
Demonstrating Self-Learning Algorithm Adaptivity
in a Hardware-Oblivious Database Engine

Max Heimel
Technische Universität Berlin
max.heimel@tu-berlin.de

Filip Haase
Technische Universität Berlin
filip.haase@campus.tu-

berlin.de

Martin Meinke
Universität Tübingen

martin.meinke@student.uni-
tuebingen.de

Sebastian Breß
University of Magdeburg

sebastian.bress@ovgu.de

Michael Saecker
Parstream GmbH

michael.saecker@
parstream.com

Volker Markl
Technische Universität Berlin

volker.markl@tu-
berlin.de

ABSTRACT
The increasingly heterogeneous modern hardware landscape
is forcing database vendors to rethink basic design decisions:
With more and more architectures to support, the tradi-
tional approach of building on hand-tuned operators might
simply become too cost- and labor-intensive.

With this problem in mind, we introduced the notion of
a hardware-oblivious database engine, which avoids device-
specific optimizations and targets multiple different hard-
ware architectures from a single code-base. We demon-
strated the feasibility of this concept through Ocelot, a pro-
totypical hardware-oblivious database that uses OpenCL to
provide operators that can run on multiple architectures.

In this demonstration, we show how we modified Ocelot
to support self-learning algorithm adaptivity: The ability to
automatically learn which algorithms are optimal for a given
operation on a given hardware architecture. We present how
to specify operators that can be executed by multiple algo-
rithms, provide details about the underlying learning and
decision routines, and demonstrate how our system picks
the optimal algorithm when running on systems with mul-
tiple devices, such as CPUs and graphics cards.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Design, Performance

Keywords
Modern Hardware Architectures, Self-Adaptivity, Hardware-
Oblivious Data Processing

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

1 2 3 4 5 6 71 2 3 4 5 6 7

In
p

u
t 

s
iz

e
 (

M
B

)

Number of predicates

CPU GPU

chaining

interpretation

dynamic

1024

832

704

576

384

256

128

In
p

u
t 

s
iz

e
 (

M
B

)

1024

832

704

576

384

256

128

1 2 3 4 5 6 71 2 3 4 5 6 7

Number of predicates

chaining

interpretation

dynamic

Figure 1: Maps displaying the optimal algorithm
choice for a selection operation with multiple pred-
icates dependent on input size and number of pred-
icates for a CPU and a GPU.

1. INTRODUCTION & MOTIVATION
The hardware landscape is getting increasingly diverse,

which forces modern database engines to target a wide va-
riety of architectures. Today, a single machine can already
contain several different parallel processors, such as multi-
core CPUs or graphics processing units (GPUs), and hard-
ware heterogeneity is expected to keep growing in the fu-
ture [2]. Providing efficient data processing under these cir-
cumstances usually requires database vendors to implement
several specialized, manually tuned database operators for
each targeted architecture – a very challenging and resource-
intensive task.

We introduced the notion of a hardware-oblivious database
engine as a way to cope with this diversity in prior work [4].
The general idea is to minimize development and mainte-
nance efforts by avoiding hand-tuned implementations and
relying on hardware abstraction to generate device-specific
operators at runtime. We contributed an initial proof-of-
concept by implementing Ocelot1, a prototypical hardware-
oblivious database engine. Ocelot provides a set of hardware-
oblivious drop-in replacements for the query operators of the
in-memory column-store MonetDB [1]. We could demon-
strate that this approach offers competitive performance
across such diverse architectures as CPUs and GPUs from
a single codebase.

1The Ocelot source code is available at: goo.gl/GHeUv.

 

 

616 10.5441/002/edbt.2014.57



However, the approach we chose for Ocelot is fairly lim-
ited: All targeted architectures are restricted and must use
the same set of algorithms. This is problematic, as different
architectures typically tend to prefer different algorithms for
the same operation. For instance, sorting on a CPU is typ-
ically done using a variant of quick-sort, while GPUs rely
on a combination of sorting networks, merge sort, and radix
sort to provide good performance [8]. Forcing all architec-
tures to use the exact same algorithms therefore negatively
impacts performance.

Figure 1 illustrates this problem based on measurements
we did for a multi-predicat eselection operation. The plot
shows that – for both CPU and GPU –, the optimal algo-
rithm choice2 is highly dependent on both the number of
predicates and the input relation size. Furthermore, the de-
cision boundaries between the algorithms are usually non-
trivial and vary greatly between two architectures. Based
on our experience, boundaries even differ between devices
from the same architecture (e.g., when comparing graphics
cards from NVIDIA and AMD): In order to make optimal
decisions, the system therefore needs a distinct set of cost
models for each supported architecture!

A possible approach to tackle this problem is to ship the
database engine with multiple pre-defined sets of cost models
– one for each supported architecture. While this approach
would allow us to reuse the existing query optimizer infras-
tructure without any major changes, it would also limit the
system to a vendor-selected set of architectures. This limi-
tation directly contradicts our goal of building a “hardware-
oblivious” database, i.e., one without any inherent reliance
on a specific architecture. We instead suggest an alternative
approach, that utilizes methods from Machine Learning to
automatically learn cost models at runtime by observing the
operators on the installed hardware. This way, the system
can automatically adapt its engine to any given, previosly
unknown architecture.

In this demonstration, we present how we modified Ocelot
to provide these properties. We demonstrate our interface to
specify multi-algorithm operations, and our framework3 to
learn the decision boundaries and pick the optimal algorithm
for the current hardware and input parameters. By combin-
ing these techniques, we can provide self-learning algorithm-
adaptivity, which is a very important step on the road to-
wards a truly hardware-oblivious system.

2. SYSTEM OVERVIEW
In this section, we provide an overview of our system

Ocelot, introduce the framework to specify multi-algorithm
operators, and discuss the training and decision routines
that are employed to learn the optimal algorithm choice.

2.1 Ocelot
The overall architecture of Ocelot is depicted in Figure 2.

Primarily, Ocelot is designed as a drop-in replacement for
MonetDB’s execution engine, which allowed us to reuse sev-
eral major components, including data layout, storage man-
agement, and the query optimizer.

The central part of Ocelot are the operators, which are im-

2For further details on the algorithmic variants that were
used for this illustration, please refer to Section 3.
3The learning framework is based in large parts on the Hype
library by Bress et al. [3].

Query Rewriter

MonetDB Optimizer & Execution Layer

MonetDB SQL Frontend

MonetDB Parallelization

Ocelot

Operators

MAL BindingHost CodeKernel
MonetDB Operators

MonetDB Storage Layer & Data Layout

Memory Manager

OpenCL Context 
Management

OpenCL

Figure 2: The architecture of Ocelot.

plemented against the abstract parallel programming library
OpenCL [9]. We decided to use OpenCL as our foundation,
as it is an open standard that is supported across a wide
variety of platforms from all major hardware vendors – in-
cluding CPUs, GPUs, accelerators like Xeon Phi, and even
FPGAs. Thereby we achieve efficient, yet highly portable
code without the need for optimization by hand.

Each operator is advertised in MonetDB via a MonetDB
Assembly Language (MAL) binding, which describes the in-
terface and the location of the entry function. The entry
function – also called the operator host-code – is perform-
ing management and maintenance services for the operator.
This includes checking of input parameters, setting input
and output resources, and scheduling the actual execution
on the device. The actual work is performed by the so-
called kernels, which are small programs that perform data-
intensive operations on the device.

Besides the operators, Ocelot consists of infrastructure
components that help to abstract from details of the hard-
ware. An important example of such an infrastructure com-
ponent is the Memory Manager, which is used by the opera-
tors to request resources and also manages device caches on
devices with dedicated memory. Another important compo-
nent is the Scheduler, which maintains wait lists of scheduled
kernel executions to ensure that operations are only started
once their inputs are ready, and also tracks and reports the
runtime of finished operations.

2.2 Specifying Multi-Algorithm Operators
In order to specify a multi-algorithm operator in Ocelot,

the developer has to provide the following three parts:

1. The actual algorithms: These are basically“traditional”
Ocelot operators, consisting of host-code and kernels,
as discussed in Section 2.1. All algorithms of the same
operation have to share the same signature.

2. The feature-provider : This is a function that receives
the input for an operator and has to extract meaning-
ful training features from it. These features are used
to learn the cost functions of the provided algorithms
and to predict their costs. Possible features are for
instance: Input cardinality, predicate selectivity, pred-
icate complexity, and distribution skewness.

3. An operator description: This is a small code frag-
ment that ties together the other pieces. At compile

617



Listing 1: Operator description code for a multi-
algorithm selection operator in Ocelot.

1 BEGIN_OPERATOR(selection)
2 ALGORITHM(ocl_select_chain, "chaining");
3 ALGORITHM(ocl_select_interp, "interpretation");
4 ALGORITHM(ocl_select_dynamic, "dynamic");
5 FEATURE_PROVIDER(ocl_select_features);
6 END_OPERATOR(selection)

MonetDB Interface

Decision Routine

Learning Routine

Cost 
Models

Fe
atu

re
 P

ro
vid

e
r

A
lg

o
ri

th
m

 

Host code

Kernels

A
lg

o
ri

th
m

 

Host code

Kernels
...

picks and calls
uses to pick 

Algorithm

returns runtime
updates with

measurements

Figure 3: Overview over the generated operator
framework used to pick an algorithm. Boxes with
solid lines are provided by the developer, while
boxes with dotted lines are generated.

time, Ocelot uses this information to generate a frame-
work operator that implements the decision and train-
ing logic. An exemplary operator description can be
seen in Listing 1.

From these pieces, Ocelot generates a framework opera-
tor that can adapt to the underlying hardware by choos-
ing from the provided algorithm alternatives. Figure 3 il-
lustrates the main components of this generated operator
framework. The work-flow is as follows: When the operator
is called, the generated decision routine picks one of the pro-
vided algorithms. In order to make this decision, expected
runtime costs for all provided algorithms are computed us-
ing the learned cost models and the feature provider. After
the chosen algorithm returns, the generated learning rou-
tine receives a new training point, consisting of the chosen
algorithm’s runtime and the feature vector. This data point
is then used to update the algorithm’s cost model. Since
Ocelot can run on multiple devices simultaneously, we main-
tain multiple models per algorithm.

2.3 Learning & Decision Framework
In this subsection, we give a few more details about how

our decision and learning logic works. Basically, learning
and exploiting the cost functions of the provided algorithms
is a variant of the so-called multi-armed bandit, which is
a central problem from probability theory [6]: Imagine a
gambler that is presented with a set of slot machines, each
of which has a different, unknown pay-out rate. In order to
maximize his winnings, the gambler has to quickly identify
the machine with the highest pay-out rate. In our scenario,
the slot machines correspond to the algorithms, and the pay-
out rates to their unknown cost functions.

At the core of each strategy, in order to tackle the multi-
armed bandit, is a trade-off between exploration and ex-
ploitation. We can either exploit our current knowledge by
choosing the algorithm that we believe to be optimal at the
moment, or we can explore by choosing a different algorithm
and improve our knowledge about its cost function. If we
keep exploring, we are guaranteed to eventually find the op-
timal algorithm, however, it might be very expensive, since
we will frequently make “sub-optimal” choices. On the other
hand, if we start exploiting too early, we might end up with
a sub-optimal choice due to lacking knowledge.

Luckily, literature has shown that even basic heuristics
yield surprisingly good results for this problem. One pos-
sible heuristic is the so-called ε-greedy strategy: Given a
parameter ε ∈ [0, 1], this strategy picks the currently best
choice with probability (1− ε), and explores a random other
choice with probability ε [10]. We decided to use this strat-
egy in the slightly modified decaying ε-greedy variant. In
this version, the value of ε starts comparably high and then
decreases over time. This results in a phase with high ex-
ploration in the beginning of the training, and increasingly
conservative behavior that exploits the collected knowledge
as time goes on.

After an algorithm was chosen, our system transparently
tracks its runtime through the OpenCL profiling mechanism.
The collected runtime and the generated feature vector are
then passed on as a training example to our learning sys-
tem, which is based on the Hype library by Bress et. al. [3].
Internally, the learning system trains and continuously up-
dates L2-regularized linear regression models for each com-
bination of hardware and algorithm. In order to also be able
to learn non-linear cost functions, our system automatically
extends all feature vectors by including several non-linear
combinations of the provided features.

A similar approach to our self-adapating algorithm selec-
tion has been proposed by Răducanu et. al. to achieve
“micro-adaptivity” in Vectorwise [7]. In this scenario, the
authors considered the case of picking the optimal “flavor”4

of an algorithm at runtime. Their system chops up the work
into small pieces, and uses a modified ε-greedy algorithm to
pick the optimal flavor for the current operation. This deci-
sion happens dynamically within the algorithm – hence the
name “micro-adaptivity”. Given that this technique works
to automatically fine-tune single algorithm implementations,
while our approach works across multiple algorithms, both
methods could actually be used complementarily to improve
performance.

3. DEMONSTRATION SETTING
In this section we give a quick overview over the scenario

for our demonstration and our plan to present the most im-
portant aspects to the audience.

3.1 Scenario
For our demonstration, we decided to cover the trade-off

between the basic query processing models of batch pro-
cessing and dynamic code generation. While dynamic code
generation usually yields better performing code [5], it also

4In this case, a flavor refers to a slightly different implemen-
tation of a given algorithm (e.g. unrolled loops or vectoriza-
tion), or to identical implementations that were built using
different compilers.

618



has higher fixed costs due to the expensive code generation,
making it unsuited for fairly simple operations or for oper-
ations on small data sets. Batch processing on the other
hand is often quite inefficient for complex operations, as it
requires multiple passes over the data.

In order to keep things simple, we focus on a straight-
forward, but important case: The selection operation. We
assume a scenario in which a high load of “complex”5 predi-
cates is evaluated against a base table. The operation should
generate a bitmap that indicates for each tuple whether it
qualifies the predicate or not. We specified our new selection
operator based on the following three algorithms:

Chaining Each predicate is evaluated individually using a
kernel that can efficiently evaluate range predicates,
producing an intermediate bitmap. Afterwards, the
intermediate bitmap is merged with the current result
using a kernel that performs a bit-wise and operation.

Interpretation The complete predicate is encoded into an
abstract syntax tree representation and shipped to a
special kernel that can evaluate this representation on
the given table.

Dynamic We use dynamic code generation to construct a
custom kernel that evaluates the given predicate in a
single pass over the data.

Each algorithm has its strengths and weaknesses: The chain-
ing algorithm requires multiple passes over the data for com-
plex predicates, however, it can use very efficient kernels.
The interpretation algorithm requires only a single pass over
the data, however, it also requires a fairly heavyweight ker-
nel with several conditional statements – which can be in-
efficient on certain architectures, e.g., GPUs. Finally, the
dynamic algorithm also requires only a single pass over the
data, and features a very efficient kernel. However, the re-
quired code generation adds significant overhead before the
kernel can even begin any work.

3.2 Demonstration Plan
At the beginning of the demonstration, we reset the in-

ternal bookkeeping of Ocelot to clear any prior knowledge
about the three algorithms. We then launch a random work-
load of “complex” selection queries with varying number of
predicates against multiple tables of different sizes. The sys-
tem will immediately begin to learn the algorithm costs, con-
verging to the optimal choice after a short burn-in period.
After convergence, the user will be able to send custom se-
lection queries to the system and observe which algorithm
choice is made.

In order to give a more detailed insight into the decision
process, we offer visual tools for inspecting the current cost
functions, the decision boundaries, and the trend of the av-
erage runtime over the last few queries. In particular, we
demonstrate how the system converges to a stable state af-
ter a short burn-in period, arriving at reasonable decision
boundaries between the provided algorithms and lower av-
erage runtimes. We also demonstrate the effect of modify-
ing the parameter ε, which governs the trade-off between
exploitation and exploration: User can manually set a value
for ε and restart the demonstration, to observe the difference
in convergence behavior.
5Here, “complex” refers to a high number of disjoint con-
junctive predicates that need to be evaluated.

In order to demonstrate the hardware-oblivious aspects of
Ocelot, we run our scenario on at least two devices at the
same time: The central processing unit and a graphics card.
The viewer will be able to observe how the system learns
decision boundaries for both devices individually, generating
a similar illustration to the one shown in Figure 1.

4. REFERENCES
[1] P. A. Boncz, M. L. Kersten, and S. Manegold.

Breaking The Memory Wall In MonetDB.
Communications of the ACM, 51(12):77 – 85,
December 2008.

[2] S. Borkar and A. A. Chien. The future of
microprocessors. Commun. ACM, 54(5):67–77, 2011.

[3] S. Breß, F. Beier, H. Rauhe, E. Schallehn, K.-U.
Sattler, and G. Saake. Automatic selection of
processing units for coprocessing in databases. In
Advances in Databases and Information Systems,
pages 57–70. Springer, 2012.

[4] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. Proc. VLDB Endow.,
6(9):709–720, July 2013.

[5] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB
Endowment, 4(9):539–550, 2011.

[6] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical
Society, 58(5):527–535, 1952.

[7] B. Răducanu, P. Boncz, and M. Zukowski. Micro
adaptivity in vectorwise. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1231–1242,
New York, NY, USA, 2013. ACM.

[8] N. Satish, M. Harris, and M. Garland. Designing
efficient sorting algorithms for manycore gpus. In
Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing,
IPDPS ’09, pages 1–10, Washington, DC, USA, 2009.
IEEE Computer Society.

[9] The Khronos Group Inc. OpenCL - the open standard
for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/, May 2011.

[10] C. Watkins. Learning from Delayed Rewards. PhD
thesis, University of Cambridge,England, 1989.

619


