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ABSTRACT

Scientific data are available through an increasing number of
heterogeneous, independently evolving, sources. Although the
sources themselves are independently evolving, the data stored
in them are not. There exist inherent and intricate relationships
between the distributed data-sets and scientists are routinely re-
quired to write distributed queries in this setting. Being non-
experts in computer science, the scientists are faced with two
major challenges: (i) How to express such distributed queries.
This is a non-trivial task, even if we assume that scientists are
familiar with query languages like SQL. Such queries can get ar-
bitrarily complex as more sources are considered; (ii) How to
efficiently evaluate such distributed queries. An efficient evalua-
tion must account for batches of hundreds (or even thousands) of
submitted queries and must optimize all of them as a whole.

In this demo, we focus on the biological domain for illustration
purposes (our solutions are applicable to other scientific domains)
and we present a system, called BioScout, that offers solutions in
both of the above challenges. In more detail, we demonstrate
the following functionality: (i) in BioScout, scientists draw their
queries graphically, resulting in a query graph. The scientist is
unaware of the query language used or of any optimization issues.
Given the query graph, the system is able to generate, as a first
step, an optimal query plan for the submitted query; (ii) BioScout
uses four different strategies to combine the optimal query plans
of individual queries to generate a global query plan for all the
submitted queries. In the demo, we illustrate graphically how
each of the four strategies works.

1. INTRODUCTION

From new laboratory processes and sensors, to particle
accelerators and arrays of telescopes, there have been rapid
advancements in technology which led to an abundance of
scientific data [10]. Such technology however, is not lim-
ited to a selected few. Therefore, not only there is an
abundance of data, but also there is an increasing num-
ber of independently evolving (heterogeneous) sources that
are storing these data. To make sense of these data and
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Figure 1: Sample instances and mapping table

use them in research, scientists are routinely required to
manually write queries that combine data from a number of
such sources (e.g. see [20]). This process is often tedious
and time consuming, as scientists are often non-experts in
database technology or query languages. Even worse, due to
the continuous evolution of the data, scientists are obliged
to repeat their queries over time to retrieve the most fresh
data. The objective of this work, and this demo, is to present
solutions that lessen the burden of the scientists by facili-
tating both the specification of queries and by optimizing
their (continuous) evaluation. To this end, we demonstrate
a user-friendly distributed-query monitoring system, called
BioScout, that relieves scientists (in this particular scenario,
biologists) from repeating their queries over time. In the
BioScout-system biologists can visually create distributed
queries as graphs. These queries are then periodically eval-
uated by the system and the biologists are informed when
new results are found.

As an example of a usage scenario, we look at the following
query from the biological domain: QO =get the human genes
that influence breast cancer and that translate to proteins
related to breast cancer with as function GTPase activator
(=G0:0005096). To answer this query, the biologist must
combine data from multiple sources, since different sources
specialize in different aspects of the domain. In this exam-
ple, four sources are required: Genbank [5] which specializes
in genes, OMIM [21] which specializes in diseases with a ge-
netic component, SwissProt [2] in proteins, and Go [1] in
functional descriptions of proteins (among other things).

We assume here that the sources are relational and Fig-
ures 1(a) and (b) show sample instances for the Genbank
and SwissProt sources. Since the sources are heterogeneous
some sort of integration is necessary so that we can tell, for
example, which gene in Genbank is associated with which
protein in SwissProt, or which protein in SwissProt is as-
sociated with which functional description in Go. Mapping
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[} digSzauz i - o

¢ Query Generator | ¢ Query Results | ¢ Query List |
4= Qlaa|a o

Genbank(organism ='Homo Sapiens’)

A \ain o da -0 x|

Select datavase: [OMIM [ ~| [ selea |

® o [eavas |~| [Goooosose ]

like breast } r ]

O ute eauais || | ]

O text [equats [+ | ]

Add || cancel

Figure 3: Visual Query Creation

tables [14] have been used in practice to record such associ-
ations between biological sources. So, in each source, along
with its base relation, a set of mapping tables exists, associ-
ating its local data to those in remote sources. Figure 1(c)
shows a sample mapping table that associates gene identi-
fiers with the identifiers of proteins they encode for.

Going back to query Q, how would a biologist express it
given our relational setting? Assuming that the biologist
knows SQL, she would need to write the following query:

select Genbank.gid

from Genbank, SwissProt, Go, OMIM, mi, ma, ms3, ma

where Genbank.organism = “Human” and Go.goid = “G0O:0005096”
and OMIM.description like “%breast cancer%”
and Go.goid = my.goid and my.pid = SwissProt.pid
and SwissProt.pid = ms.pid and ms.mimid = OMIM.mimid
and SwissProt.pid = ms.pid and m».gid = Genbank.gid
and OMIM.mimid = mi.mimid and mi.gid = Genbank.gid

where, m1 to my refers to four mapping tables with m;
associating gid’s in Genbank to mimid’'s in OMIM; mo gid’s
in Genbank to pid’s in SwissProt; ms associating pid’s in
SwissProt to mimid’s in OMIM; and m4 associating pid’s in
SwissProt to goid’s in Go. Clearly, for a non-expert writing
such a query is both non-trivial and error-prone. BioScout
offers a graphical user interface in which such queries can be
visually expressed. To see how this can be achieved, notice
that query Q can be represented as a graph. Intuitively,
nodes in this graph represent sources that participate in the
query. Edges in the graph represent mapping tables used
to join the corresponding nodes (sources). Figure 2 shows
the query graph for query Q. The node marked by a black
circle indicates an output node, i.e., the node generating the
query result. In our example, this is the Genbank node.
The implemented interface, shown in Figure 3, provides to
the scientist the ability to draw a query graph, like the one
shown in Figure 2. The scientist is unaware of both the
query language syntax and, as we will explain in what fol-
lows, the query evaluation plan.

On the technical side, our work makes the following contri-
butions. Once a query (graph) is submitted into BioScout,
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the optimal query plan for this query is computed. Opti-
mization here does not minimize evaluation times. After
submitting (often large batches of) queries, scientists are
usually willing to wait even a whole day for the answers. In-
stead, given that queries are distributed, optimization here
focuses mainly on minimizing the communication cost (sim-
ilar in spirit to [3, 4]) that results from the potentially high
query volume. BioScout uses a branch-and-bound algorithm
to compute the optimal plan of a single query [15]. The nov-
elty of the algorithm is primarily its cost-model used for the
graph query plans. Unlike existing algorithms whose cost-
models rely on maintaining detailed statistics, the BioScout
algorithm is tailored to work on distributed, heterogeneous
environments where such statistics are often not available
and where each source often has to make local decisions
without having access to a global view of the system. The
optimal plan of a single query is also represented as a graph.
The size and shape of the evaluation graph is often different
from that of the query graph. Nodes that appear only once
on the query graph sometimes have more than one occur-
rences in the evaluation graph (since during query evalua-
tion, the same node might be visited multiple times) [15].

Where BioScout really stands out from the related work
in the area is in its ability to combine the optimal plans of
multiple queries in order to come up with a unique global op-
timal plan. Indeed, while multi-query optimization has been
studied in the literature (although, to a lesser extent than
single-query optimization), the existing works only consider
the optimization of a few tens of queries (at best). The con-
tribution of BioScout is the introduction of multi-query opti-
mization algorithms that scale to hundreds, or thousands, of
queries [15]. This ability to scale is essential for the scientific
settings considered here and, to the best of our knowledge,
this is the first work in the area of multi-query optimization
which scales to such large numbers of queries.

As part of our theoretical study in [15], we have shown
that the problem of multi-query optimization is in general
NP-hard. Therefore, in the demonstration we present four
different heuristic algorithms for multi-query optimization
that all exhibit the desirable scalability property. In a nut-
shell, our heuristic algorithms attempt to identify common
sub-graphs belonging to the optimal plans of individual queries.
These common sub-graphs are used as a basis to combine
the plans of the individual queries into a single, global, opti-
mal query plan. In the demonstration, we present these four
heuristics and for each one of them we also illustrate, in a
step-wise fashion, how individual optimal query plans are
combined to generate a single global optimal query plan.

2. RELATED WORK

Distributed query processing has taken center stage since
the early days of database systems [17] and the interest is
still strong in this area [27]. From the huge literature, most
related to ours are the works on the optimization of semi-
joins [3, 4], where the objective is also to minimize communi-
cation cost among participating sources. In this line of work,
[8] only considers chain queries while we consider the more
general class of full-reducer tree queries [30]. For this latter
class, a number of optimization algorithms have been pro-
posed [23, among others| but they all focus on single-query
optimization, while we also consider multi-query optimiza-
tion. More recently, Stocket et al. [27] considered generic
semi-join optimization techniques. However, the proposed



techniques target a particular class of distributed client-
server systems in which clients communicate with servers
while servers cannot communicate between themselves. Our
work, on the other hand, is complimentary since it considers
exactly these settings in which inter-server communication is
possible. The difference in the two systems is essential since
it influences the optimized query plans considered. Further-
more, we also consider multi-query optimization.

From a theoretical standpoint, the problem of optimizing
full-reducer tree queries was shown to be NP-hard in [30]
w.r.t. a cost-model based on (semi)-join-selectivities. Here,
we consider a more conservative cost model motivated by
[27], and consider the complexity both for single- and multi-
query optimization.

In publish-subscribe systems, multi-query optimization was
only considered in the context of boolean queries. In Nia-
garaCQ [7], the plans of multiple queries are grouped to-
gether if they have common expression signatures, i.e., their
plans have common syntactic characteristics. In the same
line of work, Diao et al. [9] group the evaluation of multiple
queries by grouping their corresponding NFAs into a single
NFA. As such, the focus there is on optimizing query evalua-
tion by exploiting common path expressions among queries.
Our work differs from these works since (a) we consider non-
boolean queries; and (b) apart from syntactic similarities,
our algorithms also take into account the communication
cost while computing and merging different plans.

In [24], queries (and their plans) are represented as AND-
OR DAGs [25] and a family of optimization algorithms is
presented to (a) group multiple query DAGs into a single
one, by exploiting common query sub-expressions, and (b)
determine which common sub-expressions to materialize to
reduce the cumulative query evaluation cost (in terms of
time). The proposed algorithms are effective for a rela-
tively small number of chain queries and some of the un-
derlying optimization principles there can be found in our
work. However, we consider a much larger number of more
general queries and focus on minimizing the communication
cost. Multi-query optimization is also considered in [28],
in the context of sensor networks, but only for aggregation
queries, while the techniques in [26] for multi-query opti-
mization are expensive and cannot scale to a large number
of queries, as [7] also points out.

In scientific databases, SkyQuery [20] offers subscription
of queries over a federation of astronomy databases. The
SkyQuery optimizer focuses on minimizing communication
cost through a simple strategy that uses performance queries
and asks each database for its estimate of data for a given
query. Then, databases are ordered in decreasing order of
selectivity - the one with least data is the first to execute etc.
Currently, SkyQuery does not support more complex (non-
chain) plans or multi-query optimization. Another proto-
type, PubCrawler [13] supports query subscription over bi-
ological databases. The only optimization available there
is that the results of multiple queries are combined so that
records common in the answer of several queries are only
reported once. However, this occurs only at the reporting
stage, after the queries have been executed. In our work, we
detect such query overlaps before the actual query execution.
In [22], a system is proposed to monitor biological data. The
queries are similar to ours but their setting is a centralized
one where every source communicates only with a central
source. Furthermore, it is not the amount of data transfer
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Figure 4: A BioScout peer source

that is minimized but the total number of different database
accesses. XSEQM [29] is a monitoring system for sequence
data and focuses on alignment queries which are entirely
different from our tree queries. Optimization of life science
queries in the work of [6] focuses on single queries where the
largest set of answers, following alternate paths through the
graph connecting the sources, has to be computed at the
lowest cost. Data integration systems for the life sciences,
like Aladin [19], BioFuice [16], or DiscoveryLink [11] focus on
the seamless integration of data from heterogeneous sources
and on the optimization of single-queries. As such, they do
not consider scalable multi-query optimization like we do.

3. DEMONSTRATION

The demonstration of BioScout shows (i) how the system
can be used by biologists, namely, the visual creation of
queries and the consulting of the results of their submitted
queries (ii) a visual simulation of the working of the four
different heuristic algorithms that compute an optimal plan
for a set of queries. The whole system is written in the Java
programming language.

3.1 System Architecture

BioScout is a distributed system that currently consists
of a relatively small number of peer sources, namely, six
peers. Each peer source corresponds to a different scientific
(biological, in our case) database (see next section for a de-
scription of the characteristics of these databases). Figure 4
shows in more detail the architecture of each peer source
which consists of two parts. The first part corresponds to
the actual database, where the scientific data, mapping ta-
bles, and cached query results are stored. The second part of
the peer source, namely, the BioScout-layer consists of five
different modules, each responsible for a specific task. The
Ul-module provides the user with an interface where queries
can be submitted graphically while the returned answers to
the queries are also shown graphically. After a query is
entered, the QueryPlan Builder builds the evaluation plan
for the query and merges it with the global plan that eval-
uates all queries currently submitted to the system. The
actual evaluation of queries is handled by the Query Evalu-
ator module which interacts with the Network module and
DB Interface module.

3.2 Experimental Data Sets

Figure 5 shows the statistics for the real databases used
in our experiments. Specifically, we show the sizes of the



[ Database [ Size ] [ Mapping Table [ Size ]
Genbank 11658789 Genbank — Enzyme 79667
SwissProt 417832 OMIM — Genbank 382177
Go 21610 PubMed — Genbank 4449547
PubMed 329214 Go — SwissProt 499351
Enzyme 4698 SwissProt — Genbank 666700
OMIM 17850 OMIM — PubMed 109650

(a) Database sizes (b) Mapping table sizes

[ Mapping Table [ LHS ids | RHS ids | Avg. fan-out |

Genbank — Enzyme 17796 2520 4.47
OMIM — Genbank 11588 182844 32.98
PubMed — Genbank 267903 | 3841010 16.60
Go — SwissProt 9024 143131 55.33
SwissProt — Genbank 435734 262542 1.53
OMIM — PubMed 13571 87934 8.08

(c) Mapping table statistics

Figure 5: Database statistics

databases along with the sizes of some mapping tables, in
terms of number of tuples. Notice that database sizes vary
from a few thousands to millions of tuples and the same is
true for mapping tables. In the figure, we also show the
number of distinct ids in the left and right-hand side at-
tribute of each reported mapping table, along with the av-
erage fan-out. These statistics are important since they are
used, internally, by our algorithms for the estimation of com-
munication costs. Notice that the tables are not complete,
i.e., not all tuples from one database are mapped to those
of another. For example, from the eleven million Genbank
gid’s, only seventeen thousand are associated with enzymes.
Also the fan-out of tables varies widely from values close to
one, to values close to 55.

3.3 Demonstrated Functionality

The demonstration consists of two parts. The first part
handles the creation of queries through the visual interface
and the listing of queries and results, while the second part
shows the working of four different strategies the optimizer
can apply to combine single query plans to a global plan.

Figure 3 shows the BioScout query creator interface. The
interface is similar to a simple graph editor. It provides the
scientist with the ability to draw a query graph and submit
this query into the system. A node is created by select-
ing a source and specifying the desired selection conditions.
Figure 3 shows the creation of an OMIM node with the con-
dition that the mimid must be GO:0005096. Linking sources
through mapping tables is done by clicking and then drag-
ging from one node to the other node. During the demo,
we show how nodes are created and modified, edges can be
added and deleted, and how the output node can be selected
or changed.

All registered queries are evaluated periodically. When
new results our found for a query, the owner is notified.
The new and past results of queries can be consulted in the
query results page. An example of such a page is shown in
Figure 6. It list all the queries submitted by the user and
their results grouped by date.

Our system also offers a query viewer, shown in Figure 7.
The query viewer allows the user to review/edit queries that
already have been submitted into the system. A user can
simply select a query identifier and a window appears that
shows (a) the query graph for the selected query and (b)
the optimal plan for evaluating this query. The interface
also provides the ability to generate an optimal plan for any
subset of queries that is submitted into the system. In more
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detail, the user is provided with the list of submitted queries.
The user selects the subset of queries for which she wants to
generate an optimal plan and then she selects the algorithm
to use to generate it. Then the system presents a window
with the optimal plan.

If a user wants to submit a very large batch of queries
into the system, using the graphical interface might not be
the fastest way. To speed-up the submission of such large
batches, we allow the user to specify the query graph using
a text-based representation. We consider GraphXML [12]
as a suitable candidate to describe our query graphs, due to
its simplicity. The following example shows the GraphXML
representation of the query graph in Figure 2.

<graph id="1">
<node name="Genbank” >
<data>gid =out,organism=“Homo sapiens” </data></node>
<node name="OMIM” >
<data>descr. contains “breast cancer” </data></node>
<node name="SwissProt” />

<node name="Go” ><data>goid =“G0:0005096” < /data></node>

<edge name="m”

<edge name="my”

<edge name="m3g”

<edge name="my”
</graph>

source="Genbank” target ="OMIM” />
source="Genbank” target =”SwissProt” />
source="OMIM” target =”SwissProt” />
source="SwissProt” target =”"Go” />

The user can submit a file containing the description of
all the queries in the batch. Once the queries are submitted,
they can be viewed/edited through the interface, as if they
have been submitted graphically.

As discussed in Section 1 we have developed four algo-
rithms that, given a set of queries, leverage pre-computed
optimal plans of single queries and combine them to com-
pute a global plan for the whole query set. The approaches
range from a purely structural algorithm that intelligently
merges all similar (sub-)queries (e.g., a query occurs as a
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subquery of another query), to a complex alignment algo-
rithm that uses the semantics of selection atoms to compute
a score for the alignment. In our system, we visually show
for each of the algorithms how they build up the global plan
starting from the same set of query plans. As an example,
Figure 8 shows a possible alignment of a single-query plan
with an existing global plan. An edge from a node ng in
the single-query plan to a node n¢ in the global plan (shown
in red) indicates that node ng will be mapped to node ng
in the global plan. Therefore, each node in the global plan
represents a set of single-query plan nodes (all referring to
the same source). There are two types of edges in the global
plan, namely, edges between nodes that refer to different
sources (shown in black) and edges between nodes that refer
to the same source (shown in grey). The black edges rep-
resent the combined transfer of data. For example consider
the SwissProt node n3V*sF™t in the global plan to which
the SwissProt node in the single-query plan is mapped. The
node has, among others, an edge to the OMIM node at the
next level. During the evaluation of the global plan, all the
results of all the single-query SwissProt nodes mapped to
n&WissProt that need to be send to the OMIM source will be
combined before transmission to OMIM. We note that a
result that might be necessary for the evaluation of multiple
single-queries will be sent only once, resulting in savings in
transmission costs. Also, note that as the OMIM node in
the query plan is mapped to a node that is processed later
during the evaluation, the result of the SwissProt node in
the query plan must be propagated to this node. The pro-
cess of propagating results between nodes that refer to the
same source is represented by the grey edges.
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