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ABSTRACT
We study the problem of consistent query answering under
primary key violations. In this setting, the relations in a
database violate the key constraints and we are interested in
maximal subsets of the database that satisfy the constraints,
which we call repairs. For a boolean query Q, the problem
CERTAINTY(Q) asks whether every such repair satisfies
the query or not; the problem is known to be always in
coNP for conjunctive queries. However, there are queries
for which it can be solved in polynomial time. It has been
conjectured that there exists a dichotomy on the complexity
of CERTAINTY(Q) for conjunctive queries: it is either in
PTIME or coNP-complete. In this paper, we prove that the
conjecture is indeed true for the case of conjunctive queries
without self-joins, where each atom has as a key either a
single attribute (simple key) or all attributes of the atom.

Categories and Subject Descriptors
H.2.4 [Database Management]: Relational Databases

General Terms
Algorithms, Theory
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1. INTRODUCTION
Uncertainty in databases arises in several applications and

domains (e.g. data integration, data exchange). An uncer-
tain (or inconsistent) database is one that violates the in-
tegrity constraints of the database schema. In this work,
we examine uncertainty under the framework of consistent
query answering, established in [2].

In this framework, the presence of uncertainty generates
many possible worlds, referred usually as repairs. For an in-
consistent database I, a repair is a subset of I that minimally
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differs from I and also satisfies the integrity constraints. For
a given query Q on database I, the set of certain answers
contains all the answers that occur in every Qprq, where r is
a repair of I. The main research problem here is when the
certain answers can be computed efficiently.

In this paper, we will restrict the problem such that the
integrity constraints are only key constraints, and moreover,
the queries are boolean conjunctive queries. In this case,
a repair r of an inconsistent database I selects from each
relation a maximal number of tuples such that no two tuples
are key-equal. We further say that a boolean conjunctive
query Q is certain if it evaluates to true for every such repair
r. The decision problem Certainty(Q) is now defined as
follows: given an inconsistent database I, does Qprq evaluate
to true for every repair r of I?

For this setting, it is known that Certainty(Q) is al-
ways in coNP [3]. However, depending on the key con-
straints and the structure of the query Q, the complex-
ity of the problem may vary. For example, for the query
Q1 � Rpx, yq, Spy, zq, Certainty(Q1) is not only in P but,
since one can show that Certainty(Q1) can be expressed
as a first-order query over I [6], it is in AC0. On the
other hand, for Q2 � Rpx, yq, Spz, yq, it has been proved
in [6] that Certainty(Q2) is coNP-complete. Finally, for
Q3 � Rpx, yq, Spy, xq, one can show [14] that consistent
query answering is in P, but the problem does not admit
a first-order rewriting.

From the above examples, one can see that the complexity
landscape is fairly intricate, even for the class of conjunctive
queries. Although there has been progress in understanding
the complexity for several classes of queries, the problem
of deciding the complexity of Certainty(Q) remains open.
In fact, a long-standing conjecture claims the following di-
chotomy.

Conjecture 1.1. Given a boolean conjunctive query Q,
Certainty(Q) is either in PTIME or is coNP-complete.

The progress that has been made towards proving this
conjecture has been limited. In particular, Kolaitis and
Pema [8] have proved a dichotomy into PTIME and coNP-
complete for the case where Q contains only two atoms and
no self-joins (i.e. every relation name appears once). Wi-
jsen [13] has given a necessary and sufficient condition for
first-order rewriting for acyclic conjunctive queries without
self-joins, and in a recent paper [15] further classifies several
acyclic queries into PTIME and coNP-complete.

In this work, we significantly progress the status of the
conjecture, by settling the dichotomy for a large class of
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queries: boolean conjunctive queries w/o self-joins, where
each atom has as primary key either a single attribute or all
the attributes. Observe that this class contains all queries
where atoms have arity at most 2; in particular, it also con-
tains all three of the queries Q1, Q2, Q3 previously discussed.
Our results apply to a more general setting where one might
have the external knowledge that some relations are consis-
tent and others may be inconsistent. In contrast to previous
approaches, our paper introduces consistent relations since
in non-acyclic queries, certain patterns in the structure of
the query cause a relation to behave as a consistent relation
when checking for certainty. In particular, consider a query
Q containing two atoms R1px, yq, R2px, yq. If an instance
contains the tuples R1pa, b1q, R2pa, b2q such that b1 � b2,
we can remove the key-groups R1pa,�q, R2pa,�q without
loss of generality in order to check for certainty1. Thus, the
conjunction of R1, R2 behaves as a single consistent relation
Rpx, yq. Our main result is

Theorem 1.2. For every boolean conjunctive query Q with-
out self-joins consisting only of binary relations where ex-
actly one attribute is the key, there exists a dichotomy of
Certainty(Q) into PTIME and coNP-complete.

From here we derive:

Corollary 1.3. For every boolean conjunctive query Q
with relations of arbitrary arity, where either exactly one at-
tribute is a key, or the key consists of all attributes, there ex-
ists a dichotomy of Certainty(Q) into PTIME and coNP-
complete.

We prove Corollary 1.3 in the full version of this paper [9];
this paper consists of the proof of Theorem 1.2. The clas-
sification into PTIME and coNP-complete is based on an-
alyzing the structure of a specific graph representation of
the query along with the key constraints. The query graph,
which we denote GrQs, is a directed graph with vertices the
variables in Q, and a directed edge px, yq for every relation
Rpx, yq.

Given the graph GrQs, we give a necessary and sufficient
condition for Certainty(Q) to be computable in polyno-
mial time. Consider two edges eR � puR, vRq, eS � puS , vSq
in GrQs that correspond to two inconsistent relations R and
S respectively. We say that eR, eS are source-equivalent if
uR, uS belong to the same strongly connected component of
GrQs. We also say that eR, eS are coupled if (a) there exists
an undirected path PR from vR to uS such that no node in
PR is reachable from uR through a directed path in G�teRu
and (b) there exists an undirected path PS from vS to uR

where no node in PS is reachable from uS through a directed
path in G� teSu. Then:

Theorem 1.4. (1) Certainty(Q) is coNP-complete if
GrQs contains a pair of inconsistent edges that are cou-
pled and not source-equivalent. Otherwise, Certainty(Q)
is in PTIME. (2) The problem: given a query Q decide
whether Certainty(Q) is coNP-complete or in PTIME is
NLOGSPACE-complete.

The following example illustrates the main theorem.

1Indeed, if we want to find a repair r that does not satisfy
Q, we can always pick these two tuples to make sure that
the value a will never contribute to an answer.

Example 1.5. Consider the following two queries:

K1 � Rpx, yq, Spz, wq, T cpy, wq

K2 � Rpx, yq, Spz, wq, T cpy, wq, Ucpx, zq

Observe that the only difference between K1,K2 is the con-
sistent relation Uc. Moreover, the edges eR, eS are not source-
equivalent in both cases. In GrK1s, the edges eR, eS are also
coupled. Indeed, consider the path PR that consists of the
edges eT , eS and connects y with z. The nodes y, w, z of PR

are not reachable from x in the graphs GrK1s � teRu. Simi-
larly, the path PS that consists of the edges eT , eR connects
w with x and is not reached by any directed path starting
from z in GrK1s � teSu. Thus, Certainty(K1) is coNP-
complete.

In contrast, the path PR is reachable from x in GrK2s:
consider the path that consists of eU . Since no other path
connects eR, eS in GrK2s, the edges eR, eS are not coupled.
Thus, Certainty(K2) is in PTIME.

Note that if two edges eR, eS belong to two distinct weakly
connected components, then they are trivially not coupled,
which implies that Q is coNP-complete iff one of its weakly
connected components is coNP complete.

In order to show Theorem 1.4, we develop new techniques
for efficient computation of Certainty(Q), as well as tech-
niques for proving hardness. We start by introducing in
Section 2 and Section 3 the basic notions and definitions.
In Section 4, we present the case where GrQs is a strongly
connected graph (i.e. there is a directed path from any
node to any other node) and show that Certainty(Q) is
in PTIME. The algorithm for computing Certainty(Q) in
this case is based on a novel use of or-sets to represent effi-
ciently answers to repairs. The polynomial time algorithm
for Certainty(Q) when GrQs satisfies the condition of The-
orem 1.4 is presented in Section 3 and is based on a recur-
sive decomposition of GrQs. Finally, the hardness results
are presented in Section 6, where we show that we can re-
duce the NP-hard problem Monotone-3SAT to any graph
GrQs that does not satisfy the condition of Theorem 1.4.

2. PRELIMINARIES
A database schema is a finite set of relation names. Each

relation R has a set of attributes attrpRq � tA1, . . . , Aku,
and a key, which is a subset of attrpRq. We typically write
Rpx1, . . . , xm, y1, . . . , y`q to denote that the attributes on po-
sitions 1, . . . ,m are the primary key. Each relation is of one
of two types: consistent, or inconsistent. Sometimes we de-
note Rc or Ri to indicate that the type of the relation is
consistent or inconsistent.

An instance I consists of a finite relation RI for each re-
lation name R, such that, if R is of consistent type, then RI

satisfies its key constraint. In other words, in an instance I
we allow relations Ri to violate the key constraints but al-
ways require the relations Rc to satisfy the key constraints.
Notice that, if the key of R consists of all attributes, then
RI always satisfies the key constraints, so we may assume
w.l.o.g. that R is of consistent-type.

We denote a tuple by Rpa1, . . . , am, b1, . . . , b`q. We define
a key-group to be all the tuples of a relation with the same
key, in notation Rpa1, . . . , am,�q.
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Definition 2.1 (Repair). An instance r is a repair
for I if (a) r satisfies all key constraints and (b) r is a max-
imal subset of I that satisfies property (a).

In this work, we study how to answer conjunctive queries
on inconsistent instances:

Definition 2.2 (Consistent Query Answer). Given
an instance I, and a conjunctive query Q, we say that a tu-
ple t is a consistent answer for Q if for every repair r � I,
t P Qprq. If Q is a Boolean query, we say that Q is certain
for I, denoted I ( Q, if for every repair r, Qprq is true.

If Q is Boolean query, Certainty(Q) denote the following
decision problem: given an instance I, check if I ( Q.

2.1 Frugal Repairs
Let Q be a Boolean conjunctive query Q. Denote Qf

the full query associated to Q, where all variables become
head variables; therefore, for any repair r, Qprq is true iff
Qf prq � H.

Definition 2.3 (Frugal Repair). A repair r of I is
frugal for Q if there exists no repair r1 of I such that Qf pr1q �
Qf prq.

Example 2.4. Let Q � Rpx, yq, Spx, yq. In this case, the
full query is Qf px, yq � Rpx, yq, Spx, yq. Also, consider the
instance

I � tRpa1, b1q, Rpa1, b2q, Rpa2, b3q, Spa1, b1q, Spa2, b3q,

Rpa3, b4q, Rpa3, b5q, Spa3, b4q, Spa3, b5qu

with the following repairs:

r1 � tRpa1, b1q, Rpa2, b3q, Spa1, b1q, Spa2, b3q, Rpa3, b4q,

Spa3, b4q, Spa3, b5qu

r2 � tRpa1, b2q, Rpa2, b3q, Spa1, b1q, Spa2, b3q, Rpa3, b4q,

Spa3, b4q, Spa3, b5qu

r3 � tRpa1, b2q, Rpa2, b3q, Spa1, b1q, Spa2, b3q, Rpa3, b5q,

Spa3, b4q, Spa3, b5qu

Then, the answer sets are Qf pr1q � tpa1, b1q, pa2, b3q, pa3, b4qu,
Qf pr2q � tpa2, b3q, pa3, b4qu and Qf pr2q � tpa2, b3q, pa3, b5qu
respectively. Since Qf pr2q � Qf pr1q, the repair r1 is not
frugal. On the other hand, both r2 and r3 are frugal.

Proposition 2.5. I ( Q if and only if every frugal repair
of I for Q satisfies Q.

Proof. One direction is straightforward: if some frugal
repair does not satisfy Q, then Q is not certain for I. For
the other direction, assume that Q is not certain for I. Then
there exists a repair r s.t. Qprq is false, hence Qf prq � H:
therefore r is a frugal repair, proving the claim.

The proposition also implies that we lose no generality if
we study only frugal repairs in certain query answering. To
check I ( Q it suffices to check whether Qf prq � H for every
frugal repair. In some cases, it is even possible to compute
Qf prq by using a certain representation, as discussed next.

2.2 Representability
In general, the number of frugal repairs is exponential in

the size of I. We describe here a compact representation
method for the set of all answers Qf prq, where r ranges over

all frugal repairs. We use the notation of or-sets adapted
from [10]. An or-set is a set whose meaning is that one
of its elements is selected nondeterministically. Following
[10] we use angle brackets to denote or-sets. For example,
x1, 2, 3y denotes the or-set that is either 1 or 2 or 3; similarly
xt1u, t1, 3uy means either the set t1u or t1, 3u.

Let FQpIq � xr1, r2, . . .y be the or-set of all frugal repairs
of I for Q, and let

MQpIq � xQf prq | r P FQpIqy

be the or-set of all answers of Qf on all frugal repairs. No-
tice that the type of MQpIq is xtT uy, where T �

�k
i�1 Ti is

a product of atomic types. For a simple illustration, in Ex-
ample 2.4, MQpIq � xtpa2, b3q, pa3, b4qu, tpa2, b3q, pa3, b5quy,
because r2, r3 are the only frugal repairs.

Give a type T , define the function α : txT yu Ñ xtT uy [10]:
αptA1, . . . , Amuq � xtx1, . . . , xmu|x1 P A1, . . . , xm P Amy.
For example, αptx1, 2y, x3, 4yuq � xt1, 3u, t1, 4u, t2, 3u, t2, 4uy
and αptx1y, x1, 2, 3yuq � xt1u, t1, 2u, t1, 3uy.

Definition 2.6. Let T �
�k

i�1 Ti. An or-set-of-sets S
(of type xtT uy) is representable if there exists a set-of-or-
sets S0 (of type txT yu) such that (a) αpS0q � S and (b) for
any distinct or-sets A,B P S0, the tuples in A and B use
distinct constants in all coordinates: ΠipAq X ΠipBq � H,
@i � 1, k.

As an example, consider the or-sets

S � xtpa1, b1q, pa2, b3qu, tpa1, b2q, pa2, b3quy

S1 � xtpa1, b1q, pa2, b3qu, tpa1, b2q, pa2, b2quy

S is representable, since we can find a compression S0 �
txpa1, b1q, pa1, b2qy, xpa2, b3qyu. Notice that a1, b1, b2 appear
only in the first or-set of S0, whereas a2, b3 only in the sec-
ond. On the other hand, it is easy to see that S1 is not
representable. We prove:

Proposition 2.7. Let S or-set of sets of type xt
�k

i�1 Tiuy,
and suppose that its active domain has size n. If S is repre-
sentable S � αpS0q, then its compression S0 has size Opnkq.

Proof. If S0 � tA1, A2, . . .u, then every k-tuple consist-
ing of constants from the active domain occurs in at most
one or-set, thus the total size of S0 is Opnkq.

If MQpIq is representable, then we denote AQpIq its com-
pression; its size is at most polynomially large in I. In gen-
eral, MQpIq may not be representable.

By the definition of frugality, if s1, s2 P MQpIq then nei-
ther s1 � s2 nor s2 � s1 holds. This implies that, for any
instance I, there are two cases. Either (1) I * Q; in that
case MQpIq � xtuy is trivially representable as AQpIq � tu;
or, (2) I ( Q, and in that case MQpIq � xA1, A2, . . .y,
where Ai � tu for all i, may be exponentially large and not
necessarily representable. For a simple illustration, in Ex-
ample 2.4, MQpIq is representable, and its compression is
AQpIq � txpa2, b3qy, xpa3, b4q, pa3, b5qyu.

If AQpIq exists for every instance I and can be computed
in polynomial time in the size of I, then Certainty(Q)
is PTIME: to check I ( Q, simply compute AQpIq and
check � tu. The converse is not true, however: for ex-
ample, consider the query H � Rpx, yq, Spy, zq, for which

Certainty(H) is in PTIME. However, for the instance I 1 �
tRpa, bq, Spb, c1q, Spb, c2qu, MHpI 1q � xtpa, b, c1qu, tpa, b, c2quy
is not representable.
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2.3 Purified Instances
Let Q be a any boolean conjunctive query. An instance

I is called globally consistent [1, pp.128], or purified [15], if
for every relation R, ΠattrpRqpQ

f pIqq � RI , where ΠattrpRq

denotes the projection on the attributes of relation R. In
other words, no tuple in I is “dangling”.

In the rest of the paper we will assume that the instance
I is purified. This is without loss of generality, because if I
is an arbitrary instance, then we can define a new instance
Ip � I such that MQpIq �MQpIpq, and thus I ( Q if and
only if Ip ( Q.

Lemma 2.8. Given a query Q and an instance I, there ex-
ists a purified instance Ip � I such that MQpIq �MQpIpq.

2.4 The Query Graph
In the rest of the paper we will restrict the discussion

to the setting of Theorem 1.2, and consider only Boolean
queries w/o self-joins consisting only of binary relations where
exactly one attribute is the key; in [9] we prove Corollary 1.3,
thus extending the dichotomy to more general queries.

Given a query Q, the query graph GrQs is a directed graph
where the vertex set V pGq consists of set of variables in Q,
and edge set EpGq contains for atom Rpu, vq in Q an edge
eR � pu, vq in GrQs. Since Q has no self-joins each rela-
tion R defines a unique edge eR, and we denote uR and vR
its starting and ending node respectively. We say that the
edge is consistent (inconsistent) if the type of R is consistent
(inconsistent), and denote EipGq (EcpGq) the set of all con-
sistent (inconsistent) edges. Thus EpGq � EipGq Y EcpGq.

A directed path P is an alternating sequence of vertices
and edges v0, e1, v1, . . . , e`, v` where ei � pvi�1, viq for i �
1, . . . , ` and ` ¥ 0. We write P : x Ñ y for a directed
path P where v0 � x to v` � y, and every edge ei is
consistent; we write P : x ; y for any directed path P
where v0 � x and v` � y that has any type of edges.
An undirected path P is an alternating sequence of vertices
and edges v0, e1, v1, . . . , e`, v` where either ei � pvi�1, viq or
ei � pvi, vi�1q for i � 1, . . . , ` and ` ¥ 0; we write P : xØ y
for an undirected path where v0 � x and v` � y (that may
also have any types of edges). A path P may contain a sin-
gle vertex and no edges (when ` � 0), in which case we can
write P : xÑ x. If N � V pGq, then P XN denotes the set
of vertices in P that occur in N . The notation x Ñ y (or
x; y, or xØ y) means “there exists a path P : xÑ y” (or
P : x; y, or P : xØ y).

Finally, since Q uniquely defines GrQs and vice versa, we
will often use G to denote the the query Q (for example, we
may say Gprq instead of the boolean value Qprq, for some
repair r).

Example 2.9. Consider the following query:

H �R1px, yq, R
c
2py, zq, R3pz, xq, V

c
1 pu, yq, V

c
2 px, vq,

V c
3 pz, vq, Spu, vq, T pv, wq, U

cpu,wq

The graph GrHs is depicted in Figure 1. The curly edges
denote inconsistent edges Ei � tR1, R3, S, T u, whereas the
straight edges denote consistent ones. We also have u ; x
(but not uÑ x, since the only path from u to x contains in-
consistent edges). Moreover, y Ñ v, since there is a directed
path that goes from y to v through R2, V3. Finally, notice
that, although v �; y, v Ø y.

R3

S

T

R1

U
v

u

w

V1

V2

x

y

z

R2

V3

Figure 1: The query graph GrHs. The curly edges denote
inconsistent relations, whereas the straight edges consistent
relations.

2.5 The Instance Graph
Let Q be a Boolean conjunctive query without self-joins

over binary relations with single-attribute keys. Let I be
an instance for Q. We will assume w.l.o.g. that any two
attributes that are not joined by Q have disjoint domains:
otherwise, we simply rename the constants in one attribute.
For example, if Q � Rpx, yq, Spy, zq, T pz, xq then we will
assume that Π1pRIq XΠ1pSIq � H, etc.

The instance graph is the following directed graph FQpIq.
The nodes consists of all the constants occurring in I, and
there is an edge pa, bq for every tuple RIpa, bq in I. The size
of the instance graph FQpIq is the same as the size of the
instance I.

3. THE DICHOTOMY THEOREM
We present here formally our dichotomy theorem, and

start by introducing some definitions and notations. Let
u P V pGq and eR P EpGq. Then,

u` � tv P V pGq | uÑ v in Gu

u� � tv P V pGq | u; v in Gu

u�,R � tv P V pGq | u; v in G� teRuu

Example 3.1. Consider the graph GrHs from Figure 1,
which will be our running example. Then:

x` �tx, vu x�,R1 �tx, v, wu x� �tx, v, w, y, zu

Proposition 3.2. If R P Ei, u`R � u�,R
R � u�R.

Proof. Let v P u`R. Then, there exists a path P : uR Ñ v
in G. Since P is consistent, it cannot contain the incon-
sistent edge eR, and thus P exists in G � teRu as well.

Consequently, v P u�,R
R . The other inclusion is straight-

forward.

Define the binary relation R À S if uS P u�R. The relation
À is a preorder the set of edges, since it is reflexive and
transitive. If R À S and S À R then we say that R,S are
source-equivalent and denote R � S. Notice that R � S
iff their source nodes uR, uS belong in the same strongly
connected component (SCC) of G; in particular, if R,S have
the same source node, uR � uS , then R � S.

For R P Ei, we define the following sets of coupled edges:

coupled`pRq � rRs Y tS P Ei | DP : vR Ø uS , P X u`R � Hu

coupled�pRq � rRs Y tS P Ei | DP : vR Ø uS , P X u�,R
R � Hu
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By definition, every edge S that is source-equivalent to R
is coupled with R. In addition, coupled`pRq (coupled�pRq),
includes all inconsistent edges S whose source node uS is in
the same weakly connected component as vR, in the graph
G� u`R (G� u�,R

R respectively). The notion of coupled` is
not necessary to express the dichotomy theorem, but it will
be heavily used in the algorithm of Section 5.

Example 3.3. Let us compute the coupled edges in our
running example, where Ei � tR1, R3, S, T u. We start by
computing the node-closures of all the four source nodes:

x` � tx, vu, x�,R1 � tx, v, wu, z` � tz, vu, z�,R3 � tz, v, wu,

u` � tu, y, wu, u�,S � tu, y, w, x, v, wu, v` � tvu, v�,T � tvu

Next, we compute coupled�peq for every inconsistent edge
e. For example, the set coupled�pR1q includes R1 and R3,
because R1 � R3. In addition, after we remove x�,R1 �
tx, v, wu from the graph, the destination node y of R1 is still
weakly connected to the source node u of S, thus coupled�pR1q
contains S; but y is no longer connected to the source node v
of T , therefore coupled�pR1q does not contain T . By similar
reasoning:

coupled`pR1q �tR1, R3, Su coupled�pR1q � tR1, R3, Su

coupled`pR3q �tR1, R3, S, T u coupled�pR3q � tR3u

coupled`pSq �tSu coupled�pSq � tSu

coupled`pT q �tR1, R3, S, T u coupled�pT q � tR1, R3, S, T u

Proposition 3.2 implies:

Corollary 3.4. If R P Ei, coupled`pRq � coupled�pRq.

Definition 3.5 (Splittable). Two edges R,S P Ei

are coupled if R P coupled�pSq and S P coupled�pRq.
The graph G is called unsplittable if there exists two cou-

pled edges R,S s.t. R � S. Otherwise, the graph is called
splittable.

The graph GrHs from our running example is splittable,
because the only pair of coupled edges are R1, R3, which are
also source-equivalent. Indeed, any other pair is not coupled:
R1, S are not coupled because R1 R coupled�pSq; R1, T are
not coupled because T R coupled�pR1q; etc.

We can now state our dichotomy theorem, which we will
prove in the rest of the paper.

Theorem 3.6 (Dichotomy Theorem). (1) If GrQs is
splittable, then Certainty(Q) is in PTIME. (2) If GrQs is
unsplittable, then Certainty(Q) is coNP-complete.

We end this section with a few observations. First, if Q
consists of several weak connected components Q1, Q2, . . .,
in other words, Qi, Qj do not share any variables for all
i � j, then Q is unsplittable iff some Qi is unsplittable:
this follows from the fact that coupled�pRq is included in
the weakly connected component Qi that contains R. In
this case, Theorem 3.6 implies that Certainty(Q) is coNP-
complete iff Certainty(Qi) is coNP-complete for some i.

Second, if Q is strongly connected, then it is, by definition,
splittable: in this case Theorem 3.6 says that Certainty(Q)
is in PTIME. In fact, the first step of our proof is to show
that every strongly connected query is in PTIME.

Rpx, yq Spy, zq T pz, xq
pa1, b1q pb1, c1q pc1, a1q
pa1, b2q pb2, c1q
pa2, b2q pb2, c2q pc2, a2q

pa3, b3q pb3, c3q pc3, a3q
pa3, b4q pb4, c4q pc4, a3q
pa4, b4q pb4, c3q pc3, a4q

Figure 2: An inconsistent purified instance I for C3.

Finally, we note that the property of being splittable or
unsplittable may change arbitrarily, as we add more edges to
the graph. For example, consider these three queries: Q1 �
Rpx, yq, Q2 � Rpx, yq, Spz, yq, Q3 � Rpx, yq, Spz, yq, T pz, yq,
where all three relationsR,S, T are inconsistent. ThenQ1, Q3

are splittable, while Q2 is unsplittable, and therefore, their
complexities are PTIME, coNP-hard, PTIME. Indeed, in
Q2 we have coupled�pRq � coupled�pSq � tR,Su, therefore
R,S are coupled and in-equivalent R � S, thus, Q2 is un-
splittable. On the other hand, inQ3 we have2 coupled�pSq �
tS, T u, coupled�pT q � tS, T u, and therefore R,S are no
longer coupled, nor are R, T : Q3 is splittable.

4. STRONGLY CONNECTED GRAPHS
If GrQs is a strongly connected graph (SCG), then it is,

by definition, splittable. Our first step is to prove Part (1)
of Theorem 3.6 in the special case when GrQs is a strongly
connected, by showing that Certainty(Q) is in PTIME.
We actually show an even stronger statement.

Theorem 4.1. If GrQs is strongly connected, MQpIq is
representable and its compression AQpIqcan be computed in
polynomial time in the size of I.

As we discussed in Section 2, Certainty(Q) is false if and
only if AQpIq � tu; hence, as a corollary we obtain:

Corollary 4.2. If GrQs is a strongly connected graph,
Certainty(Q) is in PTIME.

We start in Subsection 4.1 by proving Theorem 4.1 in the
special case when GrQs is a directed cycle; we prove the
general case in Subsection 4.2.

4.1 A PTIME Algorithm for Cycles
For any k ¥ 2, the cycle query Ck is defined as:

Ck � R1px1, x2q, R2px2, x3q, . . . , Rkpxk, x1q

Wijsen [15] describes a PTIME algorithm for computing
Certainty(C2). We describe here a PTIME algorithm for
computing ACk pIq (and thus for computing Certainty(Ck)
for arbitrary k ¥ 2 as well), called FrugalC.

Lemma 4.3. Let I be a purified instance relative to Ck.
Then, the instance graph FCk pIq is a collection of disjoint
SCCs such that every edge has both endpoints in the same
SCC.

2The difference between Q2 and Q3 is that in Q2 we have
z�,S � tzu, while in Q3 we have z�,S � tx, y, zu.
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Figure 3: The graph FC3pIq for the instance in Figure 2 has
two SCC’s, F1 and F2.

Proof. Let pu, vq be a directed edge in the graph. Since
I is purified, pu, vq must belong in a cycle and thus there
exists a directed path v Ñ u, implying that u, v are in the
same SCC.

Algorithm. Fix k ¥ 2. The algorithm FrugalC takes
as input a purified instance I and returns the compression
ACk pIq of MCk pIq, in four steps:

1. Compute the SCCs of FCk pIq: FCk pIq � F1 Y . . . Y
Fm, where each Fi is an SCC, and there are no edges
between Fi, Fj for i � j.

2. Compute S � ti | Fi has no cycle of length ¡ ku.
3. For each i P S, define the or-set: Ai � xpa1, . . . , akq |
a1, . . . , ak cycle in Fiy.

4. Return: tAi | i P Su.

Step 1 is clearly computable in PTIME. In Step 2, we
remove all SCC’s Fi that contain a cycle of length ¡ k:
to check that, enumerate over all simple paths of length
k � 1 in Fi (there are at most Opnk�1q), and for each path
u0, u1, u2, . . . , uk check whether there exists a path from uk

to u0 in Fi � tu1, . . . , uk�1u. After Step 2, if i P S, then
every cycle in Fi has length k, and every edge is on a k-
cycle (because I is purified). Step 3 constructs an or-set Ai

consisting of all k-cycles of Fi (there are at most Opnkq).
The last step returns the set of all or-sets Ai: this is a cor-
rect representation (Definition 2.6) because no two or-sets
Ai, Aj have any common constants (since they represent cy-
cles from different SCC’s). We will prove in the rest of the
section that ACk pIq � tAi | i P Su, and therefore the al-
gorithm correctly computes ACk pIq. Note that I ( Ck iff
ACk pIq � tu iff S � H.

Example 4.4. We illustrate the algorithm on the query
C3 � Rpx, yq, Spy, zq, T pz, xq. Consider the relations R,S, T
of the instance I in Figure 2 and its graph FC3pIq � F1YF2

shown in Figure 3. The SCC F1 contains only cycles of
length 3: pa1, b1, c1q, pa1, b2, c1q and pa2, b2, c2q, whereas F2

contains a cycle3 of length 6: pa3, b3, c3, a4, b4, c4q. Therefore
the algorithm returns a set consisting of a single or-set:

AC3pIq � txpa1, b1, c1q, pa1, b2, c1q, pa2, b2, c2qyu

It remains to show that the algorithm is correct, and this
follows from two lemmas. Recall from Subsection 2.2 that
FCk pIq denotes the or-set of frugal repairs of I for Ck. As-
suming I is a purified instance, let I � I1 Y I2 Y . . . Y Im,
where each Ii corresponds to some SCC of FCk pIq.
3Notice that every edge in F2 is on some cycle of length 3
(since I is purified), yet F2 also contains a cycle of length 6.

Lemma 4.5. For the frugal repairs of I, FCk pIq � xr1 Y
. . .Y rm|r1 P FCk pI1q, . . . , rm P FCk pImqy

In other words, the frugal repairs of I are obtained by
choosing, independently, a frugal repair ri for each SCC Ii,
then taking their union.

Lemma 4.6. Let I be a purified instance relative to Ck,
such that FCk pIq is strongly connected. Then:

MCk pIq �

#
xtuy if I has a cycle of length ¡ k,

xtpa1, . . . , akqu | a1, . . . , ak cycle in FCk pIqy else

The lemma says two things. On one hand, if I has a
cycle of length ¡ k, then I * Ck. Consider the case when
all cycles in I have length k. In general, if r is a minimal
repair, then the full query Cf

k prq may return any nonempty
set of k-cycles. The lemma states that if r is a frugal repair,
then Cf

k prq returns exactly one k-cycle, and, moreover, that
every k-cycle is returned on some frugal repair r.

We now apply the two lemmas to prove the correctness
of the algorithm. Lemma 4.6 implies that, if I is strongly
connected and has no cycle of length ¡ k, MCk pIq is repre-
sentedACk pIq � txpa1, . . . , akq|a1, . . . , ak cycle in FCk pIqyu;
and if I has a cycle of length ¡ k then ACk pIq � tu.
Lemma 4.5 implies that, if I has m SCC’s I � I1Y . . .Y Im,
then ACk pIq � ACk pI1q Y . . . ACk pImq. This completes the
correctness proof of the the algorithm.

We conclude with an observation on FO-expressibility.
Recall that [14] proves that the Certainty(C2) is not first-
order (FO)-expressible. The following proposition completes
the complexity landscape for cycle queries.

Proposition 4.7. For a cycle query Ck (where k ¡ 1),
Certainty(Ck) is FO-expressible if and only if Ck contains
at most one inconsistent edge.

4.2 A PTIME Algorithm for SCGs
We now present the general algorithm that computes the

compression AQpIq for any strongly connected query Q. The
algorithm uses the following decomposition of the query
graph GrQs.

Let G � GrQs be a query graph and G0 � G be subgraph.
A chordal path for G0 is a simple, non-empty4 path P : u;

v s.t. G0 X P � tu, vu. If P consists of a single edge then
we call it a chord. With some abuse, we apply the same
terminology to queries: if the query Q can be written as
Q0, P , where Q0 and P are sets of atoms s.t P is a simple
path5 from u to v, then we say that P is a chordal path for
Q0 if they share only the variables u, v.

Lemma 4.8 (Chordal Path Decomposition). Let G
be strongly connected. Then there exists a sequence G0 �
� � � � Gm � G of subgraphs of G such that

1. G0 is a simple cycle

2. For every i � 1,m, Gi � Gi�1 Y Pi, where Pi is a
chordal path of Gi�1.

4Recall that, when u � v, then a simple, non-empty path
from u to u is a cycle.
5Meaning that P � R1pu, x1q, R2px1, x2q, . . . , Rmpxm�1, vq,
all variables u, x1, . . . , xm�1 are distinct, and all variables
x1, . . . , xm�1, v are distinct.
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Example 4.9. We will study the conjunctive query H2 �
Rpx, yq, Spy, zq, T pz, xq, Upy, tq, V pt, zq. The query admits
the following decomposition:

G0 �GrQ0s where Q0 � Rpx, yq, Spy, zq, T pz, xq

G1 �G0 Y P where P � Upy, tq, V pt, zq

Our algorithm for computing Certainty(Q) for an SCC
Q uses a chordal path decomposition of Q and applies the
following two procedures.

Procedure FrugalChord. Fix a query Q of the form
Q0, R

cpu, vq, where Rcpu, vq is a chord for Q0. The proce-
dure FrugalChord takes as input an instance I and the
compact representation AQ0pIq, and returns the compact
representation AQpIq. The procedure simply returns the
set:

AQpIq � tA P AQ0pIq | @t P A : ptrus, trvsq P Rcu (1)

In other words, the procedure computes a representation
of Q on I by having access to a representation to Q0 on
I. Correctness follows from the following lemma, which is
proven in [9].

Lemma 4.10. Let Q � Q0, R
cpu, vq such that Rcpu, vq is a

chord of Q0. If MQ0pIq is representable and its compression
is AQ0pIq, then , MGi�1pIq is also representable and its
compression is given by Eq.(1).

Procedure FrugalChordPath. Fix a query Q of the
form Q0, P , where P is a chordal path from u to v for Q0.
The procedure FrugalChordPath takes as input an in-
stance I and the compact representation AQ0pIq, and re-
turns the compact representation AQpIq, in six steps:

1. Assume AQ0pIq has m or-sets, each with n1, . . . , nm

elements:

AQ0pIq � tA1, . . . , Amu, Ai � xti1, ti2, . . . , tiniy (2)

Denote n �
°

i ni. Let ai for i � 1,m be m distinct
constants, and let bij for i � 1,m, j � 1, ni be n
distinct constants. Denote tuppbijq � tij the tuple
encoded by bij .

2. Create four new relations:

Bi �tpai, bijq | i � 1,m; j � 1, niu

Bc
1 �tpbij , πuptijqq | i � 1,m; j � 1, niu

Bc
2 �tpbij , πvptijqq | i � 1,m; j � 1, niu

Bc
0 �tpπvptijq, aiq | i � 1,m; j � 1, niu

Bi is of inconsistent type (hence the superscript “i”),
and Bc

1, Bc
2, Bc

0 are of consistent type.

3. Assume the variables u, v are distinct, u � v: we dis-
cuss below the case u � v. Denote Ck�3 and Q1:

Ck�3 �B
ipa, bq, Bc

1pb, uq,

R1pu, x1q, . . . , Rkpxk�1, vq, B
c
0pv, aq

Q1 �Cf
k�3pa, b, u, x1, . . . , xk�1, vq, B

c
2pb, vq

where R1pu, x1q, . . . , Rkpxk�1, vq is the chordal path
P , and a, b are new variables.

4. Use the algorithm FrugalC to find the compact rep-
resentation ACk�3pIq for Ck�3.

5. Use the procedure FrugalChord to find the compact
representation of AQ1pIq for Q1.

6. Return the following set of or-sets:

AQpIq �txptuppπbptqq, πV arspP qptqq|t P Ay | A P AQ1pIqu
(3)

We explain the algorithm next. In Step 1 we give fresh
names to each or-set Ai in AQ0pIq, and to each tuple tij in
each or-set in Ai: by Proposition 2.7, the number of con-
stants needed is only polynomial in the size of the active do-
main of I. The crux of the algorithm is the table Bipa, bq cre-
ated in Step 2: its repairs correspond precisely to αpAQ0pIqq,
up to renaming of constants. To see this notice that each re-
pair of Bi has the form tpa1, b1j1q, . . . , pam, bmjmqu for arbi-
trary choices j1 P rn1s, . . . , jm P rnms. Therefore, the set of
frugal repairs ofBi is αpS0q, where S0 � txpai, bijq|j � 1, niy |
i � 1,mu, which is precisely Eq.(2) up to renaming of the
tuples by constants. The relation Bc

1 decodes each constant
bij by mapping it to the u-projection of tij ; similarly for
Bc

2. Clearly, both Bc
1, B

c
2 are consistent, because every con-

stant bij needs to be stored only once. The relation Bc
0 is

a reverse mapping, which associates to each value of v the
name ai of the unique or-set Ai that contains a tuple tij
with that value in position v: the set Ai is uniquely defined
because, by Definition 2.6, for any distinct sets Ai1 , Ai2 we
have ΠvpAi1q XΠvpAi2q � H.

Step 3 transformsQ into a cycle Ck�3 plus a chordBc
2pb, vq,

by simply replacing the entire subquery Q0 with the sin-
gle relation Bipa, bq (which is correct, since AQ0pIq is the
same as the set of repairs of Bi) plus the decodings Bc

1pb, uq,
Bc

2pb, vq: note that we only needed Bc
0pv, aq in order to close

the cycle Ck�3. The next two steps compute the encodings
ACk�3pIq and AQ1pIq using the algorithm FrugalC and
FrugalChord respectively. Finally, the last step converts
back AQ1pIq into AQpIq by expanding the constants bij into
the tuples they encode, tij � tuppbijq. The algorithm has
assumed u � v. If u � v are the same variable, the Ck�3

is no longer a cycle: in that case, we split u into two vari-
ables u, v and add two consistent relations Rcpu, vq, Scpv, uq
to the query, and replace the last relation Rkpxk�1, uq of P
with Rkpxk�1, vq. The correctness of the algorithm follows
from:

Lemma 4.11. Let Q be a query of the form Q0, P where
P is a chordal path from u to v for Q0, and let I be an
instance. Then, if MQ0pIq is representable and AQ0pIq is
its compact representation, then MQpIq is also representable
and its compact representation is given by Eq.(3).

Algorithm FrugalSCC. LetQ be a query that is strongly
connected. The algorithm FrugalSCC takes as input an in-
stance I, and returns AQpIq, as follows. Let Q0, Q1, . . . , Qm

a chordal path decomposition for Q (Lemma 4.10). Start
by computing AQ0pIq using algorithm FrugalC. Next, for
each i � 1,m, use AQi�1pIq and the procedure Frugal-
ChordalPath to compute AQipIq. Return AQmpIq.

Example 4.12. Continuing Example 4.9, we will show
how to compute AH2pI2q where I2 is the instance shown
in Figure 4. We write H2 as H2 � C3, P , where C3 �
Rpx, yq, Spy, zq, T pz, xq and P � Upy, tq, V pt, zq. We start

by computing C3 on I2; one can check6 that AC3pI2q �
6Every repair of I2 contains exactly two cycles: pa1, b1, c1q
and one of pa2, b2, c2q or pa2, b3, c2q.
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Rpx, yq Spy, zq T pz, xq Upy, tq V pt, zq
pa1, b1q pb1, c1q pc1, a1q pb1, dq pd, c1q
pa2, b2q pb2, c2q pc2, a2q pb2, dq pd, c2q
pa2, b3q pb3, c2q pb3, dq

Figure 4: An inconsistent purified instance I2 for H2.

Bpa, bq Bc
1pb, yq Bc

2pb, zq Bc
0pz, bq

pA1, ra1b1c1sq pra1b1c1s, b1q pra1b1c1s, c1q pc1, A1q
pA2, ra2b2c2sq pra2b2c2s, b2q pra2b2c2s, c2q pc2, A2q
pA2, ra2b3c2sq pra2b3c2s, b3q pra2b3c2s, c2q

Figure 5: The resulting instance I 1 produced by the induc-
tive step for H2.

tA1, A2u where A1 � xpa1, b1, c1qy, A2 � xpa2, b2, c2q, pa2, b3, c2qy.
Encode the two sets with the new constants A1, A2, and
encode the three tuples with three new constants ra1b1c1s,
ra2b2c2s, ra2b3c2s. The new relations we constructed Bipa, bq,
Bc

1pb, yq, B
c
2pb, zq, B

c
0pz, bq are shown in Figure 5. Thus, we

have to compute the following queries:

C5 �B
ipa, bq, Bc

1pb, yq, U1py, tq, V pt, zq, B
c
0pz, aq

Q1 �Cf
5 pa, b, y, t, zq, B

c
2pb, zq

on the instance I 1 in Figure 5. One can check that their
answers are:

AC5pI
1q � txpA1, ra1b1c1s, b1, d, c1q, pA2, ra2b2c2s, b2, d, c2q,

pA2, ra2b3c2s, b3, d, c2qyu

AQ1pI
1q � AC5pI

1q

Mapping this to the original query H2px, y, z, tq by projecting
out the Ai and merging the tuples, we obtain that

AH2pI2q � txpa1, b1, c1, dq, pa2, b2, c2, dq, pa2, b3, c2, dqyu

In particular, I2 ( H2, because AH2pI2q is nonempty.

5. THE PTIME ALGORITHM
In this section, we prove:

Theorem 5.1. If the graph GrQs is splittable, there exists
a PTIME algorithm that solves Certainty(Q).

The polynomial time algorithm we present here is based
on the fact that if GrQs is splittable, it has a very specific
structure that allows us to break it into smaller pieces that
we can solve independently; in other words, the problem is
self-reducible. The graph object that allows this is called
a separator, and we show in Subsection 5.4 that it always
exists in GrQs. Throughout this section, we will use the
graph GrHs of Figure 1 as a running example.

5.1 Separators
In this section, we define the notion of a separator, which is

central to the construction of the polynomial time algorithm
for deciding certainty on splittable graphs. We first need to
set up some notation.

Recall that � denotes a binary relation between edges
R,S P Ei: R � S if R and S are source-equivalent. Con-
sider the equivalence relation defined by � on the set of in-
consistent edges Ei, and denote Ei{� the quotient set and

rRs P Ei{� the equivalence class for an edge R P Ei. For our
example graph GrHs, we have R1 � R3 (because R1, R2, R3

form a cycle), thus rR1s � tR1, R3u. Also S À rR1s, S À T ,
hence Ei{� � trR1s, rSs, rT su.

For any C P Ei{�, define

C� def
�
£
RPC

u�,R
R and C` def

�
£
RPC

u`R.

Similar to how we have defined coupled�pRq, coupled`pRq
for any R P Ei, we define coupled�pCq, coupled`pCq for
C P Ei{�:

coupled�pCq
def
� tCu Y tC 1 P Ei{� | DR P C, S P C 1 :

DP : vR Ø uS , P X C� � Hu

coupled`pCq
def
� tCu Y tC 1 P Ei{� | DR P C, S P C 1 :

DP : vR Ø uS , P X C` � Hu

The definitions ”lift” the notion of coupling from a single
inconsistent edge to a set of inconsistent edges that forms
an equivalence class. Continuing our example, we have:

coupled�ptR1, R3uq � ttR1, R3u, tSuu

coupled�ptSuq � ttSuu

coupled�ptT uq � ttR1, R3u, tT u, tSuu

Moreover, for GrHs, the sets coupled�, coupled` coincide for
every equivalence class.

For C1, C2 P Ei{�, we define a binary relation ¤`: we
write C1 ¤` C2 if there exists S P C2 such that uS P C`

1 .

Proposition 5.2. ¤` is antisymmetric and transitive.

We can now define C1  ` C2 to be such that C1 ¤` C2

and C1 � C2. Then, following from Proposition 5.2,  ` is
a strict partial order. We will be particularly interested in
the maximal elements of this order, which we call sinks.

Definition 5.3 (Sink). C P Ei{� is a sink if it is a
maximal element of  `.

Example 5.4. Since puR3 �qz P u`p� u`S q, we have
tSu  ` tR1, R3u. Also, since v P u`R1

X u`R3
, tR1, R3u  `

tT u. By the transitivity of  `, we also obtain that tSu  `

tT u. Hence, tT u is the only sink of the graph GrHs.

Definition 5.5 (Separator). A sink C P Ei{� is a
separator if for every C 1 � C such that C 1 P coupled`pCq,
we have that C 1  ` C.

In the specific case where Ei{� contains a single sink C,
since  ` is a strict partial order, for any C 1 P Ei{�, C 1 � C,
we have that C 1  ` C and thus the single sink C is trivially
a separator. Thus, for our example graph GrHs, tT u is the
only separator.

In order to prove the existence of a separator, it is not a
sufficient condition that the graph is splittable. For example,
consider the splittable query Q � Ripx, yq, Sipx, yq, T ipz, yq,
which contains two sinks, tR,Su and tT u. It is easy to see
that tT u R coupled`ptR,Suq, and tR,Su R coupled`ptT uq;
thus, GrQs has no separator. Instead, we show the existence
of a separator for a graph that is splittable and f-closed.

Definition 5.6 (f-closed Graph). G is f-closed if for

every R P EipGq, v`R X u�,R
R � u`R.
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Indeed, GrQs is not f-closed, since v`R � tyu, u�,R
R �

tyu and u`R � txu. We will show in Subsection 5.3 that,
given a splittable graph G and an instance I, we can always
construct in polynomial time a splittable and f-closed graph
G1 and an instance I 1 such that I ( G iff I 1 ( G1.

We show in Subsection 5.4 that, if G is splittable and f-
closed, there exists a separator, and in fact the separator
has an explicit construction:

Theorem 5.7. If G is a splittable and f-closed graph, then
Csep � arg minsink CPEi{� |coupled

`pCq| is a separator.

In other words, the sink C with the smallest coupled`pCq
is a separator (there can be many). In the next subsection,
we use the existence of a separator to design a recursive
polynomial time algorithm for splittable graphs.

5.2 The Recursive Algorithm
We present here an algorithm, RecursiveSplit, that takes

as input an instance I and a splittable and f-closed graph G
and returns True if I ( G, otherwise False. The algorithm
is recursive on the number of inconsistent relations, |EipGq|
of G. For the base case EipGq � H (all relations are con-
sistent), it is straightforward that RecursiveSplitpI,Gq �
True if and only if GpIq is true.

We next show how to compute RecursiveSplitpI,Gq
when |EipGq| ¡ 0. Since G is a splittable and f-closed graph,
Theorem 5.7 tells us that there exists a separator C. We par-
tition the edges of Ei into a left (L) and right (R) set as
follows:

LC � tR P Ei | rRs P coupled`pCqu , RC � EizLC

Let SC denote the unique SCC that contains all the sources
for the edges in C. Recall from Section 4 that one can
use the algorithm FrugalSCC to compute the compression
ASC pIq of MSC pIq in polynomial time, since SC is a strongly
connected graph. Let A denote the set of all tuples that
appear in some or-set of ASC pIq, and B � ΠC`pG

f pIqq. For
some a P A, we say that a is aligned with b P B, denoted a}b,
if there exists a tuple t P Gf pIq such that trV pSCqs � a and
trC`s � b. Also, define algnpbq � ta P A | a}bu. Observe
that a can be aligned with at most one b, since there exists a
consistent directed path from every node of V pSCq to every
node of C`. Notice also that when C` � H, all the tuples
in A are vacuously aligned with the empty tuple pq.

For every b P B, choose a tuple tpbq P Gf pIq such that
tpbqrC`s � b. For every tuple a P A, we now define a
subinstance Iras � I such that:

RIras �

$'&
'%
tptpbqruRs, tpbqrvRsq | b : a}bu if R P RC ,

tptruRs, trvRsq | t P Gf pIq, trV pSCqs � au if R P LC ,

RI otherwise.

Notice that if some relation R belongs in SC , then it must
contain exactly one tuple, while if uR belongs in V pSCq,
then RIras contains exactly one key-group. On the other
hand, the relations that do not belong in LC contain only
one tuple that contributes to tpbq.

The first key idea behind the construction of subinstances
is captured by the following lemma, which shows that certain
subinstances are independent in the relations of LC .

Lemma 5.8. Let a1,a2 P A. The instances Ira1s, Ira2s
share no key-groups in any relation R P LC if either of the
following two conditions hold:

1. a1,a2 belong in different or-sets of ASC pIq.
2. a1}b1,a2}b2, and b1 � b2.

The second key idea is that computing whether Iras ( G
can be reduced to a computation where G contains strictly
less inconsistent relations. Indeed, recall that in Iras, ev-
ery relation Ri P C, i � 1, . . . ,m, contains exactly one
key-group, RiparuRi s,�q (and if it both vertices of R are

in SC , it contains exactly one tuple). We can now apply
a ”brute force” approach and try all the possible combina-
tions of choices for these key-groups, since they are poly-
nomially many: each such combination will create a new
instance where the relations in C will be consistent, and
thus certainty for G can be computed in polynomial time
by induction. It holds that Iras ( G iff every new instance
is certain for G. The procedure SimplifypIras, Gq describes
the algorithm we just sketched.

Algorithm 1: Simplify(Iras, G)

K � tpc1, . . . , cmq | @i : RiparuRi s, ciqu
G1 Ð G where all edges of C are of consistent type
@c P K:
Iraspcq Ð pIrasz

�m
i�1 RiparuRi s,�qq

�m
i�1 RiparuRi s, ciq

return p@c P K: RecursiveSplitpIraspcq, G1q � Trueq

Algorithm 2: RecursiveSplit(I,G)

if EipGq � H then return G(I)
Find a separator C of G

B Ð ΠC`pG
f pIqq

ASC pIq Ð FrugalSCCpI, SCq
for b P B do

if D or-set A P ASC pIq s.t.
@a P AX algnpbq ñ SimplifypIras, Gq � True then

rrbs Ð any repair of
��

aPalgnpbq Iras
	

else
rrbs Ð H

end

@R P EpGq: RI1 �

#
RI X p

�
bPB rrbsq if R P LC ,

RI otherwise.

G1 Ð G where all edges in LC are of consistent type
return RecursiveSplitpI 1, G1q

We can now analyze the algorithm RecursiveSplit, and
show that runs in polynomial time and is correct. For its
running time, observe first that for the final recursive call
on I,G1, the graph G1 has at most |EipGq|� |LC |   |EipGq|
inconsistent edges, so by the induction argument it can be
computed in polynomial time. Second, the algorithm calls
SimplifypIras, Gq at most |A| times, and we have shown
that each such call can be computed in polynomial time.

We next argue that RecursiveSplit correctly computes
whether I ( G or not. We prove in [9]:

Lemma 5.9.
�

aPalgnpbq Iras ( G iff there exists an or-set

A P ASC pIq such that for every a P AX algnpbq, Iras ( G.

Given a repair r of I and a repair r1 of
�

aPalgnpbq Iras, we

define mergeCpr, r1q as a new repair rm of I such that for
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any key-group Rpa,�q, if R R LC or r1 does not contain the
key-group, rm includes the choice of r; otherwise, it includes
the choice of r1. In other words, to construct rm we let r1

overwrite r only in the relations of LC .

Lemma 5.10. For any frugal repair r of I:

1. If
�

aPalgnpbq Iras * G then b R
±

C` G
f prq.

2. If
�

aPalgnpbq Iras ( G then for any repair r1 of the

instance
�

aPalgnpbq Iras, Gprq � GpmergeCpr, r1qq.

To see why Lemma 5.9 and Lemma 5.10 imply the cor-
rectness of the algorithm, consider first the case where for
some b P B, for any or-set A P ASC pIq, there exists some
a P A that is aligned with b such that Iras * G. Then,
Lemma 5.9 tells us that

�
aPalgnpbq Iras * G and thus, by

Lemma 5.10(1), for every frugal repair r of I, b R ΠC`G
f prq.

Hence, all the key-groups of the relations in LC that appear
in Iras, for any a aligned with b, can be safely removed from
the instance: this is exactly what setting rrbs � H achieves.
On the other hand, assume that for some b P B, there ex-
ists an or-set A P ASC pIq, where for every a P AX algnpbq,
Iras ( G. Then, Lemma 5.9 tells us that

�
aPalgnpbq Iras (

G, and by Lemma 5.10(2), whether the instance is certain
or not is independent of the choice for the key-groups of LC

that are contained in
�

aPalgnpbq Iras.

5.3 f-closed Graphs
In this subsection, we show that we can always reduce in

polynomial time G with instance I to an f-closed graph G1

with instance I 1 such that MGpIq � MG1pI
1q. For this, we

exploit the following technical lemma.

Lemma 5.11. Let R P Ei and v P u�,R
R X v`R . Let P :

uR, eR, vR, . . . , v be the directed path from uR to v with eR
as its first edge. If there exist pa, b1q, pa, b2q P ΠuR,vpP f pIqq
such that b1 � b2, then no frugal repair of G contains a.

Now, consider some instance I of G such that G is not f-
closed. We present a polynomial time algorithm, F-Closure,
that reduces the graph to an f-closed graph, while keeping
the representation MG the same. Notice that the algorithm
has no specific requirements on the structure of G.

Algorithm 3: F-ClosurepI,Gq

IC Ð I, GC Ð G

while DR P EipGCq, v P V pGCq such that

v P pu�,R
R X v`Rqzu

`
R do

P � uR, eR, vR, . . . , v

T � ΠuR,vpP f pIqq
IC Ð IC Y tpa, bq P T | Epa, b1q P T where b1 � bu
GC Ð pV pGCq, EpGCq Y tpuR, vquq

end
return IC , GC

Proposition 5.12. Let I be an instance of graph G. F-
Closure returns an instance IC of an f-closed graph GC in
polynomial time such that MGpIq �MGC pICq.

5.4 Proof Sketch of Separator Existence
We sketch here the proof for Theorem 5.7, which states

that Csep � arg minsink CPEi{� |coupled
`pCq| is a separator.

Recall that we want to show that for any C P Ei{�, where
C � Csep, either C  ` Csep or C R coupled`pCsepq. We
will show next that it suffices to consider only the sinks
C P Ei{�, and show that for any sink C � Csep, C R
coupled`pCsepq. Indeed, we show in [9] that for a sink C,
the set coupled`pCq is upward closed: if C0 P coupled`pCq
and C0  ` C1, then also C1 P coupled`pCq. Note that
coupled`pCq is not necessarily upward closed for any C that
is not a sink.

Lemma 5.13. If C is a sink, coupled`pCq is upward closed.

Now, suppose that we have shown that for any sink C �
Csep, C R coupled`pCsepq, and consider any C 1 P Ei{�,
C 1 � C that is not a sink. Then C 1  ` C2 for some C2 P
Ei{� that is a sink; hence, C2 R coupled`pCsepq. However,
since Csep is a sink, we can apply Lemma 5.13 to conclude
that C 1 R coupled`pCsepq.

The bulk of the proof consists of two technical results,
which we prove in detail in the full version of this paper [9].
The first result tells us that for a sink C, the two types of
coupling coincide: coupled�pCq � coupled`pCq.

Proposition 5.14. Let G be a splittable and f-closed graph.
For any sink C P Ei{�, C� � C`.

The second result tells us that for two distinct equivalence
classes C1, C2 where C1 P coupled�pC2q, coupled�pC1q is
strictly contained in coupled�pC2q.

Proposition 5.15. Let G a splittable graph and C1, C2 P
Ei{� such that C1 � C2. Then,

1. Either C1 R coupled�pC2q or C2 R coupled�pC1q.
2. If C1 P coupled�pC2q, coupled�pC1q � coupled�pC2q.

Now, consider a sink C � Csep. If C P coupled�pCsepq,
then by Proposition 5.15(2) and Proposition 5.14 it must be
that coupled`pCsepq � coupled�pCsepq � coupled�pCq �
coupled`pCq. However, this contradicts the minimality of
coupled`pCsepq, and proves our theorem.

6. THE CONP-COMPLETE CASE
In this section, we prove part (2) of Theorem 3.6: if GrQs

is unsplittable, then Certainty(Q) is coNP-complete. We
reduce Certainty(Q) from Monotone-3Sat, which is a
special case of 3Sat where each clause contains only posi-
tive or only negative literals. We say that a clause is posi-
tive (negative) if it contains only positive (negative) literals.
Monotone-3Sat is known to be NP-complete [7].

Given an instance M of Monotone-3Sat, let us denote
by Φ the set of all clauses, X the set of all variables, X�

the set of all literals and B � tT, F u (true, false). Moreover,
let us define J � Φ � B � tpφ, x�q | x� P φ, φ P Φu and
K � tpqu. We order the set L � tK,B, X,Φ, X�,Ju as
shown in Figure 6: K and J are the minimal and maximal
elements, and B ¤ Φ, X ¤ X� and B ¤ X�. The reader
may check that L is a lattice. For example, Φ ^ X� � B
and B_X � X�.

Definition 6.1 (Valid Labeling). Let R,S P Ei. A
labeling L : V pGq Ñ L is pR,Sq-valid if the following condi-
tions hold:

174



J

K

X variable

X� literal

assignment

clause Φ

B

Figure 6: The lattice of the set of labels L.

1. LpuRq � Φ and LpvRq P tJ, X,X�u.
2. LpuSq � X and LpvSq P tB, X�u.
3. For every T P EiztR,Su, LpuT q ¥ LpvT q.
4. DPR : vR Ø uS such that @v P PR, Lpvq ¥ X.

5. DPS : vS Ø uR such that @v P PS , Lpvq ¥ B.

Proposition 6.2. If R,S P Ei are coupled and S Â R,
then G admits a pR,Sq-valid labeling.

If the query Q has an unsplittable graph G � GrQs, then
there exists two coupled edges R,S s.t. R � S. This im-
plies that we cannot have both R À S and S À R, and
the proposition tells us that G has an pR,Sq-valid labeling.
We will show later how to use this labeling to reduce M to
Certainty(Q). First, we prove the proposition.

Proof. Since S P coupled�pRq, there exists a path PR :

vR Ø uS s.t. PR X u�,R
R � H; similarly, there exists a path

PS : vS Ø uR s.t. PSXu
�,S
S � H. Notice that, in particular,

PR contains the source and destination nodes vR, uS , and,
similarly, PS contains the nodes vS , uR, which implies:

vR R u�,R
R uS R u

�,R
R vS R u

�,S
S uR R u�,S

S (4)

We define the label L as follows. Let W � tuR, vR, uS , vSu
and set the initial labels for the four nodes in W :

L0puRq �Φ, L0pvRq �J, L0puSq �X, L0pvSq �X
�

For every v P V pGq, let W�1pvq � tw | w PW, v P w�,R,Su,
where w�,R,S is the set of nodes reachable from w by a
directed path that does not go through either R or S. In
other words, W�1pvq is the subset of the four distinguished
nodes that can reach v without using R or S. Trivially,
w P W�1pwq, for every w P W . Define the labeling L as
follows:

@v P V pGq : Lpvq �
©
tLpwq | w PW�1pvqu

We will show that this labeling is pR,Sq-valid. We start by
checking properties (1) and (2). Consider each of the four
distinguished nodes in W :

uR: The set W�1puRq is either tuRu or tuR, vRu; indeed
vS R W�1puRq because S Â R, and uS R W�1puRq by
Eq.(4). By definition, either LpuRq � Φ or LpuRq �
Φ^J � Φ; in both cases LpuRq � Φ.

uS: We have tuSu � W�1puSq � tuS , vR, vSu, because

Eq.(4) implies uS R u
�,R,S
R . This impliesX � L0puSq ¥

LpuSq ¥ L0puSq^L0pvRq^L0pvSq � X^J^X� � X,
hence LpuSq � X.

vR: We have tvRu �W�1pvRq � tuS , vR, vSu, because Eq.(4)

implies vR R u�,R,S
R . Therefore, J ¥ LpvRq ¥ X^J^

X� � X, implying LpvRq P tX,X�,Ju.
vS: We have tvSu �W�1pvSq � tuR, vR, vSu, because Eq.(4)

implies vS R u�,R,S
S . Therefore, X� ¥ LpvSq ¥ Φ ^

J^X� � B, implying LpuSq P tB, X�u.

To show property (3), consider an edge eT � puT , vT q,
T � R,S. Then W�1puT q �W�1pvT q which implies LpuT q ¥
LpvT q.

For (4), let PR be the undirected path defined earlier s.t.

PRXu
�,R
R � H; we also have PRXu

�,R,S
R � H. Let v P PR

be any node on this path. Then uR RW�1pvq, which implies
that W�1pvq � tvR, uS , vSu, and therefore Lpvq ¥ J ^X ^
X� � X.

Finally, for (4), let PS be the undirected path defined

earlier, s.t. PS X u�,S
S � H. For any node v P PS we have

W�1pvq � tuR, vR, vSu, thus Lpvq ¥ Φ^J^X� � B.

Next, we show how to use a valid labeling to reduce the
Monotone-3Sat Φ to Certainty(Q).
The Functions fL1L2 . For any pair of sets L1, L2 P L

such that L1 ¥ L2, we define a function fL1L2 : L1 Ñ L2, as
follows. First, for the seven pairs L1, L2 where L1 covers7

L2, we define fL1L2 directly:

pΦ,Bq : fΦ,Bpφq � T if φ is a positive clause, else F

pX�, Xq : fX�,Xpx
�q � fX�,Xpx

�q � x

pX�,Bq : fX�,Bpx
�q � T and fX�,Bpx

�q � F

pJ,Φq : fJ,Φppφ, x�qq � φ

pJ, X�q : fJ,X�ppφ, x�qq � x�

pB,Kq, pX,Kq : fB,Kpbq � fX,Kpxq � pq

Next, we define fLL � idL (the identity on L) and fL1L3 �
fL2L3 � fL1L2 for all L1 ¥ L2 ¥ L3. Readers familiar with
category theory will notice that we have transformed the
lattice L into a category.
Instance Construction. We define the instance I, by

defining a binary relation T I for every relation name T . Let
L1 � LpuT q, L2 � LpvT q. We distinguish two cases, de-
pending on whether T is R,S or not.

If T � R, T � S, then we know that L1 ¥ L2. Define
T I � tpa, bq | a P L1, b � fL1L2paq P L2u. Notice that the
first attribute of T I is a key (because fL1L2 is a function),
and therefore T I always satisfies the key constraint.

If T � R or T � S, then L1 § L2. In this case we
construct RI and SI to be a certain set of pairs pa, bq, a P
L1, b P L2, where b is obtained from a by either going “back”
(b) in the lattice, or going “back and forth” (b-f), depending
on the combination of L1, L2 given by Definition 6.1:

pΦ,Jq : RI � tpa, bq | b P f�1
J,Φpaqu (b)

pΦ, X�q : RI � tpa, bq | Dc P f�1
J,Φpaq : fJ,X�pcq � bu (b-f)

pΦ, Xq : RI � tpa, bq | Dc P f�1
J,Φpaq : fJ,Xpcq � bu (b)

pX,X�q : SI � tpa, bq | b P f�1
X�,X

paqu (b)

pX,Bq : SI � tpa, bq | Dc P f�1
X�,X

paq : fX�,Bpcq � bu (b-f)

Notice that in all cases, RI and SI are inconsistent. For
example, in the first case, a repair of RI chooses for each
clause φ P Φ a value pφ, bq with b P B.

7In a lattice, L1 covers L2 if L1 ¡ L2 and there is no L3 s.t.
L1 ¡ L3 ¡ L2.
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Figure 7: A query graph with a pR,Sq-valid labeling.

Example 6.3. Consider the formula Y � φ1 ^ φ2, where
φ1 � px�_y�_z�q and φ2 � pz�_w�_t�q. If the inconsis-
tent relation R is labeled with pΦ, Xq, it will be populated by
the tuples pφ1, xq, pφ1, yq, pφ1, zq and pφ2, zq, pφ2, wq, pφ2, tq.
On the other hand, a consistent relation T � R,S that is
labeled with pΦ,Bq will contain the tuples pφ1, T q, pφ2, F q.

Thus, given a valid labeling we can create a database in-
stance using the above construction. We prove in [9]:

Proposition 6.4. Let I be the instance that corresponds
to a pR,Sq-valid labeling according to an instance M of
Monotone-3Sat. Then, I * Q if and only if M has a
satisfying assignment.

Example 6.5. Consider the query of Figure 7. Notice
that R À S. Also, uR � x, vR � uS � y and vS � z.
Since L�pxq � tL0puRqu � tΦu, Lpxq � Φ. Also, L�pyq �
tL0pvRq, L0puSqu � tJ, Xu, hence Lpyq � J ^ X � X.
For variable z, L�pzq � tL0pvSq, L0puRqu � tΦ, X�u and
Lpzq � Φ ^X� � B. L�ptq � tL0puRq, L0pvRq, L0puSqu �
tΦ,J, Xu and hence Lptq � Φ^J^X � K.

7. RELATED WORK
The consistent query answering framework was first pro-

posed by Arenas et al. in [2]. Fuxman and Miller [6] fo-
cused on primary key constraints, with the goal of specify-
ing conjunctive queries where Certainty(Q) is first-order
expressible, i.e. can be represented as a boolean first-order
query over the inconsistent database. They presented a class
of acyclic conjunctive queries w/o self-joins, called Cforest,
that allows such first-order rewriting. Further, Fuxman et
al. [5] designed and built a system that supported the query
rewriting functionality for consistent query answering.

In a series of papers [12, 14], Wijsen improved on the
results for first-order expressibility. The author presented
a necessary and sufficient syntactic condition for the first-
order expressibility for acyclic conjunctive queries without
self-joins. In a later paper, Wijsen [13] gave a polynomial
time algorithm for the query Q2 � Rpx, yq, Spy, xq, which
is known to be not first-order expressible. Q2 is the first
query that was proven to be tractable even though it does
not admit a first-order rewriting. Kolaitis and Pema [8]
proved a dichotomy for the complexity of Certainty(Q)
when the query has only two atoms and no self-joins into
polynomial time and coNP-complete. Finally, Wijsen [15]
recently classified several acyclic queries into PTIME and
coNP-complete, without however showing the complete di-
chotomy for acyclic queries without self-joins.

A relevant problem to consistent query answering is the
counting version of the problem: given a query and an incon-
sistent database, count the number of repairs that satisfy the

query. Maslowski and Wijsen [11] showed that this problem
admits a dichotomy in P and #P-complete for conjunctive
queries without self-joins.

Finally, we should mention that the problem of consistent
query answering is closely related to probabilistic databases,
in particular disjoint-independent probabilistic databases [4].
Wijsen in [15] discusses the precise connection between the
complexity of evaluating a queryQ on probabilistic databases
and Certainty(Q).

8. CONCLUSION
In this paper, we make significant progress towards prov-

ing a dichotomy on the complexity of Certainty(Q), study-
ing the case where Q is a Conjunctive Query without self-
joins consisting of atoms with simple keys or keys contain-
ing all attributes. It remains a fascinating open question
whether a dichotomy exists for general conjunctive queries,
even in the case where there are no self-joins.
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