
Processing Interval Joins On Map-Reduce

Bhupesh Chawda, Himanshu Gupta, Sumit Negi, Tanveer A. Faruquie, L V Subramaniam,
Mukesh Mohania

IBM India Research Laboratory, New Delhi, India
{bhchawda, higupta8, sumitneg, ftanveer, lvsubram, mkmukesh}@in.ibm.com

ABSTRACT

In this paper we investigate the problem of processing multi-
way interval joins on map-reduce platform. We look at join
queries formed by interval predicates as defined by Allen’s
interval algebra. These predicates can be classified in two
groups: colocation based predicates and sequence based
predicates. A colocation predicate requires two intervals to
share at least one common point while a sequence predi-
cate requires two intervals to be disjoint. An interval join
query can therefore be thought of as belonging to one of the
three classes: (a) queries containing only colocation based
predicates, (b) queries containing only sequence based pred-
icates and (c) queries containing both classes of predicates.
We address these three classes of join queries, discuss the
challenges and present novel approaches for processing these
queries on map-reduce platform. We also discuss why the
current approaches developed for handling join queries on
real-valued data can not be directly used to handle inter-
val joins. We finally extend the approaches developed to
handle join queries containing multiple interval attributes
as well as join queries containing both interval as well as
non-interval attributes. Through experimental evaluations
both on synthetic and real life datasets, we demonstrate that
the proposed approaches comfortably outperform naive ap-
proaches.

1. INTRODUCTION
An interval is represented as the range [ts, te] which iden-

tifies the lifetime or the range of an event. An interval [ts, te]
consists of a start point ts and an end point te and includes
all points in-between including ts and te. Interval data is
ubiquitous and a number of real-world scenarios generate
huge volume of interval data. Consider spatio-temporal en-
vironment modeling data e.g., the measurements of weather
attributes like pressure, temperature, rainfall, wind-speeds,
pollutant-concentrations etc at different latitude, longitude,
elevation and time-stamps. The time-stamps during which
we observe high or low temperature, pressure, rainfall etc at

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

a location are described using intervals. For example con-
sider the event - ‘A rainfall was observed during the period
7 AM and 7:15 AM’. Here the rainfall start and end time
constitute the interval data. Consider telephonic call data
- the timestamps during which a call happens is described
using an interval. For example - ‘A call was logged between
7 AM and 7:15 AM from cell number x.’ Here the interval
[7 AM, 7:15 AM] describes the duration of a call. Consider
spatial data like buildings, rivers etc. The dimensions of the
spatial objects are described using intervals. For example,
consider a building at coordinates [100, 100] with length 20
and breadth 10 m. Here the interval [100, 120] describes the
length of the building and the interval [100, 110] describes
the breadth of the building.

Interval join is a key operation on interval data and is used
to correlate intervals of different events. Consider again the
spatio-temporal environment modeling data. From this data
we construct intervals during which we observe high wind
speed (> a threshold s), high temperature (> a threshold t)
and high pollutant concentration (> a threshold p). Con-
sider the interval-join query - For a given location, find all
intervals u1, u2 and u3 such that high wind speed, high tem-
perature and high concentration of a pollutant were observed
during intervals u1, u2 and u3 respectively and the intervals
u2 and u3 are contained within interval u1’. This involves
joining intervals of high wind speed, high temperature and
high pollutant concentration using the predicate ‘contains’.
Such results can be used for investigating various aspects
towards building predictive models of the pollutant concen-
tration. Alternatively consider spatial data describing cities,
rivers etc and the query - ’Find all cities overlapping with a
river’. This spatial join query involves joining the relations
cities and rivers using the predicate overlap and further
reduces to an interval join query - select city from cities,
river from rivers where city.length overlaps river.length and
city.breadth overlaps river.breadth.

In this paper we present novel approaches for handling in-
terval joins on map-reduce platform [5]. Hadoop, an open-
source implementation of map-reduce framework, has be-
come the most popular platform for large-scale data anal-
ysis in a shared nothing parallel computing environment.
A number of systems have been recently implemented on
top of Hadoop for processing spatio-temporal data. These
include Spatial-Hadoop [6], Sci-Hadoop [4], CloST [15] etc.
The methods presented in this paper can be integrated with
these systems for efficient processing of join queries on in-
terval data. Related work carrying out a spatio-temporal
data analysis on Map-Reduce includes SystemML [7], k-NN

463 10.5441/002/edbt.2014.42

Figure 1: Allen’s Interval Algebra

joins [11], Trajectory data analysis [12], Spatial-Joins [8] etc.
Computing a multi-way join on map-reduce is not a sim-

ple task. Consider a multi-way join query Q formed by m

relations {R1, R2, . . . , Rm}. Consider an output tuple (u1,
u2, . . . ,um) where tuple ui belongs to relation Ri. Since the
data for each relations resides in a different file on HDFS,
the m input tuples are processed by m different map pro-
cesses. To compute an output tuple, it is required to bring
together all m tuples from m different map processes to at
least one reduce node; and this must happen for each output
tuple. A tuple ui in relation Ri will hence be communicated
to multiple reduce nodes. Larger the traffic between map
and reduce nodes, larger is the cost of the map-reduce al-
gorithm. If there are M reduce nodes, the goal is to devise
an algorithm which generates minimal intermediate traffic
between map and reduce processes while at the same time
ensuring that all M reduce nodes receive similar volume of
load to process. A number of studies have investigated this
problem for different classes of join queries. These include
2-way theta join [14], multi-way equality joins [2], K-NN
joins [11], spatial joins [8], multi-way theta joins [17], self-
similarity joins [16, 13] etc. In this paper we look at this
problem for the case of multi-way interval join queries.

Contribution: Specifically we investigate interval join
queries involving predicates in Allen’s interval algebra [3].
Allen’s algebra [3] is a calculus for reasoning with intervals
which defines possible relations between intervals and pro-
vides a basis for reasoning about temporal descriptions of
events. Figure 1 outlines the relations between two inter-
vals in Allen’s algebra. The two intervals are represented
using variables r1 and r2. For all predicates other than be-
fore and after, one of the start, end or body of an interval
co-occurs with the start, end or the body of another inter-
val. Such predicates are termed colocation based predicates.
The predicates before and after are not based on colocation
of intervals but rather on sequencing of intervals; and hence
termed sequence based predicates. Colocation based pred-
icates can be likened to equality predicates while sequence
based predicates can be likened to theta/inequality predi-
cates. The contributions of this paper can hence be summa-
rized as follows:

• We classify the interval join queries in four classes -
(1) Colocation i.e., queries involving a single inter-

val attribute and only colocation predicates, (2) Se-
quence i.e., join queries involving a single interval at-
tribute and only sequence predicates, (3) Hybrid i.e,
queries involving a single interval attribute and both
colocation and sequence predicates and (4) General
i.e, queries involving one or more than one interval at-
tributes; queries may also involve real-valued attributes;
the predicates may be colocation or sequence in case
of interval attributes while equi or theta predicates in
case of real-valued attributes.

Colocation, Sequence and Hybrid queries are hence a
special case of general queries. We present novel algo-
rithms for handling each of these interval join query
classes on map-reduce. To the best of our knowledge,
this is the first study to discuss join processing on in-
terval datasets on map-reduce platform.

• An interval is a collection of points with a marked
start-point as well as an end-point. An interval is
hence fundamentally different from a real-valued data
point. A real-valued data point is an interval of length
0. Similarly note that as the intervals are reduced to
length 0, all colocation predicates in Allen’s algebra re-
duce to equality predicates on real-valued data while
all sequence predicates reduce to inequality predicates
on real-valued data. Handling interval data is hence
more complex vis-a-vis real-valued data. Through-out
this paper we delve into this aspect in detail and clearly
outline the nature of this complexity. We outline both
naive as well as optimized approaches of handling this
additional complexity vis-a-vis real-valued data.

• To handle a multi-way join, the data/reducers are vi-
sualized as part of a multi-dimensional space. This is
done to achieve a better load-balance among the reduc-
ers as opposed to when data/reducers are considered
as part of a single-dimensional space. Map operations
process intervals and communicate each interval to one
or more reducers. Each reducer computes a part of the
output from the input intervals it receives. For each
of the four classes of interval join queries, we hence
answer the following questions clearly:

– In how many dimensions do we visualize data /
reducers?

– Which of the reducers in this multi-dimensional
space won’t produce any output? We can then
apriori avoid communicating any data to such re-
ducers. We call such reducers, inconsistent reduc-
ers. We argue that depending on which Allen’s
predicates are present in the multi-way join query,
we can apriori identify a subset of the inconsistent
reducers.

– For each input-tuple in each relation we identify
the set of consistent reducers, to which this tuple
should be communicated to.

– Which reducer in the multi-dimensional space will
compute a given output tuple?

We introduce the notion of less-than-order as implied
by Allen’s predicates which helps in answering these
questions. We discuss this notion in detail and discuss
how we exploit this to design efficient approaches for
handling multi-way interval join queries.

464

• We carry out a detailed experimental evaluation over
both synthetic and real-life data to validate the ideas
presented in this paper. We show that the algorithms
presented in this paper comfortably out-perform the
naive approaches.

• We clearly position our work vis-a-vis related works
in the domain of multi-way join on real-valued data.
There are three main related works - Work [14] han-
dling 2-way theta-join queries on real-valued data,
Work [2] handling multi-way equi-join queries on real-
valued data and Work [17] handling multi-way theta
joins queries on real-valued data. We discuss the differ-
ences and the complementary nature of these studies
vis-a-vis ours, wherever appropriate.

Organization: Section 2 presents the map-reduce model
and the general strategy for processing a join query. Sec-
tion 3 develops the notation of project, split and replicate
operations on interval data. These operations form the build-
ing block operations of the algorithms developed in this pa-
per. Section 4 discusses how we handle 2-way interval joins.
Section 5 develops three key concepts - (a) less-than-order
among relations, (b) consistent interval-sets and (c) cross-
ing interval-sets. Section 6, 7, 8 and 9 present novel ap-
proaches for handling multi-way colocation, sequence, hy-
brid and multi-attribute interval joins respectively. Sec-
tion 10 mentions the related work. Section 11 concludes
the paper.

2. HADOOP, MAP-REDUCE AND JOIN
Hadoop Distributed File System (HDFS) manages the

storage of data on Hadoop. Data is read from HDFS and is
passed to map functions for processing. The default method
is to read data line-by-line from HDFS files and pass each
line to the map functions for processing. A map-function
processes each line and converts this line into a set of inter-
mediate key-value pairs. Hadoop then collects these pairs
and communicates these pairs to reduce functions in a fash-
ion so as all pairs with the same key are communicated to
the identical reducer. Multiple map and reduce processes
can parallely run on a set of machines. For more details of
the map-reduce framework we refer the reader to [5].

To develop a map-reduce (MR) algorithm for a task, one
needs to determine - what forms the key and what forms
the value (as part of intermediate key-value pairs). Larger
the number of intermediate pairs, larger is the communi-
cation cost among map and reduce functions. In case of a
multi-way join, all relations are stored as separate HDFS
files and each line usually represents a tuple. Hadoop reads-
in each tuple u from these relations and passes the tuple u to
the map-function. A map-function converts this tuple to a
set of intermediate key-value pairs {〈reducer-id,u〉}. A pair
〈reducer-id,u〉 implies that the tuple u is communicated to
a reduce process with id reducer-id. A map-function hence
communicates a tuple to one or more reducers. A reduce
process with id r hence receives all tuples which have been
sent by map functions as part of pairs with key equal to r.
Reducer r computes the join among the tuples it receives.
This join output is hence a partial join output. Combining
the output of all reducers, generates the whole join output.

A join MR algorithm hence must satisfy the following:
Consider there are m relations in the join query and hence
each output tuple consists of m input-tuples, one from each

relation. For each output tuple, all m input tuples must be
received by at least one reducer. If this is not so for an
output tuple then this output tuple can not be computed by
any reducer and hence the join implementation is incorrect.

A good join MR algorithm optimizes the following crite-
ria - (a) The number of intermediate key-value pairs should
be minimal and (b) the volume of pairs received by all re-
ducers should be similar. If condition (b) is not satisfied,
then reducers receiving larger volume of traffic will run for
a long period of time while reducers receiving smaller vol-
ume of traffic will finish quickly, thereby leading to an inef-
ficient use of cluster resources and hence an inefficient join
MR implementation. Criteria (a) and (b) are optimized by
exploiting the properties of the input-data (e.g., the data
consists of intervals or sets or real-valued points etc), sta-
tistical distribution of the input data (uniformly distributed
data vs skewed data will need to be processed differently) ,
properties of the join predicates (equi join or theta join) etc.

3. PROJECT-SPLIT-REPLICATE
Partitioning: Let the complete time range be [t0,tn) i.e.,

all intervals in the relation lie within this range. A partition-
ing of time range [t0,tn) is defined as a sequence of contigu-
ous intervals ([ti0,ti1),[ti1,ti2),. . . ,[ti(l−1),til)), ti0 = t0 and
til = tn. Each of these intervals is called a partition-interval.
We equivalently represent the partitioning as P=(p1,p2,. . . ,
pl) where the partition-interval pj represents the interval
[ti(j−1),tij).

Project: Project operation determines the partitioning
interval in which the start point of an interval lies.The pro-
jection of an interval u having range [ts,te] on a partitioning
P results in the generation of a single key-value pair (pi, u)
where pi is the partition in which the start-point of the in-
terval lies.

Project(u,P)→ {(pi,u) | u.ts ∈ pi}

Split: Split operation returns all the partitions which
have at-least one point in common with the interval. For
each such partition, a key-value pair is generated and hence
a set of key-value pairs is returned for each interval.

Split(u,P)→ {(pi,u) | u ∩ pi 6= φ }

Replicate: The replicate operation returns all the parti-
tions which have at least one point which is greater than or
equal to the start-point of the interval. Formally,

Replicate(u,P)→ {(pi,u) | u ∩ pi 6= φ ∨ u.ts < pi.ts }

Projecting, Splitting and Replicating a relation:
Equivalently we define projecting, splitting and replicating
a relation R as projecting, splitting and replicating all in-
tervals in relation R respectively. Consider Figure 2. The
relation R here consists of two intervals u and v. The par-
titioning P has four partition-intervals. The result of pro-
jecting, splitting and replicating relation R is mentioned in
Figure 2. Intervals u and v start in partition-intervals p1
and p2 respectively. The project output hence consists of
two pairs (p1,u) and (p1,v). Interval u overlaps with p1
and p2 and hence splitting u outputs two pairs - (p1,u) and
(p2,u). Interval v overlaps only with p2 and hence splitting
v outputs only one pair (p2,v). All four partition-intervals
p1,p2,p3 and p4 have one point greater than or equal to the
start-point of the interval u and hence replicating u outputs
four pairs. Replicating v outputs three pairs as only p2,p3
and p4 have one point greater than or equal to the start-
point of the interval v.

465

Figure 2: Project, Split and Replicate Example

Intuition: A map function processes an interval (tuple)
by either projecting, splitting or replicating the interval.
Partition-intervals pi’s also denote the reducer-ids. A map
function generating an intermediate key-value pair (pi, u)
implies that the map-function is communicating interval u
to reducer pi.

Loosely speaking, we can visualize the time-range [t0, tn) to
be the whole computation and each partition-interval pi as a
partial computation. The computation for partition-interval
pi is carried out by reducer pi. Reducer pi processes all in-
tervals intersecting with partition-interval pi plus some more
intervals intersecting with other partition-intervals pj , j 6= i.

4. 2-WAY INTERVAL JOINS
The basic idea in writing a map-reduce program for a join

is to get the tuples agreeing on the join predicate on the same
reducer. In this section we describe how we achieve this in
case of 2-way interval joins. Let the number of reducers be
k. We first divide the complete time-range into k partition-
intervals. Depending upon the exact Allen’s predicate being
used, we either project, split or replicate the relations.

Colocation predicate - Overlap Consider two relations
R1 and R2. Let r1 ∈ R1 and r2 ∈ R2 be two tuples which
satisfy the Overlaps predicate (Figure 1). An interval r1
overlaps interval r2 if the start-point of r2 lies between the
start-point of r1 and the end-point of r1 (and not the other-
way round. overlap and overlapped-by are two different
Allen’s predicates; Figure 1).

Overlaps(R1,R2) can be computed by splitting R1 and
projecting R2. Let’s suppose the tuple r2 is projected on
the partition interval pi. The project operation on interval
r2 will hence produce the pair (pi, r2). As r1 overlaps r2,
the output of splitting r1 will consist of the pair (pi, r1).
Hence these two tuples will be present at the reducer pi.
The reducer pi can hence output the joined tuple (r1, r2).
This output tuple will not be produced by any other reducer
as the tuple r2 is routed only to reducer pi. It is because
the relation r2 is being projected and the project operation
produces only one key-value pair for every interval.

Sequence predicate - Before Before(R1,R2) is com-
puted by projecting R2 and replicating R1. As Before is a
sequence predicate, an interval will match all the intervals
occurring after it. To ensure that every such pair is present
at at-least one reducer, relation R1 needs to be replicated.

Similarly we can argue about all Allen’s predicates. Fig-
ure 1 outlines all the Allen’s predicates and the correspond-
ing operations required to carry out the interval join (Col-
umn 3).

5. LESS-THAN-ORDER, CONSISTENT IN-

TERVAL SETS AND

CROSSING INTERVAL-SETS

This section develops the notions of less-than order, con-
sistent interval-sets and crossing interval-sets. Approaches
presented in this paper are based on these concepts.

5.1 Less-Than-Order
Less-Than Order between two Intervals: An inter-

val u=(ts1,te1) is said to be in less-than order with interval
v=(ts2,te2) if ts1 is less than or equal to ts2. Equivalently
we say that interval u is less than interval v or interval u is
in less-than order relationship with interval v.

Given a set of intervals U={u1,u2,. . . ,un} the interval ui

is said to be the left-most or right-most interval if the start-
point of this interval is the least or maximum of all intervals.
There can be more than one left-most or right-most intervals
if they start at the same point.

Consider the Figure 3. The interval u1 is less-than v1
as u1 starts before v1 does. u1 is the left-most interval as
the start-point of u1 is less than the start-point of all other
intervals. u5 is the rightmost interval as the start-point of
u5 is larger than the start-point of all other intervals.
Less-Than Order between two Relations: Consider
the 2-way join query R1PR2. We say that the predicate
P enforces a less-than-order between R1 and R2 if for each
interval pair (u, v), u ∈ R1, v ∈ R2 which satisfies predicate
P , the interval u is in less-than-order relationship with v.
Similarly we say that the predicate P enforces a less-than-
order between R2 and R1 if for each interval pair (u, v), u
∈ R1, v ∈ R2 which satisfies predicate P , the interval v is
in less-than-order relationship with u. Note that the 2-way
join query remains the same i.e., R1PR2.

For example, considerR1OverlapsR2. The predicateOver-
lap enforces a less-than order between R1 and R2 as the
interval from relation R1 must start before interval from re-
lation R2. All of Allen’s predicates enforce a less-than order
between its two relations. Figure 1 mentions the less-than-
order relationships for all the Allen’s predicates.

5.2 Consistent Interval-Sets
Consider a query Q and its relation-set R. A set of in-

tervals U is called a consistent interval-set if for each pair of
intervals u and v in U the following conditions hold:

• A1: Intervals u and v belong to different relations.

• A2: Consider u and v belong to Ru and Rv, Ru ∈ R,
Rv ∈ R. If there is a condition RuPRv in queryQ then
intervals u and v satisfy the predicate P . Similarly if
there is a condition RvPRu in query Q then intervals
v and u satisfy the predicate P .

Note that each subset of a consistent interval-set is also con-
sistent. Consider the query Q0 : R1 overlaps R2 and R2

contains R3 and R3 overlaps R4 in Figure 3. Q0’s relation-
set is R={R1,R2,R3,R4}. Intervals from R1, R2, R3 and R4

are denoted by u, v, w and x respectively. The interval-set
U1={u3,v1,w1} is consistent. U1’s relation-set is R1={R1,
R2, R3}. There are two conditions in query Q0 which are
formed by the relations in R1 i.e., R1 overlaps R2 and R2

contains R3. The condition R1 overlaps R2 requires that
the intervals u3 and v1 overlap and they do. The condi-
tion R2 contains R3 requires that the interval v1 contains
the interval w1 and it does. Hence the interval-set U1 sat-
isfies both conditions A1 and A2 for consistency. Similarly
U2={u2,v1,w1,x3} is a consistent interval-set. The interval-
set U3={u1,v1,w1} is not consistent as the interval u1 does

466

Figure 3:

not overlap with v1 while that is required due to the presence
of condition R1 overlaps R2 in Q0.

5.3 Crossing Interval-Sets
Consider a query Q and its relation-set R. Consider an

interval-set U and its relation-set RU . The set U crosses the
partition-interval p if the following conditions hold:

• No two intervals in U belong to the same relation.

• Each interval u in U intersects with partition-interval
p i.e. interval u and partition-interval p have at least
one point in common.

• For all join conditions R1 P R2 or R2 P R1 in query Q
s.t. R1 ∈ RU and R2 ∈ R −RU , the following holds.
Let u be the interval in U belonging to relation R1.

– B1: If the predicate P enforces a less-than order
between R1 and R2 then the interval u crosses
the right-boundary of partition-interval p i.e., the
end-point of the interval u lies in any partition-
interval following pi.

– B2: If the predicate P enforces a less-than order
between R2 and R1 then the interval u crosses
the left-boundary of partition-interval p i.e., the
start-point of the interval u lies in any partition-
interval preceding pi.

Consider the interval-set U4={u3,v1,w2} in Figure 3 and
the query Q0. U4 crosses partition-interval p2 as it satisfies
all the four conditions for crossing p2. All three intervals in
U4 belong to different relations and intersect with partition-
interval p2. The relation-set of U4 is RU4

={R1, R2, R3}.
The relation-set of query Q0 is {R1,R2,R3,R4}. The set R-
RU4

hence is {R4}. There is only one condition in query Q0

with one relation in set RU4
and the other relation in set

R-RU4
i.e., R3 overlaps R4. As overlap predicate enforces

R3 to be less than R4, the condition B1 requires that the
interval belonging to relation R3 in U4 (i.e., w2) crosses the
right boundary of partition-interval p2 and w2 does. No
other interval is required to cross either the left or right
boundary of p2.

The interval-set U5={v3,w2} also crosses the partition-
interval p2. Its relation-set is RU5

={R2, R3}. The set R
- RU5

is {R1, R4}. There are two conditions in query Q0

with one relation in set U5 and the second in R - RU5
. The

condition R1 overlaps R2 requires the interval v3 to cross
the left-boundary of p2 and it does. The condition R3 over-
laps R4 requires w2 to cross the right boundary of p2 and
it does. The interval-set U6={v3,w1} does not cross the
partition-interval p2 as the interval w1 does not cross the

right boundary of p2 while that is required due to the con-
dition R3 overlaps R4 .

Intuition: An output tuple is always a consistent interval-
set and all its subsets are also consistent. If intervals in an
output tuple U span more than one partition-intervals, U
can be visualized as a union of consistent interval sets some
of which also cross some partition-intervals. A consistent
interval-set which crosses a partition-interval can combine
with another consistent interval-set to form an output tu-
ple. For example consider the output tuple {u2, v1, w2, x2}
in Figure 3. It can be seen as a union of two interval-sets -
U1={u2, v1, w2} and U2={x2}. U1 is consistent, crosses the
partition-interval p2 and combines with U2 to form the out-
put tuple. In this paper we propose efficient algorithms for
computing multi-way interval colocation joins which work
by tracking consistent and crossing interval-sets.

6. COLOCATION MULTI-WAY JOINS
In this section we present Replicate Consistent And Cross-

ing Interval Sets (RCCIS), an efficient algorithm for han-
dling multi-way interval colocation joins involving single in-
terval attribute. We first present two naive approaches.

2-way Cascade (2-way Cd) This processes a multi-
way join query as a series of 2-way joins. For example again
consider the query Q0 - R1 overlaps R2 and R2 contains R3

and R3 overlaps R4. This approach will first join R1 and
R2 for predicate overlap. Then it will join the result of this
2-way join with relation R3 for predicate contains. Finally
the result will be joined with R4 for predicate overlap.

All-Replicate (All-Rep): A colocation join query can be
handled by projecting the rightmost relation and replicating
the rest. For example for Q0, we can replicate R1, R2, R3

and project R4. Any output tuple {u,v,w,x} is hence com-
puted at the reducer on which the interval x is projected.
For queries which contain more than one rightmost relations,
all relations need to be replicated.

Note that splitting all relations does not work. For exam-
ple consider the query Q0, Figure 3 and the output tuple
V={u3, v1, w2, x2}. As a result of splitting all these four
intervals in V, the reducer p1 receives no interval, reducer p2
receives intervals {u3, v1, w2} and the reducer p3 receives
intervals {v1, w2, x2}. Hence none of the three reducers
receive all the four intervals and hence this output tuple
can not be computed. Replicating all relations but one is
a naive way of ensuring that for each output tuple, all its
constituents intervals will be received by a reducer.

Both these approaches are inefficient. 2-way Cd produces
a series of big intermediate join results and these results are
joined with subsequent relations. Each join is executed as
a new set of map and reduce tasks and these tasks involve
reading a lot of data and communicating it to the reducers.
2-way Cd hence involves huge reading and communication
cost. All-Rep replicates all intervals in all but one relations
and this also implies a huge communication cost. We next
present the algorithm RCCIS which improves on both these
approaches substantially.

6.1 Replicate Consistent And Crossing Inter-
val Sets (RCCIS)

Basic Goal: We need an approach which solves a multi-
way join in one go rather than as a cascade of 2-way joins but
unlike All-Replicate which does not replicate all intervals.
This is what precisely the RCCIS approach achieves. It

467

selectively identifies which intervals need to be replicated
and replicates only such intervals.

Outline: RCCIS runs in two cycles of map-reduce. The
first round of map operations split all the relations. The
reducer pi hence receives all intervals that intersect with
partition-interval pi. Reducer pi then runs the RCCIS al-
gorithm (described in detail next) on the intervals received
and decides which intervals need to be replicated. Reducer
pi then writes out all the intervals on the disk along-with
a flag to indicate if the interval was selected for replica-
tion. The second round of map operations read the output
of first round of reducers and replicate the intervals selected
for replication and project the rest. Second round of reduc-
ers then carry out the join among the intervals obtained.

Details: We now describe the strategy reducer pi follows
in the first round to select the intervals to replicate. Let
the query be Q and its relation-set R. Let Upi be the set
of intervals split on partition interval pi in the 1st round
and subsequently received by reducer pi. The reducer pi
first identifies all interval-sets U , U ⊂ Upi s.t. interval-set U
satisfies the following conditions.

1. C1: U is a consistent interval-set.

2. C2: U crosses the partition-interval pi.

Let USpi be the set of such interval-sets. Let uSpi repre-
sent the set of all intervals which belong to any interval-set
in USpi i.e., uSpi is the union of all interval-sets in USpi .

RCCIS replicates all intervals in uSpi which start in par-
tition interval pi i.e., the start-point ts of interval u lies in
partition-interval pi. We omit a proof-of-correctness due to
space constraints.

Intuition behind RCCIS: Upi is the set of intervals
received by reducer pi in the first round. The objective
of RCCIS is to identify which intervals in Upi need to be
replicated and which need not be. All-Rep replicates all
intervals and hence is an inefficient algorithm.

To compute an output tuple V, all intervals in V must be
brought to a reducer. Consider an output tuple V={u1, u2,
. . . , um}, ui ∈ Ri. If a reducer pi receives all intervals in V
in the first round, the reducer pi can compute this output
tuple. No interval in V hence needs to be replicated. For ex-
ample, consider the interval-set {u0,v0,w0,x0} and query Q0

in Figure 3. Reducer p1 receives all the four intervals and
hence can compute this output tuple. All-Replicate repli-
cates all intervals and is hence clearly redundant. Note that
an output tuple is not a crossing-set (Section 5.3) and hence
does not satisfy the condition C2 of RCCIS.

However this may not be the case and reducer pi may
receive only some of the intervals in an output tuple V. Re-
ducer pi hence needs to replicate the intervals so that one
following reducer (i.e. pj , j > i) can receive all these inter-
vals in the second round and can hence compute the output
tuple. However this requires first identifying which intervals
in Upi may form a part of an output tuple. The conditions
C1 and C2 of RCCIS identify such intervals.

RCCIS constructs interval-sets out of set Upi which can
be part of an output tuple. A set which is not consistent
can not be part of an output tuple. Further a consistent set
which does not cross partition-interval pi can not combine
with any other set from other partition-intervals to form an
output tuple. Reducer pi hence computes sets which are
consistent as well as cross the partition-interval pi. The set
USpi consists of such interval-sets.

uSpi consists of intervals belonging to any set in USpi .
Reducer pi replicates those intervals in uSpi which start
in partition-interval pi. Intervals not starting in partition-
interval pi will possibly be replicated by reducers preceding
pi. As the number of intervals replicated by RCCIS is much
smaller vis-a-vis All-Rep which replicates all intervals, RC-
CIS improves considerably over All-Rep.

Computing Output Tuple: Consider an output tuple
U={u1,u2,. . . ,um}. The output tuple U is computed at the
reducer (say pj), on which the right-most interval in U is
projected on. If some intervals in U do not intersect with
partition-interval pj , they will be received by reducer pj as
a result of selected-replication by reducers preceding pj (in
the first round).

Example: Let’s consider Figure 3 and the query Q0

again. For the intervals presented in Figure 3, the output
will consist of six tuples V1={u3,v1,w2,x2} , V2={u3,v1,w1,
x3 },V3={u3,v2,w1,x3} , V4={u1,v3,w2,x2},V5={u1,v3,w1,x3}
and V6={u0,v0,w0,x0}. We now illustrate RCCIS approach
for reducer p2. Reducer p2 receives the intervals Up2={u1,
u2, u3, v1, v2, v3, w1, w2, x1, x3} in the first round as a re-
sult of splitting all relations. The set USp2 is { {u3,v1,w2},
{v3,w2} } as only these two interval-sets satisfy conditions
C1 and C2. The set uSp2 is hence {u3,v1,v3,w2} and reducer
p2 replicates intervals in uSp2 which start out in partition-
interval p2 i.e., {u3,v1,w2}.

Discussion: As discussed in section 5, the interval-set
U1={u3,v1,w2} is consistent and crosses partition-interval
p2. U1 is hence included in the set USp2 . This signifies that
the set U1 could combine with a consistent set in partition-
interval p3 (or any pj , j > 2) to form an output tuple of
the form {u3,v1,w2, x}, x ∈ R4, x starts after p2 finishes.
V1={u3,v1,w2,x2} is indeed such an output tuple and is com-
puted by reducer p3. Reducer p3 receives intervals in U1 in
the second round as a result of replication by reducer p2
and receives interval x2 as a result of projection by second
round of map operations. Supposing the interval x2 was not
present, the reducer p2 would still have needed to replicate
intervals in U1 as the reducer p2 has got no way to know this
apriori.

As discussed in section 5, the interval-set U2={v3,w2} is
also consistent and crosses the partition-interval p2. Interval-
set U2 is hence included in USp2 . Reducer p2 needs to include
U2 in USp2 as there might be an output tuple of the form
{u,v3,w2,x} s.t. u ∈ R1, x ∈ R4, u finishes before p2 starts
and x starts after p2 finishes. V4={u1,v3,w2,x2} is such an
output tuple. Note that the interval u1 is replicated by re-
ducer p1, intervals v3 and w2 replicated by reducer p2 and
the output tuple V4 is computed by reducer p3.

The interval-set U3={u3,v1,w1} is consistent but does not
crosses the partition-interval p2 as interval w1 does not cross
the right boundary. Hence there can not be an output tuple
{u3,v1,w1,x} s.t. x ∈ R4 and the start-point of x lies after
the partition-interval pi finishes. The interval-set U3 is hence
not included in USp2 . This set violates the condition C2.

6.2 Experimental Evaluation
Hadoop Cluster SetUp: Experiments are run over a

16 core Hadoop cluster (v0.20.2) built using Blade Servers
with four 3 GHz Xeon processors having 8GB memory and
200 GB SATA drives. The machines run Red Hat Linux 5.2.

Generation of Synthetic Data: We write a script to
generate a set of intervals. The parameters to this script

468

are: (a) Number of intervals (nI), (b) Distribution of start
points of intervals (dS). (c) Distribution of interval length
(dI), (d) Range of time-points within which all intervals lie
(tmin, tmax), (e) Min and max interval lengths (imin, imax).

Details of Real-life Data: We use publicly available
Internet packet traces, collected from WIDE, a 150 Mbps
trans-pacific Internet backbone [1]. For each day, a 15 minute
extract is made public for download. This backbone carries
Internet traffic between US and Japan. A packet trace con-
sists of the values of all fields in IP and TCP headers of all
packets passing through an observation point.

Given such a trace, we construct source-destination packet
trains. A packet train consists of the sequence of packets
flowing from a source IP to a destination IP such that the
difference between two packet arrivals (at the observation
point) is less than a threshold. Such trains are used in build-
ing network traffic models [9]. We hence have for each packet
train its start-time i.e., the arrival time of the first packet of
the train at the observation point and its end-time i.e., the
arrival time of the last packet of the train. The durations of
the packet trains hence form our interval data.

Experiments on Synthetic Data: We consider the
query Q1=R1 overlaps R2 and R2 overlaps R3. All ex-
periments are run with 16 reduce processes. Relations R1,
R2 and R3 are generated synthetically. Table 1 presents
a comparison of all three approaches. Parameter values
used for generating synthetic data are also provided. All
three relations are of same size and the size is increased in
steps of 0.25M. RCCIS easily beats both 2-way Cd and All-
Rep. Table 1 also presents the number of intervals replicated
by RCCIS and All-Rep. Note that RCCIS replicates much
smaller number of intervals vis-a-vis All-Replicate to com-
pute the join output. As All-Rep replicates all intervals, it
incurs a huge communication cost. The numbers in brack-
ets represent the total number of key-value pairs generated
after replication (if interval u is replicated to n reducers, u
is counted n times). Note that this number is high in case
of All-Rep because it replicates all intervals and high in case
of 2-way Cd as it reads big intermediate results. Compara-
tively this number is small for RCCIS. As a result, RCCIS
incurs much smaller communication cost as well as much
smaller cost for computing partial join output by each re-
ducer in 2nd round. We also carried out experiments varying
other parameters like distribution of start-point of intervals
(dS), max interval length (imax) etc and we observed simi-
lar results. We do not outline the details due to the lack of
space.

Table 1: Varying Data Size
dS,dI=Uniform, (tmin,tmax)=(0,100K), (imin, imax)=(1,100)

nI Time Time Time # Intervals # Intervals # Pairs
2-way Cd. All-Rep RCCIS Replicated Replicated 2-way

(M) (hh:mm) (hh:mm)(hh:mm) RCCIS All-Rep Cd
0.5 00:18 00:06 00:03 14.7K,(3.1M) 1M,(10.5M) (84.6M)
0.75 00:43 00:28 00:06 21.8K,(4.7M)1.5M,(15.8M)(188.5M)
1.0 01:19 00:48 00:09 29.2K,(6.2M)2.0M,(21.1M)(334.4M)
1.25 02:07 01:05 00:15 36.6K,(7.8M)2.5M,(26.4M)(517.2M)

Experiments on Internet Packet Trace Data: We
next showcase the efficacy of RCCIS on Internet packet
trace data. We choose six 15 minute long traces collected
across links SamplePointB and SamplePointF from MAWI
repository, one each from year 2003 to 2008 in the month
of January. The six traces are so chosen that they contain
widely different number of packets and hence different sta-
tistical characteristics. Table 2 lists out the chosen traces

Table 2: Results on Internet Packet Trace Data
Date # # # Copies Time Time

Trace(dd-mm-yy) Pkts Pkt & Total 2-way Cd. RCCIS

TrainsDuration (min) (hh:mm) (hh:mm)
P03 01-01-03 1.5M 120K 25, 375 00:24 00:07
P04 01-01-04 0.2M 18K 167, 2500 00:13 00:06
P05 15-01-05 2.9M 207K 15, 225 00:35 00:07
P06 01-01-06 3.4M 351K 9, 135 01:03 00:08
P07 15-01-07 9.1M 359K 9, 135 01:22 00:09
P08 01-01-08 7.3M 307K 10, 150 02:08 00:11

and the number of packets in direction from Japan to US.
Number of packets in the six traces vary from 0.2 million to
9.1 million. From these traces, we construct packet trains
with inter-arrival cut-off being 500 ms. Table 2 also presents
the number of packet trains generated for each trace. For
each set of packet-trains computed, we generate a larger data
containing 3 million packet trains by replicating the origi-
nal data. We then compute the star self-join with overlaps

predicate (i.e. R overlaps R and R overlaps R) on this 3M
packet trains data with the number of reducers being 16.
This finds out all triples {T1, T2, T3} such that train T1
overlaps with T2 and T2 overlaps with T3. We again find
that RCCIS easily outperforms 2-way Cd. on all the six
packet traces.

6.3 Discussion
Lets consider the scenario where all the intervals are of

length 0 i.e., interval data reduces to real-valued data. In
such a case, multi-way colocation join query involving sin-
gle interval attribute reduces to multi-way equi-join query
involving single real-valued attribute. The project and split
operations become identical. The multi-way equi-join query
on real-valued data can then be handled in a single map-
reduce cycle by projecting all relations. The case of inter-
val data becomes complex because an interval has a finite
length. An interval umay start out in a partition-interval p1,
can cross-over to another partition-interval p2 and overlap
with an interval v starting out in partition-interval p2. Inter-
val v can then may cross-over to another partition-interval
p3 and overlap with an interval w starting-out in partition-
interval p3 and so-on. As all the intervals belonging to an
output-tuple may not all share a common point, devising
a mechanism for bringing all such intervals at a common
reducer becomes a challenging task.

For 2-way interval join it is not a problem as two colo-
cated intervals share a common point. RCCIS gets around
this problem by devoting one extra map-reduce cycle to ex-
actly find out which intervals need to be replicated; RCCIS
than replicates only such intervals in the second round. 2-
way Cascade and All-Replicate are two naive approaches for
handling the additional complexity present for case of in-
terval data vis-a-vis real-valued data; while RCCIS is an
efficient algorithm for handling this additional complexity.

We use the concept of less-than-order among relations to
efficiently track consistent and crossing interval-sets. Inter-
vals received by a reducer are sorted according to less-than-
order. We omit the details due to space constraints.

7. SEQUENCE BASED JOINS
In this section we present an efficient approach for han-

dling multi-way sequence join queries. 2-way Cd and All-
Rep are again two naive approaches to handle a sequence
based multi-way join query. RCCIS does not work for se-
quence joins as intervals located far apart also satisfy se-

469

quence predicates and hence each interval needs to be repli-
cated. RCCIS hence reduces to All-Rep. One hence can not
avoid large communication costs in sequence based joins.

However we can significantly improve All-Rep by improv-
ing on its load balancing aspects among the reducers. All-
Rep puts a disproportionate burden on some reducers. For
example, consider the 2-way query R1 before R2. All-Rep
solves it by replicating R1 and projecting R2. An output
tuple (u, v), u ∈ R1, v ∈ R2 is computed by the reducer on
which the interval v is projected on. The rightmost reducer
hence receives all the intervals of relation R1 and its load is
highest. Figure 4 depicts this. As one moves right, the load
on the reducer increases and the load on reducer p6 is max-
imum. All intervals of relation R1 join with R2 intervals
starting in partition-interval p6 and hence the reducer p6
runs for a long amount of time while other reducers lie idle.
This results in an inefficient use of the resources and hence
an inefficient way of solving sequence join. This effect gets
more pronounced in case of multi-way sequence join queries
as the rightmost reducer receives intervals from all relations
except one. Note that RCCIS did not have load-balancing
issues for colocation joins as RCCIS replicates only selected
few intervals. We next present and outline the details of
All-Matrix, which improves upon the load-balancing aspect
of All-Rep.

7.1 All-Matrix
Basic Idea: As two intervals located far apart satisfy

a sequence predicate, solving sequence join can be likened
to computing a large part of the cross-product of the re-
lations involved. All-Matrix divides the computation in-
volved in computing cross-product among individual reduc-
ers. This hence requires reducers/interval-data to be vi-
sualized as part of higher dimensional space. This allows
All-Matrix to divide the load of highly loaded reducers in
All-Rep among multiple reducers while combining the load
of lightly loaded reducers in All-Rep among fewer reducers;
thereby resulting in a better load-balance among reducers
vis-a-vis All-Rep.

Intuition: Consider the 2-way sequence query R1 before
R2 and Figure 4. The cross-product of R1 and R2 is hence in
two dimensional space. Consider that relations R1 and R2

lie along axis y and x respectively. If both x and y axis are
divided in three partition-intervals, then the cross-product
space can be visualized as divided among 9 cells. Cell (i, j)
receives intervals from relation R1 which are projected on ith

partition across y-axis and of those intervals from relation
R2 which are projected on jth partition across x-axis. The
partial computation corresponding to cell (i,j) is assigned to
an individual reducer say reducer (i,j). Reducer (i,j) then
computes the sequence join among the intervals it receives.

Some of these 9 reducers will not produce any output from
the intervals they receive and we call such reducers inconsis-
tent. In Figure 4 the inconsistent reducers are shown empty
and there are three such reducers. For example, consider
the reducer (1,0). The first index belongs to y-axis (relation
R1). It receives intervals u3 and u4 from R1 and v1 and
v2 from R2. As u3 and u4 start in the 2nd partition while
v1 and v2 start in 1st partition, none of u3 or u4 lie before
either of v1 or v2. The output of reducer (1,0) hence will
be null. Inconsistent reducers can be apriori identified by
using the concept of less-than-order among relations. Map
functions hence avoid communicating any interval to incon-

sistent reducers.
Note that all 6 reducers receive equal number of intervals

and hence the load is balanced. The load is balanced as
the load of the reducers receiving high load in All-Rep i.e.,
p5 and p6 is distributed across more number of reducers
in All-Matrix i.e, reducers (0,2), (1,2) and (2,2). Load of
reducers with intermediate load in All-Rep i.e., p3 and p4 is
distributed across smaller number of reducers in All-Matrix
i.e, reducers (0,1) and (1,1). Finally the load of reducers
with small load in All-Rep i.e, p1 and p2 is distributed across
only one reducer (0,0) in All-Matrix. As the load is balanced,
all reducers run for similar amount of time thereby resulting
in an efficient use of the resources which leads to a significant
improvement vis-a-vis All-Replicate.

Details: If there are m relations in the query, All-Matrix
visualizes the reducers/intervals as part of a m-dimensional
space. Consider each axis is divided in o partitions and
hence the m-dimensional cross-product space can be seen as
a union of om cells/reducers. We next define the notion of
consistency of a reducer.

Consistent Reducer: Consider queryQ and its relation-
set R={R1,R2,. . . ,Rm}. Consider the m-dimensional cross-
product space of relations in R , each dimension spanning
identical temporal range (say [t0, tn)). Consider each axis
is divided in o equi-sized partitions. A reducer in the m-
dimensional matrix is hence identified as an m-tuple ∇ =
(i1, i2, . . . , im) where 1 ≤ ij ≤ o, 1 ≤ j ≤ m. A reducer is
called consistent if for each condition Rj P Rk in query Q
the following holds:

• If the predicate P enforces Rj to be in less-than-order
relationship with Rk, the index ij is less than or equal
to the index ik and vice-versa.

In Figure 4, a reducer is represented as 2-tuple (i1, i2).
As before predicates enforces R1 to be less than R2, the
consistent reducers are those with i1 ≤ i2. There are six
such reducers out of nine.

Communication Strategy of All-Matrix: If the start-
point of an interval u from relation Rk lies in the qth partition-
interval along dimension k, map functions communicate u

to all reducers ∇=(i1, i2,. . . , im) which satisfy the following
conditions:

1. D1: The reducer ∇ is consistent.

2. D2: ik = q.

Computing Output Tuple: Consider an output tuple
U=(u1,u2,. . .,um), ui ∈ Ri. Consider intervals in Rk lie
along dimension k. The output tuple U is generated at re-
ducer (q1,q2,. . . ,qm) s.t. qk is the partition-interval along
dimension k in which the interval uk starts.

Number of MR Cycles: All-Matrix computation takes
place in a single map-reduce cycle. Map operations read the
data and communicate the intervals to reducers according to
conditions D1 and D2. Each reducer computes the sequence
join for the intervals received. The final output is the union
of output computed by all the consistent reducers.

Discussion: In Figure 4, the intervals u1 and u2 start in
the first partition-interval (i.e, i1=0) along first dimension
(y-axis) and they are communicated to consistent reducers
with the first index being 0 i.e. (0,0), (0,1) and (0,2). In-
tervals v1 and v2 start in the first partition-interval (i.e.,

470

Figure 4: Load Balancing- All-Rep vs All-Matrix

 0

 30

 60

 90

 120

 0 5 10 15 20

T
im

e
 T

a
k
e

n
 (

M
in

u
te

s
)

Number of Intervals (K)

All-Rep
2-way Cd.
All-Matrix

(a) Synthetic

 0

 40

 80

 120

 160

 200

 3 6 9 12 15 18

T
im

e
 T

a
k
e

n
 (

M
in

u
te

s
)

Number of Intervals (K)

All-Rep
2-way Cd.
All-Matrix

(b) Packet Trace

Figure 5: Performance On Sequence Join

i2=0) along second dimension (x-axis) and they are commu-
nicated to consistent reducers with the second index being
0 i.e., (0,0). Interval-sets {u3, u4} and {u5, u6} start in the
second and third partition-interval respectively along first
dimension and hence they are communicated to consistent
reducers with the first index being 1 i.e, [(1,1) and (1,2)]
and the first index being 2 i.e., (2,2) respectively. Similarly
we can argue about intervals v3, v4, v5 and v6.

Note that the two conditions D1 and D2 avoid unneces-
sary communication. An interval is not sent to inconsistent
reducers as these reducers won’t generate any output. The
condition D2 ensures that for each output tuple U , exactly
one reducer receives all intervals in U . In absence of condi-
tion D2, an interval will be sent to all consistent reducers.
This will result into all consistent reducers receiving all in-
tervals which clearly is highly redundant. For example, con-
sider the output tuple (u1, v5) in Figure 4. Only the reducer
(0,2) receives both the intervals u1 and v5 and computes the
output tuple (i.e., q1=0, q2=0). If the condition D2 is re-
moved both these intervals will be communicated to all six
consistent reducers. Similar insights hold for multi-way se-
quence joins involving more than two relations.

Experimental Evaluation: We consider the 3-way
query Q2=R1 before R2 and R2 before R3 and execute
All-Matrix, All-Rep and 2-way Cd. All-Matrix visualizes
the reducers as part of 3-dimensional space. We create 6
partitions on all three dimensions and hence 55 reducers are
found to be consistent (out of 63 = 216 reducers).

Both 2-way joins in 2-way Cd (i.e, join of R1 and R2 on
predicate before and the result joining relation R3) are exe-
cuted using 2D versions of All-Matrix with reducers as part
of 2-dimensional cross-product space. For each of these two
joins, we create 11 partitions on each dimension. 64 reducers
are hence consistent (out of 112=121). All-Rep is executed
using 64 reducers. Partitioning for the three algorithms is
chosen in a manner so as the number of consistent reducers
are roughly similar (i.e, 55 for All-Matrix, 64 for 2-way Cd
and All-Rep).

Figure 5(a) presents the results on synthetic data. We
vary the size of the relations. The data is generated with
temporal range as 0-1000 and the maximum interval length
as 100. The distributions dS and dI are taken as uniform.
Figure 5(b) presents the results on packet trace P04. Total
number of trains in trace P04 are 18K and we randomly
sample trains in steps of 3K. Total temporal range for trace
P04 is 15 mins. In both the experiments, the approach All-
Matrix is found to comfortably beat the approaches 2-way
Cd and All-Rep. Specifically we note that the large time
taken by All-Rep is due to lagging reducers. This again
highlights the importance of a good load balancing strategy.

7.2 Related Work
The idea of theta-join output space as a cross-product

of relations was first used in Okcan et al. [14]. Okcan et
al. [14] look at processing 2-way theta join on map-reduce.
We extend this idea to multiple dimensions to handle multi-
way interval theta join query.

Zhang et al. [17] investigate multi-way theta join query on
real-valued data. They handle a multi-way join as a cascade
of intermediate chain-joins; each chain join may be 2-way or
multi-way. For example, consider the multi-way join query
R1 P1 R2 and R2 P2 R3 and R2 P3 R4 where P ’s are theta
join predicates. Zhang et al. [17] may process this join as a
cascade of 2 chain joins. First chain join may be multi-way
join R1 P1 R2 and R2 P2 R3 and the second may be 2-way
join which joins the results of first chain join with R4 on
predicate P3. For a chain multi-way join query Zhang et
al. [17] present a method of communicating data to reduce
processes which guarantees minimized volume of data copy-
ing over the network as well as evenly distributed workload
among reduce tasks. Towards this, the authors present a
cost model to estimate the execution time of a map-reduce
job. The cost-model requires input data distribution as well
as parameters which are system dependent and need to be
derived from observations on the execution of real jobs.

Our work is complementary to that of Zhang et al. [17].
Our goal is to present efficient methods for handling the ad-
ditional complexity introduced due to the presence of inter-
val data vis-a-vis real-valued data. Using the notion of less-
than-order among relations as implied by Allen’s predicates,
we identified inconsistent reducers in the multi-dimensional
cross-product space. This saves communication cost. We
thus improved on the naive way of handling the additional
complexity i.e., All-Replicate. We can further improve All-
Matrix by using the cost models and ideas presented in
Zhang et al. [17]. The question whether a complex join query
should be processed in a single map-reduce job or as multi-
ple jobs is not clear, though the consensus is that processing
multi-way join query as a cascade of 2-way is certainly lot
worse [17, 8, 10]. We can process multi-way sequence join
query as a cascade of multi-way chain joins. However, each
of these multi-way chain join query will use only the consis-
tent reducers as defined in this section. Secondly the cost
model used in Zhang et al. [17] will need to be updated by
taking the distribution of interval lengths into account.

8. HYBRID JOIN QUERIES
In this section, we present how we handle join queries

involving single interval attribute and containing both colo-
cation and sequence predicates. We visualize a hybrid query
Q as a join graph G = (V,E). The relations R form the ver-

471

tices V . For every join condition R1 P R2 in query Q, an
edge exists in the graph between the relations R1 and R2.
Edges are classified as sequence or colocation edges depend-
ing upon whether the predicate P is a sequence or colocation
predicate.

We next consider the disconnected graph G′ = (V,E′)
formed by removing sequence edges from graph G. G′ hence
consists of a set of connected components where each compo-
nent is formed by colocation edges only. If we visualize each
connected component as a new relation, the hybrid query
Q can be re-written as a sequence query Q′ where each se-
quence predicate is defined over two connected components
in G′. Let Rc denote these new relations. Let QC represent
the colocation query encapsulated by the component C.

Consider Figure 6. The hybrid query Q3 is R1 overlaps
R2 and R2 overlaps R3 and R2 before R4 and R4 overlaps
R5. Graph G′ consists of two connected components i.e.
Rc={C1,C2}. The component C1 consists of three relations
{R1, R2, R3} and the component C2 consists of two relations
{R4, R5}. The component C1 encapsulates the colocation
query QC1

=R1 overlaps R2 and R2 overlaps R3 and the
component C2 encapsulates the colocation query QC2

=R4

overlaps R5. The query Q′ hence is C1 before C2.
Two approaches suggest themselves - (1) First Coloca-

tion Then Sequence (FCTS) and (2) First Sequence
and Then Colocation (FSTC). FCTS first computes colo-
cation joins using RCCIS and then sequence joins using All-
Matrix. For Q3 in Figure 6, FCTS first computes queries
QC1

and QC2
using RCCIS and then joins the two results

using All-Matrix. FSTC first executes R2 before R4 using
All-Matrix and then the colocation joins using RCCIS. Just
like 2-way Cd, both FSTC and FCTS suffer from the prob-
lem of joining large intermediate results. We next outline
All-Seq-Matrix which avoids joining intermediate results.

8.1 All-Seq-Matrix
Consistent Reducer: Let l be the number of connected

components in query Q′ encapsulated by graph G′. All-
Seq-Matrix hence visualizes the output as the l-dimensional
cross-product of l connected-components. A part of this l-
dimensional space is assigned to a reducer for processing.
Say each dimension is divided in o equi-sized partitions. A
reducer is hence represented as l-tuple ∇=(i1,i2,. . . ,il), 1 ≤
ij ≤ o, 1 ≤ j ≤ l. A reducer is called consistent if for each
condition Cj P Ck in Q′ the following holds:

• If the predicate P enforces the component Cj to be
in less-than-order with Ck, the index ij is less than or
equal to ik and vice-versa.

Note that the consistency of a reducer is here defined wrt.
sequence query Q′ and not wrt. hybrid query Q. For query
Q3 in Figure 6, there are two components and hence the
reducers are visualized as part of 2-dimensional space. Each
dimension is divided in three partitions and hence there are
6 consistent reducers (Section 7.1).

Communication to Reducers: We say an interval u
belongs to a connected component C if u belongs to any
relation R in C. Let dimension ik belong to connected com-
ponent Ck. Consider an interval u in relation R which in
turn is in the component Ck. Consider that the start-point
of interval u lies in the qth partition-interval along dimen-
sion ik. The interval u is communicated to all reducers
∇ = (i1, i2, . . . , il) which satisfy the following conditions:

1. E1: The reducer ∇ is consistent.

Figure 6:

2. E2: If RCCIS algorithm would have replicated the
interval u while solving the colocation query QCk

then
ik ≥ q else ik = q.

Computing Output Tuple: Conditions E1 and E2 ensure
that all the intervals for an output tuple are received by ex-
actly one reducer. Consider an output tuple U=(u1, u2, . . . ,
um). Let UCk

be the intervals in U which belong to relations
in the component Ck. The output tuple U is generated at
the reducer ∇=(q1,q2,. . . ,ql) s.t. qk is the partition-interval
in which the right-most interval in UCk

starts. Note that
the RCCIS will project the rightmost interval in UCk

on the
partition-interval qk while solving the colocation query QCk

.
Example: Consider Figure 6 and the query Q3. Intervals

u, v, w, x and y belong to relations R1, R2, R3, R4 and R5 .
Ignore interval u′ at the moment. Intervals in component C1

(i.e. in relations R1, R2, R3) are visualized as lying across
y-axis while the intervals in component C2 (i.e., in relations
R4, R5) are visualized as lying across x-axis.

Consider the output tuple U=(u,v,w,x,y). Interval u is
sent to all consistent reducers as the interval u is replicated
by RCCIS while solving the query QC1

(Condition E2). In-
tervals v and w start in the second partition interval i.e.
i1=1. RCCIS does not replicate the intervals v and w while
solving QC1

and hence intervals v and w are communicated
to consistent reducers with the first index being 1 i.e., (1,1)
and (1,2). Intervals x and y start in the third partition-
interval along x-axis i.e., i2 = 2. As RCCIS does not repli-
cate the intervals x and y while solving the queryQC2

, inter-
vals x and y are communicated to consistent reducers with
the second index being 2 i.e, (0,2), (1,2) and (2,2).

The set UC1
is {u,v,w} and the set UC2

is {x,y}. w and y

are the right-most intervals in UC1
and UC2

and they start-
out in the second and third partition-intervals along y and
x axis respectively (i.e. i1=1 and i2=2). Reducer (1,2) re-
ceives all these five intervals and computes the output tuple
U . No other reducer receives all the five intervals.

Number of MR Cycles: All-Seq-Matrix simultaneously
computes and optimizes the sequence query Q′ using All-
Matrix and the colocation queries QCk

’s using RCCIS. Un-
like FSTC and FCTS, there are no intermediate results.
All-Seq-Matrix requires two MR cycles. The first MR cycle
runs RCCIS algorithm to identify which intervals need to be
replicated to process colocation queriesQCk

’s. Note that the
first MR cycle visualizes reducers as part of 1-dimensional
space as it is running RCCIS. The second MR cycle commu-
nicates intervals to reducers which are visualized as part of
l-dimensional space (conditions E1 and E2). Each reducer
computes the hybrid join on the intervals it receives and the
final output is a union of the output of all reducers.

472

Table 3: Results for Query Q4

nI’s=(5M, 100K, 1K), dS & dI=Uniform, (tmin,tmax)=(0,200K)
Maximum Time Time All Time All-Pruned % intervals
Interval FCTS -Seq-Matrix -Seq-Matrix pruned in R1

Length (hh:mm) (hh:mm) (hh:mm)
1000 01:36 00:42 00:29 23.4
800 01:25 00:40 00:29 26.8
600 01:12 00:41 00:25 31.0
400 00:56 00:37 00:21 41.6
200 00:39 00:35 00:16 61.6

Discussion: Lets again consider the scenario where all
intervals are of length 0. As discussed in section 6.3, there
is no need of RCCIS and the condition E2 reduces to ik = q.
All-Seq-Matrix then runs in a single MR cycle. Additional
complexity due to the presence of interval data is handled
by applying RCCIS algorithm to each colocation sub-join in
the hybrid query while at the same time solving the sequence
join of the colocation outputs using All-Matrix. We next
discuss an improvement on All-Seq-Matrix.

8.2 Pruned-All-Seq-Matrix (PASM)
Consider the intervals in component Ck. If an interval u

s.t. u ∈ Ck does not appear in the output of colocation query
QCk

, interval u hence naturally won’t appear in the output
of query Q. For example, consider interval u′ in Figure 6.
The interval u′ does not appear in the output of query QC1

and hence will not appear in the output of query Q3.
Such intervals need not be replicated to the reducers as

these intervals do not appear in any output tuple. For each
component Ck in G′, PASM first identifies intervals in each
relation R, R ∈ Ck which will not appear in the output of
query QCk

. PASM then avoids replicating such intervals.
The relations hence can be considered pruned.

This improves the performance on two counts. First the
communication cost is reduced as lesser number of intervals
are communicated to reducers in All-Seq-Matrix. Secondly,
each reducer in All-Seq-Matrix gets lesser number of inter-
vals to process. The cost of computing partial join-outputs
on each reducer is hence reduced. However if the pruning
is negligible, this approach may be slightly worse due to the
overhead of computing which intervals can be dropped.

PASM hence runs in three MR cycles. First MR cycle runs
RCCIS to find out the intervals to replicate. The second
MR cycle marks which intervals will not be present in the
output of colocation join queries QCk

’s. The third MR cycle
runs All-Seq-Matrix on pruned relations i.e, communicates
intervals not marked in the second MR cycle to reducers
according to conditions E1 and E2.

Experimental Evaluation: We consider the query Q4

= R1 before R2 and R1 overlaps R3. Graph G’ hence con-
tains two connected components {R1, R3} and {R2}. All-
Seq-Matrix hence visualizes the data as 2D matrix. The
number of intervals in relations R1, R2 and R3 are fixed
at 5M, 100K and 1K respectively. The maximum interval-
length (imax) in relation R3 is varied to study the effect of
pruning. The partitioning is identical to as mentioned in
Section 7.1.

Table 3 presents the results. As the maximum interval-
length is reduced in R3, lesser and lesser number of intervals
in R1 overlap with any interval in R3. As a result, more and
more intervals in R1 are pruned. Consequently Pruned-All-
Seq-Matrix performs better as number of pruned intervals
increase. We do not present the numbers for 2-way Cd, All-
Replicate due to space constraints. These three approaches

were found to be performing significantly worse.

9. MULTI-ATTRIBUTE QUERIES
The three algorithms presented in this paper RCCIS, All-

Matrix, All-Seq-Matrix all handle join queries involving sin-
gle interval attribute. In this section we present Gen-Matrix
which generalizes All-Seq-Matrix algorithm to handle multi-
way join query involving multiple interval attributes. Note
that as a real-valued attribute can be visualized as an inter-
val of length 0, equality predicate on real-valued attributes
as Allen’s predicate equals, predicates (<, >) on real-valued
data as Allen’s sequence predicates before and after ; Gen-
Matrix can handle real-valued attributes as well.

A join condition in such a query Q is of the form 〈R,A〉
P 〈R′, A′〉. Here R’s, A’s and P ’s denote the relations, at-
tributes and Allen’s predicates respectively. As Q contains
multiple attributes, a relation R may have more than one
attribute involved in query Q and hence the join conditions
contain the pair 〈R,A〉 (and not just the relation R).

Consider the query as join graph G = (V,E). Relation-
attribute pairs 〈R,A〉 form the vertices V . For each join
condition 〈R,A〉 P 〈R′,A′〉 in query Q, an edge exists in the
graph between vertices 〈R,A〉 and 〈R′, A′〉. The edge is clas-
sified as sequence or colocation depending on predicate P .
By dropping sequence edges in G, we get the disconnected
graph G′. Note that unlike in All-Seq-Matrix, the graph G

may already be a disconnected graph due to the presence
of more than one attribute. We again visualize each discon-
nected component in G′ as a new relation. Let Rc denote
these new relations (connected-components). Let QC repre-
sent the colocation query encapsulated by component C.

Consider the query Q5 = R1.I before R2.I and R1.I
Overlaps R3.I and R1.A=R3.A and R2.B=R3.B. Here I

is an interval attribute while A and B are real-valued at-
tributes. Graph G′ for query Q5 consists of four connected
components: C1={〈R1,I〉,〈R3,I〉}, C2={〈R2,I〉}, C3={〈R1,
A〉, 〈R3, A〉} and C4={〈R2,B 〉 ,〈R3,B 〉}.

Less-Than Order between two connected compo-
nents: We say a connected component Ci is in less-than
order with component Cj if there exists a join condition 〈R,
A〉 P 〈R′, A′〉 or 〈R′,A′〉 P 〈R,A〉 in Q s.t. 〈R,A〉 ∈ Ci,
〈R′, A′〉 ∈ Cj and Pk is a sequence predicate which enforces
a less-than order between 〈R,A〉 and 〈 R,A〉.

Note that if there exist more than one such join conditions
then all such join predicates must enforce the same less-
than order between the two components. Otherwise, no set
of tuples can satisfy all predicates of query Q and hence
the output of query Q will be null. We next present the
algorithm Gen-Matrix in detail.

9.1 Gen-Matrix
Consistent Reducer: If there are l connected compo-

nents in G′, Gen-Matrix visualizes the join output as l-
dimensional space formed by cross-product of l connected
components. Say each dimension is divided into o equi-sized
partitions. A reducer ∇ is hence represented as an l-tuple
(i1,i2,. . . ,il), 1 ≤ ij ≤ o, 1 ≤ j ≤ l. The dimension ij be-
longs to jth component. A reducer ∇ is consistent if for all
j and k s.t. if Cj is less-than Ck, ij is less-than ik. We now
present the approach Gen-Matrix in detail.

Communication to Reducers: As each dimension in
the l-dimensional space is divided into o partition-intervals,
there are ol cells and hence ol reducers. Consider a relation
R in R. Let A be the join attributes in R. For each attribute

473

A in A, Gen-Matrix communicates a tuple r from R to the
reducers as outlined below. Let interval a represent the value
of attribute A in R. Consider that the interval a starts in
qth partition-interval. Let Ck be the connected component
in Rc in which the vertex 〈R,A〉 lies. The tuple r is routed
to all reducers ∇ which satisfy the following two conditions:

1. E1: The reducer ∇ is consistent.

2. E2: If RCCIS algorithm would have replicated the
interval a while solving the colocation query QCk

then
ik ≥ q else ik = q.

Computing Output Tuple: Consider an output tuple
T =(r1,r2,. . . ,rm) where ri is a tuple in Ri. Let TCk

be the
tuples in T which belong to relations in the connected com-
ponent Ck. The output tuple T is generated at the reducer
∇=(q1,q2,. . . ,ql) where the indices qk satisfy the following:

• Let U be the set of intervals; each interval in U is the
value of interval attribute A in tuple r from relation
R s.t. the pair 〈R, A〉 forms a vertex in the connected
component Ck and r ∈ TCk

. qk then is the partition-
interval in which the right-most interval in U starts.

Experimental Evaluation: Consider the query Q5

again. We execute Gen-Matrix on synthetic data with 375
reducers. Table 4 presents the results. Here we vary the
size of the three relations. Gen-Matrix on Q5 requires four
dimensions and hence the data is visualized as part of a 4-
dimensional space. Query Q5 only enforces a less-than order
between C1 and C2. Each dimension is partitioned into 5
intervals and hence 375 (out of 625) reducers are found to be
consistent. As the size of the three relations are increased in
fixed steps, the time taken by Gen-Matrix increases linearly.

Table 4: Gen-Matrix
dI, dS = Uniform, dA, dB = Uniform

(tmin,tmax)=(0,100K), (imin,imax)=(1, 1000)
nI’s Time (mm:ss)

100K, 10K, 100K 11:34
110K, 11K, 110K 14:09
120K, 12K, 120K 17:28
130K, 13K, 130K 18:10
140K, 14K, 140K 22:19

9.2 Discussion and Related Work
Gen-Matrix extends All-Seq-Matrix to handle multiple at-

tribute. To start with RCCIS optimizes the computation of
colocation joins by exploiting the property that only near-
by intervals satisfy colocation predicates. As two intervals
located far apart satisfy sequence predicates, All-Matrix di-
vides the computation in the cross-product space to carry
out a better load-balancing. All-Seq-Matrix and Gen-Matrix
use multi-dimensional space to load-balance for sequence
sub-joins while locally optimizing colocation sub-joins using
RCCIS. The only difference being that all RCCIS instances
are working on same interval attribute in All-Seq-Matrix but
on different attributes in Gen-Matrix.

There are two main related works. Gupta et al. [8] present
an algorithm to process multi-way spatial colocation joins
on map-reduce where each spatial object is a rectangle. As
mentioned in Section 1, a rectangle can be defined as a set
of two intervals - length and breadth. The algorithms pre-
sented in Gupta et al. [8] are an expansion of a special case
of Gen-Matrix algorithm, where the queries involve (a) only
two interval attributes, (b) only overlap predicates and (c)
each relation consists of these two interval attributes. There

are no sequence predicates and there is no notion of less-
than-order among relations. In this paper we have discussed
the full spectrum of interval join queries and presented four
different algorithm to handle four different classes of queries.

Afrati et al. [2] present an algorithm for partitioning the
cross-product space for multi-way equi joins on real-valued
data. For the special case of multi-way colocation joins on
interval data, their approach can be integrated with RCCIS
algorithm to improve Gen-Matrix. As discussed in this pa-
per, the algorithms for real-valued data can not be directly
used on interval data due to intervals having a finite length.
Our work is hence complementary to that of Afrati et al. [2].

10. RELATED WORK
Related work is mentioned across sections 1, 7.2 and 9.2.

We also contrast the algorithms presented in this paper with
the related work in these sections.

11. CONCLUSIONS
In this paper we carried out a comprehensive investigation

of multi-way interval join queries on map-reduce platform.
We developed four different algorithms to handle different
classes of interval join queries and carried out an experimen-
tal evaluation to showcase the efficacy of these algorithms.
We also discussed how interval join queries pose multiple
challenges vis-a-vis join queries on real-valued data. We next
plan to integrate the ideas developed in Afrati et al [2] and
Zhang et al. [17] with the algorithms presented in this paper.
We also plan to explore more avenues for analyzing interval
data on map-reduce e.g., temporal pattern mining etc.

12. REFERENCES
[1] MAWI working group traffic archive

http://tracer.csl.sony.co.jp/mawi.
[2] F. N. Afrati and et al. Optimizing joins in a map-reduce

environment. In EDBT, 2010.
[3] J. Allen. Maintaining knowledge about temporal intervals.

Communications of ACM, 26(11), 1983.
[4] J. B. Buck and et al. SciHadoop: Array Based Query

Processing In Hadoop. In SC, 2011.
[5] J. Dean and et al. MapReduce : Simplified data processing

on large clusters. Comm. of ACM, 51(1), 2008.
[6] A. Eldway and et al. A Demonstration of SpatialHadoop:

An Efficient MapReduce framework for Spatial Data. In
PVLDB, 2013.

[7] A. Ghoting and et al. SystemML: Declarative Machine
Learning on MapReduce. In ICDE, 2011.

[8] H. Gupta and et al. Processing Multi-way Spatial Joins On
Map-Reduce. In EDBT, 2013.

[9] R. Jain and et al. Packet trains measurement and a new
model for computer network traffic. IEEE journal on
selected areas in Communications, 4(6), 1986.

[10] R. Lee and et al. YSMART: Yet another sql-to-mapreduce
translator. In ICDCS, 2011.

[11] W. Lu. and et al. Efficient processing of K-NN joins using
Map-Reduce. In VLDB, 2012.

[12] Q. Ma and et al. Query Processing of Massive Trajectory
Data Based on Map-Reduce. In CloudDB, 2009.

[13] A. Metwally and et al. V-SMART-JOIN: A scalable
Map-Reduce framework for all-pair similarity joins. In
VLDB, 2012.

[14] A. Okcan and et al. Processing theta-joins using
MapReduce. In SIGMOD, 2011.

[15] H. Tan and et al.i. CloST: A Hadoop-based storage system
for big spatio-temporal data analytics. In CIKM, 2012.

[16] R. Vernica and et al. Efficient parallel set-similarity joins
using map-reduce. In SIGMOD, 2010.

[17] X. Zhang and et al. Efficient Multi-way Theta Join
Processing Using MapReduce. In VLDB, 2012.

474

