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the European Traffic Message Charf@MC). The former oper-

The spatial and temporal databases have been studied widely and@€S in Japan and the latter operates in most European countries,

intensively over years. In this paper, we study how to answer
queries of finding the best departure time that minimizes the to-
tal travel time from a place to another, over a road network, where
the traffic conditions dynamically change from time to time. We
study a generalized form of this problem, called the time-dependent
shortest-path problem. A time-dependent gréjhis a graph that

has an edge-delay functiow; ;(t), associated with each edge,

v;), to be stored in a database. The edge-delay funetign(t)
specifies how much time it takes to travel from nageto node

vy, if it departs fromo; at timet. A user-specified query is to ask
the minimum-travel-time path, from a source nodg,to a desti-
nation nodeyp., over the time-dependent graphiy, with the best
departure time to be selected from a time interfal We denote

this user query akT T (vs, ve, T') over Gr. The challenge of this
problem is the added complexity due to the time dependency in the

North America, and Australia. Together with road networks avail-
able as large graphswhen such traffic information is available and
the (periodical) traffic patterns are known over a long time period,
it becomes possible to provide users with services, such as “how to
travel from a place in a city to another place in another city as fast
as possible”, by taking “rush hour” into consideration.

Consider tourism as an application. Suppose a group of people
wants to visit several places in several cities. When such road traffic
information is available, the group wants to know whether they can
travel to the next plactaster(spending less travel time on the Way
if they depart from a place later to avoid rush hour. In a similar
fashion, consider a logistic company that delivers products for their
customers using trucks. A truck may travel to a place with less
travel time, if it stays somewhere for some time, say 3 hours. In
this case, the company can utilize the 3 hours to deliver products to

time-dependent graph. That is, edge delays are not constants, and€ary customers where possible with this truck.

can vary from time to time. In this paper, we propose a novel algo-
rithm to find the minimum-travel-time path with the best departure
time for aLTT (vs, ve, T') query over a large grapfir. Our ap-
proach outperforms existing algorithms in terms of both time com-
plexity in theory and efficiency in practice. We will discuss the
design of our algorithm, together with its correctness and complex-

ity. We conducted extensive experimental studies over large graphs

and will report our findings.

1. INTRODUCTION

Due to the increasing interest in the dynamic management of

transportation systems, there are needs to find shortest paths ove,

a large graph (e.g., a road network), where the weights (or de-
lays) associated with edges dynamically change over tiimee{
dependengy Transportation systems, which can provide real-time
traffic information (used to calculate edge delays) to users, include
the Vehicle Information and Communication SystefICS) and

lhttp://www.vics.or.jp/english/index.html/
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Assume a road network is stored as a large graph with the traffic
information in a database. Such a query can be specified as follows.
Given a source; and a destination., over the graph, and a time
window T for consideration of departure from, find the best time
within T" to depart fromvs, and identify the path along which one
can arrive av. with the minimum travel time.

In this paper, we study the generalized form of this query, called
time-dependent shortest-path (TDSP) problémfind the optimal
path (with the minimum travel time) from a source to a destination,
over atime-dependent graphvhen the starting time (departure
time from the source) is selected from a user-given starting-time in-
terval. The time-dependent graph is a graph that has an edge-delay
itravel time fromw; to v;) functionw; ;(t), w.r.t. departure time

rom v;, for each edgév;,v;). TDSP problem was studied to ei-
ther find approximate answers with discrete-time approaches [1, 2]
or find optimal answers with continuous-time approaches [20, 15].

We focus on finding optimal answers for the TDSP problem us-
ing a continuous-time approach with less time/space complexity.
We consider a specific class of graphs, cal#8Otime-dependent
graphs (refer to Section 5.1), as well as general time-dependent
graphs. Our approach can handle arbitrary edge-delay functions,
and allows waiting on nodes in order to minimize the travel time.

Contributions of this paper: (1) We propose a novel algorithm
to find optimal answers for the TDSP problem. Our algorithm can
handle both undirected and directed time-dependent graphs, and
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the time complexity of our algorithm i9((n log n+m)«(T")) and

2http://www.tmcforum.com/
3http://maps.google.com/



the space complexity i©((n + m)«a(T')), wheren is the number
of nodes;m is the number of edges, amdT) is the cost required
for each function (defined in intervdl) operation. Our algorithm

can be used to handle large time-dependent graphs. (3) We discuss
storage model and implementation, and show that our approach can
be easily implemented in a database system. (4) We conducted ex-

tensive performance studies, and we show that our algorithm out-
performs existing solutions in terms of efficiency and effectiveness.

Organization: Section 2 gives the problem statement. Section 3
introduces existing solutions to the time-dependent shortest-path
problem. We give an overview of our algorithm in Section 4, and
give the details in Section 5, including a running example, discus-
sions on the correctness and time/space complexity of our algo-
rithm, implementation details, and how to handle fdROgraphs.

We give the experimental results in Section 6. Section 7 discusses
the related work. Finally, we conclude our paper in Section 8.

2. PROBLEM DEFINITION

Definition 2.1: (Time-Dependent Graph A time-dependent graph
is defined as7r(V, E, W) (or Gr for short): V' = {v;} is a set
of nodes;F C V x V is a set of edgesV is a set of positive-
valued functions. For every edge;,v;) € E, there is a function
w; ;(t) € W, wheret is a time variable in a time domaih. An
edge-delay functionw; ;(t) specifies how much time it takes to
travel fromu; to v;, if departingu; at timet. ad

In this paper, we concentrate on finding teast total travel time
(LTT) from source node; to destination node. when thestarting
timet (departure time from the source), can be selected in a user-
given starting-time intervall’ = [ts,te] C 7. Such a query is
called anLTTquery, denoted a&TT (vs, ve, T).

Note thetravel timeis thearrival time minus thestarting time
In order to findLTT, we allowwaiting time denoted aso(v; ), at
each nodey;. That is, when arriving at node, we can wait for a
time periodeo(v;) if LTT can be minimized. Below, letrrive(v;)
anddepart(v;) denote tharrival time at nodev; and thedeparture
timefrom nodev;, respectively. For each node, we have

@)

Letp = (v1,v2)(v2,v3) - - - (vk—1, v ) be afixed path with waiting
time w(v;) at nodev;. For a fixed starting time,

depart(v;) arrive(v;) + w(v;).

arrive(v1) = t (2

arrive(vz) = depart(vi) + w1 2(depart(v1))

arrive(vi) = depart(vi—1) + wr—1,k(depart(vi—1)) (3)
gp(t) = arrive(vg). (4)

gp(t) above is thearrival-time function representing the arrival
time from v, to v along pathp, possibly waiting at some nodes
on this path, if departing from, at starting time. Thetravel-time
functionalong pathp is thusg,(t) — t. We formally define the
time-dependent shortest-path (TDSP) problem as follows.

Definition 2.2: (TDSP Problem) Given a time-dependent graph
Gr(V,E, W) and anLTT QueryLTT (vs,ve, T), wherevs, ve €
V,andT C T is a starting-time interval, th@ime-Dependent
Shortest-Path (TDSP) problesito minimizelLTT:
gor (17) =17 = min {gp(t) ~ 1}
P, (-),t

)

®)
finding avs-v. pathp* with waiting timew™* (v;) atv;, along which

the best starting tim& results in the minimum travel timeg, (t) —t
among all starting times € T and over all,-v. pathsp’s. a
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Figure 1: A Time-Dependent GraphGr(V, E, W)

Example 2.1: Aroad network can be modelled as a time-dependent
graphGr(V, E, W) in Fig. 1. Fig. 1 (a) shows its graph structure
(V, E), with four nodes and five edges. The edge-delay functions
for the edges(v1, v2), (v1,v3), (v2, v3), (v2,v4), and(vs, v4), are
shown in Fig. 1 (b), (c), (d), (e), and (f), respectively.

For queryLTT(vl, V4, [0, 60]), p* = (U1, UQ)(UQ, Ug)(vg, 1}4) is
the optimalv;-v4 path. Alongp™* with no waiting time required at
any node, the best starting timé& = 20 results in the minimum
travel timegp- (t*) — t* = 30 (which will be further explained in
Section 5.3 as a running example of our solution). a

In the following part, we focus on the TDSP problem, i.e., for
queryLTT (vs, ve, T') Over a time-dependent graghr (V, E, W),
finding the optimab,-v. pathp*, waiting timesz* (), and starting
time t*, to minimizeLTT. Note T is a continuous time interval,
andt* can be any time point within this interval.

3. EXISTING SOLUTIONS

In this section, we discuss three types of algorithms for the TDSP
problem, to answer queyTT (vs, ve, T') Over a time-dependent
graphGr(V, E,W). They are discrete-time algorithms [17, 2,

1], BELLMAN -FORD based algorithm [20], and extendAd algo-

rithm [15]. The discrete-time algorithms find an approximiate
solution, and bottBELLMAN-FORD and A* algorithms find the
optimal (minimized)LTT. The main challenge to find the optimal
LTT overGr(V, E, W) is, because edge delays are different func-
tions of departure times, the-v. path with the least total travel
time changes in a complicated manner as the starting time changes.

Discrete-Time Algorithms: The discrete-time approaches have
been well-studied. To the best of our knowledge, the most efficient
one, denoted aBDOT, was presented in [2]. They find approx-
imate LTT by globally discretizing time interval into time points.

In brief, given a grapltz+ (V, E, W), a discrete-time approach dis-
cretizes the starting-time intervdl = [ts, t.] into k time points
evenly, and constructs a static graph (V', E', W') by making

k copies of each node and each edge, respectively. This~=



k|V|, |E'| = k|E|, and edge delayV’ is static. For each edge
(vi,v}) € E', edge delayw; ; is equal to the value af; ;(¢) on

a time point. The TDSP problem a&r(V, E, W) can be solved
as a static single-source shortest path proble@p(V’, E', W'),
whose size is enlarggdtimes. Its solution can be used to approx-
imateLTT overGr(V, E,W).

a function, fy, (t) = gp,, (t) + di.e — t. Here,g,, (1) is the arrival
time from source; to vy, along patlpy, for starting time’; dy, . is a
lower bound estimation of the travel time fram to destinatiorv. ;
foi, () is the estimated travel time from sourceto destinatiorv,
along pathpy, for starting timet. In each iteration, it picks the path
p.: from the priority queue to expand, such thahin.{ fp, (¢)} is

There are two fundamental drawbacks inherent in discrete-time the minimum among all paths,’s in Q. Each pattp;, extended

approaches. First, the difference betweenliii@ obtained using

a discrete-time approach and the optirh@lT, calledLTT error,

is very sensitive to parametgr and is unbounded. This is because
the optimal starting time* for LTT (vs,ve, T") can be always be-
tween any two of thé time points, and theTT error is generated
in an accumulative way alongs-v. paths. Second, increasirg
deteriorates the efficiency of discrete-time approaches, gificis

k times larger thait7 7.

Bellman-Ford Based Algorithm: Orda and Rom [20] proposed
a continuous-time algorithm to solve the TDSP problem. We call
it OR algorithm by taking the initials of Orda and Rom. Algo-
rithm OR takes time-dependent graghr(V, E, W) and query
LTT (vs,ve, T') as the input. It is outlined below.

1: forall v; € Vdog(t) « ocofort € T

2: forall (vi,v;) € Edohg,(t) «— cofort € T;

3 gs(t) —tfort e T,

4: repeat

5: for all (Uk, Uz) € Fdo hk,l(t) — gk(t) + wkvl(gk(t));
6: forall vy € V do g (t) « min,, e n(v,){hr,i (1)}

7: until all functionsg; (t) are unchanged

8: return (t* «— argmin,{g(t) — t},p");

OR generalizes thBELLMAN -FORD shortest-path algorithm. Let
function g;(t) be theearliest arrival timeat nodev;, from source
vs, for starting time, and let functiorh ; (¢) be theearliest arrival
timeatv;, from sourcev; via edge(vi, v1), for starting timet. It
first initializes g; (t) and s, (t) functions (line 1-3), and then re-
peatedly updateg (t) andhs ; () until they converge to the correct
values (line 4-7). Finally (line 8), it returns the best starting tifhe
and the optimalb;-v. pathp*, as the answer toT T (vs, ve, T'). p*

is constructed based a@n(t) andhy ;(¢) functions (refer to [20]).

The time complexity of AlgorithmOR is O(nma(T)), where
a(T) is the time required in a function operation in inter|
n = |V|, andm = |E|. The high time complexity makes it infea-
sible forOR to work on large or dense time-dependent graphs. We
outline the reasons for its high time complexity below.

OR takes a strategy of determining paths toward destination
while refining the arrival-time functionsy; (¢), in the whole in-
terval T. We call such an algorithm path-selection and time-
refinementapproach. Theath-selections accomplished implic-
itly in line 5, attempting to arrive at; earlier via edggvg, v;).
The time-refinemenis done in line 6, updating arrival-time func-
tion ¢;(¢) usinghy ;(t). The interweavement of path-selection and
time-refinemenin the whole intervall’ makes functionsy; (t) and
hi,i(t), converge slowly, possibly in iterations of line 4-7. Actu-
ally, after some iterationg, (¢) might have converged in a subinter-
val of T', but Algorithm OR cannot recognize this, and still needs
to recalculatey, (t) andhy,i(t) in the whole intervall".

A* Algorithm : Kanoulas et al. in [15] gave an extensionAd
algorithm for the TDSP problem. We denote itte®XZ by taking
the initials from the authors in [15]. The main idea is to maintain
a priority queueQ of all paths to be expanded. Lpt be a path
from sourcevs to a nodev,. Note: there are possibly multiple
paths fromw, to vi in G, and all of them may be maintained in
Q at the same time. Each distingt-v,. pathpy. is associated with
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from p; with one more edgév;, v; ), will be added into the priority
queueQ for further expansion, and paph will be deleted fromQ.
This process will terminate when the first-v. pathp. is picked
from Q. NoteKDXZ assumes no waiting is allowed.

KDXZ is also apath-selection and time-refinemesgpproach.
The path-selections done explicitly in the path extension frop
to p;, followed by thetime-refinementlone in the computation of
gp, () and fy, (t). Thepath-selectiorand thetime-refinementere
are coupled even more closely than thoséDiR. Resultingly, in
the worst case, alh;-v. paths are enumerated, and the time/space
complexity ofKDXZ is exponential w.r.t. the size ¢fr.

Algorithm KDXZ is efficient only when estimation can assist
pruning the search space effectively, andandv. are closed to
each other in grapti'r. It is difficult to find such estimatiody, .
in general graphs, and it is infeasible to /g@XZ to handle large
time-dependent graphs, wharemay be far away from;.

Remark 3.1: (About Functions) While discrete-time algorithms
avoid the representation and operations of functidBELLMAN -
FoORD based algorithm [20]A* algorithm [15], and ours find the
optimal LTT based on four basic function operationSUNCTION
INVERSE, f~*(a) £ max{t|f(t) = a}, LINEAR COMBINATION,

a- f(t)+b-g(t), FUNCTION COMPOUND, f(g(t)), and MINI-
MuMm of two functionsmin{ f(¢), g(¢)}. [20] considers a general
class of functions from a theoretical view, whereas [15] focuses on
piecewise linear functions with the consideration of the cost to ma-
nipulate such functions. In this paper, we will show our approach
can also handle a general class of functions as Algorit@R in

[20] does. Sharing the same concerns with [15], we will focus on
piecewise-linear functions regarding implementations and perfor-
mance studies in this paper. a

4. NEW DIJKSTRA BASED ALGORITHM

In the following part, we first focus on answerib@ T (vs, ve, T')
queries in anFIFO (First-In and First-Out Definition 5.1) time-
dependent graptir, where no waiting time is needed in optimal
solutions (Theorem 5.1). We will discuss how to deal with general
graphs in Section 5.7. We assufiie is adirected graph With mi-
nor changes, our algorithm can handlirected graphss well.

We propose a new algorithm by decouplipgth-selectiorand
time-refinemenin the starting-time interval’. We show that an-
swering a quentTT (vs, ve,T') Over a graphGr can be done in
two steps. In the first step, we focus on time-refinement, i.e., for ev-
ery nodev; € V, to compute thearliest arrival timeg; (t), depart-
ing fromu, at any starting time € 7. We callg; (¢) thev,-v; earli-
est arrival-time functioin the following part. Based on the earliest
arrival-time functions computed, the best starting tirhevith the
minimum vs-v, travel time,g.(t*) — t* = min.{g.(¢) — t}, can
be identified. In the second step, we select one of the pathsdffom
to v, which matches the optimal travel tinge(¢*) — t*.

As an example to illustrate the main ideas, consider the query
LTT(v1,vs,T) over Gr (Fig. 1) in Example 2.1, wherd =
[0, 60]. In the first step, we compute the earliest arrival-time func-
tions, ¢1(¢t), g2(¢), g3(t), and ga(t), for the four nodesy:, va,
vz, andvy. The earliest arrival-time functiom.(¢), and its corre-
sponding travel time functiomy (¢) — ¢, from source; to destina-



Algorithm 1 Two-STEP-LTT (Gr(V, E, W), vs, ve, T)

| Notation | Meaning |

Gr(V,E,W) || time-dependent graph (6¢r for short)

n, m number of node§V|, number of edgegF|

w5 (t) edge-delay function fofv;, v;) € £

Vs, Ve, T’ source, destination, starting-time interval

p* optimal path fromw; to v,

t* optimal starting time

w” (vs) optimal waiting time at node;

gi(t) vs-v; earliest arrival-time function

gp(t) arrival-time function (along patp)

a(T) ora(|T))|| time/space required to maintain a function
or to manipulate a function operation over
time intervalT’

Table 1: Important Notations

tion v4, are shown in Fig. 2 (a) and (b), respectively. As shown in

Fig. 2 (b), the least total travel time is 30, and the best starting time

ist* = 20, which is a starting time to arrive at within the min-
imum travel time 30. In the second step, we identify the optimal
path asp® = (v1,v2)(v2,v3)(vs,v4). Note in Fig. 2,g4(¢) and
g4(t) — t are given in a subintervd, 30] of T' = [0, 60], because
if starting fromv, later than30, it will arrive at v4 later than 60,
and thus some edge-delay functions are undefined.

The first step is the dominating factor in terms of computational
cost. It needs to compute the earliest arrival-time funcgign) for
every nodey; € V, as given in Equation (6).

gi(?t) {(g5 () + w(v;)) +wi;(g; () + = (v)))}
(6)

Here, N (v;) is a set of neighbors af; that can reachy; in graph
Gr, i.e.,N(’Uz‘) = {vj\(vj,vi) S E}
The challenge of computing Equation (6) is due to the edge-

min
v; EN(v;),@(vj)

Input: a time-dependent grapfir, a queryLTT (vs,ve,T') -
sourcevs, destinatiorve, and starting-time interval’ = [¢s, te];
Output: optimalvs-v. pathp*, and optimal starting time".

1: {g:(t)} < timeRefinementGr, vs, ve, T);

2: if =(ge(t) = oo for the entireft,, t.]) then

31 " «— argmin, r{ge(t) — t};

4: p* « pathSelectiofGr, {g:(t)}, vs, ve, t*);
5. return (¢*,p");

6: else return;

60
» 50 o 50
£ £
= 40 = 40
T - 30|
€ 20 g 20
< 10 = 10
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Starting Time Starting Time
(a) ga(t) (b) ga(t) —t

Figure 2: An earliest arrival-time function and its correspond-
ing travel-time function

T = [ts,te]. Forevery node; € V,letl; = [ts, 5] C T be
a starting-time subinterval, where time point € 7' = [ts, t.].
By "incrementally”, we mean: we refine the earliest arrival-time
function g; (t) by extendingl; to a larger starting-time subinterval
I} = [ts,7]] C T, for 7] > ;, and computingy; (¢) in [r;, 7{]. We
sayfunctiong;(t) is well-refinedin a starting-time subintervdl;,
if it specifies the earliest arrival time at from v, for any starting
timet € I,. Itis possible thaf; # I; for v; # v;.

In our algorithm, we promise functiog (¢) is well-refined inl;

delay functions. The edge delays are not constants, and can varyfor eachv; € V. In every iteration, we select a nodg and expand

for different starting times. Therefore, the optimatv. path may
be different for different starting time. In a continuous starting-
time interval, there are infinite different starting-time values. It is
challenging to select the best starting tinieand the optimab,-
ve path from an infinite number of possible starting times and an
exponential number afs-v. paths, respectively.

Below, we show our solutiomwo-STEP-LTT decouples the
two things, namelypath-selectiorandtime-refinementWe design
a DIgksTRA-based algorithm for the first step (time-refinement),
and a linear-time algorithm for the second step (path-selection).

Outline of Two-Step-LTT (Algorithm 1): The main part of our
two-step algorithm is given in Algorithm 1. We callfiwo-STEP-
LTT. As shown in Algorithm 1, it takes four input parameters:
time-dependent grapfi+, sourcev,, destinatiornv., and starting-
time intervalT" (a queryLTT (vs, ve, T') over Gr). The first step,
timeRefinemen(Algorithm 3), computes the earliest arrival-time
functionsg;(t), for nodesv; in Gr, in line 1. The condition in
line 2 checks whether there is a path fremto v.. The optimal
starting timet™* is identified in line 3. For the second step, it calls
pathSelectior{Algorithm 2) to find a pathp™ which matches the
arrival timeg. (¢t*) for the best starting timé&" in line 4. Finally, it
returns pathp™ together with the best starting timé. We outline
the main ideas behind the two steps below.

Dijkstra-Based Time-Refinement (Algorithm 3): In the first step,
we compute the earliest arrival-time functigy(t), for every node
v; in V. Like the DIJKSTRA algorithm (for the static shortest-

path problem) which expands a set of nodes, we refine arrival-time

functions, g;(t), incrementally in the given starting-time interval
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its starting-time subinterval fronh; to I;, in which functiong; (t)

is well-refined. We update the arrival-time functigp(¢) for every
neighbor,v;, of nodev; in the starting-time subintervdl — I, =
[ri,7{]. Then we letl; = I, and repeat this time-refinement pro-
cess, namelP1IKSTRA-based time-refinement, till function (¢)

is well-refined, for destination., in the entire starting-time interval
T. The best starting time} € 7', is identified asirgmin, . - {ge () —
t}, which minimizesg. (t) — t.

Fast Path-Selection (Algorithm 2): The optimalvs-v. pathp* is
computed using thpathSelectioralgorithm (Algorithm 2), which
takes five inputs: graptir, all the earliest arrival-time functions
{gi(t)}, the optimal starting time* < T', sourcev,, and desti-
nationv.. To select the patp* from v, to v., we determine the
predecessor of every node @fi backward fromv. to v, based
on {g:(t)} and¢*. The predecessor af; is determined as;, if
;i (t") = gi(t7) +wi ;(gi (")), for (vi,v;) € E. It means that the
arrival time atv;, g;(¢t*), is the arrival time av;, ¢;(¢t*), plus the
edge delay fromy; to v; (we assume there is no waiting time here).

In pathSelectiofAlgorithm 2), initially, we setv; as destination
ve, and the optimal path* empty (line 1-2). In the while loop, we
iteratively find a predecesset of v; and add(v;, v;) into p* till
p* reaches the sourag (line 3-7). The correctness gathSelec-
tion is straightforward. Its time complexity i©(ma(T")), where
m = |E| anda(T) is the time required for each function operation,
because each edge can be examined in line 5 at most once.

In the following, we will focus on the first step afwo-STEP-
LTT, namely, time-refinement.

Remark 4.1: Comparing AlgorithmTwo-STEP-LTT with Algo-



Algorithm 2 pathSelectiofGr(V, E, W), {gi(t)}, vs, ve, t¥)

Algorithm 3 timeRefinementG(V, E, W), vs, ve, T')

Input: a time-dependent graghir, the set of earliest arrival-time
functionsg; (t) for all nodesv; € V, source node,, destination
nodev., and the optimal starting time;

Input: a time-dependent grapfir, a queryLTT (vs,ve,T') -
sourcevs, destinatiorve, and starting-time interval’ = [¢s, te];
Output: {gi(¢)|vs € V'} - all earliest arrival-time functions.

Output: an optimal,-v. pathp* for starting timet*.

1
1 vj — ve; 2
2. p* — @; 3:
3: while v; # vs do 4:
4: foreach (v;,v;) € Edo
5: if gi(t") + wi ;(g:(t")) = g;(t*) then 5
6: v; < v;; break; 6:
7. pt— (vi,v5) - pT; 7:
8: return p*; 8:

9:

10:
rithm OR, ht(t) functions are absent in ouFwo-STEP-LTT, 11:

andg;(t) functions share the same meanings in both. The absence
of hk,i(t) functions iNnTwo-STEP-LTT does not add more com-

plexity to the construction qf* (Algorithm 2). As shown in Section 14f

5 (Algorithm 3), we can usg;(t) functions solely to answer query
LTT (vs, ve, T') with lower time/space complexity. m|

17:

D gs(t) —tfort €T, 1o — ts;
: for eachv; # vs do

gi(t) — ocofort € T; 7 — ts;

: Let @ be a priority queue initially containing pair&s;, g; (t)),

for all nodesv; € V, ordered byy; (7;) in ascending order;

: while |Q| > 2do

(74, gi(t)) — dequeue(Q);

(T, g (t)) «— head(Q);

A —min{wy,i(ge(mk)) | (vs,vi) € E};

7i — max{t | gi(t) < gr(me) + A}

for each (v;,v;) € E do
g5(t) « gi(t) +wi j(g:(t)) fort € [ri, 7]];
g;(t) < min{g;(t), g;(t)} fort € [ri, 7/];
update(Q, (7, 9;(1)));

Ti < Ti;

if 7; > te then
if v; = ve then

return {g;(t)|v; € V'};
18: else
5. TIME-REFINEMENT 19: enqueue(Q, (74, gi(t)));

In this section, giverGr(V, E, W) and quent.TT (vs, ve, T),
we focus on the first step @fwo-STEP-LTT, i.e., time-refinement.

By time-refinement, we mean to compute and refine the earliest

arrival-time functiong; (¢) for every nodey; in V.

20: return {g;(¢)|v; € V'}.

Theorem 5.1 implies that, to find an optimal solution to query

First, we introduce a special class of time-dependent graphs, | TT(y,, v., T') over aFIFOgraphGr, we can safely assume wait-

called FIFO (First In, First Ouf) graphs [20]. Second, we discuss

our DIJKSTRA-based algorithmimeRefinemen(Algorithm 3) to
compute the earliest arrival-time functigi(¢) for every nodev;,
for answering a querkTT (vs, ve, T'), in a FIFOgraphGr(V, E,

W). It is based on the incremental time-refinement of functions

gi(t) for nodesy; in starting-time interval. Third, we explain our

algorithm using an example. Fourth, we prove the correctness of
our algorithm, and give its time/space complexity. Finally, we dis-

cuss some implementation details, and show howIUKSTRA-
based algorithm can also work on general RO graphs.

5.1 FIFO Graphs

FIFOproperty of an edgév;, v;), in Gr, suggests that if depart-
ing earlier fromw;, one arrives earlier at;.

Definition 5.1: (FIFO) Time-dependent grapfi+(V, E, W) is a
FIFO graph iff every edge(v;, v;) hasFIFO property. An edge
(vi, vj) hasFIFO property, iffw; ;(to) < ta + w;, ;(to + ta) for
ta > 0, Oft1—|—’LUi7j(t1) §t2—|—wi,j(t2) for ¢4 < ta. O

Theorem 5.1: (No Waiting in FIFO Graphs) For a given query
LTT (vs,ve, T") on aFIFOtime-dependent grapfir, there exists
an optimalvs-v. path p* along which the optimal waiting time
w”*(v;) = 0 for everyv; onp*. O

Proof Sketch: Let v; be a node on optimal paif, s.t. @™ (v;) >
0, andv; bew;’s successor op*. Lett; = arrive(v;) andt; =
arrive(v;) be the arrival time av; andv;, respectively, along*
for starting timet*. From FIFO property, we have; + w; ;(t;) <
(ti + @" (vs)) + ws,j(t; + @™ (v;)) = t;. Thatis, the arrival time
atv; without waiting onv; (i.e., t; + w;,;(¢:)) is no later than the
arrival time atv; with waiting time w” (v;) onv; (i.e., ¢t;). By
induction, we can prove if>* (v;) = 0 for each node;, the travel
time atv. alongp™ do not increase. Details are omitted. O
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ing time w(v;) = 0 for each nodey; € V, although waiting at
nodes is allowed. Thead network modedtudied in [15] is a FIFO
graph (we will explain this in details in the appendix). Thus, wait-
ing is not needed in road networks.

5.2 Time-Refinement for FIFO Graphs

In this subsection, we discuss how to procBsskSTRA-based
time-refinement forFIFO graphs, i.e., how to refine the earliest
arrival-time functiong; (¢) in the starting-time interval for every
nodev; in Gr. ThetimeRefinemerlgorithm is outlined in Algo-
rithm 3. It takes four parameters as the input: time-dependent graph
Gr(V, E,W), source node;, destination node., and starting-
time intervalT’ = [ts, t]. Here, by time-refinement we mean two
things: arrival-time function refinementf g;(¢) andstarting-time
interval refinemenbf the starting-time subintervdl, = [ts, 7],
for every nodey; in Gr. Recalll; = [ts, 5] denotes the starting-
time subinterval, on which functiog; (¢) is well-refined (org;(t)
specifies the earliest.-v; arrival time for any starting time € I,,).

Initially, for sourcevs, gs(t) and are initialized: g (t) « ¢
and7s < ts (line 1). It means a trivial case: if it departs from
sourcev, at any timeto, it will arrive at the same node; at the
same timey, and its travel time igs(to) — to = 0. For all other
nodes,v; # ws, the earliest arrival-time functionsg; (t), are ini-
tialized asg;(¢t) < oo, which means that they are undetermined
yet, and all-; are initialized as; < t; (line 2-3). For each node
v; € V, g:(t) is ensured to be the earliest arrival time (well-refined)
in I, = [ts, 7:], which is aloop invariantin timeRefinemenalgo-
rithm. Note: initially I; is an empty subinterval.

Our algorithm uses a priority queu®, which initially contains
pairs (74, gi(t))’s for all nodesv; € Gr in the ascending order
of gi(7;). The top pair inQ is (7s,gs(t)) initially. The while
statement (line 5-19) conducts time-refinement for every ngde
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Figure 3: Starting-Time Interval Refinement

in Gr. Itis ensured that the earliest arrival-time functigit) is
well-refined in the starting-time subinterval = [ts, 7;] for node
v;. The algorithm will terminate if (¢), for destinatiorv., is well-
refined in the entire intervar (line 17), or@ contains no more than
one pair (line 5). In every iteration in the while loop, the starting-
time interval refinement is conducted in line 6-9 and line 14, and
the arrival-time function refinement is conducted in line 10-13.
Next, we discuss starting-time interval refinement and arrival-
time function refinement in details.

Starting-Time Interval Refinement: In every iteration, it first de-
queues the top pair frod, denoted aér;, g; (t)) (line 6). After de-
queuing, it will use the current top pair {p, denoted aérs, gx (t)),

as the basis for starting-time interval refinement (line 7 - The oper-
ation head(Q) retrieves the top pair but does not dequeue it from
Q). Thereforeg;(r;) is the earliest arrival time from source node
vs, followed by gy, (7+), among all pairgr;, g:(¢))’s in Q.

It is important to note that for any nodg (exceptv;), if the
starting time is taken iy, t.], it is impossible to arrive aby
before the arrival timgy (7% ), from source node. The two reasons
are given below. Lefry, g¢(t)) be inQ for nodev; € V, and it
arrives at node; at the arrival timeg¢(7¢) for starting timery.
First, gi(t¢) > gr (1), because the sorting order @1 Second,
graphGr is FIFO, and thus it arrives aty no earlier than time
gx (), if the starting time is taken ifirs, t.]. It can be formally
proved based on the choices(ef, g;(¢)) and(7%, g« (t)) in Q, and
the FIFOproperty ofGr (refer to Section 5.4).

Fix nodewv;, and consider an edde, v;) € E at timegs(7x).

If starting timet is taken in[7y, t.], from the above discussion, it
arrives atvy no earlier than timey, (7). Suppose that it arrives
atvy at timegg (7). The minimum travel time from; to v; can
be computed ad «— min{wy ;(gr(7%))|(vs,vi) € E} (line 8).
Therefore, due to th€IFO property of G, next earliest possible
arrival time fromu, to v; via any edggvy, v;) is gi (1) + A, if
starting timet > 7. We attempt to find the latest starting time
that satisfieg; (t) < gr(7x) + A, and set it as; (line 9). With the
choice ofr;, we can prove that (refer to Section 5.4) functip(t)

is well-refined int,, 7{], i.e.,¢:(t) is the earliest arrival time from
v tow; for starting timet € [ts, 7], because (the intuition); () <
gr(Tk) + A fort € [m,7{]. We emphasize that in the previous
iteration,g; (¢) is ensured to be well-refined i = [ts, 7], and itis
now ensured id; = [ts, 7{], wherel; C I;. Letr; « 7{ andl; «

I (line 14). It is what we call starting-time interval refinement.
Fig. 3 illustrates the relationships between starting times and arrival
times in the starting-time interval refinement.

As discussed above, the starting-time subintefydbr the de-
gqueued node; is enlarged, while its earliest arrival-time function,

g:(t), remains unchanged. Next, we discuss how to update the

arrival-time functiony; (¢) for a nodev;, when its incoming neigh-
borv;’s starting-time interval is refined¢;, v;) € E).

Arrival-Time Function Refinement: As shown above, the arrival-
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time functiong; (t), for nodev;, is well-refined as the earliest-v;
arrival-time function in both the original starting-time subinterval,
I; = [ts, 7], and the enlarged ond; = [ts,7;], in the previous
and the current iterations, respectively. It can then be used to refine
arrival-time functionsg; (¢), in starting-time subintervat;, 7;] for

all of v;’s outgoing neighbors; ((vi,v;) € E). Itis done in
line 10-13. First, it computes the arrival tingé(¢) atv; via edge
(vs, v;) for starting timet € [, 7{] (line 11). Thery, (t) is refined
asmin{g;(t), g;(t)} on interval[r;, 7;] (line 12). We only refine
g;(t) on[r;, 7]], because we have refined it with(t) on [t,, 7i]
already in previous iterationsQ is updated for node; with its
newly refined arrival-time functiop; (¢) (line 13).

Terminating Condition: After arrival-time function refinement,
7; is set asr] (line 14). If in the entire interval’ = [t,, t.], for
nodew;, g;(t) has been well-refined, as specified in the condition
“1; > t." (line 15), the algorithm further checks whethegris the
destination. If true, it terminates in line 17. 4f(¢) has not been
well-refined in the entire starting-time interval, p&if;, g;(t)) is
enqueued back int@ (line 19) for further time refinement.

Note: the while loop terminates when there is only one pair left
in the priority queue (line 5). Let the last pair ife;, g;(¢)) for
nodew;. There is no need to further refine it for the following
reason. The starting-time subintervdlsand earliest arrival-time
functions g, (¢) of all other nodes; have already been well re-
fined. Sog;(t) has been refined by every well-refineg(t), if
(vj,v;) € E. Thereforeg;(t) in the starting-time intervalr;, t.]
also specifies the earliest arrival timegift) # oo for t € 7, t.].

In summary, for sources, thetimeRefinemenalgorithm initial-
izesgs(t) < t, which becomes the starting point to refine its own
starting-time interval, and to refine the earliest arrival-time func-
tions for other nodes. The starting-time interval refinement and the
arrival-time function refinement repeat in every iteration.

5.3 A Running Example

Reconsider Example 2.1 to compute the qUERT (v1,v4, T =
[0,60]), overGr (Fig. 1). Algorithm 3 takes3r, vs = v1, ve =
vs, andT = [0, 60] as the input. Initiallyg: (¢t) = ¢ (Fig. 4 (a)).

It states that if it departs from, at timeto, then it arrives av; at
the same time,, and the travel time ig; (to) — to = 0 for any
to € T. At the initial stage, the starting-time subintervalfor v,

is [0, 71], wherer; = 0. The black box indicates, (x-value) and
g1(m1) (y-value), which states thay; (¢) is ensured to specify the
earliest arrival time fop, in I, = [0, 71] = [0, 0]. For other nodes,
vy (i = 2,3,4), gi(t) oo andl; = [0,7;] wherer; = 0. It
implies thatg; (t) has not been refined yet.

In the first iteration, the top pair dequeued from the priority
queueq is (71, ¢91(t)) wherer; = 0 andg:(m1) = 0 (line 6). In
other wordsg, (t) specifies the earliest arrival time in the starting-
time subintervall; = [0,71] = [0,0]. It picks (73,93(¢t)) as
(7%, gk (t)), wherers = 0 andg(73) = oo (line 7). Then, the
newly enlarged starting-time subinterva)}, for v1, becomed
[0, 71] = [0,60] (line 9), because; is the latest starting timesat-
isfying g1 (¢) < g3(73) + A = 0o + oo, whereA = oo as there
are no coming edges to source nade(line 8-9). The resulting
g1(¢) is shown in Fig. 4 (b). Because's starting-time subinterval
I, = [0,60], v1 can be removed from the queqk In this itera-
tion, it will update the arrival-time functions for nodes andvs
based or;. The resulting arrival-time functionge (¢) andgs(t),
for v2 andvs, are shown in Fig. 4 (c) and (d), respectively.

In the second iteration, the top pair dequeued from qugls
(73, 93(t)), wherers = 0 andgs(73) = 5 (line 6). It will then pick
(12, 92(¢)) as(mx, gk (t)), wherers = 0 andgz(72) = 10 (line 7).
The newly enlarged starting-time subinterv], for v3, becomes



60 60 60
2 50 o 50 o 50
g £ g o
T 30 3 30 3 30
€ 2 E 2 E 2
< 10 < 10 < 10
00102030405060 O0102030405060 00102030405060
Starting Time Starting Time: Starting Time
@ g1(t) (b) 91(2) (©) 92(2)
60 60 60
o 50 o 50 o 50
Ew Ew £ v
T X 3 X T 0
£ 2 £ 2 £ 2
< g < 1 < 10
00102030405060 00102030405060 00102030405060
Stating Time Starting Time: Starting Time:
(d) g3(t) (e) gs(t) () g4(t)
60 60 60
2 50 o 50 o 50
£ £ g o
T 0 3 0 T 0
£t 2 E 2 £ 2
< 10 < 10 < 10
00 10 20 30 40 50 60 UU 10 20 30 40 50 60 00 10 20 30 40 50 60
Starting Time Starting Time Starting Time
(9) 92(t) (h) gs(t) (i) ga(t)
60 60 60
o 50 o 50 o 50
Ew £ w Ew
T X 3z X T 0
£ 2 £ 2 £ 2
< g < 1 < 10
00102030405060 00102030405060 00102030405060
Starting Time Starting Time Starting Time
() 92(t) (k) gs(t) () ga(t)
Figure 4: Arrival-Time Functions
Iy = [0,73] = [0,7] (line 9), because = max{t|gs(t) <
g2(72) + A} = max{t|gs(t) < 20} = 7 (line 9), whereA =

min{wi,3(g2(72)), w2,3(g2(72))} = min{w: 3(10), w2 3(10)}
10 (line 8). The resultings(¢) in the new starting-time subinterval
Is — I3 = [0,7] (starting-time interval refinement) is shown in
Fig. 4 (e). It will also update(t) on [0, 7] (arrival-time function
refinement), which is shown in Fig. 4 (f).

In the third iteration, the top pair dequeued from the priority
queueq is (72, g2(t)) wherer> = 0 andgz(m2) = 10. The re-
sulting g2 (¢) for vs is shown in Fig. 4 (g). The updated(¢) and
g4(t) are shown in Fig. 4 (h) and (i).

The iteration repeats 11 times. Functigast), g2(t), gs(t), and
g4(t) are well-refined, as in Fig. 4 (b), (j), (k), and (1), respectively.
The optimal starting time from soureae is 20, and the minimized
LTT is g4(20) — 20 = 30. Based on functiong; (¢) - - - ga(t),
the optimal pattp™ can be constructed usimgathSelectiofAlgo-
rithm 2). Lett* = 20. First, inpathSelectionit finds thatgs (t*) +
ws,4(g3(t*)) = ga(t™), so the predecessor to the destination node
is vs. Second, it finds thajz (t*) + w2,3(g2(t*)) = g3(¢t*), so the
predecessor tos is v2. Finally, in a similar fashion, it reaches the
sourcevs, and pathp® is identified agv1, v2)(v2, vs3)(vs, va).

5.4 Correctness

Theorem 5.2: Given aFIFOtime-dependent grap&'r (V, E, W)
and a quenL.TT (vs,ve, T), whereT = [ts, t.]. TWO-STEP-LTT
(Algorithm 1) finds the optimal answer k3 T (v, ve, T). |

Proof Sketch: As given in Theorem 5.1, there is no need to con-
sider waiting time at nodesTwoO-STEP-LTT is a two-step algo-
rithm, namely,timeRefinemenalgorithm andpathSelectioralgo-
rithm. In the first steptimeRefinementefines the earliest arrival-
time functionsg; (t), for all needed nodes;, to reachv. from v,.
The optimal starting time is* € 7" which minimizes travel time
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Figure 5: Intuition of the Proof

ge(t) —t fromw, tove. In the second step, based#©rand arrival-
time functions,g; (¢), pathSelectiomecovers the optimal path®.
The proof for the correctness of the second step is straightforward
as discussed in Section 4. In Theorem 5.3, we will prove the first
step is correct, to complete the proof of Theorem 5.2. a

Lemma 5.1: For everyv; € V, gi(t1) < gi(t2), if t1 < ta, IS
always true intimeRefinemengAlgorithm 3). O

This lemma shows the monotonicity ¢f(¢). It can be proved
directly by the definition ofFIFO property and the way howy; ()
is initialized and updated. It will be used to prove Theorem 5.3.

Theorem 5.3: Given aFIFOtime-dependent grap&'+(V, E, W)
and a quenLTT (vs, ve, T'), WhereT = [ts,t.], timeRefinement
(Algorithm 3) well refines the earliest arrival-time functign(t),
which specifies the earliest arrival time at destination noddor
starting timet € T'. |

Proof: Let g; (t) denote the arrival-time function that specifies the
earliest arrival time from, to v; for starting timet. We need prove
that AlgorithmtimeRefinementerminates withy. (¢t) = g2 (¢) for

t € T (well-refined). We prove this by proving a loop invariaat:
the beginning of every iteration of the while loop (line 6), fere

V andt € [ts, 7i], i (t) = g:(t) is true. Or equivalentlyafter line

9 of every iteration, fow; € V andt € [, 7{], g7 (t) = g:i(¢) is
true. The proof of this loop invariant completes the proof, because
initially 7; = t5 (line 3), and finallyr; is greater than or equal to
(line 15). Therefore, with this loop invariant, whémeRefinement
terminates, we must have(t) = go (¢t) fort € T = [ts, te].

In the following, we prove the loop invariant. Based on the way
how arrival time functionsg;(¢), are initialized and updated, we
haveg;(t) > g; (t) for everyv; € V and anyt € T'. It suffices to
showg;(t) < g; (t) in the loop invariant, to prove. (t) = gz (¢).

For the purpose of contradiction, suppegds dequeued in line
6, andg,(to) > g, (to), for certain starting timeo € [rq, 7],
where the loop invariant igiolatedfor the first time As shown in
Fig. 5, let thevs-v4 path with arrival timeg, (¢o) for starting time
to be ps,q, and let the optimab;-v, path for starting time, be
Psq = (Vs,v¢) - (Vz,vy) - -+ (Vp,vq). We prove thap; , is no
better thamp., 4 for starting timeto by showingg, (to) < g; (to).

Consider the node, on pathp; , such that (i}o > 7, and (ii)
to < 7 for all nodesyw;, on the path from, to v,.. By (i) it means
that g, (t0) may be notvell-refined becausg ¢ [ts,7,]. We can
prove actually,g, (to) = g, (to) as follows: Sinceo < 7, we
haveg. (to) = gs(to). Thus,g,(to) is well-refined (line 11) with
g=(to) asgy (to) = g=(to) + wa,y(g=(to)) in previous iterations.

If v, = v, the proof ofg,(to) < g;(to) is already completed.
We will focus on the case whetg # v, in the following part.

First, sincev, appears before, onp; , and all edge delays are
nonnegative, we have

gy(to) = gy (to) < gp(to)- (1)

Second, based on the choicergfandA, and the monotonicity of



gq(t) (Lemma 5.1), we have

9q(to) gq(Ts) (for to < 7/ andg,(t) is monotone)
gk (7k) + A (for the choice ofr; in line 9)
9k (Tk) + wp,q (gr(7k)) ®)

(for the choice ofA in line 8, note(v,, vq) € E)

<
<
<

Third, because of the choice ¢fy, g (t)) in line 7, gi(7x) is the
second earliest arrival time 1@ following g4(74). We have

gk(7) < gy(Ty)- ©)

Fourth, because of the choicewf (to > 7,) and the monotonicity
of gy (¢) (Lemma 5.1), we have

gy (Ty) < gy(to). (10)

Then, based on Equation (9), Equation (10), and Equation (7), we
have

g (k) < gy(7y) < gy(to) < gp(to). (11)

RecallGr is aFIFOgraph. Based on Equation (11) and tHé&O
property of edgév,, v,), we have

g (7)) + wp,q(gr (Tr)) < 9; (to) + wpyq(g; (to))-

Note: p; , is the optimal path for the starting timg. We have
94 (to) = gp(to) +wp,q(gy (to)). Based on Equation (8) and Equa-
tion (12), we can conclude tha (to) < g, (to)+ wp,q(gp (to)) =

g4 (to), which completes the proof. O
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5.5 Time/Space Complexity

In this subsection, we give time complexity for manipulating
piecewise-linear functions followed by the time/space complexity
of our algorithms.

Representing Functions Let f(¢) and g(¢) be piecewise-linear
functions, defined on a time intervdl = [ts,¢.], and suppose
that f(¢t) and g(¢) can be represented asand ¢ pieces of lin-
ear functions on subintervals @f, respectively, such thaf(t) =
<(f17t{)7 (f27 tg)v T (fp7t£)> and g(t) <(glvt£1])v (92725!2])7
-+, (gq,t2)). Each pair(f;, t]) represents a linear functigf(t)
on the subinterva[t{,t{+1), and each paifg;,t?) represents a
linear functiong;(t) on the subintervalt!,tJ ;). Note: we let
t{ =t{ =t.andt) | = I, = t., wheret, andt,. are the two
ends ofT". General functions can be represented in a similar way.

Implementing Function Operations. Given two such functions
f(t) andg(t), let a andb be two constants. Four operations are
defined and used in our algorithms, nam&yNCTION INVERSE,
f1(a) £ max{t|f(t) = a}, LINEAR COMBINATION, a - f(t) +
b- g(t), FUNCTION COMPOUND, f(g(t)), andMINIMUM of two
functions, min{ f(¢), g(¢t)}. Each operation outputs a piecewise-
linear function. The time complexity for the function inverse is
O(p) by swapping pairs of( f;, t{). The time complexity for the
other three operations i9(p + ¢) by sweeping each of the two
sequences of pairs only once. In addition, the function vlie)
for a given time instance, (ts < to < t.) can be computed in
O(log p) time using binary search. Details are omitted here.

In the following analysis of algorithiiwo-STEP-LTT, we take
the cost of function operations into consideration, and use the sim-
ilar notations for functional complexity used in [20]. We us€l")
or a(|T|) to denote the time/space complexity of maintaining a
piecewise-linear function, or manipulating a function operation, de-
fined in time intervall’ (|| is the length ofl"). Based on the repre-
sentation and implementation of functions as introduced above, the
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time/space required for a function operation is linearly proportional
to the number of pieces needed to represent the functi@h iBo

if assuming the number of pieces needed is linearly proportional to
|T|, we haveO(a(|T1 U Tz|)) = O(a(|T1])) + O(a(|T>])) for

Ty N1, = @. This assumption is used in our following analysis of
complexity. Note algorithmsBELLMAN -FORD, KDXZ, and our
Two-STEP-LTT, manipulate functions in the same manner.

Complexity of Two-Step-LTT: Given a graphG'r with n nodes
andm edges in total, consider queryf T (vs, ve, T').

Lemma 5.2: The time complexity dimeRefinemenfAlgorithm 3)
is O((nlogn + m)a(T)). O

Proof Sketch: In each iteration of the while loop, the priority
queue@ of length at most is accessed in line 6, 7, 13, and 19.
Using Fibonacci Heap [4], botfequeue(Q) andhead(Q) require
O(log n) amortized time, and bothpdate(Q, (75, g;(t))) (When
g;(t) is updated) andnqueue(Q, (7, gi(t))) (When the new pair
(74, gi(¢t)) is inserted) requir®(1) amortized time. Moreover, line
8 requires0O(d;) time to findA, whered; is the in-degree of node
v;, and line 9 require® (a(7; — 7)) time to find7;. In line 11-12,
the arrival-time functiong; (¢), are refined within the starting-time
subintervalr;, 7{] in O(a(r{ — 7;)) time. Therefore, for each iter-
ation of the while loop, it need®(logn + d; + d;a(7] — 73)) <
O((logn + di)a(r{ — 7)) time.

Let T,L.(k> denote the value of; whenwv; is dequeued fron®
for the k" time, and letl; denote the number of times that is
dequ'gled frqgi) in total (k¢ < [;). Then the total time complexity

= 0( Zizl((logn + di)a(Ti(k) - Ti(k_l))))- Because
X
((logn + di)a(ri(k) _ Ti(k_l)))

1

v; €V

k

7 =1)

(logn +di)a( (7" - )

(logn + di)a(|te — ts|) = (logn + di)a(T),
the total time complexity is:

(logn+d;)a(T)) = O((nlogn+m)a(T)).
v, EV

Lemma 5.3: The time complexity gdathSelectiogAlgorithm 2) is
O(ma(T)). O

Proof Sketch: Because the value of;(t"*) is strictly decreas-

ing in every iteration, every node; € V will be examined at
most once inpathSelectior{line 5). Letd; denote the in-degree

of nodewv;. The while loop require®)(d;«(T)) time for each
v;j.plhe time complexity ofpathSelectiorcan be computed as
O( v da(T)) = O(ma(T)). o

From the above two lemmas (Lemma 5.2 and 5.3), we can prove

the time complexity of wo-STEP-LTT.

Theorem 5.4: The time complexity fwo-STEP-LTT (Algorithm
1)isO((nlogn + m)a(T)). O

In both timeRefinemenand pathSelectionwe need maintain
graphG(V, E, W) with m edges andn functions, w; ;(t), for
(vi,v;) € E. During the execution of algorithms, we need main-
tain a priority queue) with at mostn elements, and arrival-time
functions,g;(¢), for v; € V. Therefore, the total space complexity
is O((n 4+ m)a(T)).

Theorem 5.5: The space complexity aftwo-STEP-LTT (Algo-
rithm 1) isO((n + m)a(T)). O
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Figure 6: Runtime Data Structures

5.6 Storage Model and Implementation

In this subsection, we give some implementation details of our
solution. A time-dependent gragghr (V, E, W) is maintained us-

A; ;(t) is the optimal waiting time to traverse edge, v;), if ar-
riving atv; at timet. If there are multiple possible values ©f to
minimizew; ; (¢t + ta) + ta, we select any of them as; ;(¢). It
is easy to verify that edg@;, v;) with edge delay functiom; ; ()
has theFIFO property. LetlW be the set of newly defined edge
delaysw; ;(t)’s, and therGr(V, E, W) is aFIFOgraph.
Suppose usingwo-STEP-LTT algorithm, we find the optimal
pathp* = (vi,v2) -+ (vk—1,vx), Wherevy = vs andvg = v,
together with the best starting timé € 7', for LTT (vs, ve, T') ON
the convertedrIFO graphG+(V, E,W). We construct the opti-
mal pathp’™ for LTT (vs,ve, T) on the original nonFIFO graph
G (V, E,W') by inserting waiting timew*(v;) = A;i+1(t) at
nodew; for 1 < ¢ < k — 1, wheret is the arrival time at node;

ing an edge representation, where an edge is stored as a triplealong pathp* in G for starting timet™.

(vi, vj,w; ;(t)). The edges can be stored in a table. The first col-
umn (v;) and the second colummy) are fixed-size whereas the
third column (edge-delay function) is variable-size. Two B+-trees
are built on the top of the table. One is built on the first column
(v;), and the other is built on the second column)( They can
efficiently support all the necessary operations W

For a givenLT T (vs,ve,T) whereT = [ts,t.], as shown in
Fig. 6, Two-STEP-LTT needs to maintain four runtime data struc-
tures, namelyN -Index(a list of node identifiers)Ar-Table(a list
of arrival-time functiongy; (¢)’s, for all v; € V'), I-Table(a list of
pairs(7;, g:(7:))’s, for allv; € V'), and the priority query).

The N-Indexis a list of two pointers, which is sorted by node
identifiers in order to be accessed efficiently. Given a ngdene
of the two pointers inV-Indexpoints to its arrival-time function,
g:(t), which is separately maintained iir-Table The arrival-
time functions are maintained separately fréyalndex because
they are variable-size. The separation also alldvwéndexto re-
main unchanged, when arrival-time functions need to be updated.
The other pointer iV -Indexpoints tol -Tablewhere(t;, g; (;))'s
are maintained. Givem;, it allows us to quickly find the corre-
sponding paif;, g:(7:)), when it needs to be updated.

The priority queue? sorts(7;, g;(t)) in the ascending order of
gi(7:). Every element of) in our storage model is a pointer point-
ing to the corresponding pair;, g; (7;)) which is maintained ir -
Table From each element if-Table there is also a pointer point-
ing back to the position of the pair i. Such implementation is
designed to reduce the size@fin the running-time storage.

Since N-Indexand priority queudy are not large, they can be
maintained in memory. Whe@'r is too large to be stored in the
main memory, we maintaid-Table I-Table andGr on disk.

5.7 Solution for Non-FIFO Graphs

In this subsection, we discuss how to find the optiliET over
a (general) norFIFOtime-dependent graph. We show that we can
transform such a noRFOgraphG/-(V, E, W') into aFIFOgraph
Gr(V,E,W) where bothV and E remain unchanged. Then we
can proces&TT (vs, ve, T') on theFIFO graphG using our pro-
posedTwo-STEP-LTT algorithm. The optimal patp* found in
G can be converted into an optimal pathi in the original non-
FIFO graphG7., by inserting some waiting time on each node in
pathp*. The similar idea was also used in [20].

For each edge-delay functiast ; (¢) in the nonFIFOgraphGr.,
we definew; ;(t) to construct &IFOgraphGr.

wij(t) = D) 4+ wi;(t+ Aii(t)
_ ; r
= o min {tatwi;(t+ta)t (1)

Since the starting-time interval = [t,, t.] is a closed interval,
w;,;(t) andA; ;(¢) in Equation (13) are well-defined. Intuitively,
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6. PERFORMANCE STUDIES

In this section, we conducted extensive experimental studies to
compare our solutior;wo-STEP-LTT, with other three algorithms
for the TDSP problem, namely, the most efficient discrete-time al-
gorithmDOT [2], BELLMAN -FORD based algorithn®R [20], and
A* algorithmKDXZ [15]. We implemented all algorithms using
C++. Note we denote ouFwo-STEP-LTT as "2S’ in figures be-
low for conciseness. FdADOT, let ¢ be the length of the interval
between two adjacent time points, and we used 0.1 (unit).

Experiment Setup We use a real dataset with 16,326 nodes and
26,528 edges, representing the road-map in the Maryland State in
US. The dataset is extracted from the US Census Bureau 2005
TIGER/Line". The nodes represent the starts, ends, and intersec-
tions of roads, while the edges represent road segments. Note the
four algorithms can handle both undirected and directed graphs.
In experiments, we represent the real database as a directed time-
dependent graptyr. We further generate 10 subgrapfs, - - - ,

G110 from G with the number of nodes varying from 40 to 10K.
Each subgraph corresponds to a subare@pf The numbers of
nodes and edges 6f, - - - G are listed in Table 2.

We test the class of continuous piecewise-linear edge-delay func-
tionsW = {w; ;(t)}, whose operations are implemented as de-
scribed in Section 5.5. Each; ;(t) is generated randomly with
four parametergverage-delayr, range-delaywa , length-domain
L7, andnumber-segmen¥r, in domain7 = [0, L] indepen-
dently as follows: 7 is randomly divided intoN7 subintervals;
within each onew; ;(t) is a linear function; the value ab; ;(¢) at
the start/end of each subinterval is randomly generated as a number
in [w — wa, w + wa] uniformly. Note: thew;_;(t)'s generated as
described above are general edge-delay functions (some may have
FIFOproperties while the others may be n&f-0).

In Experiment-1 and Experiment-z; = 11, wa = 9, L7 =
2,000, and N7 is randomly picked fromt to 8. In Experiment-3,
we will vary some of the four parameters to test the scalability of
algorithms w.r.t. different types of edge-delay functions.

The set of queries{LTT (vs, ve, T}, used in each test is con-
structed by fixing sources as the center of graph, and varying
destinatiorv. over all the other nodes in graph.

We conducted all tests on a 2.8GHz CPU/1G memory PC run-
ning XP. We report the processing time (second), and the memory
consumed (byte).

Experiment-1 (Graph-Scalability): For queryLTT (vs, ve,T),
we fix starting-time interval” = [0, 500], and vary (i) the number
of nodes, and (ii) the number of edges, in the time-dependent graph.

4Topologically Integrated Geographic Encoding and Referencing system:
http://www.census.gov/geo/www/tiger/
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| | G1| G2 G| Ga| G5 [ Ge| Gr [ Gs | Go| Gi sistently.KDXZ consumes much more thawo-STEP-LTT does
V| |40 | 80| 200 400 1K | 2K | 4K | 6K | 8K | 10K when the number of nodesis 1K. Note: KDXZ, OR, andTwo-
E| | 52 | 107| 262 548 1.5K 3K | 6.4K 9.7K 13K 16K STEP-LTT find the optimalLTT. Fig. 7(c) shows the average and

of DOT is about 10 times larger than oliwo-STEP-LTT con-
sistently. TWo-STEP-LTT outperformsOR when the number of

Table 2: Datasets

maximumLTT error of DOT. By LTT error, we mean the dif-

ference between theT T obtained byDOT and the optimalTT.

First, with the number of nodes increasing from 40 to 10K in When the number of nodes increasEE;T error becomes larger,
G1,- - ,Gho, the average processing time and memory consumed because the average distance between two nodes becomes larger.
are shown in Fig. 7(a) and Fig. 7(b). The average processing time Second, we vary the density 6% by fixing the number of nodes

as 2K while changing the number of edges. 5 graphs are gener-
ated with 2K, 4K, 8K, 16K and 32K edges. We report average

nodes is> 80. KDXZ algorithm is the fastest when there are processing time and memory consumed in Fig. 7(d) and 7(e) re-

less than 1K nodes, but it becomes slower thano-STEP-LTT

spectively. The average processing time increases when the num-

when there are more than 1K nodes. The average processing timeber of edges increaseswo-STEP-LTT significantly outperforms
of KDXZ increases exponentially, and it cannot finish for most DOT andKDXZ in all the cases, and outperforrdkXZ when

queries in this experiment when the number of nodes igK,

the number of edges is 2K. KDXZ cannot findLTT in reason-

because its search space is exponentially w.r.t. the size of graph.able time for most queries tested when the number of edges is

Two-STEP-LTT outperformsOR significantly when the graph is
large in size. The average memory consumedX¥yis 5 times
larger thanTwo-STEP-LTT, becauséOR maintains two sets of

4K. In terms of memory consumptiomwo-STEP-LTT performs
the best followed byYOR and thenDOT. The amount of memory
KDXZ consumes is exponentially proportional to the number of

functions, {g;(t)|vs € V} and {h;x(t)|(vj,vx) € E}, while edges. Fig. 7(f) shows the average/maximUMrl error of the

Two-STEP-LTT only maintains{g;(¢)|v; € V}. The memory
consumed bYDOT is 50 times larger thamwo-STEP-LTT con-
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DOT. The error becomes smaller when the number of edges in-
creases, because with more edges, the average distance between



two nodes becomes smaller, which decrease&Theerror.

Experiment-2 (Query-Scalability): We useG¢ (with 2K nodes
and 3K edges). For quetyT T (vs,ve,T'), (i) we vary the num-
ber of nodes on the shortest-v. path (i.e.,vs-v. distance x-axis
“Distance” in Fig. 7(g)-7(i)); (ii) we change the length of starting-
time intervalT (i.e., x-axis “Interval Length” in Fig. 7(j)-7(k)).

First, the starting-time interval’ is fixed to be[0, 500] for all
queries. With the number of nodes on the shortest. path in-
creasing from 2 to 20, we report the average processing time and
memory consumed in Fig. 7(g) and 7(h) respectively. Note the
time/memory consumed bR OT and OR are nearly unchanged,
because they cannot terminate until tHeT from v, to every other
node is determinedKDXZ performs well if thevs-v. distance
is < 15, but quickly deteriorates otherwis€wo-STEP-LTT con-
stantly outperform&DXZ after thev,-v. distance is> 16 on both

in optimal worst-case time. Experimental evaluations@Pal-
gorithms can be found in [7, 5]. Roditty discussed the hardness of
the DSPproblems in [22]. The TDSP problem studied in this pa-
per deals with edge-delay functions over a fixed time-dependent
graph, wherea®SP deals with unpredictable updates against a
static graph. They are two different problems and the techniques
used in one cannot be directly applied to the other.

Hierarchy-Based Method: In order to deal with a large graph,
hierarchy-based methods partition the graph into small fragments
and materialize the shortest-paths between border nodes in differ-
ent fragments. The shortest-path between two nodes in the graph is
obtained by combining the shortest-paths from different fragments
[12, 13, 14]. Different graph partitioning methods for the shortest-
path problem were studied, such as disjoint edge-set partition [12,
13] and disjoint node-set partition [14]. Shekhar et al. in [23] stud-

time and memory consumed, because the size of the search spacid the materialization trade-offs. [27] proposed a linear-time algo-

in KDXZ increases exponentially w.r.t;;-v. distance. Fig. 7(i)
shows the average/maX T error of DOT which becomes larger,
while the number of nodes on theg-v. shortest path increases.
Second, we vary the length of starting-time inter¥afrom 50
to 1,000, and report the average of processing time and memory
consumed in Fig. 7(j) and 7(k) respectively. It is shown that all al-
gorithms need additional time/memory with the length of interval
T increases, because the incrementTf incurs both additional
function-operation time and search spadeno-STEP-LTT out-
performs the others consistently.

Experiment-3 (Edge-Delay Function) We test the effect of edge-
delay functions on the processing time Dvo-STEP-LTT and

OR, since both request larger numbers of function operations than
the other two. We usé's, and fixT' = [0, 500].

First, for every edge, we fio = 11, wa = 9, L+ = 2000, and
vary N7 from 2 to 18. WhenV increases, the edge delay function
fluctuates more frequently. We report the average processing time
consumed byfwo-STEP-LTT andOR in Fig. 7(l). Two-STEP-
LTT outperformsOR.

Second, we fixo = 11, L+ = 2000, Nt 8, and vary
wa from 2 to 10. Whenw, increases, bothwo-STep-LTT and
OR consume more time, because resulting functigiis)’s can be
more complicated, and hence require more function-operation tim
in both. Two-STEP-LTT again outperform®©R in this test. Due
to the limit of space, we do not report the detailed result of this test.

e

7. RELATED WORK

As shown in [26], answeringT T (vs, v, t) for a given starting
time ¢ (not a starting-time interval) in a time-dependent graph
can be solved similarly as a single-source shortest-path problem
in a static graph with constant edge delays [26]. Chon et al. in
[3] proposed a system architecture to ansWer (vs, ve, t) for a
given starting timet in a distributed environment. The variations
of single-source shortest-path problem and related issues have bee
intensively studied in the areas of transportation [15, 12, 13, 17, 2,
29, 21], navigation systems [24, 14, 3, 9], and networks [18, 19].

Dynamic Shortest-Path (DSP) The DSPproblem is to recompute

shortest-paths repeatedly, while the underneath graph with constant

edge delays is allowed to be updated from time to time. The updates
include insertion/deletion of edges and edge-weight updates. Fri-
gioni et al. in [8] proposed fully dynamic algorithms with optimal
space requirements and query time for single-so$Eproblem,

and King in [16] presented the first fully dynamic algorithm for
all-pair DSPproblem. Demetrescu and Italiano in [6] presented an
improved all-pairDSPalgorithm, which can find the shortest paths
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rithm for the static single-source shortest-path problem using graph
partitioning idea. Graph-partition techniques can be also embedded
into our algorithm to find_-TT over time-dependent graphs.

Storage of Graph and 1/O Efficiency: Shekhar et al in [25] pro-
posed CCAM (Connectivity-Clustered Access Methpdand studied

how to store large graphs on disk using connectivity clustering and
to support basic operations, such as insert, delete, create, find, and
get-successor, which are necessary for most graph algorithms (in-
cluding our algorithm presented in this paper). Graph update is
also discussed in [25]. Huang et al. in [10] studied spatial parti-
tion clustering which creates balanced partitions of links based on
the spatial proximity of nodes. Woo et al. in [28] studied network
traversal clustering for the storage of graphs based on graph parti-
tioning. For the shortest-path problem, Jiang in [11] analyzed the
1/0-efficiency of several representative algorithms, and their prop-
erties regarding database applications. Experimental results regard-
ing I/O-efficiency of shortest-path algorithms can be found in [24].

8. CONCLUSIONS

In this paper, we studied the time-dependent shortest-path prob-
lem, that is, answering quetyT T (vs, ve, T') in a time-dependent
graphGr(V, E,W). We proposed a newIJKSTRA-based al-
gorithm to find the optimalTT (vs, ve, T') with time complexity
O((nlogn + m)a(T)) and space complexit® ((n + m)a(T)),
wheren is the number of nodesy is the number of edges, and
a(T) is the cost required for each function operation. We con-
ducted extensive studies over large time-dependent graphs, and con-
firmed that our algorithm can obtain the optimal T (vs, ve, T')
efficiently for handling large time-dependent graphs.
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APPENDIX

A. ABOUT ROAD NETWORK

Kanoulas et al. in [15] studied finding the optimal T over
a road network with speed-patterns, which is defined as a graph
Gs(V,E,L,S): V ={v;}isasetofnodesty C V x V is aset
of edgesiL is a set of edge lengths;is a set of speed-pattern func-
tions. Each edge (roady;,v;) € E is associated with a length
l;,; € L, and a speed-pattern functisp;(t) € S. The speed of all
vehicles on edgév;, v;) is at mosts; ;(¢) at timet in domain7 .

For findingLTT over a road network, Kanoulas et al. construct
an equivalent time-dependent gragh-(V, E, W) from the road
networkGs(V, E, L, S), where the node/edge sét (and E) of
G's is the same as the node/edge setef. The relationship be-
tweenw; ;(t) and(l; ;,s;,;(t)) is given below, where is the de-
parture time from;.

z
wj ;(t) = min{w]|

t+w

si,j(2)dz =1;;} (14

To show time-dependent graghr constructed from road net-
work G5 is anFIFO graph, we only need to show, far; ;(t) de-
fined in Equation (14)w;,;(to) < ta + w;,;(to +ta) forto € T
andta > 0 (Definition 5.1). For the purpose of contradiction, we
supposew; ;(to) = ta + w; ;(to + ta) + € for e > 0. Based on
Equation (14), for departure timte= t, andt = to + ta, we have
z totw;,j(to)=to+(ta+w; j(to+ta)+e)
big s4,5(2)dz (15)
to
and

Z (totta)twi,j(tot+ta)
liy; = s54,5(2)dz,
(to+ta)

(16)

respectively. From Equation (15)-(16) ard;(z) > 0, we must
haVES,;,j(Z) =0forz e [to +ta + wi,j(to + tA),to +tA +
wj,j(to + ta) + €], and thus from Equation (15), we have

z

to+(ta+w; j(to+ta))

$i,5(2)dz.

7

lij
to
From the definition ofw; ; () in Equation (14), the above equation
contradicts withw; ;(to) = ta + w; ;(to + ta) + €. Therefore,
w;,;(to) < ta + w;,j(to + ta), and time-dependent graghr
constructed from road networKs is anFIFOgraph.



