
The SBC-Tree: An Index for Run-Length Compressed
Sequences ∗ †

Mohamed Y. Eltabakh1 Wing-Kai Hon2 Rahul Shah3

Walid G. Aref1 Jeffrey S. Vitter1

1Department of Computer Science, Purdue University
2Department of Computer Science, National Tsing Hua University

3Department of Computer Science, Louisiana State University
1{meltabak, aref, jsv}@cs.purdue.edu, 2wkhon@cs.nthu.edu.tw, 3rahul@csc.lsu.edu

ABSTRACT
Run-Length-Encoding (RLE) is a data compression tech-
nique that is used in various applications, e.g., time series,
biological sequences, and multimedia databases. One of the
main challenges is how to operate on (e.g., index, search,
and retrieve) compressed data without decompressing it. In
this paper, we introduce the String B-tree for Compressed
sequences, termed the SBC-tree, for indexing and searching
RLE-compressed sequences of arbitrary length. The SBC-
tree is a two-level index structure based on the well-known
String B-tree and a 3-sided range query structure [7]. The
SBC-tree supports pattern matching queries such as sub-
string matching, prefix matching, and range search opera-
tions over RLE-compressed sequences. The SBC-tree has
an optimal external-memory space complexity of O(N/B)
pages, where N is the total length of the compressed se-
quences, and B is the disk page size. Substring match-
ing, prefix matching, and range search execute in an op-

timal O(logB N + |p|+T

B
) I/O operations, where |p| is the

length of the compressed query pattern and T is the query
output size. The SBC-tree is also dynamic and supports
insert and delete operations efficiently. The insertion and
deletion of all suffixes of a compressed sequence of length
m take O(m logB(N + m)) amortized I/O operations. The
SBC-tree index is realized inside PostgreSQL. Performance
results illustrate that using the SBC-tree to index RLE-
compressed sequences achieves up to an order of magnitude
reduction in storage, while retains the optimal search perfor-
mance achieved by the String B-tree over the uncompressed
sequences.

∗Rahul Shah and Jeffrey S. Vitter acknowledge the sup-
port of the National Science Foundation under grant number
CCF–0621457.
†Walid G. Aref acknowledges the support of the National
Science Foundation under grant number IIS-0093116.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

1. INTRODUCTION
Current databases store massive amounts of data, es-

pecially in text and sequence formats, e.g., time series
databases, biological sequences, medical record, and digital
libraries. With such massive amounts of data, data com-
pression techniques, e.g., [14, 23, 34, 42, 48, 49], gain sig-
nificant importance to achieve compact data representation.
Compressing the data is proven to improve the system per-
formance, e.g., [41]. It reduces significantly the size of the
data, the number of I/O operations, and the buffer require-
ments. One of the main challenges is how to operate on
(e.g., index, search, and retrieve) compressed data without
decompressing it. Some compression techniques complicate
significantly the representation of the data, and hence make
efficient searching over the compressed data almost impos-
sible. Other compression techniques, e.g., Burrows-Wheeler
Transform (BWT), and Run-Length Encoding (RLE), allow
direct searching over the compressed data.

Run-Length-Encoding (RLE) [23] is a compression tech-
nique that replaces the consecutive repeats of an ele-
ment x by one occurrence of x along with x’s frequency,
i.e., the repeat length. For example, a sequence S =
AAAAEEEBBBBBBB has an RLE-compressed form
S′ = A4E3B7. RLE is used to compress data from var-
ious domains, e.g., time series, biological, and multimedia
databases. Several in-memory algorithms have been pro-
posed to search RLE compressed sequences, e.g., [1, 2, 3, 5,
13, 22]. However, none of the proposed algorithms address
the problem of indexing and searching compressed data us-
ing external memory techniques [46]. RLE is also used inside
the database management system C-Store [41] to compress
sorted columns that have few distinct values. C-Store allows
some database operators to execute directly over the RLE
compressed data, e.g., aggregate operators. However, per-
forming more complex operations, e.g., indexing and sub-
string searching RLE compressed sequences, has not been
addressed yet.

In this paper, we propose the SBC-tree (String B-tree
for Compressed sequences) for indexing and searching RLE-
compressed sequences of arbitrary length. The SBC-tree is
a two-level index structure as illustrated in Figure 1. The
first level is a modified version of the String B-tree proposed
in [18], and the second level is the optimum 3-sided range
query structure proposed in [7]. The 3-sided structure is
built on top of the leaf entries of the modified String B-tree.

523

Two-dimensional Index
(3-sided structure)

Tag

String B-tree

root

Numeric tag assigned
to each suffix

Frequency

Figure 1: The SBC-tree structure.

The SBC-tree supports substring, prefix, and range search
operations over RLE-compressed sequences.

We formalize our problem as follows. Let S be an
RLE-compressed sequence of length n in the form S =
‘x1f1 x2f2 ... xnfn’, xj is a character in the alphabet
Σ, and fj ≥ 1 is the frequency of xj . We call xjfj

an RLE-character. Sequence S has n RLE-suffixes, i.e.,
RLE-Suffixes(S) = {xjfj xj+1fj+1 ... xnfn | 1 ≤ j ≤
n}. The length of the decompressed sequence of S is
the sum of the character frequencies forming S. That is,
|decompressed(S)| =

Pn

j=1
fj . The decompressed sequence

of S has
Pn

j=1
fj suffixes. The n RLE-suffixes of S are a sub-

set of the total
Pn

j=1
fj suffixes. The remaining

Pn

j=1
fj −n

suffixes are called implicit-suffixes, as they are not stored
explicitly among the RLE-suffixes. Given a set of K RLE-
compressed sequences ∆ = {S1, S2, ..., SK}, the proposed
SBC-tree achieves the following: (1) store the sequences in
their compressed form, (2) index only the RLE-suffixes of
the RLE-compressed sequences, i.e., index n RLE-suffixes
instead of

Pn

j=1
fj suffixes for each sequence, and (3) effi-

ciently answer substring matching queries over the stored
sequences.

The SBC-tree has an optimal external-memory space com-
plexity of O(N/B) pages, where N is the total length of
the compressed sequences and B is the disk page size. The
insertion and deletion of all suffixes of a compressed se-
quence of length m take O(m logB(N + m)) amortized, and
worst-case I/O operations, respectively. Substring match-
ing, prefix matching, and range search execute in an optimal

O(logB N + |p|+T

B
) I/O operations, where |p| is the length

of the RLE-compressed query pattern and T is the query
output size.

In order to put the SBC-tree into practice and facilitate
its implementation inside current database management sys-
tems, we present a variant of the SBC-tree that uses the
R-tree instead of the 3-sided structure. This variant has no
provable worst-case theoretical bounds for search operations.
However, it is more practical from a systems implementation
point of view and also has good empirical results.

The contributions of this paper are summarized as follows:

1. We introduce the SBC-tree index for indexing and sub-
string searching RLE-compressed sequences of arbi-
trary lengths. The SBC-tree is realized inside Post-
greSQL.

2. The SBC-tree has provable worst-case theoretical
bounds for the external-memory space requirements

and search operations. The SBC-tree is the first com-
pressed index structure that is dynamic and operates
optimally in external memory with respect to the size
of the compressed data.

3. The experimental results illustrate that using the SBC-
tree to index RLE-compressed sequences achieves up
to an order of magnitude reduction in storage, up to
30% reduction in I/Os for the insertion operations, and
retains the optimal search performance achieved by the
String B-tree over the uncompressed sequences.

4. The SBC-tree supports complex search operations,
e.g., regular expression searching. The experimental
results illustrate that the SBC-tree achieves up to 80%
reduction in I/Os for regular expression searching com-
pared to the String B-tree.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the related work. In Section 3, we present
the component substructures that make the SBC-tree. We
present the SBC-tree structure along with its update and
search algorithms in Sections 4 and 5. The experimental
results are presented in Sections 6. Section 7 contains con-
cluding remarks.

2. RELATED WORK
The concept of searching compressed data is introduced

in [4, 44]. Several in-memory algorithms have been proposed
to search various formats of compressed data. Algorithms
for searching RLE-compressed sequences include substring
matching [2, 3, 44], approximate pattern matching [30], edit
distance [6, 13], and longest common subsequence [5, 22].
However, processing RLE-compressed sequences in external
memory has not been addressed yet. The proposed SBC-
tree addresses the challenge of indexing and searching RLE-
compressed sequences in external memory.

Algorithms over other compression schemes include
searching data compressed in Lempel-Ziv (LZ) [1, 36],
antidictionaries [40], and Burrows-Wheeler Transform
(BWT) [12]. For applications such as entropy compressed
text, the encoding scheme is complex, and hence the search
mechanisms have to be carefully engineered. For this
purpose, several in-memory pattern matching data struc-
tures which compress the text to high-order entropy have
been proposed. These structures are based on Burrows
Wheeler Transform(BWT) [19] and Compressed Suffix Ar-
rays(CSA) [24, 25]. However, indexing and searching com-
pressed data in external memory is more challenging, and
no external memory structures analogous to the structures
above exist. In fact, recent studies show that no data struc-
tures that achieve high-order entropy can be externalized
and still achieve O(polylog N+T/B) I/O term in the query
bound [15]. Moreover, these data structures cannot be
effectively dynamic (support insertions and deletions) [29,
37]. Compared to these schemes, the proposed SBC-tree is
simple, dynamic, and achieves optimal search performance.
While RLE may not be widely used as BWT or LZ, there
are many data sets that can be effectively compressed using
RLE.

Indexing compressed sequences is closely tied to text and
sequence indexing. A model for sequence databases, called
SEQ, has been proposed in [39]. SEQ models different types
of sequence data and defines a set of operators to query the

524

sequences. Several well-known index structures for text in-
dexing have been proposed. These structures include suffix
trees [26, 32, 47], suffix binary search trees [28], suffix ar-
rays [20, 26, 31], inverted files [38], tries [21, 35], B-trees [8,
16], and the prefix B-tree [9]. Several variants of these struc-
tures have been proposed to efficiently index strings of un-
bounded length. For example, the persistent suffix trees
have been proposed in [11, 27]. A buffer management strat-
egy for a practical construction of suffix trees has been pro-
posed in [43]. The String B-tree which is an external memory
structure for suffix arrays in the form of a B-tree is proposed
in [18].

Using existing text indexing structures to index RLE-
compressed sequences is not straightforward because these
structures and their search mechanisms are based on stor-
ing all suffixes of the underlying sequences. The challenge
is how to efficiently answer pattern matching queries, e.g.,
substring matching, prefix matching, and range search, while
indexing only a small subset of the suffixes.

3. SBC-TREE COMPONENT STRUCTURES
In this section, we present the data structures that we use

to construct the SBC-tree. In Section 3.1, we describe the
String B-tree that is the basis for the first level of the SBC-
tree, and in Section 3.2, we describe the 3-sided structure
that is the basis for the second level of the SBC-tree.

3.1 The String B-tree
The String B-tree [18] is a data structure for indexing

strings of arbitrary length, where index nodes store the
strings’ logical keys instead of the strings themselves. A
string logical key is the start position of the string on disk.
Suffixes of a given string have different logical keys depend-
ing on their start positions in the string. The logical keys
are sorted inside the String B-tree according to the lexico-
graphic order of the corresponding suffixes (See Figure 2).

The String B-tree is a combination of the B-tree [16] and
the Patricia trie [35], where the entries inside each B-tree
node are organized in a Patricia trie structure instead of a
sequential array. We illustrate in Figure 2 the String B-tree
for a set of strings. The positions of the strings on disk are
presented in Figure 2(a). The leaf entries of the String B-
tree contain the logical keys of all suffixes ordered in lexico-
graphic order from left to right. The right-most key in each
node propagates to the parent node (Figure 2(b)). The node
highlighted in Figure 2(c) contains a Patricia trie for sub-
strings, “te”, “tend”, “tent”, “tenuate”, “tl”, and “tlas”. Each
Patricia trie node stores the position at which the substrings
under the node’s subtree first differ along with the branch-
ing characters. For example, the first position at which the
strings illustrated in Figure 2(c) differ is position 1, and the
branching characters are e and l.

Searching the String B-tree is done by performing two
root-to-leaf path traversals to locate the first and last keys
satisfying the query. All the keys between the first and last
keys are the query answer.

The String B-tree has good performance and worst-case
theoretical bounds in answering pattern matching queries.
The following lemma states the theoretical bounds of the
String B-tree [18].

Lemma 1. ([18] Theorem 2.2):

a) The space complexity of the String B-tree is O(N/B)

a1 a2

b1

Query answer

Figure 3: 3-sided query (a1, a2, b1).

pages, where N is the total length of the strings, and
B is the disk page size.

b) The insertion and deletion of all suffixes of a string of
length m take O(m logB(N + m)) I/O operations.

c) A root-to-leaf path traversal to locate the first or last

occurrence of pattern p executes in O(logB N + |p|
B

)
I/O operations, where |p| is the length of p.

d) Substring searching for pattern p executes in

O(logB N + |p|+T

B
) I/O operations, where |p| is the

length of p, and T is the query output size.

3.2 The 3-sided Range Query Structure
Given a set of N points in a two-dimensional space, a 3-

sided range query is defined as a query with three parameters
(a1, a2, b1), where a1 and a2 specify the lower and upper
limits over the first dimension, respectively, and b1 specifies
the lower limit over the second dimension. The answer to
the query is all points (x, y), where a1 ≤ x ≤ a2 and y ≥ b1.
(See Figure 3).

The 3-sided range query structure [7] is an external mem-
ory structure that is based on the external memory prior-
ity search tree [33] and the persistent B-tree [10, 45]. The
3-sided structure consists of a “base-tree” and a set of sub-
structures. Each node in the base-tree holds a set of O(B2)
points in a substructure, termed B2-sized structure, that
occupies O(B) disk pages. A point is stored in at most
one B2-sized structure, but it can be replicated more than
once in that structure. For a particular B2-sized structure,
if occ points qualify for a given query, then (occ/B) I/O
operations are performed over that structure to report the
points. The height of the base-tree in a 3-sided structure is
O(log N/ log(B2)) = O(logB N), where N is the total num-
ber of points.

The 3-sided range query structure has an optimal worst-
case theoretical bound for the update and 3-sided range
query operations. The following lemma states the theoreti-
cal bounds of the 3-sided structure [7].

Lemma 2. ([7] Theorem 6):

a) The space complexity of the 3-sided range query struc-
ture is O(N/B) pages, where N is the number of points
in the space, and B is the disk page size.

b) The insertion and deletion of a point take O(logB N)
worst-case I/O operations.

c) The 3-sided range query executes in O(logB N + T

B
)

worst-case I/O operations, where T is the output size.

525

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a i d a t o m a t t e n u a t e c a r p a t e n t

 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

a t l a s a t t e n d c a t a c i d u a t l

48 1 21 34 45 16 25 54 31 5 37 10 20 44 49 3 42 51 18 40 27 13 2 50 56 33 8 41 28 14 7 24 22 35 29 46 17 39 26 12 55 32 6 38 11 15 53

16 10 51 50 14 46 32 53

50 53

PT

PT

PT

PT

PTPTPT PTPTPTPT

1

2

3

2

55 3217

26 1239

e l

an

d t u

~~

48 1 21 34 45 16 25 54 31 5 37 10 20 44 49 3 42 51 18 40 27 13 2 50 56 33 8 41 28 14 7 24 22 35 29 46 17 39 26 12 55 32 6 38 11 15 53

16 10 51 5016 10 51 50 14 46 32 5314 46 32 53

50 5350 53

PT

PT

PT

PT

PTPTPT PTPTPTPT

1

2

3

2

55 3217

26 1239

e l

an

d t u

~~

(c)

(a)

(b)

Figure 2: (a) Strings on disk, (b) The String B-tree for all suffixes, (c) The Patricia trie inside one node.

4. SBC-TREE DESIGN AND STRUCTURE
Indexing the RLE-suffixes of RLE-compressed sequences

means that the generated index will not contain all suffixes of
the original (decompressed) sequence. Therefore, the String
B-tree cannot be used directly to search the compressed se-
quences. The structure and search mechanism of the String
B-tree (See Section 3.1) are based on storing all sequences’
suffixes inside the index. The following example demon-
strates the problem.

Example 1. Assume we are indexing two sequences,
S1 = A5E3B6S1A2 and S2 = A5G2A4E3B4A4C1. We
present the RLE-suffixes of S1 and S2 in Figure 4(b). The
order column represents the lexicographic order of the suf-
fixes without compression. The number of the uncompressed
and RLE- suffixes of S1 and S2 is 40 and 12 suffixes, respec-
tively. In Figures 4(a) and 4(c), we illustrate the String B-
tree of the uncompressed and RLE- suffixes, respectively, as-
suming a maximum B-tree node size of five entries. Consider
a substring match searching for pattern p = AAEEEBBBB
over the uncompressed index (Figures 4(a)). The search
will return two hits with the suffixes starting at positions
28 and 4 on the disk. However, applying the same query
over the RLE-suffixes (Figure 4(c)), where p is compressed
to A2E3B4, will not return any hits. The reason is that the
suffixes starting with A2E3B4 are not stored in the index.
Instead, they are implicit-suffixes and are included in longer
RLE-suffixes, i.e., the RLE-suffix A5E3B6S1A2 of S1 and
A4E3B4A4C1 of S2 implicitly contain the string A2E3B4.

The trick to answer the substring matching query cor-
rectly over the RLE-suffixes is to take the implicit-suffixes
into account while searching the compressed index. This
is done by mapping the query pattern p = A2E3B4
into p′ = A2+E3B4, where A2+ means repeats of let-
ter A of length larger than or equal to 2. As a result,
RLE-suffixes whose prefix explicitly matches p or include
implicit-suffixes whose prefix matches p will be an answer
to the query. For example, the RLE-suffixes A5E3B6S1A2
and A4E3B4A4C1 starting at positions 1 and 16 on the
disk (Figure 4(c)) are an answer to the query above.

The RLE-suffix A5E3B6S1A2 includes the implicit-suffix
A2E3B6S1A2 whose prefix matches p, and the RLE-suffix
A4E3B4A4C1 includes the implicit-suffix A2E3B4A4C1
whose prefix matches p. The following rule formalizes the
substring matching query pattern mapping.

Rule 1. A substring matching query pattern
p = x1f1 x2f2 ... xnfn over RLE-suffixes is mapped
into pattern p′ = x1f

+

1 x2f2 ... xnfn, where x1f
+

1 means
repeats of character x1 of length larger than or equal to f1.

Although the query pattern mapping returns the correct
answer to substring matching queries, the mapping results in
another problem. The RLE-suffixes that satisfy the mapped
query pattern are not guaranteed to be contiguous inside the
String B-tree index. Hence, the String B-tree search mech-
anism that assumes the answer set to be contiguous in the
index tree is no longer feasible. If p′ = x1f

+

1 x2f2 ... xnfn

is the mapped query pattern, then between any two RLE-
suffixes starting with x1(f1 + i) x2f2 ... xnfn and x1(f1 +
i + 1) x2f2 ... xnfn, where i ≥ 0, there can be an un-
bounded number of RLE-suffixes that do not satisfy the
query. That is, incrementing the frequency of x1 causes
the answer set not to be contiguous. For example, the
two RLE-suffixes A5E3B6S1A2 and A4E3B4A4C1 start-
ing at positions 1 and 16, respectively, satisfy the query
pattern p′ = A2+E3B4 (See Figure 4(c)). However, the
two RLE-suffixes in-between, i.e., A5G2A4E3B4A4C1 and
A4C1, which start at positions 12 and 22, respectively, do
not satisfy the query. The proposed SBC-tree index provides
a solution to this problem.

4.1 The SBC-tree Structure
The SBC-tree is a two-level index structure. The first

level is a modified version of the String B-tree, and the
second level is the 3-sided index structure proposed in [7]
(Refer to Figure 5). The first level of the SBC-tree indexes
modified versions of the RLE-suffixes where the frequency
of the first RLE-character in each RLE-suffix is set to 1.

526

17 16 1 19 37 26 2 20 38 27 3 21 39 28 4 22 40 29 5 23 36 35 34 33 9 10 11 12 13 14 41 32 8 31 7 30 6 25 24 15

37 27 4 23 9 14 7 159 14 7 15

23 1523 15

PT

PT

PT

PT

PTPTPT PTPTPTPT

GGAAAAAAASBBBBBBEEEAAAAA GGAAAAAAASBBBBBBEEEAAAAA

CAAAABBBBEEEAAAA CAAAABBBBEEEAAAA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

8C1

4A4 C1

6B4 A4 C1

9E3 B4 A4 C1

5A4 E3 B4 A4 C1

11G2 A4 E3 B4 A4 C1

3A5 G2 A4 E3 B4 A4 C1

1A2

12S1 A2

7B6 S1 A2

10E3 B6 S1 A2

2A5 E3 B6 S1 A2

orderRLE-suffixes

8C1

4A4 C1

6B4 A4 C1

9E3 B4 A4 C1

5A4 E3 B4 A4 C1

11G2 A4 E3 B4 A4 C1

3A5 G2 A4 E3 B4 A4 C1

1A2

12S1 A2

7B6 S1 A2

10E3 B6 S1 A2

2A5 E3 B6 S1 A2

orderRLE-suffixes

2 A 5 G 2A1S6B3E5A 2 A 5 G 2A1S6B3E5A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9 1 12 22

PT

16 20 5 24

PT

18 3 14 7

PT

22 24 7

PT

1C4A4B3E4A 1C4A4B3E4A

16 17 18 19 20 21 22 23 24 25 26

10C1

3A1

4A1 C1

8B1 A4 C1

11E1 B4 A4 C1

5A1 E3 B4 A4 C1

13G1 A4 E3 B4 A4 C1

7A1 G2 A4 E3 B4 A4 C1

2
�

1 A5 G2 A4 E3 B4 A4 C1

14S1 A2

9B1 S1 A2

12E1 B6 S1 A2

6A1 E3 B6 S1 A2

1
�

1 A5 E3 B6 S1 A2

orderModified RLE-suffixes

10C1

3A1

4A1 C1

8B1 A4 C1

11E1 B4 A4 C1

5A1 E3 B4 A4 C1

13G1 A4 E3 B4 A4 C1

7A1 G2 A4 E3 B4 A4 C1

2
�

1 A5 G2 A4 E3 B4 A4 C1

14S1 A2

9B1 S1 A2

12E1 B6 S1 A2

6A1 E3 B6 S1 A2

1
�

1 A5 E3 B6 S1 A2

orderModified RLE-suffixes

(a) The String B-tree for the uncompressed suffixes

(b) The RLE-suffixes (c) The String B-tree for the RLE-suffixes

(d) The SBC-tree indexed RLE-suffixes

Figure 4: Indexing the uncompressed and RLE- suffixes of sequences A5E3B6S1A2 and A5G2A4E3B4A4C1.

For example, instead of indexing the RLE-suffixes in Fig-
ure 4(b), the SBC-tree indexes the modified RLE-suffixes in
Figure 4(d). First, each sequence in the database is prefixed
by a special RLE-character Ψ1, where Ψ is smaller than any
character in the alphabet. Then, for each RLE-suffix, we
set the frequency of the suffix’s first RLE-character to 1.
The second level of the SBC-tree indexes points in a two-
dimensional space that represent a reference to the RLE-
suffix (the X-axis) and the exact frequency of the suffix’s
first RLE-character (the Y-axis).

An RLE-compressed sequence S =
Ψ1 x1f1 x2f2 ... xnfn is indexed in the SBC-tree as
follows:

1. Insert S into the String B-tree as the first RLE-suffix.

2. For 1 ≤ i ≤ n, insert suffix xi1 xi+1fi+1 ... xnfn into
the String B-tree.

3. Assign a numeric tag to each inserted RLE-suffix (leaf
entry) that reflects the entry’s position in the index
(See Figure 5). Tags from the left-most leaf entry to
the right-most leaf entry are of increasing order. Tags
are assigned dynamically at the insertion time using
an order-maintenance technique [17]. We discuss the
assignment of the tags in detail in Section 5.1.

4. The suffix’s tag and the frequency of the suffix’s first
RLE-character are inserted as a point in the 3-sided
structure.

In Figure 5, we illustrate the structure of the SBC-tree
for the sequences presented in Figure 4(c). Notice that the
modified suffixes that are indexed by the String B-tree do
not exist on the disk because we set the frequency of the
first RLE-character to 1. For example, the second entry
in Figure 4(d) with modified suffix A1E3B6S1A2 corre-
sponds to the actual suffix A5E3B6S1A2 that is stored on
the disk at position 1. As a result, we slightly modified the
String B-tree insert and search algorithms as follow. An
inserted modified RLE-suffix xi1 xi+1fi+1 ... xnfn points
to the disk position of the corresponding actual RLE-suffix
xifi xi+1fi+1 ... xnfn. At search time, the frequency of
the first RLE-character of the retrieved suffix is set to 1 be-
fore performing any comparison operation over that suffix.

4.2 Answering Substring Matching Queries
Query Definition: Given a query pattern p, where

p = x1f1 x2f2 ... xnfn, find all substrings in the database
whose prefix matches p.

A substring matching query is answered as follows.

1. Map the query pattern p into p′′ = x11 x2f2 ... xnfn.

2. Search the SBC-tree first level, i.e., the String B-tree,
for p′′. The answer from the String B-tree is a contigu-
ous range specified by two tags, min tag and max tag.
min tag and max tag correspond to the first and last
RLE-suffixes (in lexicographic order) whose prefixes
match p′′, respectively.

3. Apply a two-dimensional range query over the SBC-

527

11 �� 2 A 5 G 2A1S6B3E5A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 14 11 26 20

PT

3 16 24 7 28

PT

22 5 18 9

PT

20 28 9

PT

1C4A4B3E4A

20 21 22 23 24 25 26 27 28 29 30

5 10 16 20 25 50 60 100 120 140 150 160 200 220 tag
Fr

eq
ue

nc
y

of
 th

e
fir

st
 R

LE
-c

ha
ra

ct
er

1

7

4

3

2

5

6

5 10 16 20 25 50 60 100 120 140 150 160 200 220

assigned
tags

Q1

min_tag1 max_tag1

(a) The RLE sequences on the disk

(b) The SBC-tree index

frequency

Figure 5: The SBC-tree for sequences S1 = A5E3B6S1A2 and S2 = A5G2A4E3B4A4C1.

tree second level, where the tag dimension ranges from
min tag to max tag, and the frequency dimension is
larger than or equal to f1. The answer to the range
query is the answer to the substring matching query.

In Step 1, we map p into p′′ = x11 x2f2 ... xnfn instead
of p′ = x1f

+

1 x2f2 ... xnfn because searching for pattern
P ′′ is guaranteed to return a contiguous range in the String
B-tree that is specified by min tag and max tag. Therefore,
we need only two root-to-leaf paths over the String B-tree
to determine these tags (Step 2). In Step 3, we retrieve
from the specified range the RLE-suffixes whose first RLE-
character has frequency ≥ f1.

In Figure 5, we give an example of substring match search-
ing for pattern p = A5E3B4. The corresponding p′ and p′′

will be A5+E3B4 and A1E3B4, respectively. The search
for p′′ over the String B-tree returns the two tags min tag1=
25 and max tag1= 50. The corresponding range query, de-
noted by Q1, over the 3-sided structure retrieves only one
RLE-suffix starting at position 3 on the disk.

The following lemma states the theoretical bound of sub-
string matching.

Lemma 3. A Substring matching query over an SBC-tree

index executes in an optimal O(logB N + |p|+T

B
) I/O opera-

tions, where B is the disk page size, N is the total length of
the RLE-compressed sequences (also, the number of points
in the 2D space), |p| is the length of a RLE-compressed query
pattern, and T is the query output size.

Proof. Lemma 3 can be easily derived from Lemmas 1
and 2, where a root-to-leaf path traversal over the String

B-tree executes in O(logB N + |p|
B

) I/O operations (Lemma
1c), and a range query over the 3-sided structure executes
in O(logB N + T

B
) I/O operations (Lemma 2c).

4.3 Answering Prefix Matching Queries

Query Definition: Given a query pattern p, where
p = x1f1 x2f2 ... xnfn, find all database sequences whose
prefix matches p.

In prefix matching, suffixes that satisfy the query have to
be prefixes to their sequences, i.e., the suffix is the entire
sequence. In this case, implicit-suffixes cannot be an answer
to the query because implicit-suffixes are not prefixes to their
sequences. Therefore, in prefix matching, we do not need to
apply the mapping rule (Rule 1) to pattern p.

To answer a prefix matching query, we prefix the query
pattern by Ψ1, and then search the String B-tree. The an-
swer from the String B-tree is a contiguous range that rep-
resents the answer set.

4.4 Answering Range Search Queries
Query Definition: Given two query patterns p1

and p2, where p1 = x1fx1 x2fx2 ... xnfxn, p2 =
y1fy1 y2fy2 ... ymfym, and p1 is lexicographically less than
p2, find all database sequences between p1 and p2 in lexico-
graphic order.

Range search queries execute in a similar way to prefix
matching queries. Patterns p1 and p2 are prefixed by Ψ1, and
then the String B-tree is searched to specify the first pattern
larger than or equal to p1 and the last pattern smaller than
or equal to p2. All patterns in-between belong to the answer
set.

The following lemma states the theoretical bound of the
prefix matching and range search queries.

Lemma 4. Prefix matching, and range search queries
over the SBC-tree index execute in an optimal O(logB N +
|p|+T

B
) I/O operations.

The theoretical bounds for the prefix matching and range
search queries are optimal under the assumption that index-
ing all suffixes is required to answer the substring matching

528

B2-sized structure S

S’s update buffer
S’s translate structure

Translates Q to Q’ and
A1’ to A

combine

Query Q

Q’ Answer A1’

A1
A2

Q

Answer A

O(B) pages

O(B) pages

(one page)

Figure 6: Query processing over the 3-sided struc-
ture

queries. Otherwise, a better theoretical bound for prefix

matching and range search queries of O(logB K + |p|+T

B
)

I/O operations can be achieved, where K is the number of
sequences [18].

5. DESIGN ISSUES

5.1 Updating the SBC-tree
Each leaf entry in the first level of the SBC-tree is assigned

a numeric tag that represents the entry’s relative position in
the tree. The only invariant that we need to maintain for
the tags is that tags from the left-most leaf entry to the
right-most leaf entry are of increasing order. When a new
leaf l is inserted between two leaves l1 and l2, l is assigned
a tag that is between the tags of l1 and l2, i.e., tag(l1) <
tag(l) < tag(l2). The tag assignment problem arises when
the tags of l1 and l2 are consecutive, i.e., no tag can be
generated between tag(l1) and tag(l2). In this case, we need
to re-assign the tags to the leaf entries in the vicinity of l
to make room for tag(l). Entries that are re-assigned new
tags will be deleted from the SBC-tree’s second level and are
re-inserted with the new tag values.

We first consider the case when no re-labeling is needed.
An RLE-suffix is inserted into the String B-tree and is as-
signed a tag. Then, a point corresponding to that suffix is
inserted into the appropriate B2-sized structure inside the 3-
sided structure. The inserts over the B2-sized structure are
handled in an amortized sense, as proposed in [7], by using
update buffers (Refer to Figure 6). Each B2-sized structure
is assigned a buffer of size one page that holds up to B in-
sertions. When the buffer is full, the B2-sized structure is
re-constructed to absorb the items in the buffer. Thus, the
B2-sized structure is re-constructed only after B insertions.
In [7], it is shown how to re-construct the B2-sized struc-
ture in O(B) I/Os. Thus, the amortized cost per insertion
is O(1) I/Os. Notice that during the search, when a query
hits a particular B2-sized structure, the corresponding up-
date buffer is also searched and the results from the two
structures are combined (See Figure 6).

Considering the case when a re-labeling is needed, Dietz
and Sleator [17] propose an algorithm that maintains dy-
namically the increasing property of N tags in an amortized
O(log2 N) CPU time per insertion. That is, on average,
each insertion may require re-assigning tags to log2 N en-

tries. The updated tags are in a contiguous region. Thus,
the log2 N tags can be updated in the String B-tree in
O((log2 N)/B) = O(logB N) I/O operations. These tags
need to be updated in the B2-sized structure(s) inside the 3-
sided structure. These update operations are tricky because
a point in a given B2-sized structure can be replicated more
than once and we need to update all copies of these points.
Therefore, updating the B2-sized structure(s) directly can-
not achieve the claimed theoretical bound for the update
operations.

To overcome this problem, we maintain a “translate”
structure along with each B2-sized structure (See Figure 6).
Using this translate structure, we never need to update
(delete and re-insert) points in the B2-sized structure. The
translate structure consists of O(B) pages with a copy of
each point in the corresponding B2-sized structure. The
translate structure maintains a mapping between the old and
new tags of each point. When a point’s tag changes, we only
update the new tag of that point in the translate structure.
Thus, points in the B2-sized structure are never relabeled.
The translate structure holds the points contiguously in the
X-order (tag-order), thus t̂ points in the translate structure
can be relabeled in O(t̂/B) I/Os (using a 2-level B-tree for
the translate structure). The points in the “update buffer”
do not need to be go through the translate structure. They
are always kept up-to-date.

While processing a query, the tags returned from the
String B-tree are mapped from their new values to the old
values, and then the range query is executed over the B2-
sized structure. The tags of the returned points are then
mapped from their old values to the new values. The map-
ping of the tag values can be efficiently performed assuming
that M > B2, where M is the memory size.

Using the translate structures, an insert operation over
the SBC-tree that may result in re-labeling log2 N points
amortized can be executed in order O(logB N +(log2 N)/B)
= O(logBN) I/Os amortized cost.

The following lemma states the theoretical bounds of the
update operations over the SBC-tree.

Lemma 5. The insertion and deletion operations over
the SBC-tree execute in O(m logB(N + m)) amortized, and
worst-case I/O operations, respectively, where m is the
length of the RLE-compressed sequence.

Proof. The insertion operation requires: (1) inserting m
suffixes into the String B-tree which requires O(m logB(N +
m)) I/O operations (Lemma 1b), (2) possible tag re-labeling
in the 3-sided structure which requires O(m logB(N + m))
amortized I/O operations, and (3) inserting m points into
the 3-sided structure which requires O(m logB(N +m)) I/O
operations (Lemma 2b). Therefore, an insertion operation
over the SBC-tree requires O(m logB(N+m)) amortized I/O
operations.

The deletion operation requires: (1) deleting m suffixes
from the String B-tree which executes in O(m logB(N +m))
I/O operations (Lemma 1b), and (2) deleting m points from
the 3-sided structure which executes in O(m logB(N + m))
I/O operations (Lemma 2b). Therefore, a deletion operation
over the SBC-tree requires O(m logB(N + m)) worst-case
I/O operations.

5.2 SBC-tree Space Requirements
The SBC-tree structure consists of a String B-tree and a

3-sided structure. The space complexity of the String B-tree

529

is O(N/B) pages (Lemma 1a), and the space complexity of
the 3-sided structure is O(N/B) pages (Lemma 2a). No-
tice that the use of a translate structure of O(B) pages with
each B2-sized structure does not change the space complex-
ity stated in Lemma 2a. Based on these bounds, we derive
the following lemma.

Lemma 6. The SBC-tree has an optimal external-
memory space complexity of O(N/B) pages.

Based on Lemmas 3, 4, 5, and 6, the following theorem
states the SBC-tree theoretical bounds.

Theorem. The SBC-tree has an optimal external-
memory space complexity of O(N/B) pages. The inser-
tion and deletion of m RLE-suffixes of a compressed se-
quence execute in O(m logB(N + m)) amortized and worst-
case I/O operations, respectively. The substring matching,
prefix matching, and range search operations over the SBC-

tree index execute in an optimal O(logB N + |p|+T

B
) I/O

operations.

5.3 A Note on Implementation

5.3.1 The Use of R-tree
Although the 3-sided structure is efficient in answering

range queries, it is not supported by current database man-
agement systems. Our implementation of the 3-sided struc-
ture is outside the database engine, i.e., the index data is
stored in flat files. In order to put the SBC-tree into prac-
tice, we implemented the SBC-tree inside PostgreSQL using
the R-tree instead of the 3-sided structure. The search al-
gorithm over the R-tree is the same as that over the 3-sided
structure. The SBC-tree using the R-tree has no provable
theoretical bounds, but performs well in practice.

5.3.2 The One-level SBC-tree
The structure of the SBC-tree can be simplified, at the

expense of the search performance, by dropping the SBC-
trees second level, i.e., the two-dimensional index structure.
In the one-level SBC-tree, instead of storing the preceding
RLE-character of each RLE-suffix in a two-dimensional in-
dex, we store the preceding RLE-character inside the RLE-
suffix’s entry in the String B-tree in place of the tag entries.
This simplification improves the space requirements and in-
sertion performance because we do not maintain a second
level structure. However, the search performance of the one-
level SBC-tree is not as efficient as the search performance
of the two-level SBC-tree. The reason is that the search,
e.g., substring matching, prefix matching, or range search,
over the one-level SBC-tree is performed by scanning the
keys in the range specified by the two tags, min tag and
max tag, sequentially to check whether or not the preceding
RLE-character satisfies the query. As a result, the search
I/O cost of the one-level SBC-tree is higher than that of the
two-level SBC-tree.

6. EXPERIMENTAL RESULTS
In this section, we study experimentally the performance

of the SBC-tree variants against the String B-tree that in-
dexes uncompressed sequences.

Datasets: We conducted the experiments using
three real datasets: SwissProt protein secondary struc-
ture database, Wal-Mart sales profile, and tempera-
ture readings from a sensor field. The SwissProt
protein secondary structure database is available at

http://www.pir.uniprot.org/index.shtml and consists of three
values, i.e., Σ = {H = helix, S = strand,C = coil}.
The Wal-Mart dataset contains sanitized data of timed
sales transactions for several Wal-Mart stores. The dataset
sequences consist of the hourly sales profiles discretized
into five levels, i.e., Σ = {A = verylow,B = low, C =
medium, D = high, E = veryhigh}. The temperature
dataset consists of readings from a grid sensor field and is
available at http://dss.ucar.edu/. The alphabet for the tem-
perature dataset consists of 52 distinct integer values.

Query types: We measured the performance of the SBC-
tree under four types of queries: substring, prefix, range,
and regular expression queries. In the regular expression
queries, the query pattern may contain frequency ranges,
e.g., X[i...j], which means that X appears from i to j times,
or wild cards, e.g., X*, which means that X appears one or
more times.

Query scenarios: Substring searching is a typical oper-
ation over biological databases. For example, given a pro-
tein segment s of unknown function, we want to search the
database for all protein sequences that contain s. The re-
sults from this query can help biologists to infer the function
and protein family of s. An example of a substring query
over the protein database is: SELECT * FROM PROTEINS
WHERE SEQ ∧∧ ’H3S7C4’; where SEQ is the sequence
column that is indexed using the SBC-tree, and ∧∧ is the
substring matching operator. Regular expression searching
is also an important operation over biological data, espe-
cially that biological sequences may have a degree of uncer-
tainty and redundancy. An example of a regular expression
query is: SELECT * FROM PROTEINS WHERE SEQ ≈
’H[3...9]S7C4’; where ≈ is the regular expression operator.

In time series databases, e.g., Wal-Mart and temperature
readings datasets, although substring searching is not usu-
ally a direct operation over the data, it is used as a building
block in many mining techniques that are commonly ap-
plied on these data sets. For example, in incremental fre-
quent pattern mining techniques, the data items arrive to
the database incrementally. A newly arrived item I may ex-
tend an already existing frequent pattern P to form another
pattern PI that is candidate to be frequent. The data min-
ing technique needs to search the database for PI to find out
how many times PI appears in the database. A query exam-
ple that retrieves the occurrences of the sales profile pattern
E5C1B2 from Wal-Mart database is: SELECT * FROM
WAL-MART WHERE TIME-SERIES ∧∧ ’E5C1B2’.

Query load: For each of the four query types, we gen-
erated several query patterns that range in length from 3
to 25 (uncompressed length). The size of the queries’ an-
swer set is inversely proportional to the length of the query
patterns. The size of the answer set ranges from very few
hits (less that 10) to many hits (thousands). The perfor-
mance presented in the figures is the average of the queries’
performances.

Performance results: In Figure 7, we present the SBC-
tree index size relative to the String B-tree index size. The
absolute String B-tree index size for each dataset is also pre-
sented in the figure. The figure illustrates that the one-level
SBC-tree achieves up to an order of magnitude reduction in
storage, and the SBC-tree using the 3-sided structure or the
R-tree achieves up to 80% reduction in storage. The one-
level SBC-tree involves the least storage overhead because
it does not maintain a second-level index structure.

530

 Relative Index Size

0

5

10

15

20

25

30

35

40

SwissProt Wal-Mart Temperature

Database

(S
B

C
-t

re
e/

S
tr

in
g

 B
-t

re
e)

x
10

0

SBC-tree using 3-sided

SBC-tree using R-tree

One-level SBC-tree

Figure 7: The index size

Insertion
Average I/O Operations Relative Performance

0

10

20

30

40

50

60

70

80

90

SwissProt Wal-Mart Temperature

Database

(S
B

C
-tr

ee
/S

tr
in

g
B

-tr
ee

)x
 1

00

SBC-tree using 3-sided SBC-tree using R-tree One-level SBC-tree

Figure 8: The insert operation

Prefix Matching
Average I/O Operations Relative Performance

0

3

6

9

12

15

18

21

SwissProt Wal-Mart Temperature

Database

(S
B

C
-tr

ee
/S

tr
in

g
B

-tr
ee

)x
 1

00

SBC-tree using 3-sided SBC-tree using R-tree
One-level SBC-tree

Figure 9: The prefix matching queries

Range Search
Average I/O Operations Relative Performance

0

3

6

9

12

15

18

21

24

SwissProt Wal-Mart Temperature
Database

(S
B

C
-tr

ee
/S

tr
in

g
B

-tr
ee

)x
 1

00

SBC-tree using 3-sided SBC-tree using R-tree
One-level SBC-tree

Figure 10: The range search queries

In Figure 8, we present the relative performance of the
SBC-tree to insert all RLE-suffixes of a given sequence. The
figure illustrates that the one-level SBC-tree achieves around
80% reduction in the number of I/Os, whereas, the SBC-tree
using the 3-sided structure or the R-tree achieves around
30% saving in I/Os. This I/O saving is because all the SBC-
tree variants index a small subset of the suffixes, i.e., the
RLE-suffixes. The one-level SBC-tree achieves higher sav-
ings than the other SBC-tree variants because it does not
require insertion in a second level structure.

In Figure 9, we present the SBC-tree I/O performance
under prefix matching queries relative to the performance
of the String B-tree. The absolute average number of I/O
operations performed by the String B-tree is also presented
in the figure. The SBC-tree using the 3-sided structure or
the R-tree achieves around two orders of magnitude reduc-
tion in I/Os. The R-tree is a little worse than the 3-sided
structure because the R-tree may involve traversing multiple
paths in the tree. The one-level SBC-tree achieves less I/O
saving than the two-level SBC-trees because the one-level
SBC-tree scans the entire range specified by min tag and
max tag, whereas the two-level SBC-trees applies a range
query to retrieve the answer set.

Notice that, in the previous experiment, we treat suffixes
that are prefixes to their sequences like all other suffixes.
In order to achieve optimal I/O performance for answering
prefix matching queries by both the String B-tree and the
SBC-tree, we prefix each sequence in the database by a spe-
cial character Ψ. In this case, all suffixes that are prefixes

531

Substring Matching
Average I/O Operations Relative Performance

0

100

200

300

400

500

SwissProt Wal-Mart Temperature
Database

(S
B

C
-tr

ee
/S

tr
in

g
B

-tr
ee

)x
 1

00

SBC-tree using 3-sided
SBC-tree using R-tree
One-level SBC-tree

Figure 11: The substring matching queries

to their sequences are contiguous in the index tree. By pre-
fixing the query pattern by Ψ, we guarantee that all leaf
entries scanned by both the String B-tree and the SBC-tree
belong to the query answer set. Therefore, the String B-
tree and the SBC-tree can achieve the same optimal I/O
performance.

The I/O performance of the SBC-tree under range search
queries is presented in Figure 10. The absolute average num-
ber of I/O operations performed by the String B-tree is also
presented in the figure. The figure illustrates that SBC-
tree variants exhibit behavior similar to that of the prefix
matching queries. The optimal I/O performance for answer-
ing range search queries can be reached by both the String
B-tree and the SBC-tree in a manner similar to that in the
case of the prefix matching queries.

The SBC-tree relative performance under substring match-
ing queries is presented in Figure 11. The absolute average
number of I/O operations performed by the String B-tree
is also presented in the figure. The figure illustrates that
the SBC-trees do not achieve I/O savings over the String
B-tree of the uncompressed sequences. The reason is that
the number of I/Os performed by the String B-tree is op-
timal, i.e., all leaf entries that are scanned by the String
B-tree belong to the query answer set. The SBC-tree may
require fewer number of I/Os to retrieve the same answer
set since the sequences are compressed. However, accessing
the two levels of the SBC-tree adds an extra I/O overhead.
The SBC-tree using the 3-sided structure is the best among
the SBC-tree variants. The R-tree involves higher I/O over-
head than that of the 3-sided structure because the R-tree
may traverse multiple paths in the tree. The one-level SBC-
tree is the worst because it scans the range specified by the
min tag and max tag sequentially to retrieve the answer set.

In Figure 12, we present the SBC-tree’s relative perfor-
mance under the regular expression queries. The figure il-
lustrates that the SBC-tree achieves around 80% I/O saving
over the String B-tree. The reason is that the String B-tree
has to unfold the regular expression into multiple query pat-
terns, e.g., H[2...4]S5 will generate H2S5, H3S5, and H4S5,
and then union the queries’ answers, whereas the SBC-tree
answers the query with no extra cost if the regular expression
is at the beginning or the end of the query pattern. If the
regular expression is at the middle of a query pattern, e.g.,
H[2...4]S5E[1...10]S2, then the SBC-tree will divide it into
subpatterns that do not contain regular expression in the
middle, e.g., P1 =H[2...4]S5 and P2 = E[1...10]S2, and then

Regular Expression Matching
Average I/O Operations Relative Performance

0

15

30

45

60

75

SwissProt Wal-Mart Temperature
Database

(S
B

C
-tr

ee
/S

tr
in

g
B

-tr
ee

)x
 1

00

SBC-tree using 3-sided
SBC-tree using R-tree
One-level SBC-tree

Figure 12: The regular expression queries

union their answers, whereas the String B-tree will generate
13 query patterns and then union their answers.

In summary, the performance results illustrate that the
SBC-tree achieves an optimal search performance over com-
pressed sequences similar to that of the String B-tree over
uncompressed sequences, with around 85% reduction in stor-
age and 30% reduction in insertion I/Os.

7. CONCLUSION
We presented the SBC-tree index structure for index-

ing and searching RLE-compressed sequences of arbitrary
length. The SBC-tree supports pattern matching queries
such as substring matching, prefix matching, and range
search operations over the compressed sequences. The SBC-
tree has provable worst-case optimal theoretical bounds for
the external-memory space requirements and search opera-
tions that are relative to the length of the compressed se-
quences. The structure is also dynamic and supports effi-
ciently the insertion and deletion operations with provable
amortized and worst-case theoretical bounds, respectively.
We presented also a variant of the SBC-tree: the SBC-tree
using the R-tree, that does not have provable worst-case the-
oretical bounds for search operations, but easier to realize
inside current DBMSs and performs well in practice. Our
performance results illustrate that the SBC-tree achieves up
to 85% reduction in storage, while retains the optimal search
performance achieved by the String B-tree over the uncom-
pressed sequences.

8. REFERENCES
[1] A. Amir, G. Benson, and M. Farach. Let sleeping files

lie: pattern matching in z-compressed files. In SODA,
pages 705–714, 1994.

[2] A. Amir, G. Benson, and M. Farach. Optimal
two-dimensional compressed matching. In ICALP,
pages 215–226, 1994.

[3] A. Amir, G. M. Landau, and D. Sokol. Inplace
run-length 2d compressed search. In SODA, pages
817–818, 2000.

[4] A. Amir, G. M. Landau, and U. Vishkin. Efficient
pattern matching with scaling. Journal of Algorithms,
13(1):2–32, 1992.

[5] A. Apostolico, G. M. Landau, and S. Skiena.
Matching for run-length encoded strings. Journal of
Complexity, 15(1):4–16, 1999.

532

[6] O. Arbell, G. M. Landau, and J. S. Mitchell. Edit
distance of run-length encoded strings. Information
Processing Letters, 83(6):307–314, 2002.

[7] L. Arge, V. Samoladas, and J. S. Vitter. On
two-dimensional indexability and optimal range search
indexing. In PODS, pages 346–357, 1999.

[8] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indices. Acta
Informatica, 1:173–189, 1972.

[9] R. Bayer and K. Unterauer. Prefix b-trees. TODS,
2(1):11–26, 1977.

[10] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. VLDB Journal, 5(4):264–275, 1996.

[11] S. J. Bedathur and J. R. Haritsa. Engineering a fast
online persistent suffix tree construction. In ICDE,
pages 720–731, 2004.

[12] T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh.
Searching bwt compressed text with the boyer-moore
algorithm and binary search. In DCC, pages 112–121,
2002.

[13] H. Bunke and J. Csirik. Edit distance of run-length
coded strings. In Symposium on Applied computing,
pages 137–143, 1992.

[14] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
124, 1994.

[15] Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter.
Compressed text indexing and range searching.
Technical Report Purdue University tech. report, CSD
TR06-021, DEC 2006.

[16] D. Comer. Ubiquitous b-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[17] P. Dietz and D. Sleator. Two algorithms for
maintaining order in a list. In STOC, pages 365–372,
1987.

[18] P. Ferragina and R. Grossi. The string B-tree: a new
data structure for string search in external memory
and its applications. Journal of ACM, 46(2):236–280,
1999.

[19] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In FOCS, pages 390–398,
2000.

[20] W. B. Frakes and R. B. Yates, editors. Information
Retrieval: Data Structures and Algorithms.
Prentice-Hall, 1992.

[21] E. Fredkin. Trie memory. Communications of the
ACM, 3(9):490–499, 1960.

[22] V. Freschi and A. Bogliolo. Longest common
subsequence between run-length-encoded strings: a
new algorithm with improved parallelism. Information
Processing Letters, 90(4):167–173, 2004.

[23] S. W. Golomb. Run-length encodings. Trans. on
Information Theory, 12:399–401, 1966.

[24] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In SODA, pages
841–850, 2003.

[25] R. Grossi, A. Gupta, and J. S. Vitter. When indexing
equals compression: experiments with compressing
suffix arrays and applications. In SODA, pages
636–645, 2004.

[26] D. Gusfield. Algorithms on strings, trees, and
sequences: computer science and computational
biology. Cambridge University Press, New York, NY,
USA, 1997.

[27] E. Hunt, M. P. Atkinson, and R. W. Irving. A
database index to large biological sequences. In
VLDB, pages 139–148, 2001.

[28] R. W. Irving and L. Love. The suffix binary search
tree and suffix avl tree. JDA, 1(5-6):387–408, 2003.

[29] V. Makinen and G. Navarro. Dynamic
entropy-compressed sequences and full-text indexes. In
CMP, pages 306–317, 2006.

[30] V. Makinen, G. Navarro, and E. Ukkonen.
Approximate matching of run-length compressed
strings. In CPM, pages 31–49, 2001.

[31] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal,
22(5):935–948, 1993.

[32] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of ACM,
23(2):262–272, 1976.

[33] E. M. McCreight. Priority search trees. SIAM Journal,
14(2):257–276, 1985.

[34] A. Moffat. Implementing the ppm data compression
scheme. Trans. on Communications,
38(11):1917–1921, 1990.

[35] D. R. Morrison. Patricia: Practical algorithm to
retrieve information coded in alphanumeric. Journal of
the ACM, 15(4):514–534, 1968.

[36] G. Navarro. Regular expression searching on
compressed text. JDA, 1(5-6):423–443, 2003.

[37] M. Patrascu and E. D. Demaine. Tight bounds for the
partial-sums problem. In Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 20–29, 2004.

[38] N. S. Prywes and H. J. Gray. The organization of a
multilist-type associative memory. In Transactions on
Communication and Electronics, pages 488–492, 1963.

[39] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A
model for sequence databases. In ICDE, pages
232–239, 1995.

[40] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
Pattern matching in text compressed by using
antidictionaries. In CPM, pages 37–49, 1999.

[41] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column oriented dbms. In VLDB, 2005.

[42] H. Tanaka and A. L. Garcia. Efficient run-length
encodings. Trans. on Information Theory,
28(6):880–889, 1982.

[43] S. Tata, R. A. Hankins, and J. M. Patel. Practical
suffix tree construction. In VLDB, pages 36–47, 2004.

[44] T. E. Tzoreff. Matching patterns in strings subject to
multi-linear transformations. TCS, 60(3):231–254,
1988.

[45] P. J. Varman and R. M. Verma. An efficient
multiversion access structure. TKDE, 9(3):391–409,
1997.

[46] J. S. Vitter. External memory algorithms and data
structures: Dealing with MASSIVE DATA. ACM

533

Computing Surveys, 33(2):209–271, 2001.

[47] P. Weiner. Linear pattern matching algorithms. In
Symposium on Switching and Automata Theory, pages
1–11, 1973.

[48] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. Trans. on Information
Theory, 23(3):337–343, 1977.

[49] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. Trans. on
Information Theory, 24(5):530–536, 1978.

534

