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ABSTRACT
Music information retrieval is becoming very important with
the ever-increasing growth of music content in digital li-
braries, peer-to-peer systems and the internet. While it
is easy to quantize music into a discrete string representa-
tion, retrieval by content requires (approximate) sub-string
matching, which is hard.

In this paper, we present a novel system, called MUSIG,
that uses compact MUsic SIGnatures for efficient content-
based music retrieval. The signature is computed as follows:
(a) each music file is split into a set of (overlapping) seg-
ments; (b) similar segments are clustered together; the num-
ber of clusters corresponds to the number of dimensions; (c)
for each music file, the number of its segments that fall into
a cluster determines the key value in that dimension.

Most index structures for multimedia are only able to pro-
vide an initial filtering and return a set of candidate answers
that must be further examined. For MUSIG, we have also
designed a scoring function that permits a ranked answer set
to be generated directly based only on the signatures. Our
experimental results show that this scheme retains a high
degree of accuracy while being very efficient.

1. INTRODUCTION
There has been a trend of growing availability of music in

digital form due to the advancement of digital technology
in the last two decades. Today, many commercial websites
are offering music download services. There are also efforts
in some organizations to build digital libraries with large
volumes of music for education and research purposes. The
enormous and growing availability of music data has created
new challenges in managing such data. A traditional way to
organize the music data is to use auxiliary text information,
such as the song title, the artist’s name, etc. However, the
effectiveness of such text-based search heavily depends on
the ability to specify meaningful keywords, which may not
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always be possible. People often need to search music by the
musical content instead. For example, a musicologist may
want to use a few bars of music score to find any similar
music pieces in a database or to find out whether a compo-
sition is original; a layperson may just hum a tune and let
the system identify the song by searching a melody database.

Except the meta data (text) of the music files, we can
extract the content information from the music files. Gener-
ally, the lowest-level representation with which we are con-
cerned is the event: the pitch, onset, and duration of every
note in a music source. And hence, the music file can be rep-
resented by a sequence of notes. We can further analyse the
content of music, and extract the semantic features to repre-
sent music, such as timbral and rhythm content [23, 29]. In
this work, we mainly focus on the first case, i.e. represent-
ing music as a sequence of symbols, each symbol represent-
ing a musical sound. With this abstraction, we can express
the music retrieval problem as a sequence/string matching
problem: each musical object in the database is a sequence,
and a query is also a sequence – our task is to find database
sequences of which the query is a subsequence.

Substring matching is used widely, and several data struc-
tures, including trie (or suffix tree) based structures [17, 20,
28], have been shown to provide effective indexing. Unfor-
tunately, in the music scenario, the substring matches we
seek are not exact. Most trie-based structures are of no use
if even one symbol is altered or missing.

An alternative structure that has been studied in recent
years is the notion of a q-gram [6, 27]. Each database string
is divided into segments of length q. The set of unique q-
grams presented in a string is then recorded. Given a query,
we seek database objects that include all (or most) of the
q-grams in the query. While q-gram techniques can be valu-
able, they have their limits, primarily with respect to the
choice of q. Too small a value of q leads to too insufficient
filtering and too many false hits. Too large a value of q very
quickly becomes computationally intractable (the number
of distinct q-grams grows exponentially with the value of q).
Furthermore, approximate matching becomes difficult with
large q values.

In this paper, we propose an adaptive q-gram system,
called MUSIG (MUsic SIGnature). To generate music sig-
natures, we first split a music file into a set of segments
using a sliding window. We then cluster all the segments
obtained from the music database using the time warping
distance between segments. Finally, by treating the num-
ber of clusters as the dimensionality, and the number of seg-
ments of a music file within a cluster as its key value for that
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dimension, each music file can be represented by a single
high-dimensional vector (i.e., the music signature). While
MUSIG’s efficiency comes from its compact representation,
its effectiveness (accuracy) arises because the music signa-
ture is capable of distinguishing differences between music
especially when the number of dimensions is high (each mu-
sic has its own melody, and each falls into some clusters, and
hence different music will end up with different features over
the high dimensional space). The MUSIG data structures
are described in Sec. 3.

We also design a scoring function to determine the match
score between query and music data (both may be differ-
ent in length) using their music signatures. With this scor-
ing function, MUSIG can return not just a list of possible
matches, but also rank order them. This scoring function
and query algorithm are described in Sec. 4. We compare the
proposed scheme against existing time series match methods
and q-gram methods. Our experimental study, described in
Sec. 5, shows that the MUSIG mechanism can provide a
much faster response time, e.g. 30 times faster than tra-
ditional Sequence match approach, while maintaining high
retrieval accuracy.

2. PRELIMINARIES
In this section, we first provide some background knowl-

edge on music features, and then review some related work.

2.1 Music Background
Music is the art of organizing sounds produced by instru-

ments or human voice. A piece of music comprises a succes-
sion of musical sounds. There are many characteristics of
possible interest in a musical object. The most important of
these is melody, which is a pitch (or frequency) function of
time. Figure 1 (a) illustrates a melody representation using
a pitch curve. After discretization, we obtain a pitch line,
which is a sequence of horizontal line segments in the pitch
versus time plot. Two or more consecutive music notes with
the same note value correspond to one line segment and its
length corresponds to the total duration of all the notes.
Figure 1(b) illustrates the pitch line corresponding to the
pitch curve in Figure 1(a). Characteristics of pitch line are:
the pitch value is exact in semitones; the time duration is
standardized in multiples of a small time unit, such as an
eighth note.

There is a considerable body of work devoted to the ex-
traction of a pitch line from digitized audio. There are two
kinds of music with respect to the complexity of pitch-line
extraction: in monophonic music, no new note begins until
the current note has finished sounding and sources are re-
stricted to one-dimensional sequences; in Polyphonic music,
a note may begin before a previous note finishes. For mono-
phonic music, most researchers assume independence be-
tween the pitch and duration of a note. These features are
not truly independent, but the simplification makes retrieval
much easier. For polyphonic music, researchers have found
that a polyphonic source can be reduced to a monophonic
source by selecting at most one note at every time step. This
monophonic sequence of notes can then be further decon-
structed using the monophonic feature selection techniques.
The challenges include identification of a dominant “voice”
from a polyphonic sound wave, and time warping to adjust
for small variations in tempo. While not yet perfect, prac-
tical, effective techniques [11, 16, 24] exist today to perform

Figure 1: (a)Pitch curve for a hummed melody (b)
Pitch line for pitch curve

this step. We build upon these in our current work.
The techniques described in this paper can be used with

any string of symbols, and in particular, any choice of mu-
sic represented as a string. For concreteness, we will focus
on the pitch line representation in all our experiments and
examples.

2.2 Related Work
Content-based music retrieval has attracted much research

interest recently [8, 12, 13, 14, 15, 18, 21, 22, 23, 3, 2].
Several content-based retrieval techniques have been pro-
posed in the literature, and they can be classified into two
categories, i.e. Acoustic and Symbolic retrieval. The first
category converts music data into indexable items, typically
points in a high-dimensional vector space that represent mu-
sic features, such as timbral texture, rhythmic content and
pitch content [23, 29]. However, this approach cannot effec-
tively support query by a short piece of music or humming,
because the feature of the whole music piece may differ much
from its short segment. The second class adopts symbolic
representation based on the musical scores and notes in the
score to keep track of musical information such as tone, pitch
and duration. In this case, the problem of music retrieval can
be transformed into approximate string matching or time se-
quence/series data matching [9, 10, 15, 18, 25, 26, 30, 31].
Unfortunately, these algorithms are computationally expen-
sive (and hence impractical) for large music databases as the
entirety of a database has to be scanned to find matching se-
quences for each query. To the best of our knowledge, there
is no efficient index structure for long sequences. It is this
problem that we address in this paper.

We mention here a small selection of papers on music re-
trieval that are closest to ours. The authors of [5] presented
a similarity metric for continuous pitch contour using the
crossing area between 2 pitch time sequences. However, how
to achieve an optimal matching of 2 time sequences consid-
ering key transposition and tempo change is not addressed.
In [9], a method was proposed to compare the continuous
pitch contour of a hummed query with the melodies in the
database. To tolerate tempo variations, this method uses
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dynamic time warping distance for the comparison. To deal
with key shifting, it uses a heuristic to estimate the key
transposition by doing multiple dynamic time warping com-
putations. A shortcoming of this technique is the heavy
computation requirement. And the key transposition esti-
mation by multiple trials is very inefficient. As a result, this
method considered matching only at the beginning of a song
in retrieval. A continuous dynamic programming method
was proposed in [18] to compute the accumulated distance
between a query time sequence and a target time sequence.
This method handles the key transposition by assuming a
correct start frame in the time sequence and distance mea-
surement is based on that start frame. In [31], the authors
treated both the melodies in the music databases and the
user humming input as time series. Such an approach can
integrate many database indexing techniques into an acous-
tic query, improving the quality of such system over the
traditional string database approaches. They proposed a
special searching technique called k-Local Dynamic Time
Warping (DTW) that is invariant to shifting, time scaling
and local time warping. A lower-bound distance for dynamic
time warping was presented. The paper also introduces a
framework for existing dimensionality reduction transfor-
mations, such as Discrete Fourier Transform and Discrete
Wavelet Transform, to allow time warping. The algorithm
only deals with whole sequence matching where the time se-
ries have same length, and ε-range query is used on the index
structure. However, the method cannot handle queries that
are shorter than the represented segments in the database.
Overall, the time series approach has been shown to be ro-
bust and effective for music retrieval using acoustic input,
such as for query-by-humming. However, the computation
cost can be enormous for a practical music retrieval system
with a large database.

2.3 Problem Definition
We are given a large database of music pieces, each rep-

resented as a pitch line. We are given a query object, also
as a pitch line, typically corresponding to a small fraction
of a music piece – the match could be not necessarily at the
beginning of the music, but anywhere in the piece. A typi-
cal example of such applications is the query that has been
hummed by users.

Our task is to find quickly music pieces from the database
that have a fragment, anywhere in the piece, similar to the
query. The notion of similarity is not mathematically spec-
ified, but rather is in “the ear of the listener,” following
the tradition in the information/multimedia retrieval rather
than database community. In particular, “exact” matches
must be found, compensating for musical errors made by
the user in humming the query.

3. THE DESIGN OF MUSIG

3.1 Segment the Music
A single piece of music can be very long, often comprising

hundreds of symbols. Consequently, effective manipulation
of an entire piece of music is difficult. One solution is to split
the music file into short segments. These segments can be
semantically determined. However, this requires semantic
knowledge, which may not be available to the segmenting
program.

An alternative is that the segments can be determined

mechanically, as a sequence of a certain number of symbols.
Furthermore, there is no reason for such mechanically cre-
ated segments to be disjoint. Instead, it is preferable (as we
can demonstrate experimentally) to have the segments over-
lap – each successive segment is shifted over by a specified
window slide parameter. Figure 2 illustrates the segmenta-
tion process using a sliding window.
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Figure 2: Segment the music with sliding window

The length of the window (6 in our example) and the
window sliding step size (2 in our example) are both param-
eters to be chosen carefully. The smaller the window sliding
step size, the larger the number of segments obtained, and
hence the larger the representation, with associated storage
and processing costs. In return, the smaller step size per-
mits better matching with poor alignment of start position
affecting query match less.

The length of the window has only a small effect on the
number of segments (only at the ends of the long musical
entry in the database). Here the issue is one of over or
under specification. Since our retrieval does not consider
the relative order of the matched windows, if the length is
too small, we will get too many spurious matches. On the
other hand, with too long a window approximate matching
becomes difficult, as the query music can be much shorter
than original music in the database. We will carefully study
choices of these parameter values in the experimental section
below.

3.2 The Case for Signature Method
If we treat each beat as one dimension and the pitch value

as key of the corresponding dimension, each segment created
above can be represented by a multi-dimensional vector. In
the example, the window sliding step size is 2 beats, and
hence the music piece can be represented by four segments,
(8, 10, 8, 13, 12, 12), (8, 13, 12, 12, 8, 10), (12, 12, 8, 10, 8,
15) and (8, 10, 8, 15, 13, 13); in other words, 4 points in a
6-dimensional space. It is possible for us to conduct music
retrieval using multi-dimensional index structures. For each
segment of a music query, we conduct a sub-query to search
the similar melody in the music database, and then merge
the query answers. Such an approach has been explored in
[31, 4]. However, this approach has three major drawbacks:

• It incurs a high computational cost. Because each mu-
sic melody in the database has been split into many
points, the database size can be large. For example,
the average length of music in our experiment is about
400 beats. Assume we set the window size to be 8 beats
and the window sliding step size to be 4 beats, each
music will be represented by 99 8-dimensional points.
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Additionally, since the music query is also segmented,
there will be more distance computations and data ac-
cesses due to the existence of sub-queries.

• It is difficult to control the size of each query, as the
query consists of several sub-queries. Note that, the
query melody is typically longer than the specified win-
dow size. If the window size is large, it degrades the
query performance due to the dimensionality curse.
On the other hand, if we choose small window size,
there is a higher possibility that more candidates would
be retrieved for each sub-query to improve the accu-
racy of music retrieval (since it is more likely for simi-
lar short music portions to exist between two different
music).

• As a music query may start anywhere in a music melody,
the segments of database may not be consistent with
the start of query melody. Therefore, some potential
answers may be excluded. To minimize this, we can
use small window sliding step size but it introduces
more sub-queries (and hence higher processing cost)
as well as higher storage overhead.

To address difficulties such as the above, q-gram tech-
niques have been suggested. For each musical object, we
can record a vector of the q-grams present in it. Given a
query, we can develop a vector of the q-grams in the query.
Then we can find vectors in the database that completely
cover the query vector – these are data objects with all the
right q-grams.

These q-gram vectors do indeed constitute a signature
technique. However, the length of the signature vector is
equal to the number of possible q-grams, which in turn grows
exponentially with q. As such, the signature is practical only
for small segments (with small values of q).

In the case of text strings, a value of q = 3 is usually quite
adequate. However, a music segment is likely to have many
repeated notes (since we discretize at a fine granularity of
beat, most notes are held for longer than the minimum beat
size). Also, musical phrases very frequently use immediately
neighboring notes. So considering very short segments is
not very useful. This leads us to seek a scalable signature
technique.

3.3 Generate the Music Signature
To generate the signatures for entries in a music database,

we first organize the individual segments obtained from the
database into clusters of similar segments. The segments
corresponding to a single piece of music will appear in mul-
tiple clusters.

With this clustering done, we can compute the signature
for a piece of music as follows: (a) Let the number of dimen-
sions be the number of clusters, and cluster i corresponds
to dimension i. (b) Let the key value of the i-th dimension
be the number of segments of the musical piece that belong
to the cluster. Suppose a music file has 10 segments after
segmentation, the whole music dataset is partitioned into
five clusters, and the music signature S1 is (1, 2, 5, 0, 2). As
shown in Figure 3, the signature S1 means that 1 segment
of the music melody falls into cluster 1, 2 segments in clus-
ters 2 and 5, and 5 segments in cluster 3, while there is no
melody segment in cluster 4. Figure 4 shows the algorithm
for generating music signatures for a music database.

1

2

3

4 5

S1: S2:

Figure 3: Clustering the segments

Algorithm Gen sig(dataset)
Input: music dataset
Output: music signatures

1. initialize signatures;
2. convert each music file into pitch lines;
3. set window size and window sliding step size;
4. for each pitch line
5. split the pitch lines into segments;
6. segement ID = music ID;
7. each music is represented by a set of segments;
8. cluster the segments using time warping distance;
9. for all the segments
10. if segment belongs to cluster i
11. signature[segment ID].[i]++;

Figure 4: Algorithm for generating music signatures

The algorithm is quite straightforward. In line 1, we ini-
tialize the music signatures. Then all the music data is con-
verted into pitch line format. In lines 3-7, we segment the
pitch lines, and represent each music as a set of segments.
Each segment of music has the same ID number as the mu-
sic. Next, we split all the segments into clusters, and each
segment belongs to the nearest cluster. We employ the K-
means clustering scheme [7] to generate the clusters. Finally,
for all the segments, we count the number of segments in
each cluster (lines 9-11). Therefore, after the processing, we
can get the signatures for all the music files.

Different from the traditional Euclidean distance metric
used in K-means, we adopt time warping distance to effec-
tively capture the difference between music segments. Time
warping is an algorithm for measuring similarity between
two sequences which may vary in time or speed [19]. The
implementation of computing the time warping distance can
be visualized as a string matching style dynamic program
with quadratic complexity. The time warping distance be-

tween two sequences
−→
X and

−→
Y is defined as follows, where

H() is the first element of sequence and R() is the rest of
sequence:
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Dwarp(
→
X,

→
Y ) = D(H(

→
X), H(

→
Y ))+min

⎧⎪⎪⎨
⎪⎪⎩

Dwarp(
→
X, R(

→
Y ))

Dwarp(R(
→
X),

→
Y )

Dwarp(R(
→
X), R(

→
Y ))

Two performers rendering the same piece of music will
have small differences in their respective renditions. The
discretization and quantization can also introduce small dif-
ferences. In consequence, the problem we need to address
is not one of substring exact match, but rather one of sub-
string approximate match. Clustering similar segments to-
gether provides an avenue to allow for approximation. The
specific similarity functions used for this clustering do not
affect any other part of the MUSIG system. Hence these
functions can be made as sophisticated as desired. The num-
ber of clusters to choose is another optimization parameter.
The larger this number, the greater the storage and process-
ing cost, and also the less forgiving the index structure is to
approximations. On the other hand, too low a number will
not provide sufficient discrimination.

Please note that there are two very distinct data spaces be-
ing considered, with very different properties and semantics.
In the first data space, each music is represented by a set
of segments. The second data space is a multi-dimensional
space which has a segment cluster as a dimension, and a
piece of music as a point in this space. The first space is
used for segment clustering, while the second space is the
one used at query time.

4. QUERY ALGORITHM

4.1 Signature as Filter
Having created a signature for each piece of music in the

database, we would like to be able to use it to eliminate
most of the database very quickly in response to a query,
and zoom in on a few promising candidates.

To accomplish this, we extract the music signature for the
query at hand, using the same set of clusters as for the music
database. This signature must now be compared against
the signatures in the database. Since we would like to find
database objects for which the given query is a substring, it
must be the case that all the segments in the query are also
in the matching database object. We can rapidly eliminate
any database objects for which this is not the case. The
remainder are the match candidates to be returned.

There are a couple of issues to consider in this regard.
First, there is a potential phase matching problem. Sup-
pose we are using a window sliding step size of 2, but the
query matches perfectly after shifting one position. In such
a case, no segment may perfectly match at all, although
time warping distance may alleviate this suffering. To ad-
dress this possibility, we must generate as many versions
of the query as the window sliding step size, each version
shifted by one position more than the previous. The results
to be returned are the union of the matches from the various
versions. While our implementation examines all query ver-
sions, for ease of presentation, in the rest of this section, we
shall only discuss how a single query version is processed.

The second issue is one of approximation. Due to er-
rors/choices made in the rendition and/or in the discretiza-
tion, we may desire to report approximate matches. To a
large extent, this issue of approximation is already taken

care of at the time of cluster creation. Two segments that
are similar are likely to be in the same cluster: small differ-
ences between query and database sequences will thus get
masked. If desired, we may choose to further loosen the ap-
proximation threshold for query. While such a permissive
notion will catch more approximate matches, it may also
let through many mismatches. So this relaxation should be
used with care.

4.2 Match Score
Traditionally, multimedia index structures have only been

used as a rough cut first stage in the retrieval process to re-
turn candidates for further examination. This is not out of
choice, but rather because the index structures can only be
devised for simplified representations, so that more expen-
sive sophisticated processing can be carried out on promising
candidates.

In the case of MUSIG, we have the compact representa-
tion of the music and there is really no need to have such a
two-stage query processing strategy. Rather, we can directly
support a music information retrieval system. The only ad-
ditional thing required then is to have a scoring function
that can be used to rank the returned results. We introduce
such a scoring function next.

Given two music signatures, data S1 and query S2, with D
dimensions, the overall match score MS, is the accumulated
score over the whole dimensionality.

MS =

D∑
i=1

scorei

where

scorei =

⎧⎪⎨
⎪⎩

S2i S1i ≥ S2i & S2i > 0

−S1i S1i ≥ 0 & S2i = 0

−∞ else

There are three different cases that need to be considered
when we compare the values of S1i and S2i:

1. Both S1i and S2i are larger than 0 and S1i is greater
than or equal to S2i. This means that both query and
database have segments that belong to the ith clus-
ter. The S2i segments in the query are all matched,
so we increase the score by S2i. There may be addi-
tional repetitions of the same segments in the database
entry, since S1i could be larger, but these additional
repetitions do not contribute to the score.

2. S1i is larger than or equal to 0 and S2i is equal to 0.
This case is for a segment that occurs in the database
entry, but not in the query string. From a strict sub-
string match perspective, this is not a problem – the
target database string can contain all sorts of addi-
tional material, but should still be returned as long
as it also includes the query string. However, it is
well-established in information retrieval that the more
irrelevant information a document contains, the lower
it should be ranked. Otherwise long documents, which
could include “everything”, will always match every
query. Therefore a mismatch penalty is appropriate.

Furthermore, we note that music has a repetitive na-
ture – the “important” phrases (or “motifs”) are re-
peated many many times, and these are the ones most
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likely to be queried. As such, it is appropriate to have
the mismatch penalty be a decrease of the score by
S1i. If this is some unimportant part of the musical
piece that wasn’t included in the query, the penalty is
negligible. However, if it is a crucial part, then the fact
that it is missing in the query should attract a heavy
penalty.

3. In the last case, S1i is less than S2i. We can verify that
S2 is not the answer and prune it away. This is because
S2i cannot be greater than S1i if S2 is the sub-melody
of S1. In our implementation, we use a sufficiently
large value (a value that is larger than the maximum
value that any of the dimensions can take) to represent
−∞. This penalty may appear to be overly harsh.
However, our experiments show that it leads to better
results than milder penalties for this case.

4.3 Matching Algorithm

Algorithm search(signatures, query melody)
Input: Music signatures, query melody
Output: Music IDs with K highest match scores

1. initialize answer list;
2. convert the query melody into pitch lines;
3. split the pitch line into segments;
4. for each segment
5. find nearest cluster i;
6. signature[i]++;
7. for each signature in database
8. compute the match score using scoring function;
9. if MS is larger than K-th candidate
10. adjust answer list;

Figure 5: The search algorithm of MUSIG

Figure 5 shows the basic query algorithm of our proposed
MUSIG scheme. Given a music query, either a sub-melody
or hummed tune, we want to find the music, which exactly
matches the query, from the database. After the music data
processing, we have the signatures of all music files, and sig-
nature generation information, such as dimensionality, clus-
ter centers, window size and window sliding step size. Note
that, we apply the same parameters for music data and mu-
sic query. We first initialize the answer list in line 1. In lines
2-6, we transform the query melody into signature format.
Then, we compute the match score between the music data
and query using the scoring function (line 8), and adjust
the answer list if necessary. Finally, we return to the user
the top ranked K answers with highest match score, i.e. the
music which most probably match the query melody.

4.4 Probability Analysis
In this section we argue analytically that the probabil-

ity of a signature match is usually low if there isn’t a true
match. Consider a music data object a being compared
against some query music b. These objects have X and Y
segments respectively, with X > Y typically. Suppose we
have D dimensions after segment clustering, that all seg-
ments are randomly distributed among the clusters and the
b is not a sub-sequence of a. If ai ≥ bi ∀ i ∈ [1...D], where ai

and bi are the number of segments in cluster i respectively,
the data a will be retrieved wrongly according to the current
matching score function. Let the probability of this kind of
mis-match be P .

Given the dimensionality D and a sequence with segments
n, we can have any number of segments between [0...n] on a
certain dimension. Let pi represent the probability that the
dimension has i segments, we have

pi =
Ci

n · (D − 1)n−i

Dn

If the data a and query b are mis-matched, ai has to be
larger than bi, e.g. for one dimension d of sequence b, if
the number of segments is n, the probability that ai > n is
X∑

i=n

pa
i , where pa represents the probability on the sequence

a. Therefore, we have

P = pb
y=0 · (pa

0 · P (X, Y, D − 1) + pa
1 · P (X − 1, Y, D − 1)

+... + pa
X · P (X − X, Y, D − 1))

+pb
1 · (pa

1 · P (X − 1, Y − 1, D − 1) + ...
+pa

X · P (X − X, Y − 1, D − 1))
+...
+pb

Y · (pa
Y · P (X − Y, Y − Y, D − 1) + ...

+pa
X · P (X − X, Y − Y, D − 1))

=
Y∑

i=0

(pb
i · (

X∑
j=i

pa
j · P (X − j, Y − i, D − 1)))

Simplifying the equation, we have

P (X, Y, D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 : X < Y
1 : D = 1

Y∑
i=0

(pb
i · (

X∑
j=i

pa
j · P (X − j, Y − i, D − 1)))

: Otherwise
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Figure 6: The error probability

Using the default parameter values from the experimental
study below, we have D = 400, X = 393 and Y = 43. Using
the above formula, we can compute the probability P, i.e.
P ≈ 6 ∗ 10−8. Clearly, the error rate of the matching score
function is very low for randomly distributed data. Figure 6
shows the error probability with respect to the change of D
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and Y . We fixed X using the average music length in the
database.

The figure clearly shows the effect of dimensionality and
query length, i.e. when the dimensionality and the query
length increase, the error probability decreases. One promis-
ing finding is that the scheme already yields satisfactory
performance for small query length if we provide sufficiently
high dimensionality. For example, if we set the dimensional-
ity 400, the error probability is less than 1% when the query
length is larger than 15, which means we can provide high
precision even for a short piece of query music.

5. AN EXPERIMENTAL STUDY
In this section, we present an experimental study to eval-

uate the proposed content-based music retrieval method,
MUSIG. Given a query melody, either a portion of the
original music in the database or a hummed melody, we
try to find the original music that matches the query. For
each experiment, we ran 100 different queries, and report
their average for all performance numbers. There are two
performance numbers that are of primary interest – one is
response time, which measures the efficiency of the proposed
technique; the other is accuracy, which measures the accu-
racy of the proposed technique. Accuracy is the percentage
of times (out of the 100 test runs) that the correct answer
is included in the returned result set. Note that in all our
queries there is precisely one exact match perfect answer.
The probability of its being included in the returned result
is a function of the result set size – the larger the returned re-
sult, the higher this probability. The experiments have been
conducted on a PC system with P4 CPU (1.8GHz), 512MB
RAM, and Microsoft Windows XP Professional Operating
System.

The music dataset used in the experimentation are music
files downloaded from the Internet [1] or from CD collec-
tions, such as mp3, wav, MIDI formats. There are 3500
music files with a total duration of 246 hours. To construct
the index and conduct query, we first extract the melody, i.e.
pitch information, from the raw music data [24, 25]. To con-
struct the pitch line for the melody, each note is converted
to a set of horizontal line segments. The height of a line
segment corresponds to the note value (absolute pitch) and
the length of the line segment corresponds to note duration.

5.1 Parameter Tuning
The MUSIG scheme has three major parameters: the

window size, window sliding step size and the dimension-
ality of signature. In the first set of experiments, we tune
these three parameters. The window size W is varied from
4 to 32 beats (quarter note), the window sliding step size
(WS) is varied from 1 to 4 beats, and the dimensionality of
signature (D) is varied from 100 to 500. All the experiment
parameters are listed in Table 1. In the experiments for pa-
rameter tuning, we fix the length of music query as 1/8 of
the original music, and we use a result set size (or answer
rank threshold) of 10. The bold numbers are default values
used in the experiments.

5.1.1 Effect of Window Size
First, we explore how the performance is affected by dif-

ferent values of window size. Figure 7 (a) shows the accuracy
of the MUSIG scheme and the time to generate the music
signatures for different window sizes.

Window size (W) 4, 8, 16, 32
Window sliding step size (WS) 1, 2, 3, 4
Signature dimensionality (D) 100, 200, 300, 400, 500
Length of music query (L) 1

16
, 1

8
, 1

4
, 1

2

Answer rank 1, 5, 10, 20

Table 1: Experiment Parameters

We observe that the performance of the MUSIG scheme
improves with relatively small window size. As shown in
Figure 7 (a), when the window size is larger than 16, the
larger the window size the worse the performance. To un-
derstand this, consider that the average musical piece in our
database is 400 beats long. Because the music query is only
1/8 length of the original size, it is only about 50 beats.
When the window size is large, there are few segments after
segmentation, e.g. 19 segments with window size 32, com-
pared to 43 with window size 8. Also, a window of size 32
includes the majority of the query sequence within a single
segment. Hence, the signature of the music query cannot
represent the melody effectively. On the other hand, the
performance degenerates when the size is 4 or less. When
the segment is short, there is a greater possibility that two
different pieces of music may share some portions with sim-
ilar melodies. Therefore, the signature of the music query
cannot efficiently distinguish the difference from that of the
music in the database. The optimal window size, 8, which
is slightly better than 16, is a compromise of these factors.
The accuracy can be 98% in top-10 returns, i.e. in about
98% retrieval processes, the correct music is found within
the top ten ranks.

Figure 7 (b) shows the total time to generate the music sig-
natures from the entire collection of music in the database.
The time includes the melody segmentation, clustering and
signature generation. Among them, the cost of clustering
dominates the overall cost, because K-means clustering al-
gorithm is very expensive computationally and has cost pro-
portional to both segment length and data size. Here, the
window size is the length of segments for clustering. Clearly,
we can see that the signature generation is most expensive
when window size is equal to 32. The query response time is
quite small, around 0.25s, and also approximately constant
since we fixed the dimensionality of signature at 400.

5.1.2 Effect of Window Sliding Step Size
In this experiment, we vary the value of window sliding

step size. As we mentioned previously, the query melody
is typically just a small portion of the whole melody and
may begin anywhere in the original melody. If the window
sliding step size is larger than 1, there could be some seg-
ments mismatched, therefore we generate as many versions
of the query as the window sliding step size, each version
shifted by one position more than the previous, and we re-
turn the union of the top matches from the various ver-
sions as the results. Figure 8 (a) shows the accuracy for the
MUSIG scheme. The results clearly demonstrate the supe-
riority when window sliding step size is 1. When the win-
dow sliding step size is small, more segments are generated
for the music query, i.e. the query has more feature rep-
resentatives. In the signature comparison with music data,
MUSIG can constitute the distinction effectively between
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query and data. On the contrary, the larger window sliding
step sizes generate fewer segments, and hence insufficient
discrimination. Figure 8 (b) shows that the query response
time is almost proportional to the window sliding size, be-
cause we have to cluster different versions of queries and
search database respectively.

Although the small window sliding step size introduces
higher cost to generate the music signatures as shown in
Figure 8 (c), we still prefer to set the window sliding step
size 1. Because we only need to generate the music signature
for the music database once, and the query response time is
significantly superior when the window sliding step size is 1.

5.1.3 Effect of Signature Dimensionality
Here we present one representative set of experiments that

studies the effect of signature dimensionality, i.e. we vary
the dimensionality from 100 to 500. Figure 9 (a) shows the
accuracy with varying answer rank for the MUSIG scheme.
We observe that as the dimensionality increases, the accu-
racy increases. When the dimensionality of signature is high,
which means that more clusters are generated for melody
segments, each cluster has smaller size and music signature
can represent the music feature more correctly. For exam-
ple, when the cluster size is large, two different segments
may be contained in the same cluster, thus MUSIG can-
not distinguish between these two melodies only using the
signatures. But if we further split the cluster and two seg-
ments are separated into two clusters, then MUSIG can
differentiate between them easily. As shown in the figure,

the accuracy for top-10 return is increased from 73% to 98%
when we increase the dimensionality from 100 to 500. Note
that, the performance of MUSIG becomes stable when di-
mensionality is larger than 400 in terms of precision. The
query response time and signature generation time are pre-
sented in Figure 9 (b) & (c). As we said previously, the query
time and signature generation time are proportional to the
dimensionality, and the cost is highest when dimensionality
is 500.

In the following experiments, we shall compare the MUSIG
method with other sub-sequence match approaches. Note
that, the optimal parameters, such as window size and sig-
nature dimensionality, may vary for different datasets. How-
ever, for clarity of presentation, we use the optimal param-
eters determined above as default, i.e. window size is 8,
window sliding step size is 1 and signature dimensionality is
400. We set dimensionality as 400, because it yields similar
accuracy but better query performance compared with 500
dimensions.

5.2 Compare with Other Structures
In this section, we evaluate the various schemes with dif-

ferent query inputs. We compare against q-gram method
[6, 27], and we set q equal to 3. We also compare our
method with sequence similarity matching methods [18, 30,
31]. With the melodies properly transposed, a sequence
similarity measure can be used for melody matching, and
time warping distance can be a good similarity measure-
ment. The distance is computed by accumulating the local
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pitch distance between two sequences using a dynamic pro-
gramming algorithm. We name this kind of approach as
Sequence match.

5.2.1 Effect of Query Length
In this experiment, we compare the MUSIG, q-gram and

Sequence match approaches with varying lengths of music
query, which are 1

16
, 1

8
, 1

4
and 1

2
of the original music re-

spectively.
Figure 10 (a) shows the accuracy of the three schemes.

We can see that MUSIG can almost perform as well as
Sequence match. Especially when the query length is large,
e.g. > 1/4, the accuracy is higher than 99% for both meth-
ods. However, when the query length is short, the perfor-
mance is degraded for both methods. This is because for
a short query, there is a higher possibility that the music
query is similar to more music pieces in the database. The
query length affects the performance of MUSIG more signif-
icantly. In MUSIG, we split the music into segments to gen-
erate the signature. When the music query is short, we have
fewer segments, and hence the music signature cannot repre-
sent the music feature effectively. The music signature intro-
duces some information loss due to its compact representa-
tion compared with sequence representation of the melody.
However, it is only about 1% worse than Sequence match
approach even when the query is 1/16 of the music. Clearly,
q-gram performs worse than the other two methods. This is
expected as the value of q is relatively small, and segments

of different music may share the same q-grams. Hence the
q-gram cannot distinguish the difference between two music
efficiently. Although the q-gram scheme can provide bet-
ter performance when we choose larger q, such a choice is
impractical because the cost will increase exponentially.

Figure 10 (b) shows the comparison in terms of query re-
sponse time. As shown, MUSIG can reduce the time cost
to only about 1/30 that of the Sequence match method. All
the query operations of MUSIG are very efficient in terms
of CPU cost. Additionally, the signature representation is
very compact, and the I/O cost is also low. Considering 2660
music files with signature dimensionality 400, the space re-
quired is only 4.1 MBytes. The Sequence match method is
computationally expensive. First, it needs to scan all the
transformed music sequence for comparison. Although in
[31], the authors proposed to enhance the Sequence match
approaches by using R*-tree as a filter, it is not suitable for
music melody matching. This is because different pieces of
music in the database may have different lengths, and gen-
erally the average length of the music is large, e.g. around
400 beats long for the music data used in this paper. Ad-
ditionally, the query is usually a sub-sequence match. It is
not feasible to get correct filtering condition from a short
melody for the R*-tree to prune the data properly. Second,
the music query can begin anywhere in the original music,
greatly increasing the number of sub-sequence matches to
be performed. Note that the starting position of query does
not affect the query performance of the MUSIG mecha-

237



0

20

40

60

80

100

0 5 10 15 20

A
cc

ur
ac

y 
(%

)

Rank

MUSIG
Sequence match

q-gram

(a) Accuracy

0.1

1

10

100

0 5 10 15 20

T
im

e 
(s

)

Rank

MUSIG
Sequence match

q-gram

(b) Query response time

Figure 11: Performance with hummed query

nism. The q-gram also runs much slower than MUSIG.
Although it can generate q-grams of the music query faster,
the comparison incurs a much higher cost because of the
many q-grams in the database.

5.2.2 Performance with Hummed Query
Thus far, all experiments reported were with the query

from the database itself, and possibly being perturbed. In
this section, we report on experiments performed with query
melodies that were generated externally. Five subjects, 3
male and 2 female, were asked to hum a snippet each of
a hundred different melodies in the database. None of the
subjects is a professional singer. The time duration of a
hummed snippet was about 15 - 20 seconds. The humming
voices are recorded through microphone using 44100 Hz 16
bit waveform (PCM) format. Pitch extraction is the first
step in doing music retrieval using hummed melody. The
pitch extraction result for a melody query is a sequence of
pitch values where each value corresponds to a frame of size
2048 samples (46 millisecond). Then we conduct pitch curve
aggregation to generate pitch line with time duration stan-
dardized in multiple of a small time unit, such as a quarter
note. We analyze the signal energy and detect vowels in the
humming to estimate the tempo of hummed melody [11].

Figure 11 shows the performance for the hummed query.
All techniques performed worse than the results shown in
section 5.2.1. There are at least two reasons for this. First,
the hummed query is much shorter (< 1/10) compared with
the music in the database, where the average music duration
is 4.3 minutes. Second, some hummed queries had very poor
quality, due to inability of the subject to carry a tune. Nev-
ertheless, the performance of MUSIG is quite good, with
accuracy even exceeding that of Sequence match in many
cases. This is because the clustering scheme of MUSIG can
mask some faults in a hummed tune, as long as the error
melody does not get switched over to a different cluster. On
the other hand, the clustering of MUSIG also introduces
some information loss, and different music files may share
same signature, which explains the poorer performance for
the first three ranking positions.

Additionally, MUSIG is superior over Sequence match
approach in terms of the query response time for hummed
queries as well. It can get the answers around 30 times faster
than Sequence match method because of its efficient process
over the music signatures.

5.2.3 Dataset with Noise
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Figure 12: Effect of noisy data

Different renditions of the same musical piece can have
subtle differences in pitch and tempo. Amateur singers may
produce less subtle errors in pitch. The pre-processing tech-
niques that extract pitch lines from acoustic signals can often
mask such small variations. However, larger variations do
get through, the pre-processing itself introduces the possi-
bility of quantization error. As such, it is important for any
music retrieval technique to deal effectively with noise.

To model noise, we randomly perturb some fraction of
the notes in every query, e.g. note insertion/deletion and
note value change. Figure 12 shows the results, with the
percentage of notes perturbed listed along the X-axis. We
find that all the methods yield worse performance when the
data has more noise. The q-gram technique is particularly
hard hit, because each pitch error affects several q-grams of
the music. MUSIG and Sequence match do much better,
still shoeing an accuracy of over 85% at a 20% error rate.
The low error in MUSIG is on account of the clusters not
being affected too much by noise.

5.2.4 Effect of Scalability
To test the scalability of our method, we seek a larger

music database. Due to the limited number of music files,
we extend our existing music database with synthetic pieces.
We generate 100,000 random walk data sequences which are
normalized into the domain of pitch value. Figure 13(a)
shows the accuracy of three approaches. We can see that all
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the methods degenerate as the data size increases, because
there is higher possibility that different data sequences share
the similar segment. Furthermore, the larger dataset may
affect the clustering effectiveness of MUSIG. However, the
MUSIG mechanism still yields good performance, i.e., =
93% accuracy for large data size of 100,000. Although it is
still 2% worse than Sequence match in terms of accuracy,
its significant gain in response time over Sequence match
(as shown in Figure 13 (b)) makes it a promising approach.

5.2.5 Effect of Insertion
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In this experiment, we study the effect of insertion on
these schemes. The delete operations yield similar perfor-
mance and we omit it. We use the music query with 1/8
length of the original melody. For MUSIG, we evaluate
two versions: MUSIG represents the version that we use
the existing cluster center information to generate signature
for new music; and MUSIG-rebuild represents the version
that always rebuild the tree upon insertion.

We randomly select the data from the music dataset, and
first generate the signatures with 2000 music. Subsequently,
we insert up to 500 more new music. We record the response
time and accuracy of top-10 answers after 100 newly inserted
melody. The two MUSIG versions run much faster than
Sequence match and q-gram approaches, and we only show
the accuracy in Figure 14.

First, we observe that both MUSIG and Sequence match

still yield good performance with new music inserted into
database with > 97% accuracy. Second, as more points
are inserted, the performance of MUSIG degenerates as
the newly inserted data affects the precision of cluster cen-
ters. However, the degradation of performance is marginal.
Third, it is clear that the rebuilding strategy, MUSIG-
rebuild, can reduce the performance degradation. The re-
sults show MUSIG’s robustness with respect to insertions in
the sense that it can take sufficiently large number of inser-
tions. Additionally, we can regenerate the signatures offline
while not interfering with the other queries. This makes
MUSIG a promising candidate even for dynamic datasets.

5.2.6 Performance on Polyphonic Data
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As we introduced previously, polyphony poses more chal-
lenges to effective music retrieval. However, we can simplify
the processing by pulling out an entire monophonic note se-
quence equal to the length of the polyphonic source. One
approach is that the note with the highest pitch at any given
time step is extracted. Since this approach yields most de-
cent results [24, 25], we adopt the highest pitch in our ex-
periments. We use hummed query to test the performance
on the polyphonic data which consists of 1000 MP3 files.

Figure 15 shows the performance on polyphonic data. All
the performances degrade slightly compared with the mono-
phonic data, e.g. <85%, because extracting single pitch for
each note introduces some information loss. However, the
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performance of MUSIG is still satisfactory, with accuracy
even exceeding that of Sequence match when the number
of returned answers is larger than 5. This is because the
clustering scheme of MUSIG can mask some faults in the
pitch lines during polyphonic pitch extraction.

6. CONCLUSION
In this paper, we described a novel system, called MUSIG,

that uses compact MUsic SIGnatures for efficient content-
based music retrieval. To generate the music signature, we
adopted a clustering approach that adapts to the distri-
bution of the data in the database. We also designed a
scoring function to determine the match score between a
music query and a music data based on their music signa-
tures. Conceptually, the MUSIG scheme combines the idea
of q-grams with the idea of vector quantization. It appears
to be particularly well suited to applications for substring
matching where database strings have significant repetitions
in them. Our experimental results show that the MUSIG
scheme is very efficient while retaining a high degree of ac-
curacy as compared to existing sequence match and q-gram
techniques, even after a significant number of updates.
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