
RIPPLE: A Scalable Framework for Distributed Processing
of Rank Queries

George Tsatsanifos
National Technical University

of Athens
Athens, Greece

gtsat@dblab.ece.ntua.gr

Dimitris Sacharidis
Institute for the Management

of Information Systems
Athens, Greece

dsachar@imis.athena-
innovation.gr

Timos Sellis
RMIT University

Melbourne, Australia
timos.sellis@rmit.edu.au

ABSTRACT
We introduce a generic framework, termed RIPPLE, for processing
rank queries in decentralized systems. Rank queries are particularly
challenging, since the search area (i.e., which tuples qualify) can-
not be determined by any peer individually. While our proposed
framework is generic enough to apply to all decentralized struc-
tured systems, we show that when coupled with a particular dis-
tributed hash table (DHT) topology, it offers guaranteed worst-case
performance. Specifically, rank query processing in our framework
exhibits tunable polylogarithmic latency, in terms of the network
size. Additionally we provide a means to trade-off latency for com-
munication and processing cost. As a proof of concept, we apply
RIPPLE for top-k query processing. Then, we consider skyline
queries, and demonstrate that our framework results in a method
that has better latency and lower overall communication cost than
existing approaches over DHTs. Finally, we provide a RIPPLE-
based approach for constructing a k-diversified set, which, to the
best of our knowledge, is the first distributed solution for this prob-
lem. Extensive experiments with real and synthetic datasets vali-
date the effectiveness of our framework.

1. INTRODUCTION
The term rank queries refers to queries that enforce an order on

tuples and usually request a few of the highest ranked tuples. We
consider three types of rank queries. Top-k queries [9] is the sim-
plest, imposing a weak order on the domain via a monotonic func-
tion (a weak order is essentially ranking with ties). The answer of
a top-k query is a set of k tuples that have the highest score among
all other possible k-sets.

Skyline queries [3] impose a partial order on the domain defined
by the Pareto aggregation of (total or partial) orders specified on
each attribute individually (in a partial order, two domain values
may be incomparable). The answer of a skyline query is the set of
maximal tuples under this partial order, termed the skyline. Note
that while, in the weak order of top-k queries, there exists only
one domain value for which no tuple with better value exists, in
the partial order of skyline queries, there can be multiple domain
values for which no tuple with better value exists.

The k-diversification query [5] reconciles two conflicting no-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
EDBT 2014, March 24-28, 2014, Athens, Greece.

tions. The relevance of a tuple is defined by its distance to a given
query tuple. On the other hand, the diversity of a tuple with respect
to a set of tuples is determined by its aggregate distance to these
tuples. The answer of a k-diversification query is a set of k tuples
that takes the highest value in an objective function combining the
relevance and diversity of its tuples. Note that, in k-diversification,
sets of tuples, rather than individual tuples, are ranked; hence the
problem is NP-hard [7].

Our work deals with the distributed evaluation of rank queries in
structured decentralized systems. In these systems, e.g., [13, 15],
the individual servers, termed peers, are organized in a content-
aware manner, implementing a distributed hash table (DHT). Each
tuple and each participating peer is assigned a point (a key) from
the same domain. A peer becomes responsible for a range of the
domain, and stores all tuples falling in this range. Therefore, when
searching for a particular tuple, the responsible peer can be easily
identified, i.e., by means of looking up the DHT.

Rank queries, in general, are particularly challenging for dis-
tributed processing. The reason is that peers have only partial knowl-
edge of the data distribution, and thus no single peer alone can
know where qualifying tuples may reside beforehand, i.e., when
the query is posed. In other words, the search area is initially un-
bounded and becomes progressively refined while qualifying tuples
are being retrieved. Contrast this to range queries, which request
all objects within a particular range, say within distance r around a
given point. In the case of a range query, the search area is explic-
itly defined in the query.

Since the search area is unbounded, there exists a straightfor-
ward approach for distributed processing a rank query in any DHT:
broadcast the query to the entire network, collect all locally quali-
fying tuples, and finally derive the answer from them. This method
has only a single advantage, in that worst-case network latency is
optimal. In the worst case, when the initiating peer and a peer hold-
ing an answer tuple are as remote as possible, the latency equals the
network diameter, i.e., the maximum number of hops in the shortest
path between peers.

Of course, naïve processing has several drawbacks. First, all
peers are reached independently of the query and whether they pos-
sess contributing tuples to the answer. Second, the communication
overhead is very high as many tuples have to be transmitted over the
network since it is not possible to locally prune them. For example,
in the case of a top-k query, using only local knowledge, each peer
must transmit k tuples. Third, the processing cost at the initiating
peer is huge, exactly because a large number of tuples is retrieved,
and a large number of nodes is encountered which otherwise could
have been prevented.

This work proposes RIPPLE, a generic scalable framework with
tunable latency for processing rank queries in DHTs. The princi-

 

 

259 10.5441/002/edbt.2014.25



ple idea of RIPPLE is to exploit the local information within each
peer regarding the distribution of tuples and neighboring peers in
the domain. Each peer partitions the entire domain into regions
and assigns them to its neighbors. Then, it prioritizes the forward-
ing of requests to its neighbors by taking into account the current
state of query processing, as derived from its own request and from
answers collected from remote peers. A single parameter in RIP-
PLE trades off latency for communication overhead. We emphasize
that RIPPLE can be implemented on top of any DHT. However,
when paired with MIDAS [16], an inherently multidimensional in-
dex based on the k-d tree, RIPPLE exhibits polylogarithmic latency
in terms of the network size.

We first apply the RIPPLE framework for top-k queries. Then,
we turn our attention to distributed skyline processing using RIP-
PLE. For the case when RIPPLE is implemented over MIDAS, we
also propose an optimization of the index structure with significant
performance gains. The resulting approach is shown to have lower
latency and/or cause less congestion, depending on the tune param-
eter, compared to state-of-the-art methods for skyline processing
over DHTs. Finally, we instantiate RIPPLE for k-diversification
queries. To the best of our knowledge, ours is the first work to ad-
dress this type of query in a distributed setting. Initially, we use
RIPPLE to solve the simpler sub-problem of finding the best tuple
to append to a set of k− 1 tuples. Then, we propose a heuristic so-
lution for answering k-diversification queries. An extensive exper-
imental simulation using real and synthetic datasets demonstrates
the key features of RIPPLE: tunable latency and low communica-
tion overhead for processing rank queries.

The remainder of this paper is organized as follows. Section 2
discusses related work on distributed processing of rank queries.
Section 3 details the RIPPLE framework. Then, Sections 4, 5 and
6 present the application of RIPPLE for the case of top-k, skyline,
and k-diversification queries, respectively. Section 7 presents a
thorough experimental evaluation of our framework, and Section 8
concludes our work.

2. RELATED WORK
Sections 2.1 and 2.2 review related work on distributed top-k and

skyline processing, respectively. Section 2.3 overviews the MIDAS
distributed index.

2.1 Distributed Top-k Processing
Top-k processing involves finding the k tuples which are ranked

higher according to some ranking function. We distinguish two
variants of the distributed version of the problem. In the vertically
distributed setting, a peer maintains all tuples but stores the val-
ues on a single attribute. The seminal work of [6], was the first to
address this problem, and introduces the famous Threshold Algo-
rithm (TA) and Fagin’s Algorithm (FA). Subsequent works attempt
to improve this result. In [4], the Three-Phase Uniform Thresh-
old (TPUT) algorithm is proposed, which in substance improves
limitations of the TA. Later, TPUT was improved by KLEE [11],
which also supports approximate top-k retrieval, and comes in two
flavors, one that requires three phases, and another that needs two
round-trips.

The second variant is for horizontally distributed data, which is
the setting considered in our work. In this case, a peer maintains
only a subset of all tuples, but stores all their attributes. There
exists significant work for unstructured peer-to-peer networks. A
flooding-like algorithm followed by a merging phase is proposed in
[1]. In [2], super-peers are burdened with resolving top-k queries,
an approach which imposes high execution skew. In SPEERTO
[17] each node computes its k-skyband as a pre-processing step.

Then, each super-peer aggregates the k-skyband sets of its nodes
to answer incoming queries. BRANCA [21] and ARTO [14] cache
previous final and intermediate results to avoid recomputing parts
of new queries. To the best of our knowledge, no work considers
the case of horizontally distributed data over structured overlays,
which is the topic of our paper.

2.2 Distributed Skyline Computation
The skyline query retrieves the tuples for which there exists no

other tuple that is better on all dimensions. A complete survey on
distributed skyline computation can be found in [8], where methods
for structured and unstructured networks are thoroughly studied.
Regarding structured peer-to-peer networks, which is the setting
in our work, DSL [20] leverages CAN [13] for indexing multidi-
mensional data. During query processing, DSL builds a multicast
hierarchy in which the peer that is responsible for the region con-
taining the lower-left corner of the constraint is the root. The hierar-
chy is built in such a way that only peers whose data points cannot
dominate each other are queried in parallel. A peer that receives a
query along with the local result set, first waits to receive the lo-
cal skyline sets from all neighboring peers that precede it in the
hierarchy. Then, it computes the skyline set based on its local data
and the received data points. Thereafter, the local skyline points
are forwarded to the peers responsible for neighboring regions, in
such a way that only peers whose data points cannot dominate each
other are queried in parallel. Besides, neighboring peers that are
dominated by the local skyline points are not queried because they
cannot contribute to the global skyline set.

Wang et al. present in [18] SSP (Skyline Space Partitioning)
for distributed processing of skyline queries in BATON [10]. The
multi-dimensional data space is mapped to unidimensional keys us-
ing a Z-curve, due to BATON limitations. Query processing starts
only at the peer responsible for the region containing the origin of
the data space. It computes the local skyline points that are in the
global skyline set, and next, it selects the most dominating point
used to refine the search space and to prune dominated peers. The
querying peer forwards the query to the peers that are not pruned
and gathers their skyline sets. Skyframe [19] is applicable for BA-
TON and CAN networks. In Skyframe the querying peer forwards
the query to a set of peers called border peers. A peer that is respon-
sible for a region with minimum value in at least one dimension is
called border peer. Once the initiator receives the local skyline re-
sults, it determines if additional peers need to be queried. Then, the
querying peer queries additional peers, if necessary, and gathers the
local skyline results. When no further peers need to be queried, the
query initiator computes the global skyline set.

2.3 The MIDAS Overlay
The organization of peers in MIDAS is based on a virtual k-d

tree, indexing a d-dimensional domain [16]. The k-d tree is a binary
tree, in which each node corresponds to an axis parallel rectangle;
the root corresponds to the entire domain. Each internal node has
always two children, whose rectangles are derived by splitting the
parent rectangle at some value along some dimension, decided by
MIDAS.

Each node of the k-d tree is associated with a binary identifier
corresponding to its path from the root, which is defined recur-
sively. The root has the empty id ∅; the left (resp. right) child
of an internal node has the id of its parent augmented with 0 (resp.
1). Figure 1(a) shows a virtual k-d tree, and labels the ids of the
peers and the internal nodes.

A peer in MIDAS corresponds to a leaf of the k-d tree, and stores
all tuples, who fall in the leaf’s rectangle, which is called its zone.
Figure 1(b) shows the zones of the peers. Therefore, the size of

260



the overlay equals the number of leaves in the virtual k-d tree. A
MIDAS peer maintains a list of links to other peers. In particular
its i-th link points to some peer within the sibling subtree rooted at
depth i. Figure 1 shows the links of peer u. It is shown that the
expected depth of the MIDAS virtual k-d tree, which determines
the diameter of MIDAS, for an overlay of n peers isO(logn) [16].

#1

#2 #3

#4 w

u y

#5

v z

x

0 1

0100

001000 101100

1110

A E

C

F

D

B

(a) The virtual k-d tree

#2

#1

#3

#4 #5

u y

w

zv

x

(b) Peer zones

#1

#2

#4

u y

w

z

(c) Links of u

Figure 1: An example of a two-dimensional MIDAS overlay.

3. THE RIPPLE FRAMEWORK
Section 3.1 describes the generic RIPPLE framework, while Sec-

tion 3.2 focuses on the RIPPLE implementation over MIDAS.

3.1 Generic RIPPLE
We present the RIPPLE generic framework for distributed pro-

cessing rank queries. We make little assumptions on the underlying
DHT. For a peer w, we denote as w.link the set of its neighbors to
which w maintains links. The number of w’s neighbors is denoted
by |w.link|; the maximum number of neighbors in any peer is de-
noted as ∆.

A key notion in RIPPLE is that of the region. RIPPLE associates
with each neighbor of w a region, denoted as w.link[i].region. The
region of all w neighbors form a partition of the entire domain.
There is an important distinction between the notions of region and
zone. Recall that in DHTs, a peer is assigned a sub-area of the
domain, termed the zone and stores all tuples within its zone. On
the other hand, the region of a neighbor (a RIPPLE-only notion)
is generally a much larger area, which however encompasses the
zone. More importantly, a region depends on the viewpoint of a
specific peer, and thus a peer might be associated with different
regions. For example, consider peers w, v who both have peer
x as their neighbor. The region of x from w’s viewpoint can be
different from the region of x from u’s viewpoint; however both
regions contain the zone of x.

Depending on the underlying DHT, there is often a natural way
to assign regions to the neighbors of a peer w. A region should
satisfy two requirements: (i) a region should cover the peer’s zone,
and (ii) the union of the regions of a peer’s neighbors should form
a partition covering the domain. We next discuss how to define
regions for three conspicuous DHTs; the definition to other types
of overlays is straightforward.

In CAN, each peer w has at least two neighbors along each di-
mension. More specifically, in a d-dimensional domain, two nodes
are neighbors if their coordinate spans overlap along d− 1 dimen-
sions and abut along one. Hence, the lower (resp. upper) neighbor
along the i-th dimension represents a region that resembles a pyra-
midal frustum (a trapezoid in 2-d; a pyramid whose top has been
cut-off in higher dimensions) having as base the lower (resp. up-
per) boundary face of the domain that is also perpendicular to the
i-th dimension, and as top the lower (resp. upper) face of w’s zone,
which is perpendicular to the i-th dimension. Thereby, a peer will
forward a query that either receives or issues to the node(s) whose
region(s) overlap with the query.

In Chord, each peer w has neighbors whose zones cover do-
main points at exponentially increasing distances from w. Then,
the region of w’s i-th neighbor is defined as the area of the domain

stretching from the beginning of the i-th neighbor zone until the
beginning of the (i + 1) neighbor zone (or w’s zone if i-th is the
last neighbor).

In MIDAS, each peer w has a neighbor inside each sibling sub-
tree rooted at depth up to w.depth. Then, the region of w’s i-th
neighbor is defined as the area of the domain covered by the sibling
subtree rooted at depth i.

Regarding query processing, we use Q to abstractly refer to the
query. We denote as A the local answer, i.e., the local tuples that
satisfy the query. Query processing begins at the initiator peer,
which we denote as v. Each peer, including the initiator, that is
involved in query processing executes the same procedure and re-
turns its local qualifying tuples to the initiator. Depending on the
query, the initiator might have to perform additional operations in
order to extract the final answer.

A key concept in RIPPLE is that of the state, denoted as S,
which consists of a (partial) view of the distributed query process-
ing progress. For example, depending on the query and the dis-
tributed algorithm, S could be a set of local/remote records, or
bounds/guarantees for these tuples. We distinguish between two
types of state. The local state at peer w, denoted as SLw , contains
only information collected at w, both from local tuples and from
remote states which w has explicitly requested. The global state at
peerw, denoted as SGw , encompasses the local state SLw and also in-
cludes information that was forwarded tow together with the query.

The basic idea of the RIPPLE framework is to exploit regions
and states, acquiring knowledge regarding the progress of query
processing, in order to meticulously guide the search to its neighbor
peers. Before presenting RIPPLE, we first describe two extreme
settings. The first is called fast and optimizes for latency.

Algorithm 1 shows fast query processing at each peer. A peer
w receives the query Q, a global state SG, the address of the ini-
tiator v, and the restriction area R within which query processing
should be confined. The restriction area ensures that no peer will
receive the same request twice. We emphasize that all algorithms
in this section are templates and contain calls to abstract functions,
whose operations depend on the exact query type, and which are
elaborated in the following sections.

Algorithm 1 w.fast(v,Q, SG, R) processes query Q, initiated by
v and with current global state SG, within area R.
1: SLw ← w.computeLocalState(Q,SG)
2: SGw ← w.computeGlobalState(Q,SG, SLw)
3: for each link i do
4: if w.isLinkRelevant(i, Q, SGw , R) then
5: w.link[i].fast(v,Q, SGw , w.link[i].region∩R)
6: end if
7: end for
8: A← w.computeLocalAnswer(Q,SLw)
9: w.sendLocalAnswerTo(v,A)

Based on the received global state SG and the local tuples, peer
w computes its local state by invoking computeLocalState. Also,
it computes its global state by invoking computeGlobalState (line
2). Then, w considers all its neighbors in turn (lines 3–7). Subse-
quently, peer w invokes isLinkRelevant (line 4) to check whether
the region of the i-th neighbor (1) overlaps with the restriction area
R, and (2) contains tuples that can contribute to the answer, given
the global state SGw . If the i-th neighbor passes the check, the query
is forwarded to it, along with the global state and the restriction area
set to the intersection of R with the i-th region (line 5). After con-
sidering all neighbors, peer w computes the local answer based on
its local state, invoking computeLocalAnswer (line 8), and sends
only its local qualifying tuples to the initiator v (line 9).

If Algorithm 1 is initially invoked with restriction area equal to

261



the entire domain, then it correctly processes query Q, subject to
the abstract functions being correct. To understand this, observe
that if we ignore the second check of isLinkRelevant (whether a
neighbor contains local tuples based on the local state), then all
peers in the network will be reached exactly once. The maximum
latency of fast is equal to the diameter of the network, as all neigh-
bors are contacted at once.

Algorithm 1 optimizes latency, and tries to reduce the commu-
nication cost as much as possible. In the following, we present the
second extreme setting of RIPPLE, termed slow, which optimizes
the communication cost at the expense of latency. Algorithm 2
shows query processing at each peer. As before, the algorithm re-
stricts query processing in sub-areas of the domain and employs
local states. The difference is that query propagation is performed
iteratively, and local state is updated after each iteration. The ra-
tionale is that the communication cost depends on the information
derived locally in the peers (i.e., from the local states). Ideally, but
unfeasibly, the communication cost is minimized when each peer
has complete knowledge of all tuples stored in the network.

In slow, a peer w receives the query Q, the current global state
SG, the address of the initiator v, the address of the peer u that sent
this message, and the restriction area R. Initially, it computes its
local state based on the received global state (line 1), and then its
global state (line 2). The next steps differ from Algorithm 1. Peer
w prioritizes its neighbors according to their potential contribution
to the query. Function sortLinks sorts the links of w using the
function comp, which compares the priorities of the i-th and j-th
neighbors (line 3).

Then, slow considers each neighbor in decreasing significance
(lines 3–10). Let `-th be the currently examined neighbor. Simi-
larly to fast peerw invokes isLinkRelevant (line 4) to check whether
the `-th neighbor should be contacted. If the check returns true, the
query is forwarded to this neighbor, along with the global state and
the restriction area appropriately set (line 5). In contrast to Algo-
rithm 1 however, w waits for a response from its link. Upon receiv-
ing the response (line 6), which includes a remote local state, peer
w invokes updateLocalState to encorporate this state to its own
local state (line 7). Also, it re-computes the global state taking into
account the update local state, by invoking computeGlobalState
again (line 8). Then it continues to examine the next neighbor ac-
cording to the prioritization. As the iterations progress, the local
state is continuously enriched with information from neighbors.

After considering all its neighbors, peer w sends its local state to
peer u, who forwarded the query to w (line 11). Subsequently, w
computes the answer, invoking computeLocalAnswer (line 12),
and sends the local qualifying tuples to the initiator v (line 13).

Algorithm 2 w.slow(v, u,Q, SG, R) processes query Q initiated
by v and forwarded by u, with current global state SG, within area
R.
1: SLw ← w.computeLocalState(Q,SG)
2: SGw ← w.computeGlobalState(Q,SG, SLw)
3: for ` ∈ w.sortLinks(w.comp(i, j, Q)) do
4: if w.isLinkRelevant(`,Q, SGw , R) then
5: w.link[`].slow(v, w,Q, SGw , w.link[`].region∩R)
6: SL ← w.receiveRemoteLocalState()
7: SLw ← w.updateLocalState(Q, {SLw, SL})
8: SGw ← w.computeGlobalState(Q,SG, SLw)
9: end if

10: end for
11: w.sendLocalStateTo(u, SLw)
12: A← w.computeLocalAnswer(Q,SLw)
13: w.sendLocalAnswerTo(v,A)

It is easy to see that Algorithm 2 is correct if it is initially invoked
with a restriction area equal to the entire domain, and the abstract

functions are correct. As before, if we ignore the second check of
function isLinkRelevant, all peers in the network will be reached.
However, the maximum latency is different. Observe that each peer
contacts only one neighbor at a time, waiting for its response. The
response comes only after the message is forwarded to all the peers
within the restriction area. Since, each subsequent peer follows the
same strategy, the waiting time (in number of hops) equals the total
number of peers within the restriction area. Therefore, the maxi-
mum latency of slow is equal to the network size. Of course, in
practice due to the prioritization, slow query processing terminates
much sooner, without the need to contact all peers.

We are now ready to present the ripple distributed algorithm,
which constitutes the heart of our framework. This algorithm trade-
offs between latency and communication cost via the ripple param-
eter r. Aiming to minimize communication cost, the ripple algo-
rithm prioritizes the search, meticulously propagating the query to
peers that are expected to contribute to the answer, similar to slow.
Aiming to control the maximum latency, after the query reaches
peers more than r hops away from the initiator, the query begins to
propagate in ripples, similar to fast. Essentially, the ripple algo-
rithm believes that the first few (prioritized) hops are important in
order to construct a good local state as soon as possible, which will
then be used to better guide the search.

To enforce the previous reasoning, ripple on peer w mandates
each peer reached up to r hops away from w to execute slow, and
each peer farther than r hops fromw to execute fast. At the extreme
case when r = 0, ripple degenerates to fast. At the other extreme,
when r is sufficiently large (greater than the maximum number of
neighbors ∆), ripple degenerates to slow.

Algorithm 3 shows ripple query processing at each peer. A peer
w receives the queryQ, the current state S, the address of the initia-
tor v, the address of the peer u that sent this message, the restriction
area R, and the value of the parameter r. Initially, ripple computes
the local state and the global based on the received global state
(lines 1–2). Then depending on the value of r, one of two loops is
executed. The first loop (lines 4–11) is essentially the main loop
of Algorithm 2, with the exception that multiple states might be
received (line 7) that need processing, i.e., updating the local state
and computing the global state (line 8–9). Also note that the value
of the r parameter in the forwarded query is decreased. On the
other hand, the second loop (lines 13–17) is essentially the main
loop of Algorithm 1; all subsequent peers receive an r value of 0.

At the end of both loops, the local state is sent to the parent
of w that forwarded this request, in the case the first loop is exe-
cuted, or the ancestor peer for r = 1 that forwarded this request,
in the case the second loop is executed (line 19); in any case, this
peer’s address u is included in the request. Finally, w computes the
answer, invoking computeLocalAnswer (line 18), and sends the
local qualifying tuples to the initiator v (line 19).

Algorithm 3 is correct if it is initially invoked with a restriction
area equal to the entire domain, and the abstract functions are cor-
rect. The worst-case latency of the algorithm depends on the r pa-
rameter and the underlying DHT; Section 3.2 analyzes worst-case
latency in MIDAS. For low r values the worst-case latency is closer
to the network diameter, while for large r values it is closer to the
network size.

3.2 Analysis of RIPPLE for MIDAS
This section assumes that the underlying DHT in RIPPLE is MI-

DAS. In this case the regions and the restriction areas in the algo-
rithms of the previous section are subtrees. Hence the parameter R
can be replaced with the depth δ of the subtree in which processing
is to be restricted. Then, the worst-case latency can be expressed in
terms of δ, as the next lemmas suggest.

262



Algorithm 3 w.ripple(v, u,Q, SG, R, r) processes query Q for-
warded by u and with current global state SG, within area R and
with ripple parameter value r.
1: SLw ← w.computeLocalState(Q,SG)
2: SGw ← w.computeGlobalState(Q,SG, SLw)
3: if r > 0 then
4: for ` ∈ w.sortLinks(w.comp(i, j, Q)) do
5: if w.isLinkRelevant(`,Q, SGw ) then
6: w.link[`].ripple(v, w,Q, SGw , w.link[`].region∩R, r − 1)
7: {SLi } ← w.receiveRemoteLocalState()
8: SLw ← w.updateLocalState(Q, {SLw, {SLi }})
9: SGw ← w.computeGlobalState(Q,SG, SLw)

10: end if
11: end for
12: else
13: for each link i do
14: if w.isLinkRelevant(i, Q) then
15: w.link[i].ripple(v, u,Q, SGw , w.link[`].region∩R, 0)
16: end if
17: end for
18: end if
19: w.sendLocalStateTo(u, SLw)
20: A← w.computeLocalAnswer(Q,SLw)
21: w.sendLocalAnswerTo(v,A)

LEMMA 1. The worst-case latency of Algorithm 1 for MIDAS
is Lf (δ) = ∆− δ.

PROOF. First, observe that Lf (∆) = 0, as no message needs to
be transmitted. At iteration i, Algorithm 1 forwards the query to a
link and restricts it to the sibling subtree at depth i. Recursively,
this iteration causes worst-case latency of 1 + Lf (i). Since, all
iterations are executed at once, the worst-case latency is determined
by the largest worst-case latency at any sibling subtree. Thus:

Lf (δ) = 1 +
∆

max
i=δ+1

Lf (i).

Since Lf (i) > Lf (i+ 1), we obtain the recursion which solves
to:

Lf (δ) = 1 + Lf (δ + 1) = ∆− δ.

Setting δ = 0, we obtain that the worst-case latency for process-
ing a rank query according to Algorithm 1 is ∆, which is O(logn)
and equals the diameter of MIDAS.

LEMMA 2. The worst-case latency of Algorithm 2 for MIDAS
is Ls(δ) = 2∆−δ − 1.

PROOF. It holds that Ls(∆) = 0, and that each iteration at
depth ` introduces worst-case latency of 1 + Ls(`). Since the al-
gorithm waits for a response in each iteration before continuing to
the next, the total worst-case latency is given by sum of the per-
iteration latencies, independently of the order in which sibling sub-
trees are considered. Therefore:

Ls(δ) =
∆∑

`=δ+1

(1 + Ls(`)).

From which we obtain the recursion which solves to:

Ls(δ) = 1 + 2 · Ls(δ + 1) = 2∆−δ − 1.

Setting δ = 0, we obtain that the worst-case latency for process-
ing a rank query according to Algorithm 2 is 2∆, which is O(n).

However, note that as our experimental analysis shows, due to the
prioritization, the average latency of slow is much lower.

Finally, regarding the worst-case latency of the ripple algorithm,
the following result holds.

LEMMA 3. The worst-case latency of Algorithm 3 for MIDAS is
given by the recurrenceLr(δ, r) = 1+Lr(δ+1, r)+Lr(δ+1, r−
1) with initial conditions Lr(δ, 0) = ∆− δ and Lr(∆, r) = 0.

PROOF. The first initial condition holds, because, for r = 0,
Algorithm 3 executes the second loop which is identical to Algo-
rithm 1. The second initial condition holds, because, for δ = ∆,
both loops execute no iteration.

Next consider the case of r > 0, when the first loop is exe-
cuted. Each iteration at depth ` introduces worst-case latency of
1 + Lr(`, r − 1). The total worst-case latency is given by sum of
the per-iteration latencies:

Lr(δ, r) =
∆∑

`=δ+1

(1 + Lr(`, r − 1)).

Taking the difference Lr(δ, r) − Lr(δ + 1, r), we obtain the
given recurrence.

While we could not derive a closed-form formula for the partial
recurrence equation of the lemma, we have analytically computed
Lr(δ, r) for various values of r:

Lr(δ, 1) =
1

2
(∆− δ)2 +

1

2
(∆− δ)

Lr(δ, 2) =
1

6
(∆− δ)3 − 1

2
(∆− δ)2 +

4

3
(∆− δ)− 1

Lr(δ, 3) =
1

24
(∆− δ)4 − 1

4
(∆− δ)3 +

23

24
(∆− δ)2 − 3

4
(∆− δ),

and we conjecture that Lr(δ, r) = O((∆ − δ)r+1). Note that for
r > ∆, it is easy to see that Lr(δ, r) = 2∆−δ − 1, as only the first
loop is executed and Algorithm 3 degenerates to Algorithm 2.

Setting δ = 0, we conjecture that the worst-case latency for pro-
cessing a rank query according to Algorithm 3 is O(∆r), which is
O(logr n). The experimental results on the latency of RIPPLE in
various queries and settings verify our conjecture.

4. TOP-K QUERIES
We first demonstrate the RIPPLE framework on top-k queries.

Given a parameter k and a unimodal scoring function f , the top-
k query retrieves a set of tuples A such that |A| = k and ∀t ∈
A,∀t′ 6∈ A : f(t) ≥ f(t′). A multivariate function f is unimodal
if it has a unique local maximum.

In top-k processing, the abstract query Q comprises the scoring
function f and the parameter k. The abstract state S is defined
as m, τ , which indicates that m tuples with score above τ have
already been retrieved.

With reference to the algorithms presented in Section 3, we next
describe how the abstract functions of RIPPLE are materialized for
top-k queries. The first function is computeLocalState, shown
in Algorithm 4, which is used to construct an updated local state,
given a forwarded global state. The function, executed on peer w,
takes as input the query (f, k) and the global state (mG, τG) and
returns the local state (mL

w, τ
L
w ).

The main idea of computeLocalState is to identify as many
high scoring local tuples as necessary to reach the goal of (glob-
ally) obtaining k tuples. Therefore, initially, peer w retrieves and
stores in A up to k local tuples with score higher than τG (line
1). If the number of retrieved tuples plus those in the global state

263



received is less than k (line 2), peer w additionally retrieves tu-
ples with lower than τG score (line 3). Upon completion of the
computeLocalState algorithm, the local statemL

w, τ
L
w is set to the

number of local tuples retrieved and the lowest score among them,
respectively.

Algorithm 4 w.top-computeLocalState(f, k,mG, τG)
1: insert in A up to k local tuples with score better than τG
2: if mG + |A| < k then
3: insert in A up to k−mG−|A| highest ranking local tuples
4: end if
5: return (mLw, τ

L
w )← (|A|, f(A))

The computeGlobalState function, shown in Algorithm 5, de-
rives the global state at w taking into account the forwarded global
state (mG, τG) and the current local state at w (mL

w, τ
L
w ). It just

aggregates the number of tuples, and sets as threshold the lowest of
the two thresholds.

Algorithm 5w.top-computeGlobalState(f, k,mG, τG,mL
w, τ

L
w )

1: return (mGw , τ
G
w )← (mG +mLw,min{τG, τLw})

The computeLocalAnswer function, shown in Algorithm 6, ex-
tracts the local qualifying tuples using the local state. In the case of
top-k processing, this means that all local tuples with score higher
than the local threshold are retrieved.

Algorithm 6 w.top-computeLocalAnswer(f, k,mL
w, τ

L
w )

1: insert in A all local tuples with score better than τLw
2: return A

The next function we consider is updateLocalState, shown in
Algorithm 7, which updates a local state given a set of local states.
The function executed on peer w, takes as input the query (f, k)
and a set of local states ({mL

i , τ
L
i }), and returns the local updated

state (mL
w, τ

L
w ). Intuitively, updateLocalState attempts to find the

highest possible threshold τ which guarantees the existence of k
tuples.

Algorithm 7 w.top-updateLocalState(f, k, {mL
i , τ

L
i })

1: sort {mLi , τLi } entries descending in their τLi values
2: mLw ← 0
3: for each entry (mLi , τ

L
i ) do

4: mLw ← mLw +mLi
5: τLw ← τLi
6: if mLw ≥ k then break
7: end for
8: return (mLw, τ

L
w )

Initially, w sorts the states descending based on their threshold
values (line 1), and initializes the count of its local state counter
mL
w to zero (line 2). Then, it considers each local state in turn

(lines 3–7), incrementing mL
w (line 4) and setting the threshold to

the currently considered local state’s threshold (line 5). The ex-
amination of the states ends either when all local states have been
considered, or when the number of tuples mL

w reaches k (line 6).
Algorithm 8 decides if the region of a particular link of w con-

tains qualifying tuples given the global state. A link should be con-
sidered if the number of tuples globally retrieved (to the best of w’s
knowledge) is less than k or if the region associated with the link
has better ranked tuples than those globally retrieved. For the last
check we use function f+, which returns an upper bound on the
score of any tuple within the given region.

Finally, Algorithm 9 compares two links based on how promis-
ing tuples their regions might contain. For this purpose, function
f+ is again used.

Algorithm 8 w.top-isLinkRelevant(i, f, k,mG
w , τ

G
w )

1: return mGw < k or f+(w.link[i].region) ≥ τGw

Algorithm 9 w.top-comp(i, j, f, k)
1: return f+(w.link[i].region) > f+(w.link[j].region)

5. SKYLINE QUERIES
First, in Section 5.1, we discuss the instantiation of the RIPPLE

framework for distributed processing of skyline queries. Then, in
Section 5.2 we consider the case of the MIDAS overlay and propose
an optimization.

5.1 Retrieving the Skyline
We describe distributed skyline query processing according to

RIPPLE. We say that a tuple t dominates another t′, denoted as
t � t′, if t has better or as good values on all dimensions and
strictly better on at least one dimension. Without loss of generality,
we assume that in each dimension lower values are better. The sky-
line query retrieves all tuples that are not dominated by any other.
In skyline query processing, the abstract query Q is empty. The
abstract state S is defined as a set of not dominated tuples (partial
skyline).

We first describe the computeLocalState method, depicted in
Algorithm 10. Initially, peer w retrieves its local skyline, which
serves as the local state (line 1). Then, it merges the tuples in the
received global state and the local skyline, discarding the domi-
nated ones, to construct the global state at w SGw (line 2). The final
local state is computed as the intersection of the local skyline and
the global state (line 3).

Algorithm 10 w.sky-computeLocalState(SG)
1: SLw ← the local skyline
2: SGw ← computeSkyline(SG ∪ SLw)
3: return SLw ← SLw ∩ SGw

The computeGlobalState method, shown in Algorithm 11, sets
the global state at w. As described before, SGw is the skyline com-
puted over the received global state and the local skyline. More-
over, computeLocalAnswer, shown in Algorithm 12, returns the
local tuples among those in the local state SLw .

Algorithm 11 w.sky-computeGlobalState(SG, SLw)
1: return SGw ← computeSkyline(SG ∪ SLw)

The updateLocalState method, depicted in Algorithm 13 takes
as input a set of local states {SLi } and combines them to produce
an updated local state. In particular, peer w merges all local states
and computes their skyline, which becomes the updated local state
at w.

Then, we detail the isLinkRelevant method. Algorithm 14 iter-
ates the tuples in the global state (lines 1–5). If any of them dom-
inates the entire region of the link (i.e., it dominates any possible
tuple within the region), then this link certainly contains no skyline
tuple, and the method returns false (line 3). Otherwise the link’s
region should be considered (line 6).

Finally, the comp function, shown in Algorithm 15, compares
the regions of two links. The link whose region is closer to the
origin of the axes 0 is better. Note that function d− computes the
minimum distance of any tuple in a region from 0.

5.2 An Optimization for MIDAS
In this section, we present an optimization for improving the ef-

ficiency of the distributed skyline computation when RIPPLE is
used on top of the MIDAS DHT. The main intuition behind this

264



Algorithm 12 w.sky-computeLocalAnswer(SLw)
1: return A← local tuples of SLw

Algorithm 13 w.sky-updateLocalState({SLi })
1: return SLw ← computeSkyline(

⋃
i S

L
i )

approach is that we want the peer that receives a request to be part
of the skyline more often than not. Therefore, message overhead
would be reduced if we could target requests towards peers that are
located as close as possible to the borders of the keyspace, since it
may contain not dominated tuples.

To understand this, observe that if the RIPPLE algorithm run in
a peer located in the middle of the domain, it would return no or in-
significant tuples consisting of false positives (i.e., they most proba-
bly will be dominated by tuples of another peer). On the downside,
not necessarily all nodes located by the borderlines contain tuples
belonging to the skyline, even though some definitely contain.

So, the question is how to locate the peers at the boundaries.
Recall from Section 2.3 that the MIDAS overlay resembles a vir-
tual distributed k-d tree. Each peer w has links to peers that re-
side within its sibling subtrees. Note that MIDAS does not specify
which specific peer w should have as its neighbor. Therefore, there
is some freedom in the structure of MIDAS, which we try to take
advantage of for the benefit of the distributed skyline computation.

MIDAS allows us to identify the identifiers of peers that are
positioned on the lower borders of the domain. Figure 2 illus-
trates the two- dimensional case where the dimension that the split
takes place changes at each level. The peers whose identifiers sat-
isfy either one of the regular expressions ph = (X0)∗X? and
pv = (0X)∗0? are shaded, where X denotes either 1 or 0 (X ←
(0|1)). Note that the peers that have a 0 at every other digit are
responsible for the lower parts of the domain along the horizon-
tal and the vertical bounds, respectively. Likewise, for D dimen-
sions where the split dimension alternates sequentially, we have
D patterns in total with p0 = (X0 · · · 0)∗X0{0, D − 1}, p1 =
(0X0 · · · 0)∗0X0{0, D − 2}, p2 = (00X0 · · · 0)∗00X0{0, D −
3}, and so on. It is not hard to show that if a peer has an id that
does not accord with any of the patterns, then naturally, none of its
derived peers will, regardless of the number and type of splits. This
is due to the fact that its id will be the prefix of all its derived peers.

(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 2: Overlay nodes with identifiers of the form ph =
(X0)∗X? and pv = (0X)∗0? for the two-dimensional case.

Now, we will force the links of a peer to have an identifier ac-
cording to some pattern p0, · · · , pD−1, if possible. This recursive
procedure is now incorporated in the join protocol and is run as the

Algorithm 14 w.sky-isLinkRelevant(i, SGw )
1: for each s ∈ SGw do
2: if s � w.link[i].region then
3: return false
4: end if
5: end for
6: return true

Algorithm 15 w.sky-comp(i, j)
1: return d−(w.link[i].region,0) < d−(w.link[j].region,0)

overlay inflates. This means, in practice, that the j-th link of any
peer is established so as to have an identifier that complies with
one of the aforementioned patterns, if there is at least one such peer
within the sibling subtree at level j. The original MIDAS policy
suggests examining only the j first bits of the links’ identifiers. We
now impose the following policy when forming the structure of the
overlay as new peers join. When a new peer joins and an existing
peer splits its zone into two. Then the two peers, the new and the
one who split its zone, become siblings. The following procedure
takes place.

1. No one or both peers are associated with ids that obey the
pattern. Then, the peers that were linked to the original peers
are now associated with any of the two new peers.

2. Only one of the two peers has an id that obeys the pattern.
Then, all back-links of the original peer are now assigned to
the peer that satisfies the pattern. Now, only its sibling is
directly connected to the peer with the indifferent pattern.

(a) start (b) 1st hop (c) 2nd hop (d) 3rd hop (e) 4th hop

Figure 3: Processing skyline queries with RIPPLE’s fast algo-
rithm for the two-dimensional case.

Figures 3 illustrate the effect of the MIDAS structural optimiza-
tion, when processing skyline queries based on RIPPLE’s fast ex-
treme case. With gray color are drawn the peers whose ids obey
the two patterns. In each hop, light green indicates which peer is
processing the query, while dark green indicates the peers that have
processed the query so far. Notice how RIPPLE over MIDAS ef-
ficiently targets the gray peers, which potentially contain answer
tuples.

6. DIVERSIFICATION
Section 6.1 establishes the necessary background. Section 6.2 in-

troduces a RIPPLE-based algorithm for an important sub-problem.
Then Section 6.3 details our solution to the diversification problem.

6.1 Preliminaries
Given a query point q, the k-diversification query is to find a set

Ok of k tuples that maximizes the following objective function:

f(O,q) = λmax
x∈O

dr(x,q)− (1− λ) min
y,z∈O

dv(y, z). (1)

The first part of the objective function is defined by the maximum
distance of any tuple in O from the query q. A low value of this
part indicates that the set O contains relevance tuples. The second
part of the objective function is defined by the minimum distance
between any two tuples inO. A high value of this part indicates that
the set O contains diverse tuples. The distances in Equation 1 are
computed by user-defined functions dr , dv . The λ user parameter
takes value in [0, 1] and controls the relative weights of relevance
and diversity. Overall, the goal of the k-diversification query is
to find a set Ok which strikes the desirable balance between the
relevance and diversity of its tuples.

An important sub-problem, which is encountered in most algo-
rithms that greedily solve the k-diversification query, is the follow-
ing. Given a query point q and a set of objects O, the single tuple
diversification query is to find a tuple t∗ 6∈ O which minimizes the

265



objective function for the set O ∪ {t∗}, i.e.,

t∗ = argmin
t 6∈O

f(O ∪ {t},q). (2)

Looking into the effect of adding a new tuple t into O, we dis-
cern four distinct cases. According to the first, tuple t is within
range of the least relevant object in O, and also farther from any
object in O than the distance between the closest pair of tuples in
O. Therefore, the value of f for the augmented set does not change
as the least relevant tuple and the least distant pair in O ∪ {t} re-
main the same.

Next, according to the second case, the new tuple t is farther
from q than any object in O, and farther from any object in O than
the distance between the closest pair of tuples in O. Therefore, the
objective value of the augmented set is increased by the relevance
difference between p and the former farthest tuple from q.

The third case is when even though t is closer to q than the least
relevant tuple in O, its closest distance from any tuple in O is less
than the distance between the closest pair of tuples inO. Hence, the
objective value of the augmented set increases by this difference.

Last, if t is less relevant than any tuple in O, and its distance
from any tuple in O is less than the distance between any pair of
tuples in O, then f(O ∪ {t}) increases by both the relevance and
diversity loss caused by the inclusion of t in O.

Taking these observations into account, given a set of objects O
and the query q, we define a scoring function φ(t,q, O) for tuples,
shown in Equation 3. The four cases discussed before, correspond
to the four clauses of the objective score. It is easy to verify that
the tuple which minimizes Equation 3 also solves the single tuple
diversification query. Furthermore, note that it is possible to con-
struct φ functions for objective functions other than Equation 1; we
omit details in the interest of space.

6.2 Single Tuple Insertion
This section describes how to apply the RIPPLE framework to

solve the single tuple diversification query. As before, we instan-
tiate the abstract functions used in the ripple algorithm. For the
specific problem at hand, the query Q contains the query point q,
the set of objects O, and the scoring function φ (derived from the
objective function f ). The state S corresponds to a threshold score
τ . The answer A is the tuple t∗ 6∈ O that minimizes the scoring
function.

We first describe the computeLocalState function, shown in
Algorithm 16, which derives the local state given a transmitted
global state. Initially, peer w retrieves the local tuple t that min-
imizes function φ (line 2). Then if its score is less than the global
state/threshold τG (line 2) the local state is initialized to its score
(line 3). Otherwise, the local state becomes equal to the global
state (line 5), meaning that no local tuple is better than one already
found. In any case, function computeGlobalState, shown in Al-
gorithm 17, sets the global state at peer w to the local state.

Algorithm 16 w.div-computeLocalState(q, O, φ, τG)
1: t← w.getMostDiverseLocalObject(q, O, φ)
2: if φ(t,q, O) < τG then
3: return τLw ← φ(t,q, O)
4: else
5: return τLw ← τG

6: end if

Algorithm 17 w.div-computeGlobalState(q, O, φ, τG, τLw )
1: return τGw ← τLw

Function computeLocalAnswer, depicted in Algorithm 18, ex-
tracts the local tuple, which is currently the best answer if it exists.

Initially, peer w retrieves the local tuple t that has the lowest score
(line 1). Subsequently, if its score is equal to the local state (line
2), tuple t becomes the local answer (line 3). Otherwise, the local
answer is empty (line 5).

Algorithm 18 w.div-computeLocalAnswer(q, O, φ, τLw )
1: t← w.getMostDiverseLocalObject(q, O, φ)
2: if φ(t,q, O) = τLw then
3: return A← t
4: else
5: return A← null
6: end if

Updating the local state upon receiving a set of local states is
shown in Algorithm 19. Peer w simply sets its local state to the
minimum among those received. Algorithm 20 decides whether the
region assigned to the i-th link of peer w is worth visiting. The de-
cision is based on whether a lower bound on the score of any tuple
in the region is lower than the global state. Function φ− computes
this lower bound. Finally, Algorithm 21 compares the priority of
w’s links. The one whose region has the lowest lower bound on
score, given by φ−, has the highest priority.

Algorithm 19 w.div-updateLocalState(q, O, φ, {τLi })
1: return τLw ← mini{τLi }

Algorithm 20 w.div-isLinkRelevant(i,q, O, φ, τGw )
1: return φ−(w.link[i].region,q, O) < τGw

Algorithm 21 w.div-comp(i, j,q, O, φ)
1: return φ−(w.link[i].region,q, O) < φ−(w.link[j].region,q, O)

6.3 Solving the Diversification Problem
Building upon the RIPPLE-based solution to the single tuple di-

versification query, described in the previous section, we propose a
greedy algorithm for solving the k-diversification query.

Algorithm 22 shows the pseudocode of our solution, executed on
the initiator peer v. Initially, a set of k tuples is retrieved from the
network by invoking the initialize function (line 2). This function
can be as simple as retrieving k random tuples, or more elaborate
solving k times the single tuple diversification query, by invoking
algorithm div-ripple, discussed in the previous section.

Then given an initial set O of k tuples, the algorithm attempts
to improve on the objective value of the set by performing a series
of iterations (lines 2–9). Each pass consists of a call to the div-
improve algorithm, which we explain later, to obtain a new set of
tuples (line 3). The iterations terminate prematurely if div-improve
cannot construct a better set (line 7).

We now discuss the div-improve method, shown in Algorithm 23.
Its goal is to determine a single tuple tout ∈ O to replace with tu-
ple tin 6∈ O, so that the objective value of O improves. Initially,
these tuples are set to null (lines 1–2).

Then, div-improve obtains an ordering on the tuples of O (line
3). Each tuple ti ∈ O is given a score computed by the φ function
as φ(ti, q, O r {ti}), i.e., tuple ti is excluded from O when com-
puting its score. The ordering is descending on the tuples’ scores.
Observe that if we consider the sets O r {ti}, the ordering im-
plies that they are ordered ascending on their objective values. As
a result, the first tuple has the worst score, but the set obtained
by removing it has the best objective value. To understand this,
assume tuple ti is ordered before tj , i.e., φ(ti,q, O r {ti}) ≥

266



φ(t,q, O) =


0, if dr(t,q) ≤ maxx∈O dr(x,q) and minx∈O dv(t,x) ≥ miny,z∈O dv(y, z),

λ(dr(t,q)−maxx∈O dr(x,q)), if dr(t,q) > maxx∈O dr(x,q) and minx∈O dv(t,x) ≥ miny,z∈O dv(y, z),

(1− λ)(minx,y∈O dv(x,y)−minz∈O dv(t, z)), if dr(t,q) ≤ maxx∈O dr(x,q) and minx∈O dv(t,x) < miny,z∈O dv(y, z),

λ(dr(t,q)−maxx∈O dr(x,q)) + (1− λ)(miny,z∈O dv(y, z)−minx∈O dv(t,x)), otherwise.
(3)

Algorithm 22 v.diversify(q, k)
1: O ← v.initialize(q, k)
2: for i← 1 to MAX_ITERS do
3: O′ ← v.div-improve(q, O)
4: if O′ 6= O then
5: O ← O′

6: else
7: break
8: end if
9: end for

Algorithm 23 v.div-improve(q, O)
1: tin ← null
2: tout ← null
3: sort tuples in O descending on their φ scores
4: for each ti ∈ O do
5: if tin = null then
6: τ ← φ(ti,q, O)
7: else
8: τ ← f(O r {tout} ∪ {tin},q)− f(O,q)
9: end if

10: v.div-ripple(v, v,q, O r ti, τ, R, r)
11: tin ← v.receive()
12: if tin 6= null then
13: tout ← ti
14: end if
15: end for
16: return O r {tout} ∪ {tin}

φ(tj ,q, O r {tj}), and consider the following equation:

f(O,q) = f(O,q) ⇔
f(O r {ti} ∪ {ti},q) = f(O \ {tj} ∪ {tj},q) ⇔

f(O r {ti},q) + φ(ti,q, O r {ti}) =

f(O r {tj},q) + φ(tj ,q, O r {tj}) ⇔
f(O r {ti},q) ≤ f(O r {tj},q).

Therefore, O r {ti} has better objective value. Overall, the ratio-
nale is that by considering good sets first, it becomes more likely to
find a good replacement early.

Algorithm div-improve examines each tuple in turn (lines 4–
15). Briefly, each turn considers the case of removing the tuple
under examination from O, and searches for the best tuple outside
O to include. The algorithm requires this replacement to result in a
set with better objective value than that of the original set and any
previously considered set.

To find the best replacement tuple when tuple ti is considered,
div-improve invokes the div-ripple algorithm of the previous sec-
tion, using the setOr{ti} as input (line 10). Contrary to a regular
initial invokation of div-ripple, the initiator includes a global state
τ in its call. Note that regularly the initial global state would be set
to a neutral value like∞. However, in this case we explicitly set τ
to enforce the requirement that the replacement tuple should result
in a set with better objective value.

When no suitable replacement tuple is found yet (line 5), the
global state is set to the φ score of tuple ti (line 6). This makes
div-ripple search for a tuple which when added would result in set
with better objective value than the original set. If the algorithm
has already found a tuple tout to replace with tin, the global state

Table 1: Experimental Configuration
Parameter Range Default
overlay size 210, 211, 212, 213, 214, 215, 216, 217 214

dimensions 2, 3, 4, 5, 6, 7, 8, 9, 10 5, 6
result-size 10,20,30,40,50,60,70,80,90,100 10

rel/div tradeoff 0, 0.2, 0.3, 0.5, 0.7, 0.8, 1 0.5

is set to the objective value of this improved set minus the objective
value of the original set (line 8). The intuition is to look for a tuple
which can improve the objective value even more.

Initializing a global state in this manner, expedite the search as
it prunes large parts of the space. As a result, no replacement tu-
ple may be found. Otherwise, the current best tuple to insert and
remove are set (lines 11, 13, respectively). At the end of the algo-
rithm the improved set is returned.

7. EXPERIMENTAL EVALUATION
To assess our methods and validate our analytical claims, we

simulate a dynamic network environment and study query perfor-
mance.

7.1 Setting
Methods. In order to evaluate the performance of our framework
in different queries, we implemented various methods from the lit-
erature. Note that RIPPLE is showcased over the MIDAS index.
Regarding skyline queries, we implement DSL [20], which relies
on CAN [13], and SSP [18], which exploits a Z-curve over BA-
TON [10]. For k-diversification queries, we adapt the algorithm
of [12], termed baseline, for a distributed setting based on CAN.
For fairness, we force both heuristic diversification algorithms to
produce the same result at each step. Hence our metrics capture
directly the cost/performance of methods and are not affected by
the quality of the result.
Overlay. We simulate a dynamic topology that captures arbitrary
physical peer joins and departures, in two distinct stages. In the in-
creasing stage, physical peers continuously join the network while
no physical peer departs. It starts from a network of 1,024 physi-
cal peers and ends at 131,072 physical peers. On the other hand, in
the decreasing stage, physical peers continuously leave the network
while no new physical peer joins. This stage starts from a network
of 131,072 physical peers and ends when only 1,024 physical peers
are left. When we vary the network size, the figures show the re-
sults during the increasing stage; the results during the decreasing
stage are analogous and omitted.
Parameters. Our experimental evaluation examines four parame-
ters. The network size is varied from 1,024 up to 131,072 physi-
cal peers. The number of dimensions considered varies from 2 up
to 10. We also investigate the effect of the result-size k in top-k
and diversification queries, i.e., the number of expected items in
a result, varying it from 10 up to 100. For diversification, we also
study the trade-off between relevance and diversity by tweaking the
weight λ in Equation 3 from 0 up to 1. The tested ranges and de-
fault values for these parameters are summarized in Table 1. When
we vary one parameter, all others are set at their default values.

267



Metrics. Regarding query processing performance, we employ
two main metrics. First, latency measures the number of hops
required during processing, where lower values suggest faster re-
sponse. Moreover, distributed query processing imposes a load on
multiple physical peers, including ones that may not contribute to
the answer. Therefore, we study another metric. Specifically, con-
gestion is defined as the average number of queries processed at
any peer when n uniformly queries are issued (n is the network
size), as lower values suggest lower load. This actually resembles
the average traffic a peer intakes when n queries are issued.
Data and Queries. In top-k and skyline queries, we use a dataset,
denoted as NBA, consisting of 22,000 six-dimensional tuples with
NBA players statistics∗ covering seasons from 1946 until 2009.
In particular, we used the points, rebounds, assists and blocks per
game attributes. A top-k query on this dataset retrieves the best all-
around players, as individual statistics are aggregated by the scor-
ing function. A skyline query on this dataset retrieves the players
who excel in particular or combinations of statistics.

In k-diversification queries, we use a collection, denoted as MIR-
FLICKR, of 1,000,000 images widely used in the evaluation of
content-based image retrieval methods†. We extracted the five-
bucket edge histogram descriptors, of the MPEG-7 specification,
as the feature vector. The L1 distance norm is used for the rele-
vance and diversity scores.

In order to study the impact of dimensionality on all types of
queries we construct clustered, synthetic, multi-dimensional datasets
in [0, 1]D , denoted as SYNTH. Specifically, they consist of 1,000,000
records of varied dimensionality from 2 up to 10, generated around
50,000 cluster centers according to a zipfian distribution with skew-
ness factor equal to σ = 0.1.

Note that every reported value in the figures is the average of
executing 65,536 queries over 16 distinct networks.

7.2 Experimental Results

7.2.1 Top-k Queries
Since there is no competitor method for top-k queries, this sec-

tion serves as a benchmark for the effect of the ripple parameter r.
In particular, we consider four r values: the two extreme values, 0,
where RIPPLE executes the fast algorithm, and ∆, where RIPPLE
corresponds to slow, and two intermediate values, ∆/3, 2∆/3.

In our experiments, we use the NBA dataset in Figures 4 and
6, and SYNTH in Figure 5. As expected, low r-values (close to 0)
are translated into fast responsiveness, though, at a relatively higher
communication cost, whilst at high r-values (close to the maximum
number of neighbors ∆) message overhead is minimized as only
highly relevant peers are burdened.

Figure 4(a) shows that latency scales very well as the overlay
grows. Even for high r values and the extreme setting of ∆, due
to prioritization in RIPPLE, latency is much lower than the worst-
case linear cost and scales polylogarithmically. Conversely, the in-
creased congestion for low r values, shown in Figure 4(b), is ex-
plained by the parallel transmission to the neighbors of each en-
countered peer.

Dimensionality affects performance only slightly, as shown in
Figure 5. The reason is that the core structure (number of neigh-
bors per peer, overlay size) of the underlying index (MIDAS) de-
termining performance is not affected; only the dimensionality of
the zones changes. Finally, Figure 6 shows that increasing the re-
quested number or results has negative effect on both latency and
congestion, as the total number of accessed and relevant peer in-
∗Available at http://www.basketball-reference.com
†Available at http://press.liacs.nl/mirflickr/

creases. In particular, note that the value of k = 100 is quite high
corresponding to approximately 0.5% of the NBA dataset size.

7.2.2 Skyline Queries
For the remainder of the experimental evaluation, we only con-

sider the extreme values for the ripple parameter. In particular, we
denote as ripple-fast the case of r = 0, and as riple-slow the case
of r = ∆. The latency and congestion for other values of r lies in
between the two extremes, as demonstrated in the previous section.

The evaluation of RIPPLE on skyline queries is shown in Fig-
ures 7 and 8 using the NBA and SYNTH datasets, respectively. In
Figure 7(a) latency shows a logarithmic behavior for ripple-slow
and SSP, due to the exploited properties of their indexing infras-
tructures. Nevertheless, SSP is not as efficient because it does not
rely on a pure multi-dimensional index, unlike MIDAS, and maps
multi-dimensional keys to a unidimensional space-filling curve in-
stead. Therefore, more false positive skyline tuples are considered
and network routing becomes less effective with increased dimen-
sionality, taking its toll on latency and message overhead.

In Figure 7(a), DSL appears to be slower as messages are for-
warded strictly to adjacent peers whose zone abuts in all but one
dimension. Nevertheless, DSL is in position of exploiting the in-
creased number of dimensions in Figure 8. In particular, the diam-
eter of the overlay decreases dramatically as each peer has signif-
icantly more neighbors due to the increased number of established
links. In other words, larger neighborhoods is translated in practice
into better and more efficient routing, as queries are forwarded to
more highly relevant peers, selected from a wider range of links
as dimensionality increases. However, this comes at an increased

 0

 10

 20

 30

 40

 50

 60

10K 40K 70K 100K

la
te

n
c
y
 (

h
o

p
s
)

network size

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 20

 40

 60

 80

 100

 120

10K 40K 70K 100K

c
o

n
g

e
s
ti
o

n

network size

r=0
r=2∆/3

r=∆/3
r=∆

(b) congestion

Figure 4: Top-k query performance in terms of overlay size.

 0

 10

 20

 30

 40

 50

 2  3  4  5  6  7  8  9  10

la
te

n
c
y
 (

h
o

p
s
)

dimensionality degree

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 20

 40

 60

 80

 100

 2  3  4  5  6  7  8  9  10

c
o

n
g

e
s
ti
o

n

dimensionality degree

r=0
r=2∆/3

r=∆/3
r=∆

(b) congestion

Figure 5: Top-k query performance in terms of dimensionality.

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80  90  100

la
te

n
c
y
 (

h
o

p
s
)

result size

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10  20  30  40  50  60  70  80  90  100

c
o

n
g

e
s
ti
o

n

result size

r=0
r=2∆/3

r=∆/3
r=∆

(b) congestion

Figure 6: Top-k query performance in terms of result size.

268



maintainance cost for DSL, which increases linearly with dimen-
sionality. This cost corresponds to network information, mainte-
nance and links each peer has to preserve up-to-date. In any case,
this method is clearly inept for low dimensionality datasets as both
latency and congestion deteriorate in Figure 8.

Alhough the slowest, ripple-slow consumes the least resources
in Figures 7(b) and 8(b). However, it does not perform well for
low dimensionality spaces in terms of latency due to the sequential
access of peers and the large number of relevant peers (network size
is fixed in Figure 8). Nevertheless, it performs better than what
the worst case analysis predicts. In practice, due to prioritizing
the peers that process the query according to their possibility of
participating in the skyline set, we expect queries to resolve much
faster than in linear time.

In general, congestion appears to be relatively high for all meth-
ods, in a sense that these operations appear to be expensive, but
this is only due to the large number of relevant peers. For in-

 0

 10

 20

 30

 40

 50

 60

10K 40K 70K 100K

la
te

n
c
y
 (

h
o
p
s
)

network size

ripple-slow (midas)
dsl (can)

ssp (baton)
ripple-fast (midas)

(a) latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

10K 40K 70K 100K

c
o
n
g
e
s
ti
o
n

network size

ssp (baton)
dsl (can)

ripple-fast (midas)
ripple-slow (midas)

(b) congestion

Figure 7: Skyline computation in terms of overlay size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2  3  4  5  6  7  8  9  10

la
te

n
c
y
 (

h
o
p
s
)

dimensionality degree

dsl (can)
ripple-slow (midas)

ssp (baton)
ripple-fast (midas)

(a) latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2  3  4  5  6  7  8  9  10

c
o
n
g
e
s
ti
o
n

dimensionality degree

ssp (baton)
dsl (can)

ripple-fast (midas)
ripple-slow (midas)

(b) congestion

Figure 8: Skyline computation in terms of dimensionality.

 0

1K

2K

3K

4K

5K

6K

10K 40K 70K 100K

la
te

n
c
y
 (

h
o
p
s
)

network size

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

5K

10K

15K

20K

25K

30K

10K 40K 70K 100K

c
o
n
g
e
s
ti
o
n

network size

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 9: Diversification performance in terms of overlay size.

.1K

.25K

.5K

1K

2.5K

5K

10K

25K

50K

100K

 2  3  4  5  6  7  8  9  10

la
te

n
c
y
 (

h
o
p
s
)

dimensionality degree

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

.5K

1K

2.5K

5K

10K

25K

50K

100K

250K

500K

 2  3  4  5  6  7  8  9  10

c
o
n
g
e
s
ti
o
n

dimensionality degree

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 10: Diversification performance in terms of dimensions.

stance, approximately d d
√
n + m peers are relevant, and hence,

even more will have to be accessed, where n stands for the over-
lay size, d for the dimensionality degree of the problem, and m
the number of encountered peers that are not located by the border-
lines of the keyspace, either due to false positives, e.g. during the
early steps of the algorithm, or because they were not dominated by
any other peer accessed at the time. Therewith, the main challenge
in distributed skyline processing is how should all these peers be
accessed, and more importantly at what cost, in terms of latency,
congestion, message overheads. In essence, we propose a toolset
for skyline computation with tunable performance, ranging from
ripple-fast, which is very fast, up to ripple-slow which although
slower, consumes very little network resources.

7.2.3 k-Diversification Queries
We next compare our RIPPLE-based diversification algorithm

to the baseline method, in terms of network latency and conges-
tion. As before, we consider the extreme cases of our framework,
labelled ripple-slow and ripple-fast. Figure 9 presents results on
the MIRFLICKR dataset with respect to the overlay size, Figure 10
shows results on SYNTH while varying the dimensionality, Fig-
ure 11 varies the result size for the MIRFLICKR dataset, and Fig-
ure 12 studies the relative weight λ using the MIRFLICKR dataset.

Apparently, ripple-fast is much faster than baseline for any
number of overlay peers and dimensions, as shown in Figures 9(a)
and 10(a). Additionally, the benefits of RIPPLE become evident in
Figure 9(b) where network congestion for our paradigm diminishes
substantially.

Moreover, the required number of iterations for the RIPPLE-
based diversification algorithm to converge plays a prevalent role
in the performance of the methods. Nevertheless, we note that per-
formance is affected by both the effectiveness of the diversified
search methods and the indexing infrastructure used. This is ev-
ident in Figure 10 where the baseline’s performance ameliorates
with dimensionality, as the number of links established in each peer
increases analogously and routing becomes more effective.

Also note that the number of relevant peers with each iteration
diminishes for the RIPPLE-based methods. In Figures 9(b) and
10(b), which illustrate network congestion, limiting our search only
to the regions that contain tuples with improved scores with ripple-

 0

2.5K

5K

7.5K

10K

12.5K

15K

 10  20  30  40  50  60  70  80  90  100

la
te

n
c
y
 (

h
o
p
s
)

result size

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

5K

10K

15K

20K

25K

30K

35K

40K

45K

50K

 10  20  30  40  50  60  70  80  90  100

c
o
n
g
e
s
ti
o
n

result size

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 11: Diversification performance in terms of result size.

 0

.5K

1K

1.5K

2K

2.5K

3K

3.5K

4K

4.5K

5K

 0  0.2  0.4  0.6  0.8  1

la
te

n
c
y
 (

h
o
p
s
)

rel/div tradeoff

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

2.5K

5K

7.5K

10K

12.5K

15K

17.5K

20K

 0  0.2  0.4  0.6  0.8  1

c
o
n
g
e
s
ti
o
n

rel/div tradeoff

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 12: Diversification performance for rel/div tradeoff.

269



slow is significantly better. Specifically, RIPPLE requires only a
small portion of the messages the competitor needs.

Figure 11 exhibits the impact of the cardinality of the answer-set
on performance. Apparently, the increase of the result-size has a bi-
lateral impact on performance. Specifically, as more items need to
be examined in the result-set and whether they should be replaced,
we would expect a linear increase in latency and congestion with
k that would impair performance due to the additional consecutive
operations for computing all possible replacements. However, this
is not the case for ripple-fast in Figure 11(a), where the combined
impact of two contradicting phenomena is revealed. To elaborate,
since we examine only one item from the result at a time, there are
k − 1 other items restricting the searched area of the domain. We
note, that only the overlay peers that overlap with the intersection
of all k− 1 restricted search areas are accessed. Therefore, as k in-
creases, there are more restrictions imposed which effectively make
the search area shrink, and therefore, less peers are encountered. As
a result, performance seems to be unaffected for ripple-fast in the
more selective search operations. However, these beneficial effects
cease to help when k takes very high values, and hence, the pro-
cessing cost was the dominant performance factor. Which of the
two phenomena will prevail each time depends on the effectiveness
of our pruning policy. Besides, congestion increases slowly with k
for our methods in Figure 11(b) for the same reasons.

Figure 12 shows an interesting pattern. When λ takes very low
or very high values the number of encountered overlay peers dimin-
ishes dramatically, and therewith, the number of hops required to
access them. In substance, diversified search becomes very limited,
as the proper areas of the domain that contain highly ranked items
are either close to the query tuple for λ → 1, where very relevant
items are promoted (enclosed search area around the query point),
or are located along the borders of the domain for λ→ 0, as tuples
that are distant to each other are promoted mostly. Therefore, when
λ takes values close to 0 or 1, the performed search is pretty much
automatically directed towards these areas. In other words, diver-
sified search qualifies small parts of the domain for either very low
or high values of λ, and thereby, query processing is limited to cer-
tain overlay peers responsible for these specific areas. This effect
is illustrated in Figure 12, where both response time and bandwidth
consumption decrease as we move further away from λ = 0.5.

8. CONCLUSIONS
This work has addressed the problems of efficient distributed

processing of top-k, skyline, and k-diversification queries, in the
context of large-scale decentralized networks, by introducing a uni-
fied framework, called RIPPLE. Our methods investigate the trade-
off between optimal latency and congestion through a single pa-
rameter. The key ideas of RIPPLE is to take advantage of local
information regarding query processing so as to better guide the
search. The instantiation of our framework for skyline queries has
resulted in an efficient distributed algorithm, while for the case of
diversification queries, it constitutes the first work on the subject.

9. ACKNOWLEDGMENTS
This research has been co-financed by the European Union (Eu-

ropean Social Fund - ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Fund-
ing Program: Thales. Investing in knowledge society through the
European Social Fund.

10. REFERENCES
[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Reducing network

traffic in unstructured p2p systems using top-k queries.
Distributed and Parallel Databases, 19(2-3):67–86, 2006.

[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden.
Progressive distributed top k retrieval in peer-to-peer
networks. In ICDE, 2005.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[4] P. Cao and Z. Wang. Efficient top-k query calculation in
distributed networks. In PODC, 2004.

[5] J. G. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System
Sciences, 66(4):614–656, 2003.

[7] S. Gollapudi and A. Sharma. An axiomatic framework for
result diversification. IEEE Da. Eng. Bul., 32(4):7–14, 2009.

[8] K. Hose and A. Vlachou. A survey of skyline processing in
highly distributed environments. VLDB J., 21(3).

[9] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4), 2008.

[10] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced
tree structure for peer-to-peer networks. In VLDB, 2005.

[11] S. Michel, P. Triantafillou, and G. Weikum. Klee: A
framework for distributed top-k query algorithms. In VLDB,
2005.

[12] E. Minack, W. Siberski, and W. Nejdl. Incremental
diversification for very large sets: a streaming-based
approach. In SIGIR, 2011.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
SIGCOMM, 2001.

[14] N. H. Ryeng, A. Vlachou, C. Doulkeridis, and K. Nørvåg.
Efficient distributed top-k query processing with caching. In
DASFAA, 2011.

[15] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scalable
peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[16] G. Tsatsanifos, D. Sacharidis, and T. Sellis. Index-based
query processing on distributed multidimensional data.
GeoInformatica, 17(3):489–519, 2013.

[17] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis.
On efficient top-k query processing in highly distributed
environments. In SIGMOD, 2008.

[18] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient
skyline query processing on peer-to-peer networks. In ICDE,
2007.

[19] S. Wang, Q. H. Vu, B. C. Ooi, A. K. H. Tung, and L. Xu.
Skyframe: a framework for skyline query processing in
peer-to-peer systems. VLDB J., 18(1):345–362, 2009.

[20] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. El
Abbadi. Parallelizing skyline queries for scalable
distribution. In EDBT, 2006.

[21] K. Zhao, Y. Tao, and S. Zhou. Efficient top-k processing in
large-scaled distributed environments. Data Knowl. Eng.,
63(2):315–335, 2007.

270


