
Counting Database Repairs that Satisfy Conjunctive
Queries with Self-Joins

Dany Maslowski
University of Mons (UMONS)

dany.maslowski@umons.ac.be

Jef Wijsen
University of Mons (UMONS)
jef.wijsen@umons.ac.be

ABSTRACT

An uncertain database is defined as a relational database
in which primary keys need not be satisfied. A block is a
maximal subset of tuples of the same relation that agree on
the primary key. A repair (or possible world) of an uncer-
tain database is obtained by selecting exactly one tuple from
each block. From a probabilistic database perspective, an
uncertain database is a restricted kind of block-independent
disjoint (BID) probabilistic database, where the restriction
is that the probabilities of tuples in a block are equal and
sum up to one.
For every fixed Boolean query q, the counting problem

♮CERTAINTY(q) takes as input an uncertain database db

and asks to determine the number of repairs that satisfy
q. A Boolean conjunctive query is self-join-free if no rela-
tion name occurs more than once in it. In previous work,
it was proved that for every self-join-free Boolean conjunc-
tive query q, the problem ♮CERTAINTY(q) is either in FP

or ♮P-complete, and it is decidable which of the two cases
applies. This complexity dichotomy has its analogue in BID
probabilistic databases.
The current paper investigates the complexity of the prob-

lem ♮CERTAINTY(q) for Boolean conjunctive queries with
self-joins. Our most appealing result is that for every Boolean
conjunctive query q (possibly with self-joins) in which all pri-
mary keys consist of a single attribute, ♮CERTAINTY(q) is
either in FP or ♮P-complete, and it is decidable which of the
two cases applies. Significantly, no analogous dichotomy for
conjunctive queries with self-joins is known for BID proba-
bilistic databases.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages—query lan-
guages; H.2.4 [Database Management]: Systems—rela-
tional databases

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

General Terms

Theory, Algorithms

Keywords

Conjunctive queries; consistent query answering; database
repairing; primary keys; probabilistic databases

1. INTRODUCTION
Primary key violations are a natural way for modeling un-

certainty in the relational data model. Tuples of the same
relation with the same primary key value are mutually exclu-
sive alternatives for each other. This representation of un-
certainty is also used in probabilistic databases, where each
tuple is associated with a probability and distinct tuples
with the same primary key value are disjoint probabilistic
events [12, p. 35].

In this paper, the term uncertain database is used for
databases with primary key constraints that need not be
satisfied. A repair (or possible world) of an uncertain data-
base db is a maximal subset of db that satisfies all primary
key constraints. Semantics of querying follows the conven-
tional paradigm of consistent query answering [2, 3]: Given a
Boolean query q, the decision problem CERTAINTY(q) takes
as input an uncertain database db and asks whether q is
satisfied by every repair of db. Unless specified otherwise,
whenever we say “query” in the remainder of this paper, we
mean “Boolean query.”

The counting variant of CERTAINTY(q), which has been
denoted ♮CERTAINTY(q), takes as input an uncertain data-
base db and asks to determine the number of repairs of db
that satisfy query q. Maslowski and Wijsen [11] have re-
cently proved that for every self-join-free conjunctive query
q, the counting problem ♮CERTAINTY(q) is either in FP

or ♮P-complete, and it is decidable which of the two cases
applies. A conjunctive query is self-join-free if no relation
name occurs more than once in it. The aim of the current
paper is to investigate the complexity of ♮CERTAINTY(q)
for conjunctive queries q with self-joins. Our most appeal-
ing result is that the aforementioned complexity dichotomy
carries over to self-joins under the condition that all primary
keys are simple. A primary key is simple if it consists of a
single attribute.

Example 1. The primary key conf is underlined in the
conference database of Fig. 1. Maximal sets of tuples that
agree on their primary key, called blocks, are separated by
dashed lines. There is uncertainty about the frequency of

155 10.5441/002/icdt.2014.18

R conf rank frequency

ICDT A biennial

ICDT A annual

KDD A annual

KDD B annual

Figure 1: Uncertain database.

R A B
1 b
1 c

S A B
2 b
2 c

Figure 2: Uncertain database with four repairs.

ICDT1, and about the rank of KDD. The database has four
repairs. The query

∃y∃z1∃z2(R(‘ICDT’, y, z1) ∧R(‘KDD’, y, z2))

(Do ICDT and KDD have equal ranks?) is true in only two
repairs.

Moving from self-join-free conjunctive queries to conjunc-
tive queries with self-joins is a major challenge. To get a
flavor of an additional hurdle incurred by self-joins, consider
the following conjunctive queries, where b and c are distinct
constants:

q1 = ∃xR(x, b) ∧ ∃yS(y, c)

q2 = ∃xR(x, b) ∧ ∃yR(y, c)

The query q1 is self-join-free, while q2 contains a self-join.
These queries are composed of the three conjuncts ∃xR(x, b),
∃yS(y, c), and ∃yR(y, c). For the uncertain database of
Fig. 2, it is straightforward to verify that each conjunct eval-
uates to true on 2 repairs (out of a total of 4 repairs). That
is, the fraction of repairs satisfying each individual conjunct
is 2

4
= 1

2
. Since the two conjuncts of q1 refer to distinct

relations, their truth values are independent of one another.
Therefore, it is correct to conclude that the fraction of re-
pairs satisfying q1 is 1

2
· 1
2
= 1

4
. On the other hand, the two

conjuncts of q2 are not independent, because for the data-
base of Fig. 2, any repair that satisfies ∃xR(x, b) will falsify
∃yR(y, c), and vice versa.
For a query q, the problem ♮CERTAINTY(q) is a special

case of probabilistic query answering. Let N be the total
number of repairs of a given uncertain database db. If
a fact A (or, by extension, a Boolean query) evaluates to
true in m repairs, then its probability, denoted P(A), is
m/N . For example, in Fig. 1, the probability of the fact
R(ICDT,A, biennial) is 2/4, because it belongs to 2 repairs
out of 4. It can now be easily verified that for all distinct
facts A,B of db, the following hold:

• If the facts A and B belong to a same block, then
P(A ∧B) = 0. In probabilistic terms, distinct facts
of the same block represent disjoint (i.e., exclusive)
events.

• If the facts A and B belong to distinct blocks, then
P(A ∧B) = P(A) ·P(B). In probabilistic terms, facts
of distinct blocks are independent .

1Until 2009, ICDT was actually organized every two years.

R conf rank frequency P

ICDT A biennial 0.3

ICDT A annual 0.6

KDD A annual 0.5

KDD B annual 0.5

Figure 3: Representation of a BID probabilistic

database.

Probabilistic databases satisfying the above two properties
have been coined block-independent-disjoint (BID) by Dalvi,
Ré, and Suciu [4]. BID probabilistic databases can be rep-
resented by listing the probability of each fact, as illustrated
in Fig. 3. The main differences between uncertain databases
and BID probabilistic databases are twofold:

• In an uncertain database, all facts of a same block have
the same probability. In BID probabilistic databases,
facts of a same block need not have the same probabil-
ity. For example, in the BID probabilistic database of
Fig. 3, the two facts about ICDT have distinct proba-
bilities (0.3 and 0.6).

• In an uncertain database, the probabilities of facts in
a same block sum up to 1. In BID probabilistic data-
bases, this sum can be strictly less than 1.

A detailed comparison of both data models can be found
in [14].

The tractability/intractability frontier of evaluating self-
join-free conjunctive queries on BID probabilistic databases
has been revealed by Dalvi et al. [5]. As mentioned before,
on uncertain databases, this frontier was recently charted by
Maslowski and Wijsen [11]. In both these works, conjunctive
queries are self-join-free. Self-joins in BID databases have
not been systematically studied in depth [12, p. 88].

The situation is different for tuple-independent probabilis-
tic databases. In such a database, there is no notion of block
and all tuples represent independent events. The tracta-
bility/intractability frontier of evaluating unions of conjunc-
tive queries (possibly with self-joins) on tuple-independent
probabilistic databases has been revealed by Dalvi and Su-
ciu [6].

The remainder of this paper is organized as follows. The
next section further discusses related work. Section 3 in-
troduces basic notions. Section 4 recalls a dichotomy in
the complexity of ♮CERTAINTY(q) for self-join-free conjunc-
tive queries. In Section 5, we start our investigation on
the complexity of ♮CERTAINTY(q) when q is a conjunctive
query with a single relation name, denoted R. Such queries
are not self-join-free, unless they consist of a single con-
junct. We provide two lemmas that can be used for showing
(in)tractability of ♮CERTAINTY(q). Section 6 explains that
the assumption of a single relation is without loss of general-
ity, as multiple relations can be easily encoded into a single
one. In Section 7, we show our most appealing result: if q
is a conjunctive query in which all primary keys are simple,
then ♮CERTAINTY(q) is either in FP or ♮P-complete, and
it is decidable which of the two cases applies. Section 8 con-
cludes the paper and raises challenges for future research.

156

2. MORE RELATED WORK
The investigation of CERTAINTY(q) was pioneered by Fux-

man and Miller [7, 8], who defined a class of self-join-free
conjunctive queries q for which CERTAINTY(q) is first-order
expressible. Since then, the following complexity classifi-
cation problem has gained considerable research interest:
Given a conjunctive query q on input, determine the com-
plexity classes to which the problem CERTAINTY(q) be-
longs, or does not belong. For conjunctive queries with self-
joins, this complexity classification problem remains largely
open, which is likely due to the difficulty of treating self-
joins. For self-join-free conjunctive queries, the following
are known:

• Given an acyclic self-join-free conjunctive query q, it is
decidable whether or not CERTAINTY(q) is first-order
expressible [13].

• For each self-join-free conjunctive query q with exactly
two atoms, CERTAINTY(q) is either in P or coNP-
complete, and it is decidable which of the two cases ap-
plies [9]. The sufficient condition for coNP-complete-
ness has later on been generalized to more than two
atoms [14].

• For each self-join-free conjunctive query q in which all
primary keys are either simple or contain all attributes
of the relation, CERTAINTY(q) is either in P or coNP-
complete, and it is decidable which of the two cases
applies [10].

It remains an intriguing open conjecture that for each self-
join-free conjunctive query q, CERTAINTY(q) is either in P

or coNP-complete.
As explained in Section 1, the counting version of the de-

cision problem CERTAINTY(q), denoted ♮CERTAINTY(q),
is intimately related to the problem of evaluating conjunc-
tive queries on block-independent-disjoint (BID) probabilis-
tic databases. It was proved that for every self-join-free
conjunctive query q, ♮CERTAINTY(q) is either in FP or ♮P-
complete [11], using a proof inspired by an analogous com-
plexity dichotomy in BID probabilistic databases [5]. No
such complexity dichotomy is known for conjunctive queries
with self-joins.
For unions of conjunctive queries with self-joins, a com-

plexity dichotomy is known for tuple-independent proba-
bilistic databases [6]. The latter dichotomy is fundamentally
different from the dichotomy proved in Theorem 3 of this pa-
per, because tuple-independent probabilistic databases have
no notion of block.

3. PRELIMINARIES
We assume disjoint sets of variables and constants. If ~x is

a sequence containing variables and constants, then vars(~x)
denotes the set of variables that occur in ~x.
Let U be a set of variables. A valuation over U is a total

mapping θ from U to the set of constants. Such valuation θ
is extended to be the identity on constants and on variables
not in U .

Atoms and key-equal facts. Each relation name R of
arity n, n ≥ 1, has a unique primary key which is a set
{1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R has signature
[n, k] if R has arity n and primary key {1, 2, . . . , k}. The

relation name R is simple-key if k = 1. The relation name
R is all-key if n = k. Elements of the primary key are called
primary-key positions, while k + 1, k + 2, . . . , n are non-
primary-key positions. For all positive integers n, k such
that 1 ≤ k ≤ n, we assume denumerably many relation
names with signature [n, k].

If R is a relation name with signature [n, k], then we
call R(s1, . . . , sn) an R-atom (or simply atom), where each
si is either a constant or a variable (1 ≤ i ≤ n). Such
atom is commonly written as R(~x, ~y) where the primary key
value ~x = s1, . . . , sk is underlined and ~y = sk+1, . . . , sn.
A fact is an atom in which no variable occurs. Two facts

R1(~a1,~b1), R2(~a2,~b2) are key-equal if R1 = R2 and ~a1 = ~a2.
We will use letters F,G,H for atoms. For an atom F =

R(~x, ~y), we denote by key(F) the set of variables that occur
in ~x, and by vars(F) the set of variables that occur in F ,
that is, key(F) = vars(~x) and vars(F) = vars(~x) ∪ vars(~y).

Uncertain database, blocks, and repairs. A database
schema is a finite set of relation names. All constructs that
follow are defined relative to a fixed database schema.

An uncertain database is a finite set db of facts using only
the relation names of the schema. We write adom(db) for
the active domain of db (i.e., the set of constants that occur
in db). A block of db is a maximal set of key-equal facts of
db. An uncertain database db is consistent if it does not
contain two distinct facts that are key-equal (i.e., if every
block of db is a singleton). A repair of db is a maximal
(with respect to set containment) consistent subset of db.

Boolean conjunctive query. A Boolean conjunctive
query is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of
atoms. By vars(q), we denote the set of variables that occur
in q. The set q represents the first-order sentence

∃u1 · · · ∃uk

(

R1(~x1, ~y1) ∧ · · · ∧Rn(~xn, ~yn)
)

,

where {u1, . . . , uk} = vars(q). The query q is satisfied by
uncertain database db, denoted db |= q, if there exists a
valuation θ over vars(q) such that for each i ∈ {1, . . . , n},
Ri(θ(~xi), θ(~yi)) ∈ db. We say that q has a self-join if some

relation name occurs more than once in q (i.e., if Ri = Rj

for some 1 ≤ i < j ≤ n). If q has no self-join, then it is
called self-join-free. We say that q is unirelational if it is
empty or refers to only one relation name (i.e., if Ri = Rj

for all i, j).
Since every relation name has a fixed signature, relevant

primary key constraints are implicitly present in all queries;
moreover, primary keys will be underlined.

If q is a Boolean conjunctive query, ~x = 〈x1, . . . , xℓ〉 is
a sequence of distinct variables that occur in q, and ~a =
〈a1, . . . , aℓ〉 is a sequence of constants, then q[~x 7→~a] denotes
the query obtained from q by replacing all occurrences of xi

with ai, for all 1 ≤ i ≤ ℓ.

Complex part of a Boolean conjunctive query. The
following definition is borrowed from [11]. Let q be a Boolean
conjunctive query. A variable x ∈ vars(q) is called a liaison
variable if x has at least two occurrences in q.2 The complex
part of a Boolean conjunctive query q, denoted [[q]], contains
every atom F ∈ q such that some non-primary-key position
in F contains a liaison variable or a constant.
2Liaison variables are sometimes called “join variables” in
the literature. Notice nevertheless that in the singleton
query {R(x, x)}, which is not a genuine join, the variable
x is a liaison variable.

157

Example 2. The variable y is the only liaison variable in
q = {R(x, y), R(y, z), S(y, u, a)}, in which a is a constant.
The complex part of q is [[q]] = {R(x, y), S(y, u, a)}. The
complex part of {R(y, w), R(x, u), T (x, y)}, where T is all-
key, is empty.

If some atom F = R(~x, y1, . . . , yℓ) of a Boolean conjunc-
tive query q does not belong to q’s complex part, then
y1, . . . , yℓ are distinct variables that have only one occur-
rence in q. Intuitively, such variables can be disregarded
when evaluating the query q, because they do not impose
any join condition. This intuition underlies the following
helping lemma.

Lemma 1. Let q be a Boolean conjunctive query. Let
db be an uncertain database. Let r1, r2 be two repairs of
db. For every valuation θ over vars([[q]]), if r1 |= θ(q) and
θ([[q]]) ⊆ r2, then r2 |= θ(q).

Proof. Let θ be a valuation over vars([[q]]) such that r1 |=
θ(q) and θ([[q]]) ⊆ r2. Since r1 |= θ(q), we can extend θ to a
valuation µ1 over vars(q) such that µ1(q) ⊆ r1. Every atom
F ∈ q \ [[q]] is of the form R(~x, y1, . . . , yℓ) where each yi is a
variable that occurs only once in q. Let µ2 be the extension
of θ such that for every atom F ∈ q\ [[q]], we have that µ2(F)
is the fact of r2 that is key-equal to µ1(F). Obviously, µ2 is
well defined and µ2(q) ⊆ r2. It follows r2 |= θ(q).

Counting repairs. For any fixed Boolean conjunctive
query q, we define ♮CERTAINTY(q) as the following count-
ing problem: Given an uncertain database db on input, de-
termine the number of repairs of db that satisfy q.
Let db be an uncertain database and q a Boolean query.

We write rset(db) for the set of repairs of db, and rset(db, q)
for the subset of rset(db) containing each repair that satis-
fies q. The cardinality of these sets are denoted by ♮rset(db)
and ♮rset(db, q) respectively. Thus, for a fixed Boolean con-
junctive query q, ♮CERTAINTY(q) is the problem that takes
as input an uncertain database db and asks to determine
♮rset(db, q). The following is straightforward.

Theorem 1. For every Boolean conjunctive query q, the
counting problem ♮CERTAINTY(q) is in ♮P.

Proof. 3 For any fixed Boolean conjunctive query q, the
following problem is in NP: Given an uncertain database
db on input, determine whether some repair of db satisfies
q. The problem is in NP, because if the answer is “yes” for
some uncertain database db, then a succinct certificate is a
repair of db that satisfies q. Since the above problem is in
NP, its counting variant is in ♮P.

In the technical treatment, it is often more convenient to
work with the fraction of repairs rather than the absolute
number of repairs that satisfy some query. To this extent, we

define rfrac(db, q) = ♮rset(db,q)
♮rset(db)

, the fraction of repairs satis-

fying q. Since ♮rset(db) can be computed in polynomial time
in the size of db, the problems of determining ♮rset(db, q)
and rfrac(db, q) are polynomially equivalent.

3The proof suggests that ♮CERTAINTY(q) might better have
been named ♮POSSIBILITY(q).

4. DICHOTOMY FOR SELF-JOIN-FREE

CONJUNCTIVE QUERIES
In earlier work [11], we showed that for every self-join-

free Boolean conjunctive query q, ♮CERTAINTY(q) is either
in FP or ♮P-hard, and it is decidable which of the two cases
applies. This result is recalled next and will be used later
on.

Function IsSafe(q) Determine whether q is safe

Input: q is a self-join-free Boolean conjunctive query.
Result: Boolean in {true, false}.
begin

SE0a: if |q| = 1 and vars(q) = ∅ then
return true;

SE0b: if [[q]] = ∅ then
return true;

SE1: if q = q1 ∪ q2 with q1 6= ∅ 6= q2, vars(q1) ∩ vars(q2) = ∅
then

return IsSafe(q1) ∧ IsSafe(q2);

/* a is an arbitrary constant */
SE2: if [[q]] 6= ∅ and

⋂
F∈[[q]] key(F) 6= ∅ then

select x ∈
⋂

F∈[[q]] key(F);

return IsSafe(q[x 7→a]);

SE3: if there exists F ∈ q such that key(F) = ∅ 6= vars(F)
then

select F ∈ q such that key(F) = ∅ 6= vars(F);
select x ∈ vars(F);
return IsSafe(q[x 7→a]);

if none of the above then
return false;

Function IsSafe takes a self-join-free conjunctive query q
on input, and always terminates with either true or false.
The function is recursive. The base rules (SE0a and SE0b)
apply if q consists of a single fact, or if the complex part
of q is empty. The recursive rule SE1 applies if q can be
partitioned into two subqueries which have no variables in
common. The recursive rule SE2 applies if all atoms in the
complex part of q contain the same variable at some of their
primary-key positions. The recursive rule SE3 applies if all
primary-key positions of some atom are occupied by con-
stants and some non-primary-key position contains a vari-
able.

Definition 1. A self-join-free Boolean conjunctive query
q is called safe if Function IsSafe returns true on input q;
otherwise q is unsafe.

The main result of [11] can now be stated.

Theorem 2 ([11]). Let q be a self-join-free Boolean con-
junctive query.

1. If q is safe, then ♮CERTAINTY(q) is in FP.

2. If q is unsafe, then ♮CERTAINTY(q) is ♮P-hard.

The aim of the current paper is to establish a complexity
dichotomy like Theorem 2 for conjunctive queries with self-
joins.

158

5. UNIRELATIONAL QUERIES
Recall that a Boolean conjunctive query q is called unire-

lational if it does not refer to two distinct relation names.
In this section, we focus on the complexity of the problem
♮CERTAINTY(q) when q is unirelational, using exclusively
relation name R. We will impose no restriction on the sig-
nature of R. Sections 5.1 and 5.2 establish syntactic condi-
tions on q that guarantee intractability and tractability of
♮CERTAINTY(q).
Lemmas 2 and 5 are the deepest new results in this pa-

per. They are the main tools for proving the complexity
dichotomies in Section 7.

5.1 Intractability Result
We first recall the notion of minimality of Boolean con-

junctive queries. We then prove a powerful lemma which
is useful for establishing intractability of ♮CERTAINTY(q) if
q is a unirelational Boolean conjunctive query. The lemma
will be illustrated by an example.

Definition 2. A Boolean conjunctive query q is minimal
if there exists no Boolean conjunctive query q′ such that
|q′| < |q| and q′ is equivalent to q.

Lemma 2. Let q be a unirelational Boolean conjunctive
query using relation name R such that q is minimal and
no two distinct atoms of q agree on all primary-key posi-
tions. Let q′ be the self-join-free Boolean conjunctive query
obtained from q by replacing each occurrence of R with a new
relation name of the same signature as R. If q′ is unsafe,
then ♮CERTAINTY(q) is ♮P-hard.

Example 3. Let q = {R(x, y), R(y, x)}. The query q sat-
isfies the premise of Lemma 2 because it is minimal and
contains no two distinct atoms that agree on their primary
key. The self-join-free query q′ = {S(x, y), T (y, x)} is ob-
tained by replacing in q each occurrence of R with a new
relation name. It can be easily verified that Function IsSafe
returns false on input q′, i.e., q′ is unsafe. By Lemma 2,
♮CERTAINTY(q) is ♮P-hard.

The following proof of Lemma 2 uses three sublemmas for
readability reasons. After the proof, we will explain how the
restrictions on q in the premise of Lemma 2 can be easily
met.

Proof of Lemma 2. Assume q′ is unsafe. By Theorem 2,
♮CERTAINTY(q′) is ♮P-hard. To establish ♮P-hardness of
♮CERTAINTY(q), it suffices to show a polynomial-time Tur-
ing reduction from the ♮P-hard problem ♮CERTAINTY(q′)
to ♮CERTAINTY(q). This is the object of the remainder of
the proof.
Let R,S1, . . . , Sm be relation names of same signature

[n, k] such that

q = {R(xi1, . . . , xin)}
m
i=1, and

q′ = {Si(xi1, . . . , xin)}
m
i=1.

Let σ be the following mapping on Si-facts. For i ∈
{1, . . . ,m}, if G = Si(a1, . . . , an), then

σ(G) = R((a1, xi1), . . . , (an, xin)).

The pairs (a, s), where a is a constant and s a symbol, denote
constants, such that (a1, s1) = (a2, s2) if and only if a1 = a2

and s1 = s2. If a 6= s, then (a, s) denotes a new constant

not occurring elsewhere. If a = s, then (a, s) is the constant
a.

Clearly, for all i, j ∈ {1, . . . ,m} such that i 6= j, for all
Si-facts G1, G2, for each Sj-fact H,

• G1 = G2 iff σ(G1) = σ(G2);

• G1 and G2 are key-equal iff σ(G1) and σ(G2) are key-
equal;

• σ(G1) and σ(H) are not key-equal because by the
premise in the statement of Lemma 2, it is the case
that 〈xi1, . . . , xik〉 6= 〈xj1, . . . , xjk〉.

Let db be an uncertain database that uses only relation
names among S1, . . . , Sm. We define σ(db) := {σ(F) | F ∈
db}.

It can now be easily seen that rset(σ(db)) = {σ(r) | r ∈
rset(db)} and ♮rset(σ(db)) = ♮rset(db). It suffices now to
show that for each repair r of db,

r |= q′ ⇐⇒ σ(r) |= q.

=⇒ Assume r |= q′. We can assume a valuation ν such
that ν(q′) ⊆ r. Let ν̂ be the valuation such that for every
symbol x, we have ν̂(x) = (ν(x), x). Notice that ν̂ is in-
deed the identity on constants, because for every constant
a, ν̂(a) = (a, a) = a. The following paragraph shows that
ν̂(q) ⊆ σ(r).

Let 1 ≤ i ≤ m. Let a1, . . . , an be constants such that
ν(xi1) = a1, . . . , ν(xin) = an. Consequently, ν̂(xi1) =
(a1, xi1), . . . , ν̂(xin) = (an, xin). From ν(q′) ⊆ r, it follows
Si(a1, . . . , an) ∈ r, hence R(ν̂(xi1), . . . , ν̂(xin)) ∈ σ(r).

⇐= Assume σ(r) |= q. We can assume a valuation
θ over vars(q) such that θ(q) ⊆ σ(r). We can assume the
existence of a total function π : {1, . . . ,m} → {1, . . . ,m}
such that for each i ∈ {1, . . . ,m}, we can assume some fact
Sπ(i)(ai1, . . . , ain) in r such that

R(θ(xi1), . . . , θ(xin)) = σ
(

Sπ(i)(ai1, . . . , ain)
)

.

Since

σ
(

Sπ(i)(ai1, . . . , ain)
)

= R((ai1, xπ(i)1), . . . , (ain, xπ(i)n)),

we obtain that for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

θ(xij) = (aij , xπ(i)j).

Sublemma 1. If xij = xkℓ, then aij = akℓ and xπ(i)j =
xπ(k)ℓ.

Proof of Sublemma 1. Let xij = xkℓ. Since θ(xij) =
θ(xkℓ), it follows (aij , xπ(i)j) = (akℓ, xπ(k)ℓ). Consequently,
aij = akℓ and xπ(i)j = xπ(k)ℓ.

Sublemma 2. If xij is a constant, then xij = aij =
xπ(i)j.

Proof of Sublemma 2. Let xij be a constant. Since
θ(xij) = (aij , xπ(i)j) and θ is the identity on constants, xij =
aij = xπ(i)j .

We distinguish two cases.

Case π is a permutation. We will use the following
easy sublemma.

159

Sublemma 3. Let π be a permutation of some nonempty
finite set S. There exists integer p ≥ 0 such that for all
a ∈ S, we have π−1(a) = πp(a).

Proof. Let C be the set of positive integers such that
k ∈ C if and only if π contains a cycle with k elements. Let
p =

(
∏

k∈C k
)

− 1. Obviously, for every a ∈ S, we have

πp(a) = π−1(a).

Let ω be the valuation such that for all i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}, ω(xij) = aπ−1(i)j . By Sublemma 3, we can
assume an integer p ≥ 0 such that for all i ∈ {1, . . . ,m}, we
have π−1(i) = πp(i). Consequently,

ω(xij) = aπ−1(i)j = aπp(i)j .

We show that ω is well defined.

1. Assume xij = xkℓ. By repeated application of Sub-
lemma 1, we obtain aπp(i)j = aπp(k)ℓ.

2. Assume xij is a constant. By repeated application of
Sublemma 2, we obtain xij = aπp(i)j .

We show next that ω(q′) ⊆ r, hence r |= q′.
Since π is a permutation,

{1, . . . ,m} = {π(1), . . . , π(m)}.

Let i ∈ {1, . . . ,m}. It suffices to show that the fact

Sπ(i)(ω(xπ(i)1), . . . , ω(xπ(i)n))

belongs to r. This is straightforward since

Sπ(i)(ω(xπ(i)1), . . . , ω(xπ(i)n)) = Sπ(i)(ai1, . . . , ain),

and Sπ(i)(ai1, . . . , ain) belongs to r by definition.

Case π is not a permutation. Let µ be the substitution
such that for all xij , we have µ(xij) = xπ(i)j .
We show that ω is well defined.

1. Assume xij = xkℓ. By application of Sublemma 1, we
obtain xπ(i)j = xπ(k)ℓ.

2. Assume xij is a constant. By application of Sub-
lemma 2, we obtain xij = xπ(i)j .

Then µ(q) (q, hence q is not minimal, a contradiction. This
concludes the proof of Lemma 2.

Let q be a unirelational Boolean conjunctive query refer-
ring to relation name R. Lemma 2 only applies if q is min-
imal and contains no two distinct atoms that agree on all
primary-key positions. We argue next that these restrictions
can be easily met.
For a given unirelational Boolean conjunctive query q with

relation name R, we can first chase q by the primary key of
R. See [1, p. 174] for a definition of the chase. Two cases
can occur:

1. The chase attempts to equate two distinct constants. If
this happens, there exists no consistent database that
satisfies q. For any uncertain database db, the num-
ber of repairs satisfying q is 0. For example, chasing
{R(x, a), R(x, b)} by the primary key of R will equate
the distinct constants a and b; obviously, no repair can
satisfy this query.

2. The chase terminates with a query q′. Clearly, q′ con-
tains no two distinct atoms that agree on all primary-
key positions (otherwise the chase could be continued).
By Proposition 8.4.2 in [1, p. 175], we know that q and
q′ evaluate to the same truth value on any consistent
database. Finally, by Theorem 6.2.6 in [1, p. 119],
we can compute a minimal Boolean conjunctive query
q′′ ⊆ q′ such that q′′ is equivalent to q′. Clearly, q′′ sat-
isfies the premise of Lemma 2 and for every uncertain
database db, ♮rset(db, q) = ♮rset(db, q′′).

Thus the following lemma holds.

Lemma 3. For every unirelational Boolean conjunctive
query q with relation name R, exactly one of the following
statements is true, and it can be decided which one is true:

1. for every uncertain database db, ♮rset(db, q) = 0; or

2. there exists a computable unirelational Boolean con-
junctive query q′ with relation name R such that

• for every uncertain database db, ♮rset(db, q′) =
♮rset(db, q); and

• q′ is minimal and contains no two distinct atoms
that agree on all primary-key positions.

5.2 Tractability Results
The two lemmas of this section provide computation rules

for rfrac(db, q) where q is a unirelational Boolean conjunc-
tive query, and db is an uncertain database. Lemma 4 pro-
vides a recursive rule that is the analogue of rule SE3 in
Function IsSafe. The other recursive rules of Function IsSafe
do not carry over to conjunctive queries with self-joins. In-
stead, Lemma 5 provides a new base rule whose proof makes
use of the inclusion-exclusion principle.

Lemma 4. Let q be a unirelational Boolean conjunctive
query such that for some atom F ∈ q, for some variable x,
key(F) = ∅ and x ∈ vars(F). Then, for every uncertain
database db,

rfrac(db, q) =
∑

a∈adom(db)

rfrac(db, q[x 7→a]) .

Proof. Obviously,

rset(db, q) =
⋃

c∈adom(db)

rset(db, q[x 7→c]) .

It suffices thus to show that for c1, c2 ∈ adom(db) with
c1 6= c2,

rset(db, q[x 7→c1]) ∩ rset(db, q[x 7→c2]) = ∅ . (1)

Assume towards a contradiction some repair r of db such
that r ∈ rset(db, q[x 7→c1]) ∩ rset(db, q[x 7→c2]). Assume with-
out loss of generality that F is of the form R(~a, x, . . .).
Then, R(~a, c1, . . .), R(~a, c2, . . .) ∈ r, hence r contains two
distinct, key-equal facts, a contradiction. We conclude by
contradiction that (1) holds. This concludes the proof of
Lemma 4.

Lemma 5. Let q be a unirelational Boolean conjunctive
query with relation name R. Let Q be a partition of q such
that for all o, p ∈ Q,4

4Q is a partition of q if the elements of Q are pairwise dis-
joint, nonempty subsets of q such that

⋃

p∈Q p = q.

160

1. if o 6= p, then vars(o) ∩ vars(p) = ∅; and

2. for all F,G ∈ [[p]], key(F) = key(G).

Then, ♮CERTAINTY(q) is in FP.

Example 4. Let R be a relation name of signature [3, 2].
Let a, b be constants. Let

q = {R(x, y, z), R(y, x, z), R(a, z, u), R(w, a, b)}

p1 = {R(x, y, z), R(y, x, z), R(a, z, u)}

p2 = {R(w, a, b)}

We have [[p1]] = {R(x, y, z), R(y, x, z)}. It is now straightfor-
ward to verify that Q = {p1, p2} is a partition of q that satis-
fies the premise of Lemma 5. Consequently, ♮CERTAINTY(q)
is in FP.

The following proof of Lemma 5 uses three sublemmas for
readability reasons.

Proof of Lemma 5. Let db be an uncertain database
of R-facts that is the input of ♮CERTAINTY(q). For every
P ⊆ Q, we define FALS(P) as follows:

FALS(P) := {r ∈ rset(db) | ∀p ∈ P
(

r 6|= p
)

}.

We will use the following sublemma.

Sublemma 4.
⋃

p∈Q FALS({p}) = {r ∈ rset(db) | r 6|=

q}.

Proof of Sublemma 4. Let r be an arbitrary repair of
db.

⊆ Assume r ∈
⋃

p∈Q FALS({p}). We can assume p0 ∈ Q

such that r ∈ FALS({p0}). Then r 6|= p0. Since p0 ⊆ q, it
follows r 6|= q.

⊇ Assume r 6|= q. By the first item in the statement

of Lemma 5, we can assume p0 ∈ Q such that r 6|= p0.
Then r ∈ FALS({p0}). It follows r ∈

⋃

p∈Q FALS({p}). This
concludes the proof of Sublemma 4.

Let N = |rset(db)| and M = |{r ∈ rset(db) | r 6|= q}|.
Then, ♮rset(db, q) = N − M . It suffices to show that M
can be computed in polynomial time in the size of db.
By Sublemma 4 and the inclusion-exclusion principle,

M =

|Q|
∑

k=1

(

(−1)k−1
∑

P⊆Q,|P |=k

|FALS(P)|
)

. (2)

In the remainder, we show how to compute in polynomial
time |FALS(P)| for each nonempty subset P of Q.
We define σ : 2db → 2Q such that for every subset db0 ⊆

db, the set σ(db0) contains p ∈ Q if there exists a valuation
θ over vars(p) such that

1. θ([[p]]) ⊆ db0; and

2. θ(p) is a consistent subset of db.

The second condition implies that some repair of db satisfies
θ(p). Obviously, σ is computable in polynomial time data
complexity.

Sublemma 5. Let P ⊆ Q. Let {db1,db2, . . . ,dbn} be a
partition of db such that the following hold:

1. every block of db is entirely contained in some (unique)
dbi (1 ≤ i ≤ n); and

2. for every p ∈ P , for every valuation θ over vars(p), if
θ([[p]]) ⊆ db, then for some 1 ≤ i ≤ n, θ([[p]]) ⊆ dbi.

Then,

|FALS(P)| =
n
∏

1=1

|{ri ∈ rset(dbi) | σ(ri) ∩ P = ∅}|. (3)

Proof of Sublemma 5. We first show that for every re-
pair r of db,

r ∈ FALS(P) ⇐⇒
for each 1 ≤ i ≤ n,
σ(r ∩ dbi) ∩ P = ∅.

(4)

Let r be an arbitrary repair of db.
⇐= Proof by contraposition. Assume r 6∈ FALS(P).

We can assume p0 ∈ P such that r |= p0. Then we can
assume a valuation θ such that θ(p0) ⊆ r, hence θ([[p0]]) ⊆ r.
By the second item in the premise of Sublemma 5, there
exists 1 ≤ i ≤ n such that θ([[p0]]) ⊆ dbi. By the definition
of σ, we have p0 ∈ σ(r ∩ dbi), hence σ(r ∩ dbi) ∩ P 6= ∅.

=⇒ Proof by contraposition. Assume that for some
1 ≤ i ≤ n, σ(r ∩ dbi) ∩ P 6= ∅. We can assume p0 ∈ P such
that p0 ∈ σ(r∩dbi). By the definition of σ, we can assume
a valuation θ over vars(p0) such that θ([[p0]]) ⊆ r ∩ dbi and
θ(p0) is a consistent subset of db. Consequently, θ([[p0]]) ⊆ r

and we can assume a repair r0 of db such that θ(p0) ⊆ r0.
Let θ′ be the restriction of θ to vars([[p0]]). From θ(p0) ⊆ r0,
it follows r0 |= θ′(p0). From θ([[p0]]) ⊆ r, it follows θ′([[p0]]) ⊆
r. From r0 |= θ′(p0) and θ′([[p0]]) ⊆ r, it follows r |= θ′(p0)
by Lemma 1, hence r |= p0. Since r |= p0, r 6∈ FALS(P).
This concludes the proof of (4).

By the first item in the premise of Sublemma 5, every
repair r of db can be written as a disjoint union r = r1 ⊎
r2 ⊎ · · · ⊎ rn where for every 1 ≤ i ≤ n, ri := r ∩ dbi is a
repair of dbi. By (4), such a repair r belongs to FALS(P)
if and only if for 1 ≤ i ≤ n, σ(ri) ∩ P = ∅. Therefore,
it is correct to conclude (3). This terminates the proof of
Sublemma 5

For every P ⊆ Q, we define the binary relation ∼P on db

as the transitive closure of:

F1 ∼P F2 if one of the following holds:

1. the facts F1 and F2 are key-equal; or

2. for some p ∈ P , for some valuation θ over
vars(p), we have F1, F2 ∈ θ([[p]]) ⊆ db.

Let P ⊆ Q. The equivalence classes of ∼P can be com-
puted in polynomial time, because for every p ∈ P , there are
at most polynomially many (in the size of db) distinct val-
uations θ : vars(p) → adom(db). The following sublemma
states that every equivalence class has at most polynomially
many repairs.

Sublemma 6. Let P ⊆ Q. Let {db1,db2, . . . ,dbn} be
the partition of db induced by ∼P . For every 1 ≤ i ≤ n,
♮rset(dbi) is polynomially bounded in the size of db.

Proof of Sublemma 6. Let 1 ≤ i ≤ n. Let F be an
arbitrary fact of dbi. We show hereinafter that for every
H ∈ dbi, if b is a constant that occurs at some primary-key

161

position in H, then either b occurs in q or b occurs at some
primary-key position in F (or both). Consequently, we can
assume integer ℓ, which does not depend on db, such that
the number of distinct blocks in dbi is less than or equal to
ℓ. Then ♮rset(dbi) is bounded by |db|ℓ.
Let H ∈ dbi. Then, there exists a sequence

F1, F2, . . . , Fm

of facts in dbi such that F1 = F , Fm = H, and for each
j ∈ {1, . . . ,m− 1}, one of the following holds:

1. the facts Fj and Fj+1 are key-equal; or

2. for some p ∈ P , for some valuation θ over vars(p), we
have Fj , Fj+1 ∈ θ([[p]]) ⊆ db.

It suffices to show that for every j ∈ {1, . . . ,m}, if b is a
constant that occurs at some primary-key position in Fj ,
then either b occurs in q or b occurs at some primary-key
position in F1 (or both). The proof runs by induction on
increasing j. The desired result holds obviously for j = 1.
For the induction step, j → j + 1, let b be a constant such
that b occurs at some primary-key position in Fj+1 and b
does not occur in q. Two cases can occur.

1. Fj and Fj+1 are key-equal. Clearly, b occurs at some
primary-key position in Fj .

2. There exists p ∈ P and a valuation θ over vars(p) such
that Fj , Fj+1 ∈ θ([[p]]) ⊆ db. We can assume G1, G2 ∈
[[p]] such that Fj = θ(G1) and Fj+1 = θ(G2). Since b
does not occur in q, we can assume x ∈ key(G2) such
that θ(x) = b. From key(G1) = key(G2), it follows x ∈
key(G1), hence b occurs at some primary-key position
in Fj .

Since b occurs at some primary-key position in Fj , by the
induction hypothesis, b occurs at some primary-key position
in F1. This concludes the proof of Sublemma 6.

By the definition of ∼P , the set of equivalence classes of
∼P satisfies the first and the second item in Sublemma 5.
By Sublemma 6, the righthand expression in equation (3)
can be computed in polynomial time. It follows that the
righthand expression in equation (2) can be computed in
polynomial time. This concludes the proof of Lemma 5.

We point out that the lemmas in this section are not
sufficient to establish the (in)tractability of each problem
♮CERTAINTY(q) where q is a unirelational Boolean conjunc-
tive query. Consider the minimal query q = {R(x, y, a),
R(z, x, a)}, where a is a constant. Since the query {S(x, y, a),
T (z, x, a)} is safe, Lemma 2 provides no information on the
complexity of ♮CERTAINTY(q). Further, q does not satisfy
the premises of Lemmas 4 and 5.

6. ENCODING MULTIPLE RELATIONS IN

A SINGLE RELATION
The results in Section 5 assume a single relation name de-

noted R. This assumption is not severe, because it is easy
to encode multiple relations into a single relation. Although
the following definition is somewhat technical, the idea is
simple and illustrated by Fig. 4, which shows how to encode
two relations R and S with different signatures in one rela-
tion N . The R-fact R(a, b, c) is encoded as N(R, a, b, c, 0),

R 1 2 3
a b c
a b d

S 1 2 3
a b c
e f c

N 1 2 3 4 5
R a b c 0
R a b d 0
S a 0 b c
S e 0 f c

Figure 4: The relations R and S are encoded in N .

The signatures of R, S, and N are [3, 2], [3, 1], and

[5, 3] respectively. The leftmost position of N is used

for tagging tuples with their relation of origin. The

symbol 0 is used for padding.

and the S-fact S(a, b, c) is encoded as N(S, a, 0, b, c). The
leftmost position in N is used for storing the original rela-
tion of the encoded fact; the encoding preserves primary-key
positions; extra positions are padded with 0’s. The encoding
naturally extends to conjunctive queries.

Definition 3. Let S be a database schema (i.e., a finite
set of relation names). Let ℓ and m be the smallest integers
such that for every relation name R ∈ S, if R has signature
[n, k], then k ≤ ℓ and n− k ≤ m.

Let N be a relation name of signature [ℓ+m+ 1, ℓ+ 1]
such that N 6∈ S. Let 0 be a constant, arbitrarily picked
in the set of constants. For every relation name R in S, for
every R-atom F = R(s1, . . . , sk, t1, . . . , tj), we define

encS(F) = N(R, s1, . . . , sℓ, t1, . . . , tm),

where sk+1 = · · · = sℓ = 0 = tj+1 = · · · = tm, i.e., extra
positions are padded with 0’s.

The function encS naturally extends to sets. Let A be
a finite set of atoms using only the relation names in S.
Typically, A will be a Boolean conjunctive query or a set of
facts. We define encS(A) = {encS(F) | F ∈ A}.

The following lemmas are fairly straightforward.

Lemma 6. Let S be a database schema. Let F,G be atoms
whose relation names belong to S. Then,

1. F = G iff encS(F) = encS(G).

2. F and G are key-equal facts iff encS(F) and encS(G)
are key-equal facts.

Lemma 7. Let S be a database schema. Let q be a Boolean
conjunctive query using only the relation names in S. Then,
the problems ♮CERTAINTY(q) and ♮CERTAINTY(encS(q)) are
equivalent under polynomial-time many-one reductions.

Proof. In the first part of the proof, we will show a
polynomial-time many-one reduction from ♮CERTAINTY(q)
to ♮CERTAINTY(encS(q)). Let db be an uncertain database
using only relation names in S (it is trivial to extend the
proof to deal with relation names outside S), which is an
instance of ♮CERTAINTY(q). We will show

♮rset(db, q) = ♮rset(encS(db), encS(q)).

Since encS(db) can be computed in polynomial time, this
suffices to conclude that ♮CERTAINTY(q) can be polynomi-
ally reduced to ♮CERTAINTY(encS(q)).

From Lemma 6, it follows rset(encS(db)) = {encS(r) | r ∈
rset(db)} and ♮rset(encS(db)) = ♮rset(db). Consequently,
it is sufficient to show that for every repair r of db,

r |= q ⇐⇒ encS(r) |= encS(q).

162

Let r be a repair of db. Clearly, vars(q) = vars(encS(q)).
=⇒ Assume r |= q. We can assume a valuation θ over

vars(q) such that θ(q) ⊆ r, hence encS(θ(q)) ⊆ encS(r). It
suffices to show θ(encS(q)) ⊆ encS(r). To this extent, let F
be an arbitrary atom of q. It suffices to show θ(encS(F)) ∈
encS(r). From encS(θ(q)) ⊆ encS(r), it follows encS(θ(F)) ∈
encS(r). Since the equality encS(θ(F)) = θ(encS(F)) is ob-
vious, it follows θ(encS(F)) ∈ encS(r).

⇐= Assume encS(r) |= encS(q). We can assume a val-
uation θ over vars(q) such that θ(encS(q)) ⊆ encS(r). It
suffices to show θ(q) ⊆ r. To this extent, let F be an
arbitrary atom of q. It suffices to show θ(F) ∈ r. From
θ(encS(q)) ⊆ encS(r), it follows θ(encS(F)) ∈ encS(r). Since
θ(encS(F)) = encS(θ(F)) is obvious, it follows encS(θ(F)) ∈
encS(r). We can assume a factG ∈ r such that encS(θ(F)) =
encS(G). By Lemma 6, θ(F) = G, hence θ(F) ∈ r.
In the second part of the proof, we show a polynomial-time

many-one reduction from the problem ♮CERTAINTY(encS(q))
to ♮CERTAINTY(q). Let N be the relation name such that
all atoms in encS(q) are N -atoms. Assume that the arity of
N is n. Let db be a database ofN -facts. Let db0 be the sub-
set of db containing each fact N(R, s1, . . . , sn−1) such that
R is a relation name in S. We can compute in polynomial
time the (unique) database db′

0 with schema S such that
encS(db

′
0) = db0. From the first part of the proof, it fol-

lows rfrac(db0, encS(q)) = rfrac(db′
0, q). From the obvious

observation that rfrac(db, encS(q)) = rfrac(db0, encS(q)), it
follows rfrac(db, encS(q)) = rfrac(db′

0, q). This concludes
the proof.

7. A COMPLEXITY DICHOTOMY
Recall that a relation name R is simple-key if its primary

key is a singleton (i.e., if R’s signature is [n, 1] for some n).
In this section, we use the tool lemmas of Section 5 to prove
a complexity dichotomy in the class containing all problems
♮CERTAINTY(q) where q is a Boolean conjunctive query in
which all relation names are simple-key.

Definition 4. We say that a class P of function problems
exhibits an effective FP-♮P-dichotomy if all problems in P
are either in FP or ♮P-hard and it is decidable whether a
given problem in P is in FP or ♮P-hard.

If we use the encoding of Section 6 to store multiple simple-
key relations in a single relation N , then the signature of N
will be [n, 2] for some n, where the leftmost position of N is
used for storing relation names. This leads to the following
definition.

Definition 5. We define B as the class that contains all
problems ♮CERTAINTY(q) where q is a unirelational Boolean
conjunctive query whose relation name has signature [n, 2]
(for some n ≥ 2) such that for every F ∈ q, the first position
of F is a constant.

Lemma 8. The class B exhibits an effective FP-♮P-
dichotomy.

Proof. Let q be a Boolean conjunctive query such that
♮CERTAINTY(q) is in B. By Lemma 3, two cases can occur,
and it is decidable which case applies:

1. for every uncertain database db, ♮rset(db, q) = 0; or

Function IsEasy(q) Determine whether the problem
♮CERTAINTY(q), which belongs to the class B, is easy

Input: q is a minimal unirelational Boolean conjunctive query
with relation name R of some signature [n, 2] such that
(i) for every R(s1, s2, s3, . . . , sn) in q, it is the case that

s1 is a constant; and (ii) no two distinct atoms of q
agree on both primary-key positions.

Result: Boolean in {true, false}.
begin

if q satisfies the premise of Lemma 5 then
return true;

/* a is an arbitrary constant */
if there exists F ∈ q such that key(F) = ∅ 6= vars(F) then

select F ∈ q such that key(F) = ∅ 6= vars(F);
select x ∈ vars(F);
return IsEasy(q[x 7→a]);

if none of the above then
return false;

2. there exists a computable unirelational Boolean con-
junctive query qm using the same relation name as q
such that

• for every uncertain database db, ♮rset(db, qm) =
♮rset(db, q); and

• qm satisfies the premise of Lemma 2.

If the first case applies, ♮CERTAINTY(q) is in constant time
data complexity. In what follows, we assume that the second
case applies.

Let db0 be any database whose active domain is the sin-
gleton {a}. In the following computation, only the active do-
main matters, while the input db0 is immaterial. Start com-
puting rfrac(qm,db0) by recursively applying Lemma 4 as
long as possible. In this way, since every sum ranges over the
singleton {a}, we obtain a query q̄ such that rfrac(qm,db0) =
rfrac(q̄,db0) and q̄ does not satisfy the premise of Lemma 4.
That is, for every atom F ∈ q̄, either key(F) 6= ∅ or vars(F) =
∅. We show hereinafter that if the query q̄ satisfies the
premise of Lemma 5, then ♮CERTAINTY(q) is in FP; other-
wise ♮CERTAINTY(q) is ♮P-hard.

For readability, the function IsEasy encodes the computa-
tion described in the previous paragraph. The function will
always terminate with either true or false. The remainder
of the proof actually shows the following: if IsEasy termi-
nates with true on input q, then ♮CERTAINTY(q) is in FP;
otherwise ♮CERTAINTY(q) is ♮P-hard.

First assume that the query q̄ satisfies the premise of
Lemma 5. For every uncertain database db, we can compute
rfrac(db, q) as before by repeated application of Lemmas 4
and 5. The only difference is that the sum in the applica-
tion of Lemma 4 now ranges over adom(db) instead of the
singleton {a}. However, since |adom(db)| is polynomially
bounded in the size of db, the computation will terminate
after a number of steps that is polynomial in the size of db.

Assume next that the query q̄ does not satisfy the premise
of Lemma 5. Define the binary relation ∼ on q̄ as the transi-
tive closure of: F ∼ G if vars(F)∩vars(G) 6= ∅. Let Q be the
partition of q̄ induced by ∼. By the hypothesis that q̄ does
not satisfy the premise of Lemma 5, it must be the case that
for some element p ∈ Q, [[p]] contains two atoms R(a, x, ~u)

and R(b, y, ~w) where x and y are distinct variables. Let q′m

163

be the query obtained from qm by replacing each occurrence
of R with a new relation name. It can now be easily shown
that Function IsSafe will return false on input q′m. Thus,
q′m is unsafe. By Lemma 2, ♮CERTAINTY(qm) is ♮P-hard.
It follows that ♮CERTAINTY(q) is ♮P-hard. This concludes
the proof.

Definition 6. We define S as the class containing all prob-
lems ♮CERTAINTY(q) where q is a Boolean conjunctive query
in which all relation names are simple-key.

The most appealing result of this paper can now be proved.

Theorem 3. The class S exhibits an effective FP-♮P-
dichotomy.

Proof. Let q be a Boolean conjunctive query in which
all relation names are simple-key. Let S the set of relation
names in q. Let q′ = encS(q), which was defined in Defini-
tion 3. Since every relation name in q is simple-key, it follows
that ♮CERTAINTY(q′) belongs to B. By Lemma 8, the prob-
lem ♮CERTAINTY(q′) is either in FP or ♮P-hard, and it is
decidable which of the two cases applies. By Lemma 7, if
♮CERTAINTY(q′) is in FP, then ♮CERTAINTY(q) is in FP;
and if ♮CERTAINTY(q′) is ♮P-hard, then ♮CERTAINTY(q) is
♮P-hard. This concludes the proof.

8. CONCLUSION
A relation name is simple-key if its primary key consists

of a single attribute. Theorem 3 establishes that for ev-
ery Boolean conjunctive query q (possibly with self-joins) in
which all relation names are simple-key, the counting prob-
lem ♮CERTAINTY(q) is either in FP or ♮P-hard (and in ♮P
by Theorem 1), and it is decidable which of the two cases
applies. Such effective FP-♮P-dichotomy was so far only
known for self-join-free Boolean conjunctive queries [11].
The complexity dichotomy in [11] was inspired by work in

block-independent-disjoint (BID) probabilistic databases [5].
On the other hand, the complexity dichotomy of Theorem 3
does not correspond to any known result in BID probabilistic
databases. It is an open issue to carry over this dichotomy
from uncertain databases to BID probabilistic databases.
It is an open conjecture that for every Boolean conjunc-

tive query q (without any restrictions concerning self-joins or
cardinalities of primary keys), the problem ♮CERTAINTY(q)
is either in FP or ♮P-hard, and it is decidable which of the
two cases applies. To those who want to tackle this conjec-
ture, we point out that our tool lemmas in Section 5 im-
pose no restriction on the signatures of relation names, and
also apply to Boolean conjunctive queries containing rela-
tion names that are not simple-key. Nevertheless, we are
also aware that our tool lemmas, despite their power, are
still insufficient to solve this conjecture.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
V. Vianu and C. H. Papadimitriou, editors, PODS,
pages 68–79. ACM Press, 1999.

[3] L. E. Bertossi. Database Repairing and Consistent
Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[4] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic
databases: diamonds in the dirt. Commun. ACM,
52(7):86–94, 2009.

[5] N. N. Dalvi, C. Re, and D. Suciu. Queries and
materialized views on probabilistic databases. J.
Comput. Syst. Sci., 77(3):473–490, 2011.

[6] N. N. Dalvi and D. Suciu. The dichotomy of
probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6):30, 2012.

[7] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. In T. Eiter and
L. Libkin, editors, ICDT, volume 3363 of Lecture
Notes in Computer Science, pages 337–351. Springer,
2005.

[8] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. J. Comput. Syst.
Sci., 73(4):610–635, 2007.

[9] P. G. Kolaitis and E. Pema. A dichotomy in the
complexity of consistent query answering for queries
with two atoms. Inf. Process. Lett., 112(3):77–85,
2012.

[10] P. Koutris and D. Suciu. A dichotomy on the
complexity of consistent query answering for atoms
with simple keys. CoRR, abs/1212.6636, 2012.

[11] D. Maslowski and J. Wijsen. A dichotomy in the
complexity of counting database repairs. J. Comput.
Syst. Sci., 79(6):958–983, 2013.

[12] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[13] J. Wijsen. Certain conjunctive query answering in
first-order logic. ACM Trans. Database Syst., 37(2):9,
2012.

[14] J. Wijsen. Charting the tractability frontier of certain
conjunctive query answering. In R. Hull and W. Fan,
editors, PODS, pages 189–200. ACM, 2013.

164

