FK(R′, [X], single, [X]), a and b are referenced by s
via the property A. From Max(single, 1, A) it follows that
a = b. Thus, ϕ is violated, which concludes the proof.2

B. PROOF OF LEMMA 2
For simplicity of notation, we will identify the functions

.IC and .IP in an interpretation with their graph.
Let ϕ = FK(C, [R1...Rn], D, [R′

1...R
′
n]) a foreign key6 and

V ′ := (NC , NP

.
∪ {Rϕ}). Π is given by

{FK(C, [Rϕ], D, [Rϕ]),Key(D, [R′
1, ..., R

′
n])}

∪ { SubPChain(C,Rϕ, Ri, Ri) | i ∈ [n] }
∪ { SubPChain(D,Rϕ, Ri, R

′
i) | i ∈ [n] }.

Let I = (∆I ,∆D, .
IC , .IP ) be an interpretation such that

I |= ϕ. For any x ∈ CIC choose one arbitrary but unique,
yx ∈ DIC such that ∀i(∀oi ∈ ∆I : (x, oi) ∈ R

IP
i , then

(yx, oi) ∈ R
′IP
i ), i.e. yx serves as a witness for x that the for-

eign key is satisfied. Define JI := (∆I

.
∪ O,∆D, .

IC , .Prop),
where O := { ox | x ∈ CIC } and

.Prop := .IP ∪ { (Rϕ, x, ox) | x ∈ CIC }
∪ { (Rϕ, yx, ox) | x ∈ CIC }

∪ { (Ri, ox, a) | i ∈ [n], x ∈ CIC , (x, a) ∈ RIP
i }.

It is standard to verify that JI |= Π.

Let I = (∆I ,∆D, .
IC , .IP ) be an interpretation such that

I |= Π. JI is defined as JI := (∆I ,∆D, .
ICl , .IP rop), where

.ICl := { (C,A) ∈ .IC | C ∈ NC , A ∈ ∆I },

.IP rop := { (R,A,B) ∈ .IP | R ∈ NP , A,B ∈ ∆I }.

We show that JI |= ϕ. Let o ∈ CIC and o1, ..., on ∈ ∆I

such that ∀i ∈ [n] : (o, oi) ∈ R
IP
i . We need to show that

∃o′ ∈ DIC such that ∀i ∈ [n] : (o′, oi) ∈ R
′IP
i . We know

that I |= SubPChain(C,Rϕ, Ri, Ri) and that the property
Ri is total for all elements in class C for all i ∈ [n]. Due to
I |= FK(C, [Rϕ],D, [Rϕ]), Rϕ is total for all elements in
class C, too. So, ∃ogroup ∈ ∆I such that ∀i ∈ [n] :

(ogroup, oi) ∈ R
IP
i . Again, due to I |= FK(C, [Rϕ], D, [Rϕ])

there exists some o′ ∈ DIC such that (o′, ogroup) ∈ R
IP
ϕ . As

we know that I |= SubPChain(D,Rϕ, Ri, R
′
i) for i ∈ [n] we

have that (o′, oi) ∈ R
′IP
i . Thus, JI |= ϕ, which concludes

the proof.2

C. REDUCTION TO ALCHIQ

Our framework ALCHIQ construct

SubC(C,D) C ⊑ D
SubP (R,S) R ⊑ S

PropD(R,C) ∃R.⊤ ⊑ C

PropR(R,C) ∃R−.⊤ ⊑ C

Min(C, n, R) C ⊑≥ nR
Max(C,n, R) C ⊑≤ nR

FK(C, [R],D, [S]) ∃R−.C ⊑ ∃S−.D

Key(C, [R]) ∃R−.C ⊑≤ 1R−.C

The translation of Key(C, [R]) was inspired by [7].

6Without loss of generality we can assume that n ≥ 2, oth-
erwise we are done.
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