
Reasoning about XML Constraints based on
XML-to-relational mappings∗

Matthias Niewerth
†

University of Bayreuth
Lehrstuhl AI VII

matthias.niewerth@uni-bayreuth.de

Thomas Schwentick
TU Dortmund University
Lehrstuhl Informatik 1

thomas.schwentick@tu-dortmund.de

ABSTRACT
The paper introduces a simple framework for the specifica-
tion of constraints for XML documents in which constraints
are specified by (1) a mapping that extracts a relation from
every XML document and (2) a relational constraint on the
resulting relation. The mapping has to be generic with re-
spect to the actual data values and the relational constraints
can be of any kind. Besides giving a general undecidability
result for first-order definable mappings and a general de-
cidability result for MSO definable mappings for restricted
functional dependencies, the paper studies the complexity of
the implication problem for XML constraints that are spec-
ified by tree pattern queries and functional dependencies.
Furthermore, it highlights how other specification languages
for XML constraints can be formulated in the framework.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design

General Terms
Algorithms, Design, Theory

1. INTRODUCTION
Constraint languages for XML and their associated rea-

soning problems have been an active research area during
the last ten years [4, 2, 9, 15, 10, 1, 6, 7, 8]. However,
this research has not yet converged to a universally accepted
model. A common feature of many existing constraint lan-
guages is that they have some means to extract a set of

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599
†Supported by grant number MA 4938/21 of the
Deutsche Forschungsgemeinschaft (Emmy Noether Nach-
wuchsgruppe).

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

“groups” of nodes and data values from documents and pose
restrictions on this set. We propose a simple abstraction for
this two-step approach to XML constraints: we define XML
constraints as a combination of (1) a mapping which defines,
for each XML document, a relation over nodes and values
(called X2R-mapping in the following), and (2) a relational
constraint on this relation. We refer to such constraint lan-
guages as X2R-based constraint languages.

A very simple example of an X2R-based constraint is given
in Figure 1. The X2R-mapping in this example uses the tree
pattern in (a) to extract tuples of nodes from an XML tree.
For these nodes, the target relation might contain the node
itself or the data value associated with the node. In Fig-
ure 1(c), the nodes bound to x2, x3, x4 and the data values
of x3 and x4 are chosen for the target relation. A possible
relational constraint, violated in the example tree, could be
that the value of x3 determines the node x4.

This simple approach allows to study and compare con-
straint languages in a uniform framework, by combining ap-
propriate mappings and (relational) constraint languages.
In this paper, we initiate a systematic study of the com-
plexity of the implication problem for X2R-based constraint
languages, that is, for a given set Σ of constraints, possibly a
schema D, and another constraint τ , whether all documents
that satisfy all constraints from Σ (and are valid with respect
to D) also satisfy τ . Besides the choice of the language for
mappings, relational constraints and schemas, there is a fur-
ther parameter which can influence this complexity: whether
null values are allowed in relations (stemming, e.g., from
partial embeddings of tree patterns).

In this paper, we only study the implication problem for
X2R-based constraints with (relational) functional depen-
dencies (FDs) and without null values. We introduce null
values nevertheless, as we need them in Section 5 to show
how related approaches compare to our framework. In our
framework, a functional dependency is an expression of the
form Y→B, where Y is a set of node terms (x) and data
terms (x.@) and B is a single node or data term. The FD of
the above example would thus be written as {x3.@}→x4. We
show that, not surprisingly, for strong mapping languages,
containing first-order logic, the implication problem is unde-
cidable, even in the absence of a schema. However, the re-
striction to FDs Y→B, in which B must be a node variable,
is decidable for the very strong mapping language monadic
second-order logic (MSO), even in the presence of a regular
tree language as schema. We refer to functional dependen-
cies of the latter kind as XKFDs (for XML key functional
dependencies) as they can be considered as a kind of key

72 10.5441/002/icdt.2014.11

constraints.
Not surprisingly either, the complexity of the implication

problem for constraints with MSO-mappings and XKFDs is
non-elementary. We therefore mainly concentrate our study
to simpler mapping languages based on tree patterns with,
in the general case, child and descendant axis and wildcards.
As schema language we only allow simple DTDs in the sense
of [2]. The complexity results are summarized in Table 1.

It turns out that for X2R-constraints with general tree
pattern mappings and functional dependencies the implica-
tion problem is undecidable in the presence of simple DTDs.
It becomes decidable if the descendant axis is disallowed in
tree patterns and in the schemaless setting without wild-
cards in patterns. Whether it is decidable for general pat-
terns in the absence of schemas and for patterns without
wildcard in the presence of schemas remains open.

As in the case of more general mappings, the restriction to
XKFDs makes the implication problem much more feasible.
It is decidable and can be solved with polynomial space for
general patterns, even in the presence of simple DTDs. If
wildcard or descendant axis are disallowed in the patterns
or in the absence of a schema it becomes solvable in co-NP.
If the descendant axis is disallowed, the problem is solvable
in polynomial time in the absence of schemas or if wildcards
are disallowed as well.

Besides these complexity results, presented in Section 4,
we also discuss, in Section 5, how our framework compares to
other proposals of XML constraint languages. Basic defini-
tions are given in Section 2 and X2R-constraints are defined
in Section 3.

We would like to thank Gaetano Geck for fruitful discus-
sions and valuable feedback.

2. PRELIMINARIES
In this section, we fix our notation for trees, schemas and

relational constraints.

Trees.
In this paper, we consider labelled directed trees with data

values. To this end, we assume pairwise disjoint, infinite sets
V of nodes, D of data values and L of labels. An XML tree
t is a tuple (V,E, lab, dv, <c), where

• V ⊆ V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• lab : V → L is a labeling function,

• dv : V → D is a function assigning to every node a
data value, and

• <c is a partial order that orders the children of each
node linearly.

We further require that t has a unique root, denoted root(t),
and that all edges are directed away from root(t).

We refer to the set of labels of a tree t by lab(t), and to the
set of data values by dv(t). We write u ∼ v if dv(u) = dv(v)
for two nodes u and v.

If (u, v) ∈ E then u is the parent of v and v is a child of u.
The descendant relation is the transitive closure of E and
the ancestor relation the reversal of the descendant relation.
We denote the set of all possible trees with T .

Our tree data model is very close to [2], but for our ap-
proach, it is convenient to represent attributes by attribute
nodes as in the XML data model, such that every node has
(at most) one associated data value.

Schemas.
For our investigations of the implication problem for X2R-

constraints we will consider two kinds of schema languages
for XML-documents. As a schema language with large ex-
pressiveness we use the class Reg of regular tree languages.
However, very often schemas for XML documents only re-
strict the set of allowed elements in a content model in a
simple fashion. We mainly concentrate on a setting where
the order of siblings in an XML document is ignored and
thus we use the following important restriction of DTDs:
simple DTDs. We use the definition of [9], which we basi-
cally repeat here.

Given an alphabet Γ, a regular expression over Γ is called
simple, if it is of the form s1 · · · sn, where for each si, there
is a letter ai ∈ Γ such that si is either ai, ai?, a+

i or a∗i and
for i 6= j, ai 6= aj . A simple DTD (sDTD) is a DTD where
the right-hand-side of each production is simple.

For all our lower bound results even the following further
restriction of simple DTDs suffices. In an extremely simple
DTD (esDTD), only the set of allowed labels is fixed, that
is every content model has the same regular expression (a1 +
· · ·+ a`)

∗, where {a1, . . . , al} is the set of allowed labels.
Simple DTDs have unique minimal models in the following

sense as already observed and used in [9].

Lemma 2.1. Let D be an sDTD and ` a label that occurs
in some (finite) tree that conforms to D. Then there exits a
unique (with respect to structure and labels) minimal tree t`
such that for every tree t and every induced subtree t′ with
a root node labelled `,

• t` can be obtained by removing some nodes from t′, and

• if t′ is replaced by t` in t, the resulting tree still con-
forms to D.

We refer to the trees of the form t` as minimal D-trees. It
should be noted that if a label c occurs in a minimal D-tree
t` then its induced subtree in t` is just tc.

It can easily be tested whether for some label ` from an
sDTD the tree t` actually exists and, therefore, ` can occur
in a (finite) model of D. We therefore assume throughout
that an sDTD only contains useful labels. Furthermore, we
associate with every label ` the set D(`) of labels that occur
in the children of the root of t`, that is, D(`) is the set of
necessary labels below `-labelled nodes.

For our reasoning algorithms, we are interested in small
(representations of) counter-example trees1. It is easy to see
that t` can be of exponential size in the size of D. Thus, an
sDTD alone can already enforce minimal models of expo-
nential size. We will therefore use a compact representation
of trees conforming to an sDTD D to be defined next.

For a given tree t and sDTD D we define the D-expansion
t̂D as the tree resulting from t by application of the following
process. If there is a node v with label ` with a child u that
has a label `′ that is disallowed below an `-node byD then t̂D
is undefined. Otherwise, as long as there are nodes v with

1The exact framework of our reasoning algorithms will be
introduced later.

73

some label ` such that for some `′ ∈ D(`) v has no child
with label `′, a copy of t`′ (as guaranteed by Lemma 2.1),
in which all nodes have new, pairwise distinct data values,
is added below v. If it exists, t̂D is the unique minimal tree
conforming to D and containing t as a subtree. We note
that in t̂D, every node v can uniquely be identified by a pair
(u,w), where u is a node from t and w a (possibly empty)
sequence of labels from D of length at most |D|.

Relational constraints.
In the following, we denote sets of attributes by upper

case letters Y,Z and single Attributes by upper case letters
B,C.

As usual, a functional dependency ρ = Y→B consists of a
set Y of attributes and a single attribute2 B. It is satisfied by
a relation R, if all tuples in R, which agree on the attributes
in Y also agree on the attribute B.

By FD we refer to the set of functional dependencies, as
a relational constraint language.

When dealing with relations which may contain null val-
ues, it can be helpful to use the more powerful ficticious
functional dependencies. A ficticious functional dependency

ρ = Y
Z−→ B consists of two sets of attributes Y , Z and

a single attribute B. It is satisfied by a relation R, if all
tuples, which are non-null on all the attributes of Y and Z
and agree on the attributes in Y also agree on B. We note,
that it is allowed that the attribute B is null in both tuples.

Another useful kind of constraints in the presence of null
values are non-null constraints. A non-null constraint ρ =
NN(Y,Z) consists of two sets of attributes Y and Z. It
holds in a relation R, if all tuples, which are non-null in all
attributes of Y are non-null in all attributes of Z.

We refer to the set of ficticious functional dependencies
by FFD and to the set of non-null constraints by NN. Im-
plication of ficticious functional dependencies and non-null
constraints on relations has been investigated in [3].

3. XML-TO-RELATIONAL CONSTRAINTS
In general, an X2R-constraint (m, ρ) consists of two parts:

a mapping m that maps trees to relations and a relational
constraint ρ that refers to the relations yielded by m. To
keep our framework flexible3, we allow the mapping m to
return null values ⊥, where ⊥ /∈ V ∪D ∪ L. For every set S
we denote S ∪ {⊥} by S⊥.

Informally, we require that the mapping is independent
of actual data values in the sense that any (not necessar-
ily injective) renaming of data values commutes with the
mapping.

More formally, a XML2Relational-Mapping (short: X2R-
mapping) is a function m : T → P(V`⊥×Dn⊥), for some ` and
n, such that for every t and every (not necessarily injective)
mapping δ : D → D it holds that

• m(t) ⊆ P(V `⊥ × dv(t)n⊥); and

2As usual, we could allow a set of attributes instead of the
single attribute B but such FDs can always be rewritten as
a set of FDs with singleton attributes.
3The attentive reader will notice that we do not use partial
mappings and null values in the technical part of this paper.
However, for the general framework we consider them im-
portant and therefore involve them in our definitions (and
also in some remarks in the forthcoming secions).

• m(δ(t)) = δ(m(t)), where δ(t) results from t by renam-
ing all data values according to δ.

Here P is the powerset operator. Remember that dv(t) is
the set of data values used by t.

A tree t is valid with respect to an X2R-constraint σ =
(m, ρ) if m(t) |= ρ. In that case, we write t |= σ and also
say that t satisfies σ.

A constraint instance Σ is a set of constraints. We write
Σ |= σ, if for every tree t for which t |= Σ holds, also t |= σ
holds. We write Σ |=D σ, where D is some schema4, if it
holds that t |= σ whenever t |= Σ and t |= D.

In Section 5 we discuss how existing notions of XML con-
straints can be viewed in the framework of X2R-constraints.
In the rest of the paper, we will then concentrate on the spe-
cialization of the framework, where m is defined by a tree
pattern and ρ is a functional dependency. In the following,
we give the necessary definitions for these investigations and
fix notation.

Tree patterns and tree pattern mappings.
A tree pattern p = (X,A, lab) consists of

• a set X of variables,

• an edge relation A = A/ ∪A// on variables, and

• a labeling function lab : X → L∪ {∗},

such that (X,A) is a directed tree with a unique root, de-
noted root(p), such that all edges are directed away from
root(p). In the remainder, we will often use the synonyms
tree for XML tree and pattern for tree pattern, respectively.

We call edges in A/ short edges and edges in A// long
edges (depicted as double lines in figures). Intuitively, they
correspond to the child axis and the descendant axis in the
sense of XPath. The wildcard symbol ∗ is intended to match
every label.

For a pattern p = (X,A, labp) and a tree t = (V,E, lab, dv)
a function π : X → V is a (full) embedding of p in t if it
fulfills the following conditions, for every x, y ∈ X:

1. if lab(x) 6= ∗ then labp(x) = lab(π(x));

2. if (x, y) ∈ A/ then π(x) is the parent of π(y) in t;

3. if (x, y) ∈ A// then π(y) is a descendant of π(x) in t;

4. π(root(p)) = root(t).

As we do not deal with partial embeddings in the main part
of the paper we leave out their definition.

In the presence of an sDTD D, we can represent an em-
bedding π of a pattern p into the expansion t̂D of a tree t,
by specifying nodes in t̂D as pairs (u,w), where u is a node
of t and w a label sequence as defined in Section 2. We say
that such an embedding uses relative node addresses.

We will use compact XPath notation to denote tree pat-
terns. For example the pattern in Figure 1(a) can be abbre-
viated as /a[/b/c]//d or /a[//d]/b/c. Note that we do not
care about sibling order.

Variables x in a tree pattern refer to nodes in trees, there-
fore we also call them node terms. To refer to the data value

4The precise kinds of schemas that we consider will be de-
fined later on.

74

x1:a

x2:b

x3:c

x4:d

(a) Pattern p

v1:a

v2:b
”7”

v3:c
”23”

v4:c
”42”

v5:d
”13”

v6:e
”15”

v7:d
”13”

(b) Tree t

x2 x3 x3.@ x4 x4.@
v2 v3 23 v5 13
v2 v4 42 v5 13
v2 v3 23 v7 13
v2 v4 42 v7 13

(c) mapping mp(t)

Figure 1: Example for a mapping

of a node, we use data terms of the form x.@. A variable term
B is a node term or a data term, its underlying variable is
denoted by var(B). That is, var(x) = x and var(x.@) = x.
We denote the set of all data terms for a variable set X by
X@ def

= {x.@ | x ∈ X}.
If π is an embedding of a tree pattern p in a tree t, we use

the abbreviation π(x.@)
def
= dv(π(x)).

With a tree pattern p one can associate an X2R-mapping
in a straightforward fashion: every variable x of p can give
rise to two attributes in the resulting relation, one for the
node v matching x and one for its data value dv(v). How-
ever, in the interest of more flexibility and, often, smaller
relations, we allow that the target relation consists of a sub-
set of all attributes.

A tree pattern mapping µ = (p,W) consists of a tree pat-
tern p = (X,A, labp) and a set W ⊆ X ∪ X@. With an
embedding π of p in a tree t = (V,E, lab, dv, <c) we asso-
ciate the tuple θπ,µ defined as θπ,µ(x)

def
= π(x), for every

x ∈W .
For a tree pattern mapping µ and a tree t we let

µ(t)
def
= {θπ,µ | π a full embedding of p in t}.

In other words, for every possible full embedding π of p
in T , the relation µ(t) has one tuple corresponding to π.
Figure 1 gives an example mapping for a pattern p and a
tree t. For space reasons, the relation does not contain all
attributes.

We denote the set of all mappings that can be specified in
this way by TP (or by TP[/, //, ∗], if we want to stress the
availability of the axes and the wildcard symbol). We denote
fragments of TP by TP[/, ∗], TP[/, //] and TP[/], with the
obvious meaning.

Tree-pattern based X2R-constraints.
As already mentioned, we will study tree-pattern based

X2R-constraints in the main part of this paper. A tree-
pattern based X2R-constraint σ = (m, ρ) consists of a map-
ping m = (p, Y) and a (possibly ficticious) functional de-
pendency ρ.

We make use of the following (hopefully) intuitive nota-
tion. We specify p by an XPath expression in simplified
syntax. The pattern positions that correspond to (node or
data) variables in Y are succeeded by a variable name in
brackets. The set Y contains both the node and the data
variable for every variable name occuring in the expression.

Example 1. We use the tree of Figure 2 as a small example
document, which contains user names of persons. A possible
constraint that one might want to require is, that each user-
id uniquely identifies a person, i.e. there are no two persons
with the same user-id. In our framework, we can express

v1:root

v2:person v5:person v8:person v10:person

v3:name
”joe”

v4:u-id
”user1”

v6:name
”joe”

v7:u-id
”user2”

v9:name
”joe”

v11:name
”joe”

v12:u-id
”user2”

v13:u-id
”user3”

Figure 2: Example XML-Document

xp xu xu.@
1: v2 v4 user1
2: v5 v7 user2
3: v10 v12 user2
4: v10 v13 user3

Figure 3: Mapping result of σuser

this constraint as

σuser = (//person〈xp〉/u-id〈xu〉, {xu.@}→xp).

The pattern selects all pairs (v1, v2), where v2 is a child with
label u-id of a node v1 with label person. Figure 3 shows
the relevant part of result of the mapping. The constraint
is not satisfied due to tuples 2 and 3.

For readability, we drop the set notation from functional
dependencies in the (very common) case of singleton sets.
That is, we can denote the example constraint by σuser =
(//person〈xp〉/u-id〈xu〉, xu.@→xp).

When we deal with functional dependencies satisfaction
is defined with respect to full embeddings only, whereas for
ficticious functional dependencies and non-null constraints
satisfaction is defined with respect to partial embeddings.
That is, an FD ρ is satisfied by a tree t if µ(t) |= ρ and an
FFD or NN is satisfied by a tree t if µ⊥(t) |= ρ, where µ⊥ is
defined wrt partial embeddings instead of full embeddings.
Intuitively µ⊥ maps non-existing sub-trees to null values,
where µ just ignores such tuples altogether.

We note that an FD σ = (m,Y→B), with m = (p, Z)

is equivalent to the FFD σ = (m,Y
Z−→ B). Thus we can

evaluate FDs, FFDs and NNs together by converting all FDs
to FFDs.

We call an FD σ = (m,Y→B), in which B is a node
variable a XML-key functional dependency5 (XKFD). The
set of all XKFDs is denoted by XKFD.

For an X2R-mapping language M and a relational con-
straint language C we denote the resulting set of X2R-con-
straints by XC(M, C). For example, XC(TP,FD) stands for
the class of constraints, yielded by tree patterns and func-
tional dependencies.

4. REASONING
In this section, we investigate the complexity of the im-

plication problem for X2R-constraints.
For a set Σ of X2R-constraints and a single X2R-constraint

τ we write Σ |= τ if for every tree t, t |= Σ implies t |= τ .
If D is a schema, we write Σ |=D τ if for every tree t with
t |= D, t |= Σ implies t |= τ .

Of course, the complexity may depend on the actual choice
of the allowed kinds of X2R-mappings, relational constraints

5The name stems from the fact that these FDs very closely
correspond to XML key constraints.

75

TP[/] TP[/, ∗] TP[/, //] TP[/, //, ∗]
XKFD FD XKFD FD XKFD FD XKFD FD

without DTD in P in P in P in P co-NP co-NP co-NP co-NP-hard

simple DTD in P in P co-NP
co-NP-hard

co-NP co-NP-hard PSPACE undecidable
in EXPTIME

Table 1: Complexity Results for the implication Problem. Complexities shown in gray color are implied by other entries of
the table.

and schema languages, therefore the implication problem
has three parameters, M, C, and S.

XC-Imp(M, C,S)
Given: A set Σ of constraints and a single con-

straint σ from XC(M, C), and a schema D
from schema language S.

Question: Does Σ |=D τ?

We will also consider the implication problem (that is,
whether Σ |= τ) in which no schema is given. We denote it
by XC-Imp(M, C).

A counter-example for an instance (Σ, τ,D) is a finite tree
t with t |= Σ, t 6|= τ , and t |= D.

We will restrict to implication problems, where the rela-
tional constraints are functional dependencies and we also
study the special case of XKFDs.

We start with general upper and lower bounds, using first-
order logic (FO) and monadic second-order logic (MSO) as
the mapping language and the regular tree languages S as
schemas. We consider MSO logic over a signature with the
edge relation S, the children order <c, and a unary relation
Pa, for every symbol a. For FO logic we assume also the
binary descendant relation.

An MSO formula Ψ over trees with free variables defines
a mapping

mΨ(t) = {(x1, x1.@, . . . , xn, xn.@) | t |= Ψ(x1, . . . , xn)},

where x1, . . . , xn are the free variables of Ψ.
As MSO formulas can not refer to data values MSO-

defined mappings are X2R-mappings.

Theorem 4.1.

(a) XC-Imp (MSO,XKFD,Reg) is decidable.

(b) XC-Imp (FO,FD) is undecidable.

A proof sketch is given at the end of Subsection 4.1.
Theorem 4.1 shows that the restriction to XKFDS yields a

decidable implication problem, even for very powerful map-
ping languages. However, the complexity of XC-Imp(MSO,
XKFD,Reg) is non-elementary, as this already holds for the
satisfiability problem for first-order logic on strings [13].

In the remainder of the paper, we restrict our attention to
more tractable instances of the implication problem, based
on tree pattern mappings. We investigate the complexity of
XC-Imp(TP,FD, sDTD) and XC-Imp(TP,XKFD, sDTD)
as well as of implication problems based on more restricted
tree patterns and/or without schemas.

More precisely, we prove the complexity results stated in
the following theorem and summarized in Table 1. All lower
bounds (including the undecidability result) in the presence
of schemas already hold for esDTDs.

Theorem 4.2.

(a) XC-Imp(TP[/],FD, sDTD) and XC-Imp(TP[/, ∗],FD)
can be solved in polynomial time.

(b) The following implication problems are complete for co-
NP:

• XC-Imp(TP[/, //],FD),

• XC-Imp(TP[/, //],XKFD),

• XC-Imp(TP[/, //],XKFD, sDTD),

• XC-Imp(TP[/, ∗],XKFD, sDTD), and

• XC-Imp(TP,XKFD).

(c) XC-Imp(TP[/, ∗],FD, sDTD) is co-NP-hard and can be
solved in exponential time.

(d) XC-Imp(TP,XKFD, sDTD) is PSPACE-complete.

(e) XC-Imp(TP,FD, sDTD) is undecidable.

All upper bounds stated in Theorem 4.2 are based on
counter-examples. In some cases counter-examples are com-
puted by chase algorithms, in others they are non-determi-
nistically guessed and the bound follows by a “small or sim-
ple” counter-example property. We prove the upper bounds
based on chase algorithms in Subsection 4.2, those based on
counter-example properties in Subsection 4.3, and the lower
bounds in Subsection 4.4. As a tool for both kinds of upper
bounds we introduce the notion of witness pairs in Subsec-
tion 4.1 and show that they can be computed in polynomial
time.

4.1 Witness pairs
Informally, a witness pair (π1, π2) for a tree t and a pattern

based X2R-constraint σ = (p, Y→B) is a pair of embeddings
of p into t that shows that σ does not hold in t.

In the following we denote the subpattern of a tree pattern
p that is rooted at some node z of p by pz.

Let σ = (p, Y→B) be an X2R-constraint, z a node of p,
and t a tree. Let π1, π2 be two embeddings of pz in t and let
Z be the set of variable terms from Y ∪B, whose underlying
variables occur in pz. We call (π1, π2) a z-witness pair for σ
in t if

• for every C ∈ Y ∩ Z it holds π1(C) = π2(C) and

• if B ∈ Z, then π1(B) 6= π2(B).

A witness pair for σ in t is a root(p)-witness pair for σ in t.
Note that in a z-witness pair for subpatterns not contain-

ing B, both embeddings of the subpattern may be identical.
The significance of witness pairs is illustrated by the fol-

lowing lemma which is straightforward to show.

76

Lemma 4.3. For a tree t and an X2R-constraint σ it holds
t |= σ if and only if there does not exist any witness pair for
σ in t.

In the presence of an sDTD D, witness pairs for a tree
of the form t̂D, for some tree t, are specified by embeddings
with relative node addresses.

The following lemma will be useful both for chase-based
as well as for counter-example based algorithms. It shows
that even for the most general kind of X2R-constraints con-
sidered, (1) it can be checked in polynomial time whether
a constraint holds in a given tree, and (2) if the constraint
does not hold, a witness pair can be computed in polynomial
time.

Lemma 4.4. There is a polynomial time algorithm that
tests whether t |= σ for trees t and constraints σ ∈ XC(TP,
FD) and computes a witness pair (π1, π2) if t 6|= σ.

Proof. The algorithm is an adaptation of the algorithm
in [12], which computes whether a tree pattern can be em-
bedded in a tree t and follows a simple dynamic program-
ming approach. It computes, in a bottom-up fashion, a
ternary relation W that contains all triples (u, v, z) of nodes
u, v of t and a node z of p, for which there exists a z-witness
pair (π1, π2) such that π1(z) = u and π2(z) = v.

We explain, how (u, v, z) ∈ W can be decided, once W is
computed for all triples (u′, v′, z′) with nodes u′ below u, v′

below v and pattern nodes z′ below z. The tuple (u, v, z) is
added to W , if all the following conditions hold.

(1) lab(z) = ∗ or lab(u) = lab(v) = lab(z).

(2) If Y contains z then u = v.

(3) If Y contains z.@ then u ∼ v.

(4) If B is z then u and v are different nodes.

(5) If B is z.@ then u and v carry different data values, that
is u 6∼ v.

(6) for every A/-child z′ of z, there is a child u′ of u and a
child v′ of v such that (u′, v′, z′) ∈W .

(7) for every A//-child z′ of z, there are nodes u′ strictly
below u and v′ strictly below v such that (u′, v′, z′) ∈W .

It is easy to prove by induction on the depth of subpat-
terns that the final relation W exactly contains those triples
(u, v, z) of nodes u, v of t and a node z of p, for which there
exists a z-witness pair (π1, π2) such that π1(z) = u and
π2(z) = v.

This algorithm can be performed in O(|t|4|p|) steps and
thus in polynomial time.

Therefore, by Lemma 4.3, t 6|= σ holds, if and only if
(root(t), root(t), root(p)) ∈ W . With the help of W it is
straightforward to construct a witness pair (π1, π2) in a top
down fashion from W if t 6|= σ.

We note that the running time of the above algorithm can
be improved by computing another relation W ′ containing
all triples (u, v, z) for which there exists a z-witness pair
(π1, π2) such that π1(z) = u′ and π2(z) = v′, for some nodes
u′ below u and v′ below v.

The following lemma will be often used in proofs. We
call a tree t π-diverse, for a witness pair π = (π1, π2) for

some σ in t if all nodes outside the range of π carry pairwise
distinct data values that are different from the data values
of the nodes in the range of π.

Lemma 4.5. If t is a counter example tree for some in-
stance (Σ, τ,D) of XC-Imp(TP,XKFD, sDTD) with a wit-
ness pair π with respect to τ , then, by changing data values
in t, a π-diverse counter-example t′ for (Σ, τ,D) can be ob-
tained.

Proof Sketch. Let t′ be an arbitrary π-diverse tree ob-
tained from t by changing data values outside the range of
π. As π is not changed it remains a witness pair for τ in
t′. On the other hand, as no new equalities between data
values are introduced, all XKFDs from Σ still hold in t′.

Proof of Theorem 4.1. Statement (b) can be shown
by an easy reduction from XC-Imp(TP,FD, sDTD), which
is undecidable by Theorem 4.2 (e). From a given tree-
pattern based instance (Σ, τ,D) it constructs an instance
(Σ′, τ ′) as follows: the patterns from Σ and τ are simply
translated into FO formulas. That only valid trees for D
are considered can be enforced by some additional constraint
with an FO formula ϕ(x) that selects all nodes if D is not
satisfied and no node if D is satisfied and the constraint
(∅→x) that ensures that D is either satisfied or t has at
most one node.

Towards (a), let (Σ, τ, S) be an instance of XC-Imp (MSO,
XKFD,Reg), where S ∈ Reg is a regular tree language.

Let us assume that t is a counter-example for Σ and τ
and that π = (π1, π2) is a witness pair for t 6|= τ and, by
Lemma 4.5, that t is π-diverse. That is, if Σ 6|=S τ , then
there is a counter-example in which at most n data values
(in the range of π1 and π2) may occur twice, all other data
values occur exactly once.

It is easy to construct an MSO formula ϕ that expresses
that a given tree t (without data values) can be extended
to a counter-example t′ for Σ and τ by assigning at most n
special data values that occur at more than one node and
an arbitrary number of data values that occur only once.
To this end, ϕ, existentially quantifies sets X1, . . . , Xn with
the understanding that a node in Xi carries the i-th special
data value and a node that is in none of these sets carries
a data value that occurs nowhere else. Furthermore, ϕ ex-
presses that t′ |= D, t′ |= Σ and t′ 6|= τ , each of which is
straightforward with the help of the sets Xi.

The decidability of XC-Imp (MSO,XKFD,Reg) thus fol-
lows from the decidability of the finite satisfiability problem
for MSO logic on trees [14].

4.2 Upper bounds based on the chase
Our chase algorithms directly operate on trees, not on

relations. A discussion of an alternative approach that is
based on the relations obtained by X2R-mappings will be
given at the end of this subsection.We next describe a basic
algorithm in which the tree is always explicitly available.
It will be used for the polynomial time upper bound for
XC-Imp(TP[/, ∗],FD). Later on, we will also use algorithms
that involve implicit representations of trees. The basic tree
chase algorithm might be of interest on its own, for example
to repair XML trees violating constraints.

The basic chase algorithm consists of three parts: (1) the
computation of an initial tree, (2) the actual tree chase and
(3) a subprocedure for the propagation of the merge of two
nodes for (2). As the definition of the initial tree can be

77

Algorithm 1 Tree Chase

1: function chase(t,Σ)
2: while ∃σ = (p, Y→B) ∈ Σ. t 6|= σ do
3: (π1, π2)← witness-pair(t, σ)
4: merge(t, π1(B), π2(B))
5: end while
6: end function

Algorithm 2 Merge two nodes

1: function merge(t, v1, v2)
2: if v1 = v2 then return
3: if v1 = root(t) ∨ v2 = root(t) then fail
4: merge(v1.@, v2.@)
5: if lab(v1) 6= lab(v2) then
6: if lab(v1) = # then lab(v1)← lab(v2)
7: else if lab(v2) = # then lab(v2)← lab(v1)
8: else fail
9: end if

10: merge(v1, v2)
11: merge(t,parent(v1),parent(v2))
12: end function

easily decribed with the help of (3), we postpone it until
after the description of (2) and (3).

Let I = (Σ, τ) be an instance of XC-Imp(TP[/, ∗],FD)
with τ = (p, Y→B). We already note that the initial tree,
tτ for the basic tree chase might have nodes labelled by #
that indicate that the label of that node has not yet been
fixed by the algorithm and still may match any (but only
one) label.

Algorithm 1 implements (2) and uses the merge algorithm
given as Algorithm 2 for (3).

The tree chase algorithm works similarly as the relational
chase. Starting from a tree that does not satisfy τ , it applies
chase steps as long as there exists a dependency σ = Y→B ∈
Σ, that is not satisfied by the current tree. Whether σ is
satisfied in the current tree is tested by the algorithm of
Lemma 4.4. A single tree chase step either merges two nodes
or identifies two data values, depending on whether B is a
node or a data term, and based on the witness pair yielded
by the test algorithm.

The identification of two data values di and dj is simply
done by replacing all occurrences of dj by di, and it does
not matter which is replaced by which. The merge of two
different nodes v1 and v2 requires a bit more care: First of
all, it is only possible if the labels of v1 and v2 are compati-
ble, which is the case if they are equal or one of them is the
wildcard label #. If the labels are compatible, the nodes can
combined into one node which gets all children of v1 and v2

as children. However, unless v1 and v2 have the same par-
ent, their parents have to be merged recursively. Otherwise
the structure would no longer be a tree. This is exactly the
point, where the tree chase differs from the relational chase.
It should be noted that, as we apply the tree chase only in
the context of tree patterns without descendant axis, only
nodes of the same depth need to be merged.

Next, we define the initial tree tτ for the basic tree chase
for a given instance I = (Σ, τ) with τ = (p, Y→B). Intu-
itively, it is minimal with the property tτ 6|= τ . To this end,
let t1 and t2 be two copies of p (which use node ids from
V instead of variables from X) in which all data values are

Algorithm 3 Algorithm for XC-Imp(TP[/, ∗],FD)

1: Compute initial tree tτ
2: if chase(t,Σ) fails then Output “Yes”
3: t := chase(t,Σ)
4: if t |= τ then Output “Yes” else Output “No”

distinct (every data value occurs at most once in t1 ∪ t2)
and π1 and π2 be the canonical embeddings of p in t1 and
t2, respectively. Every node in t1 and t2 whose correspond-
ing node in p has a wildcard label ∗ is labelled by #. The
tree tτ results by merging the roots of t1 and t2 and all pairs
(π1(z), π2(z)), for which z occurs as a node term in Y and it
identifies all pairs of data values (π1(z).@, π2(z).@), for which
z.@ is a data term in Y . By applying the node merges the
embeddings π1 and π2 yield two embeddings π′1 and π′2 such
that (π′1, π

′
2) is a witness pair for tτ and τ .

The decision algorithm for XC-Imp(TP[/, ∗],FD) is given
as Algorithm 3.

Example 2. An example run of the chase algorithm is de-
picted in Figure 4. Starting from the initial tree, the run cor-
responds to testing the implication of {σ1, σ2} |= σ3, where
all dependencies use the tree pattern

p = /root/person〈xp〉[/name〈xn〉]/u-id〈xu〉

and the functional dependencies are σ1 = (p, xu.@→xu),
σ2 = (p, xp→xn) and σ3 = (p, xu.@→xn.@).

Intuitively, σ1 expresses that u-ids are unique, σ2 that
every person only has one name, and σ3 whether every u-id
has exactly one associated name. Note that the constraints
only apply to person, name and u-id nodes, where the person
has at least one name and at least one uid, as other nodes
are not contained in the mapping.

The chase merges v4 and v8, as σ1 enforces them to be
equal. The recursive call in Line 11 of the merge function
unifies v2 and v6 to restore the tree structure. Finally v3 and
v7 and their data values are identified, as σ2 is now violated.
Note while in this case there exists only one possible run of
the chase algorithm, in general there can be many runs,
which only differ in the order in which the rules are applied.
In the resulting tree, {σ1, σ2} is satisfied, as well as σ3. We
will see in the proof of Proposition 4.7 that this implies
{σ1, σ2} |= σ3.

Before we state the complexity result for XC-Imp(TP[/, ∗],
FD), we first state the correctness of Algorithm 3.

Proposition 4.6. Algorithm 3 terminates for every in-
stance I = (Σ, τ) of XC-Imp(TP[/, ∗],FD). It answers “Yes”
if and only if Σ |= τ .

The proof is by an induction on the number of chase steps.
and will be given in the full version of the paper. We get
the following easy corollary.

Proposition 4.7. XC-Imp(TP[/, ∗],FD) can be solved in
polynomial time.

Proof. As the algorithm is correct and witness pairs can
be computed in polynomial time (Lemma 4.4) and there
are at most linearly many merge steps the algorithm always
terminates and only needs polynomial time.

78

v1:root

v2:person

v3:name
”1”

v4:u-id
”2”

v6:person

v7:name
”3”

v8:u-id
”2”

v1:root

v2:person

v3:name
”1”

v4:u-id
”2”

v6:person

v7:name
”3”

v1:root

v2:person

v3:name
”1”

v4:u-id
”2”

v7:name
”3”

v1:root

v2:person

v3:name
”1”

v4:u-id
”2”

merge(v4, v8)

σ1 is violated

merge(v2, v6)

recursive invocation

merge(v3, v7)

σ2 is violated

Figure 4: Example run of the chase algorithm.

The tree chase can be extended in the presence of sDTDs,
however the definition of the initial tree has to be adapted6,
as this should conform to D. This modification might in-
volve replacing leave nodes with a label ` by trees t` but also
the insertion of additional trees of the form t` below inner
nodes of tτ and the merge of two sibling nodes if the sDTD
only allows one child with their label. Another difference
to the schema-free case is that we apply the chase to a set
T of trees that results from the initial tree by replacing #-
labels in all possible ways. If the modified initialization is
successful then during the tree chase only D-valid trees will
be constructed and the correctness proof is similar to the
one of Proposition 4.6.

Proposition 4.8. For every instance I = (Σ, τ,D) of
XC-Imp(TP[/, ∗],FD, sDTD), Algorithm 3 with the modi-
fied initialization terminates for some tree t in T and an-
swers “Yes”, if and only if Σ |=D τ .

However, as T might consist of an exponential number of
trees of exponential size (in the size of D and τ), Proposi-
tion 4.8 does not immediately yield a polynomial time algo-
rithm. However, we get the following result.

Proposition 4.9. XC-Imp(TP[/, ∗],FD, sDTD) can be
solved in exponential time.

For XC-Imp(TP[/],FD, sDTD) we can do better by using
a condensed representation of trees that avoids the exponen-
tial blowup that might be caused by the sDTD.

Proposition 4.10. XC-Imp(TP[/],FD, sDTD) can be
solved in polynomial time.

At the end of this subsection, we want to discuss an al-
ternative approach to the tree based chase. We now sketch
an (exponential time) chase, which works on the produced
relation(s) instead of the tree.

For simplicity, we assume, that we only have to deal with
one relation R, because all functional dependencies use the
same tree pattern p. Without proof, we note that this can
be enforced by converting the FDs to FFDs and merging all
patterns to one “universal” pattern.

The chase based on R needs to incorporate the following
constraints, which are implicit, due to the tree structure of
our data model:

• every tree has a unique root

• every node (except the root) has a unique parent

• every node has a unique data value

• join dependencies corresponding to branchings in the
pattern7

6And we will see soon that there is more than one initial
tree.
7We will not introduce join and inclusion dependencies for-
mally.

• inclusion dependencies corresponding to inclusion of
subpatterns

The first 3 constraints can be described by relational func-
tional dependencies. For details see [9]. For the other con-
straints, we just give two examples. Let p be the tree pattern
/a[/b]/c. Due to the branching structure of trees, the join
dependency σ./ = (/a〈x〉[/b〈y〉]/c〈z〉, {x, y} ./ {x, z}) holds
for all trees. Let now p be the pattern /a[/b]/b/c. Due to
the inclusion of sub-patterns of p, the inclusion dependency
σ⊆ = (/a[/b〈x〉]/b〈y〉/c, y ⊆ x) holds for all trees.

The standard chase algorithm has an exponential worst
case running time when these constraints are added. In [9]
it is shown how the join dependencies can be incorporated
into the chase without an exponential blow-up. However, the
incorporation of the implicit inclusion dependencies seems
to be harder, which is one reason, why we chase directly on
trees.

4.3 Upper bounds based on simple counter ex-
amples

For counterexample based proofs the following lemma is
useful. It establishes small counterexample properties for
various kinds of constraints. By leaves(t), we denote the set
of leaves of a tree t.

Lemma 4.11. Let Σ ⊆ XC(TP,FD) be a set of constraints
and τ = (p, Y→B) be a constraint. If there is a tree t with
t |= Σ and t 6|= τ then there is a tree t′ with

(1) t′ |= Σ and t′ 6|= τ ;

(2) | leaves(t′)| ≤ 2| leaves(p)|;

(3a) if all tree patterns are from TP[/, ∗] then depth(t′) ≤
depth(p);

(3b) if all tree patterns are from TP[/, //] then depth(t′) ≤
8 depth(p);

(3c) if all FDs are XKFDs then depth(t′) ≤ 8mdepth(p),
where m is the maximal depth of all patterns in Σ.

Conditions (1), (2) and (3b) can even be guaranteed in the
presence of esDTDs.

Proof. Let t be a tree with t |= Σ and t 6|= τ . Then there
is some witness pair (π1, π2) for t 6|= τ . Let P be the set of
nodes of t to which some pattern node is mapped via π1 or
π2.

We first describe the construction of a tree t′1 fulfilling (1)
and (2) and, if all patterns are from TP[/, ∗] also (3a).

Let t′1 be the tree obtained from t by removing all nodes
that are not in P and not ancestors of nodes in P . It is
straightforward that t′1 |= Σ, t′1 6|= τ and | leaves(t′1)| ≤
2| leaves(p)|. Furthermore, if all patterns are from TP[/, ∗],
then depth(t′) ≤ depth(p). Thus, t′1 fulfils (1), (2) and (3a).
The construction of t′1 is not affected if an esDTD has to

79

be respected, as it does not change the set of labels of the
tree (unlike the following two constructions).

If all patterns are from TP[/, //] we can construct another
tree t′2 from t′1 as follows. Let P ′ contain all nodes from P
and all nodes of t that are lowest common ancestors of at
least two nodes of P . Clearly |P ′| ≤ 2|P | ≤ 4|p|. To obtain
t′2, we replace in t′1 all maximal paths of nodes that are not
in P ′ by a path of length 2 whose single intermediate node
carries a new label # that does not occur in any pattern of Σ.
By construction, | leaves(t′2)| ≤ | leaves(t′1)| ≤ 2| leaves(p)|
and t′2 6|= τ . On the other hand, if all patterns in Σ are
from TP[/, //], every embedding of a pattern in t′2 is also an
embedding in t and therefore t′2 |= Σ. This is, because an
embedding of a pattern without wildcards can only “bridge”
the gaps introduced by the new symbols # with the help of
decendant edges. Finally, the depth of t′2 is at most twice
the size of P ′ and thus depth(t′2) ≤ 8 depth(p). Thus, t′2
fulfils (1), (2) and (3b).

Let t′3 be the tree obtained from t′1 by replacing every
maximal paths of length > m of nodes that are not in P ′ by
a path of length m in which every node gets a separate new
data value and is labelled with a new label # that does not
occur in any pattern of Σ. It is easy to see that this trans-
formation does not introduce any violations of any XKFDs
from Σ (as the new paths do not match any subpatterns that
were not matched before by the replaced path), and thus, t′3
is a counter-example tree of depth ≤ 8mdepth(p).

By combining Lemmas 4.4 and 4.11 we get the following
upper bounds.

Proposition 4.12. The following implication problems
are in co-NP.

(a) XC-Imp(TP[/, //],FD)

(b) XC-Imp(TP[/, ∗],FD, esDTD)

(c) XC-Imp(TP,XKFD)

Proof sketch. Let in the following always I = (Σ, τ)
be an instance of the implication problem at hand with τ =
(p, Y→B) and D an esDTD, in case of (b). Lemma 4.11
guarantees for all three cases (a), (b), and (c) that, if there is
a counter-example tree t to I at all, there is one of depth in
O(|Σ||τ |) and with a number of leaves in O(|τ |). This yields
immediate NP-algorithms for the complement of each of the
three implication problems: guess a tree t that obeys the
depth and width bounds of Lemma 4.11 and verify whether
it is a counter-example to I. Thus, the co-NP upper bound
follows in all three cases.

By applying more involved proofs we get the following
upper bounds.

Proposition 4.13.

(a) XC-Imp(TP[/, //],XKFD, sDTD) is in co-NP.

(b) XC-Imp(TP,XKFD, sDTD) is in PSPACE.

Proof idea. Both upper bounds rely on the same basic
idea. First, it is easy to see that if an instance (Σ, τ,D) has
a counter-example then it has one of the form t̂D, for some
tree t with at most 2|τ | leaves. However, it is not a priori
clear there is such a t of polynomial size. We associate with
a counter-example tree t and a witness pair π = (π1, π2)

a skeleton sI,π(t) which basically consists of all nodes from
the range of π and all branching nodes and, for every path
between these special nodes, additional information on the
possible matches of certain partial patterns (and, actually,
pairs of partial patterns) of Σ. We show that,

• for every σ ∈ Σ, sI,π(t) has a witness pair for σ (in a
sense that will be defined later) if and only if t has a
witness pair for σ, and

• sI,π(t) is of polynomial size in |Σ|, |τ | and |D|.

The algorithm for (b) is a non-deterministic polynomial
space algorithm that guesses t, computes sI,π(t) and verifies
that sI,π(t) |= Σ and sI,π(t) 6|= τ .

For (a) we show by an automata theoretic argument that
in the absence of wildcards in patterns, the length of paths
between special nodes in a minimal counter-example can be
polynomially bounded. The details of the proof will be given
in the full version of the paper.

4.4 Lower bounds
The co-NP lower bounds in the following proposition are

all by reduction from SAT to the complement of the respec-
tive implication problem.

Proposition 4.14. The following implication problems
are co-NP-hard.

(a) XC-Imp(TP[/, ∗],XKFD, esDTD)

(b) XC-Imp(TP[/, //],XKFD)

Proof. Both proofs are by reductions from 3-SAT to the
complement of the implication problem. The algorithmic
problem 3-SAT asks whether a given propositional formula
in 3-CNF is satisfiable. A propositional formula in 3-CNF
is a conjunction ϕ = C1 ∧ · · · ∧ Cm of clauses, over some
variables y1, . . . , yn, where each clause Ci = `i1 ∨ `i2 ∨ `i3 is
a disjunction of three literals.

Let a 3-CNF formula ϕ = C1 ∧ · · · ∧ Cm with variables
y1, . . . , yn and clauses of the form Ci = `i1∨`i2∨`i3 be given.
An implication instance (D,Σ, τ) for the reduction for (a)
is constructed from ϕ as follows. The idea for the reduction
is to associate truth assignments θ with 0-1-labelled paths
such that θ(yi) = 1 iff the i-th symbol is 1. Thus, first of
all, the esDTD D enforces the alphabet {0, 1}.

For every clause Ci, we add a XKFD σi with pattern pi
to Σ that states that the last node of a path of length n is
non-branching if the truth assignment of that path fails to
satisfy Ci. That is, if there is a path of length n that does
not match any pattern pi (and thus its corresponding truth
assignment satisfies all constraints) then a counterexample
to Σ |= τ can be constructed by branching at its n-th node.
The overall effect is that τ is implied by Σ if and only if
there is no satisfying truth assignment for ϕ.

We now describe the construction in more detail.
The target dependency τ is defined as the XKFD

τ
def
= (/∗/∗/ . . . /∗〈x〉/∗〈y〉, x→y)

with n + 1 consecutive ∗ positions, stating that a node at
depth n can have only one child node. For every i, let σi be
the XKFD

σi = (/αij/ . . . /αin〈x〉/∗〈y〉, x→y),

80

where αij is 0 if yj occurs in Ci, 1 if ¬yj occurs in Ci and
∗, otherwise.

The reduction can be carried out in polynomial time. It
remains to prove that ϕ is satifiable, if and only if Σ 6|=D τ .

(if): Let us assume Σ 6|=D τ . By the proof of Lemma 4.11
and as D allows that 0-labelled and 1-labelled nodes can
be leaves, there is a tree t = (V,E, lab, dv, <c) with V =
{r, v1, . . . , vn, w1, w2} and E = {(r, v1), (vn, w1), (vn, w2)} ∪
{(vi, vi+1) | i ∈ {1, . . . , n− 1}} such that t |= D, t |= Σ and
t 6|= τ .

Let θ be the truth assignment induced from t, that is,
θ(yj) is the label of vj , for every j.

Towards a contradiction, let us assume that, for some i ≤
m, θ 6|= Ci. Then the pattern pi of σi matches the two
paths of t of length n+ 1 and thus σi does not hold. This is
a contradiction from which we can conclude that θ |= ϕ and
that, in particular, ϕ is satisfiable.

(only if): Let us assume that ϕ is satisfiable via some
truth assignment θ. Let t be the tree with the same set V
of vertices and set E of edges as the tree in the (if)-part and
let node vj carry label θ(yj) = 1, for every j. Let w1, w2

be labelled with 1, for concreteness. As vn has two children,
t 6|= τ . On the other hand, as θ |= Ci, for every i, none of the
patterns pi of the constraints in Σ matches t and thus t |= Σ,
as desired. Therefore, t is a counter-example for Σ |=D τ .

The proof of (b) is also by reduction from 3-SAT to the
complement of the implication problem and follows a similar
approach, but the encoding of truth assignments is different:
For every i ≤ n, there are two symbols, ai and bi, both of
which have to occur in any path matching τ . The corre-
sponding truth assignment θ is defined by θ(yi) = 1 if ai is
a descendant of bi and θ(yi) = 0 otherwise. More detail will
be given in the full version of the paper.

The two remaining lower bounds are both by reduction
from tiling problems. Their proofs will be given in the full
version of this paper.

Proposition 4.15.

(a) XC-Imp(TP,XKFD, esDTD) is PSPACE-hard.

(b) XC-Imp(TP,FD, esDTD) is undecidable.

The proof of Proposition 4.15 (a) is by a reduction from
the corridor tiling problem, where the corridor width m is
specified in unary encoding. The constraints constructed in
this reduction do not refer to data values at all, instead it
only uses structural constraints. In a nutshell, tiles in the
same column of successive rows are compared by (unary)
tree patterns of linear length. The undecidability proof of
Proposition 4.15 (b) is by a reduction from the unbounded
tiling problem. Here, data values are used to encode row
“identities” and column “identities”.

5. EXPLORING THE FRAMEWORK
The framework of X2R-constraints can be instantiated

with an arbitrary X2R-mapping language M and an arbi-
trary relational constraint language C. In the remainder of
this section, we are going to sketch ways in which XML con-
straint languages that are used in practice or were proposed
in the literature can be viewed as particular instantiations
of the X2R-mapping based framework.

1: <xs:element name="root">
2: [...]
3: <xs:key name="uid">
4: <xs:selector xpath="./person"/>
5: <xs:field xpath="u-id"/>
6: </xs:key>
7: <xs:keyref name="files" refer="uid">
8: <xs:selector xpath=".//file"/>
9: <xs:field xpath="u-id"/>
10: </xs:keyref>
11: </xs:element>

Figure 5: XML Schema Key and Foreign Key Constraint

5.1 Relative Key Constraints
Arenas, Fan and Libkin [1] investigated relative key con-

straints, that is key constraints that hold on subtrees.
Consider for example a company with several establish-

ments. In this case user-ids might be local to establishments,
i.e. persons from different establishments are allowed to use
the same user-id. This constraint can be written (using our
syntax) as

σ = (/establishment〈x〉/person〈y〉/u-id〈z〉, {x, z.@}→y).

Using the node variable x on the left side changes the con-
straint to be local to establishments, as tuples referring to
different establishments cannot conflict any more. In gen-
eral, relative key constraints can be expressed as XC(TP[/],
XKFD) constraints in our framework.

5.2 XML Schema Integrity Constraints
To compare XML Schema integrity constraints with our

framework, we need to introduce some terminology.
For every tree t valid wrt to an XSD X, X assigns a type

to every node v of t. For every possible type α of an XSD X,
the set of nodes matched by α can be described by a regular
language Lα over ancestor strings [11]. A node v belongs to
the type α, if and only if the ancestor string of v is in Lα.

XML Schema [5] describes three kinds of integrity con-
straints: unique constraints, key constraints and foreign key
constraints. Every XML Schema integrity constraint is spec-
ified relative to an element definition, that is XML Schema
integrity constraints are relative constraints, like the con-
straints investigated in [1].

Figure 5 gives an example for an XML key constraint
roughly equivalent to σuser from Section 3 in XML Schema
notation, leaving out the tail of the schema description.

Line 1 starts an element declaration for elements named
root. We leave out the structural part of the type definition.
Line 3 starts the definition of the key constraint and speci-
fies a name for it, which is relevant, e.g., for foreign key con-
straints. Line 4 specifies the selector path (./person), which
is a restricted XPath-expression that is evaluated relative to
nodes matched by the element declaration: in this example
it is evaluated relative to nodes of label root. Note that the
element declaration not necessarily matches all elements of
label root. Line 5 specifies the field of the constraint (u-id in
the example). This XPath-expression is evaluated relative
to nodes matched by the expression from Line 4. In general,
there may be arbitrarily many field expressions F1, . . . , Fn.

We only give a simplified description of integrity con-
straints in XML Schema, as they are quite complex in gen-
eral. For a tree t, to satisfy a key constraint, the following
conditions have to be met by every node v matched by the

81

surrounding element declaration:

(1) for every node v′, that is matched by the selector path,
it holds that every field expression Fi matches exactly
one node vi, and

(2) for every two nodes vt1 and vt2 matched by the selector
path, the vector of data values of the nodes matched by
the field specifications are not identical.

Let us assume for the moment, that the element declara-
tion in Figure 5 only matches the root node. From Condi-
tions (1) and (2) we then get, that the key constraint from
Figure 5 corresponds to three constraints in our framework.
From (1) we get the constraints (/root/person〈y〉/u-id〈z〉,
y→z) and (/root/person〈y〉/u-id〈z〉,NN(y, z)), saying that
every person-node (directly below the root) should have at
most one (respectively at least one) u-id node as child.

From (2) we get our intended constraint

(/root〈x〉/person〈y〉/u-id〈z〉, {x, z.@}→y),

which is equivalent to σuser. We note that constraints rela-
tive to the root node are equivalent to absolute constraints.

This looks like key constraints could be described by a
subset of XC(TP [/,//],XKFD). This is true, if the struc-
tural part of (the relevant part of) the XML Schema can be
described by a DTD. However in general, the element decla-
ration could be enclosed inside a complex type declaration.
In this case we have to ensure, that an XML Schema in-
tegrity constraint definition is only applied to nodes matched
by the element declaration.

There are two straightforward ways to accomplish this.
First, we could use tree patterns which can talk about reg-
ular paths, second, we could allow tree patterns to match
nodes according to their type.

XML integrity constaints, which are defined over regu-
lar paths have been investigated in [1]. However, these
constraints do not fully cover XML Schema integrity con-
straints, as the field expressions are restricted to paths of
length one.

Let Lroot be the regular language describing all possi-
ble ancestor strings for elements matched by the element
declaration and R be a regular expression with L(R) =
Lroot. Note that in our example L(R) = {root}. Then
the constraints can be described using the tree pattern p =
/R/person/u-id.

The second approach has the advantage, that we get the
types of nodes for free, when a tree is validated against a
schema, as in the validation process the types have to be
computed anyway. These types can then be used to match
nodes of a tree pattern using existing algorithms.

XML Schema unique constraints have the same syntax
as XML Schema key constraints, only the semantic differs.
Unique constraints do not enforce that every field matches
at least one node, i.e. it could match zero nodes. Accord-
ingly, (2) is modified, that it only enforces the vector of data
values to be different, when all fields match one node. In our
framework, the difference is, that unique constraints do not
enforce non-null constraints.

Foreign key constraints again use a very similar syntax.
An example is given in Figure 5 Lines 7 to 11. The only
difference in syntax is, that foreign keys reference a key con-
straint, in the example the uid constraint from above. The
example foreign key specifies, that the u-id of files (described

somewhere in the XML tree) should exist, i.e. there should
be a person with this u-id.

For space reasons, we do not describe the semantics here,
but just note that foreign key constraints can be expressed
by inclusion constraints (over tree pattern mappings) in our
framework.

5.3 XML functional dependencies (XFDs)
The literature has several different definitions of func-

tional dependencies for XML data, e.g., [2, 9, 6, 15, 10].
We concentrate here on XFDs as introduced by Arenas and
Libkin [2] and further examined by Kot and White [9]. An
XFD σ = Y→Z consists of two sets of paths specifying the
attributes of the functional dependency. As shown8 in [9],
XFDs can be canonically expressed using XC(TP[/],FFD),
where the tree pattern p is the (unique) smallest tree pat-
tern (with respect to the number of nodes) that contains all
paths from Y and Z. However, tree patterns for XFDs need
to be duplicate free9, that is they do not contain two edges
(x, y) and (x, z) with lab(y) = lab(z) and y 6= z. Thus,
XFDs have the same expressiveness as functional dependen-
cies over duplicate-free tree patterns.

While it is immediatly clear, that the restriction not to use
the descendant axis limits the expressivity, as constraints
over recursive parts of schemas cannot be expressed, the re-
striction to duplicate free patterns is more subtle. Note that
the dependency (/r/a〈xa〉[/b/c〈xc〉]/b/d〈xd〉, {xc, xd}→xa)
cannot be expressed with duplicate free patterns. Especially
it is different from (/r/a〈xa〉/b[/c〈xc〉]/d〈xd〉, {xc, xd}→xa).

Kot and White give an axiomatization of XFDs [9]. The
axiomatization includes FFDs and NNs. They also present
a chase-algorithm to decide the implication problem in poly-
nomial time.

Another (more general) definition of XFDs has been pro-
posed by Hartmann and Link [6], allowing XFDs to com-
pare complete subtrees. For example, they can specify the
dependency that there are no two a-labelled nodes that have
equivalent (meaning isomorphic) subtrees. Dependencies of
this kind cannot be expressed in our framework as they are
second order constraints, i.e. they can compare sets of nodes.

5.4 Structural Constraints
Structural constraints are usually given by schemas. Pop-

ular schema languages for XML include XML Schema and
Document Type Definitions (DTDs). Simple DTDs, as de-
fined in Section 2 are an important subclass of DTDs.

It has been observed before (e.g. [9]), that simple DTDs
imply certain integrity constraints as follows. Let D be a
simple DTD. We define ΣD ⊆ TP⊥(/,//,FD,NN) as ΣD

def
={

(//a〈xa〉/b〈xb〉, xa→xb)
∣∣∣∣ a; γbγ′ ∈ D ∨
a; γb?γ′ ∈ D

} ⋃{
(//a〈xa〉/b〈xb〉,NN(xa, xb))

∣∣∣∣ a; γbγ′ ∈ D ∨
a; γb+γ′ ∈ D

}
The first row contains all functional dependencies enforced

by D, as there is at most one child with a particular label.
The second row contains not null constraints enforced by D,
as there is at least one child with a particular label.

8We note that Kot and White define the mapping of a tree
pattern using unfolding of nested relations. The definition
is equivalent to our definition using embeddings.
9Duplicate free tree patterns have been considered in [12]

82

Lemma 5.1 ([9]). For every simple DTD D, every tree
t with t |= D satisfies ΣD.

In [9] it is stated, that for implication of functional de-
pendencies under a given simple DTD D, it is possible to
replace D by the set ΣD of dependencies (Theorem 4 in [9]).
However, this is not entirely correct, as for functional depen-
dencies, that use labels not present in D, are trivially satis-
fied under D. The same holds for functional dependencies
that involve, say, b-children of a-nodes, where D disallows b
for children of a-labelled nodes.

An inference algorithms can easily deal with this subtlety.
However, on the formal level, it seems to require the addition
of an unusual kind of relational constraints enforcing some
attributes to be null (thus expressing that some nodes should
not exist in the tree).

6. CONCLUSION
We have introduced a framework for XML integrity con-

straints and solved some basic complexity questions for the
case, where the mappings are defined by tree patterns.

It can be observed that the impact of the descendant axis
is very strong in most cases. It increases the complexity
from polynomial time to (at least) co-NP and from co-NP
to PSPACE or even to undecidability.

We believe, that our upper bounds already hold for fic-
ticious functional dependencies, which are more expressive
than functional dependencies, especially when dealing with
incomplete data. However, the proofs will get more techni-
cal, due to the introduction of null values.

Among many open questions, the following seem to be
especially interesting:

• What is the impact on the complexities, if we add
other relational constraints, especially foreign key con-
straints?

• Is there a generic approach towards axiomatization
by combining axiom systems for relational constraints
with general tree axioms and axioms derived from the
query language at hand?

• Similarly, is there a generic approach to combine the
relational chase with tree-specific rules to get a chase
procedure for X2R-constraints?

7. REFERENCES
[1] M. Arenas, W. Fan, and L. Libkin. On the complexity

of verifying consistency of XML specifications. Siam J.
Comp., 38(3):841–880, 2008.

[2] Marcelo Arenas and Leonid Libkin. A normal form for
XML documents. ACM TODS, 29:195–232, 2004.

[3] Paolo Atzeni and Nicola M. Morfuni. Functional
dependencies and constraints on null values in
database relations. In Inf. Control, volume 70(1),
pages 1–31, 1986.

[4] P. Buneman, S.B. Davidson, W. Fan, C.S. Hara, and
W.C. Tan. Reasoning about keys for XML.
Information Systems, 28(8):1037–1063, 2003.

[5] S. Gao, C. M. Sperberg-McQueen, H.S. Thompson,
N. Mendelsohn, D. Beech, and M. Maloney. W3C
XML Schema Definition Language (XSD) 1.1 part 1:
Structures. Technical report, W3C, April 2009.
http://www.w3.org/TR/2009/CR-xmlschema11-1-
20090430/.

[6] Sven Hartmann and Sebastian Link. More functional
dependencies for XML. In Leonid Kalinichenko,
Rainer Manthey, Bernhard Thalheim, and Uwe
Wloka, editors, Advances in Databases and
Information Systems, volume 2798 of LNCS, pages
355–369. Springer Berlin / Heidelberg, 2003.

[7] Sven Hartmann, Sebastian Link, and Klaus-Dieter
Schewe. Functional dependencies over XML
documents with DTDs. Acta Cybernetica,
17(1):153–171, 2005.

[8] Sven Hartmann, Sebastian Link, and Thu Trinh.
Solving the implication problem for XML functional
dependencies with properties. In Anuj Dawar and Ruy
J. G. B. de Queiroz, editors, WoLLIC, volume 6188 of
LNCS, pages 161–175. Springer, 2010.

[9] Lucja Kot and Walker M. White. Characterization of
the interaction of XML functional dependencies with
DTDs. In ICDT, pages 119–133, 2007.

[10] Mong Lee, Tok Ling, and Wai Low. Designing
functional dependencies for XML. In EDBT, pages
145–158. 2002.

[11] W. Martens, F. Neven, T. Schwentick, and G.J. Bex.
Expressiveness and complexity of XML Schema. ACM
TODS, 31(3):770–813, 2006.

[12] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1):2–45, 2004.

[13] L. Stockmeyer. The complexity of decision problems in
automata and logic, 1974. Ph.D. Thesis, MIT, 1974.

[14] James W. Thatcher and Jesse B. Wright. Generalized
finite automata theory with an application to a
decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, 1968.

[15] Millist W. Vincent, Jixue Liu, and Chengfei Liu.
Strong functional dependencies and their application
to normal forms in XML. ACM TODS, 29(3):445–462,
September 2004.

83

