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Abstract
Sharding has emerged as a critical technique for enhancing
blockchain system scalability. However, existing sharding ap-
proaches face unique challenges when applied to Directed Acy-
clic Graph (DAG)-based protocols that integrate expressive smart
contract processing. Current solutions predominantly rely on
coordination mechanisms like two-phase commit (2PC) and re-
quire transaction read/write sets to optimize parallel execution.
These requirements introduce two fundamental limitations: (1)
additional coordination phases incur latency overhead, and (2)
pre-declaration of read/write sets proves impractical for Turing-
complete smart contracts with dynamic access patterns.

This paper presents Thunderbolt, a novel sharding architec-
ture for both single-shard transactions (Single-shard TX𝑠) as well
as cross-shard transactions (Cross-shard TX𝑠), and it enables
non-blocking reconfiguration to ensure system liveness. Our de-
sign introduces four key innovations: First, each replica serves
dual roles as a full-shard representative and transaction proposer
(shard proposer), employing differentiated execution models: the
Execution-Order-Validation (EOV) model for Single-shard TX𝑠
and Order-Execution (OE) model for Cross-shard TX𝑠 . Second,
we develop a DAG-based coordination protocol that establishes
deterministic ordering between two transaction types while pre-
serving concurrent execution capabilities. Third, we implement a
dynamic concurrency controller that schedules Single-shard TX𝑠
without requiring prior knowledge of read/write sets, enabling
runtime dependency resolution. Fourth, Thunderbolt introduces
a non-blocking shard reconfiguration mechanism to address cen-
sorship attacks by featuring frequent shard re-assignment with-
out impeding the construction of DAG nor blocking consensus.
This approach maintains continuous DAG construction and con-
sensus progress while preventing persistent adversarial control
through periodic shard reassignment. Thunderbolt achieves a
50× improvement with 64 replicas over serial Tusk execution.
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1 Introduction
The emergence of blockchain technology has spurred significant
interest in developing resilient systems capable of processing data
and transactions under Byzantine conditions, including software
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errors, hardware failures, network disruptions, and coordinated
malicious attacks [7, 10, 30, 36, 43, 63]. These systems enhance
reliability and security by enabling collaboration among multiple
independent participants [18, 33, 45, 48, 61, 62, 65, 68, 95].

Smart contracts [87, 88], as programmable transaction frame-
works embedded in blockchain platforms, empower develop-
ers to address real-world challenges through decentralized so-
lutions [17, 54]. However, their adoption is often hindered by
execution delays caused by runtime contract code analysis [5]. To
overcome this limitation, researchers are actively exploring per-
formance optimization strategies for contract-based blockchain
systems.

Several strategies have emerged to improve execution within
blockchain systems.

Transaction Processing Models: One practical approach
involves enhancing transaction processing. Most blockchain sys-
tems adopt the Order-Execute (𝑂𝐸) model, where transactions
are ordered through consensus before execution [19, 38, 40, 100].
𝑂𝐸-based systems often employ deterministic concurrency con-
trols by constructing transaction dependency graphs to optimize
parallelism [31, 69, 94, 99]. However, platforms like Hyperledger
Fabric [10] utilize the Execute-Order-Validate (𝐸𝑂𝑉 ) model, exe-
cuting transactions before consensus, to enhance flexibility and
Optimistic Concurrency Control (OCC) [53] to improve the con-
currency.

Scalability via DAG and Sharding: Another critical area
for advancement in blockchain technology is scalability, partic-
ularly in supporting parallel execution. Recent advancements
leverage Directed Acyclic Graph (DAG)-based consensus proto-
cols to improve scalability. These protocols enable replicas to
submit proposals concurrently by building a DAG that links new
proposals to historical ones. This architecture has gained sig-
nificant recognition in the industry due to its robust security
features, exceptional scalability, and capability to support smart
contracts [11, 12, 26, 50, 51, 58, 73, 81, 84–86]. Complementary
to DAG-based approaches, sharding techniques allow parallel
transaction processing across each shard, reducing consensus
overhead [4, 27, 41, 44, 52, 83, 98, 105, 106].

However, the above approaches do not effectively improve the
execution of smart contracts:

Challenge1: Enhancing Transaction Parallelism with-
out advanced knowledge. While 𝑂𝐸-based solutions leverage
dependency graphs to optimize parallelism, they require prior
knowledge of transaction read/write sets,a constraint incom-
patible with dynamic smart contracts. Conversely, 𝐸𝑂𝑉 -based
approaches face high transaction conflict rates, necessitating
advanced conflict resolution algorithms.
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Write A Write A Commit

T1: A = B + 1 (Read B -> Write A -> Commit)      
T2: A = A + 1 (Read A -> Write A -> Commit)

Read ARead B Write A Commit

Reschedule

Figure 1: A transaction rescheduling to avoid abortion by
moving the𝑊𝑟𝑖𝑡𝑒𝐴 on 𝑇1 after the𝑊𝑟𝑖𝑡𝑒𝐴 on 𝑇2. They all
obtain the correct result based on their operations.

Challenge2: Efficient Cross-Shard Transaction Process-
ing. Existing solutions for cross-shard atomicity, such as relay-
based protocols (Sharper [8], BrokerChain [47], and SharDAG [24])
and traditional Two-Phase Commit (2PC) [27, 46], introduce sig-
nificant delays due to inter-shard coordination. While multi-
shard consensus [8, 70] mitigates 2PC limitations, it sacrifices
scalability in large-scale networks with high contention.

The challenges described above raise the question of whether
it is possible to design a sharding system that does not depend
on understanding the read and write sets of transactions, nor
requires additional coordinators to manage cross-shard transac-
tions.

We propose Thunderbolt, an innovative sharding architecture
that seamlessly processes both single-shard (Single-shard TX𝑠)
and cross-shard transactions (Cross-shard TX𝑠) without central-
ized coordinators. Thunderbolt effectively integrates the 𝑂𝐸 and
𝐸𝑂𝑉 models, where the 𝐸𝑂𝑉 model enhances parallelism in the
execution of Single-shard TX𝑠 , while the 𝑂𝐸 model minimizes
the abort rate when handling Cross-shard TX𝑠 across different
shards. Furthermore, the 𝑂𝐸 model ensures a coordinated execu-
tion order between these two types of transactions, maintaining
the overall correctness of the execution process.

Similar to conventional sharding systems, Thunderbolt or-
ganizes transactions into distinct shards to mitigate potential
conflicts. In particular, each replica within Thunderbolt corre-
sponds to a single shard and acts as a shard proposer, proposing
transactions within that shard. Thunderbolt employs a DAG-
based consensus protocol [11, 12, 26, 50, 51, 58, 81, 84–86] to
reach an agreement on the execution results provided by each
shard proposer.

Inspired by Sui’s epoch switching [15], Thunderbolt employs
round-robin scheduling [74] to rotate shard proposers period-
ically, enhancing the system’s security and liveness. Proposer
rotation is triggered on-demand if a shard fails to propose transac-
tions within a timeout, with seamless DAG transitions preserving
protocol continuity.

Thunderbolt also introduces a concurrent executor (𝐶𝐸) de-
signed to improve the execution of Single-shard TX𝑠 before reach-
ing consensus. Unlike traditional concurrency protocols that pri-
marily manage conflicts based on the order of arrival [3, 32, 89],
the𝐶𝐸 utilizes a non-deterministic ordering system based on the
execution run-time states of each transaction. This innovative
approach minimizes the abort rate, thereby reducing transaction
latency. As illustrated in Figure 1, the 𝐶𝐸 effectively reschedules
transactions based on their run-time executions to prevent aborts.
For instance, transaction𝑇2, which would ordinarily conflict with
the write operation of transaction 𝑇1, can be successfully com-
mitted without cancellation.

In summary, this paper makes the following contributions.
• To our knowledge, Thunderbolt is the first sharding con-

sensus mechanism that combines the 𝑂𝐸 and 𝐸𝑂𝑉 mod-
els based on DAG-based protocols without requiring any
additional coordinators to determine the order between
Single-shard TX𝑠 and Cross-shard TX𝑠 .

• We introduce a new concurrency paradigm that imple-
ments a parallel preplay for Single-shard TX𝑠 (concurrent
consensus execution). Thunderbolt preplays Single-shard
TX𝑠 followed by parallel verification without needing prior
knowledge of the read/write sets.

• Thunderbolt features a non-blocking shard reconfigura-
tion protocol that allows for the rotation of shard assign-
ments without pausing either DAG dissemination or the
consensus layer.

• We have implemented a concurrent executor to enhance
the parallelism of executing smart contracts without prior
knowledge of the read/write sets on Single-shard TX𝑠 .
The execution engine dynamically arranges transactions
based on current assessments to reduce abort rates due to
conflicts.

• Our evaluation of Thunderbolt demonstrates an impres-
sive 50× speedup over Tusk [26] with sequential execu-
tion using the SmallBank workload on 64 replicas built on
Apache ResilientDB (Incubating) [1, 40].

2 Background
Smart Contract. A smart contract is a digital protocol, intro-

duced by Nick Szabo in the mid-1990s [87], designed to facilitate,
verify, or enforce the negotiation or performance of a contract
automatically. Unlike traditional contracts, which rely on legal
systems for enforcement, smart contracts are self-executing and
operate on blockchain technology. They are written in code and
run on decentralized platforms like Ethereum, ensuring trans-
parency, security, and immutability. Smart contracts eliminate
the need for intermediaries, reduce the risk of fraud, and en-
able trustless transactions between parties. They are widely used
in various applications, including decentralized finance (DeFi),
supply chain management, and digital identity verification.

These contracts consist of custom functions that operate on
user accounts with associated balances. Once deployed to the
network, transactions invoking the functions specified in the con-
tract are proposed to execute predefined operations that interact
with the user accounts. However, the execution of the contract
code occurs within the Ethereum Virtual Machine (EVM) [59],
which results in the read and write sets of the contract being
indeterminate prior to execution.

DAG-based protocols. Thunderbolt leverages a Directed Acy-
clic Graph (DAG) structure to address scalability challenges in
blockchain systems. This architecture enables efficient transac-
tion proposal mechanisms while maintaining robust security,
high throughput, and native support for smart contracts. DAG-
based protocols have gained significant traction in the industry
due to their ability to decouple transaction dissemination from
consensus processes [11, 12, 26, 50, 51, 58, 73, 81, 84–86].

In contrast to traditional linear blockchains, DAG-based proto-
cols allow multiple replicas to propose transactions concurrently.
These transactions are constructed into a deterministic DAG
structure, ensuring a consistent topological ordering across all
honest replicas. Recent advancements in this domain, including
Tusk [26, 85], BBCA-Chain [58], Shoal/Shoal++ [11, 84], Mys-
ticeti [13], and Cordial Miners [51], demonstrate how DAGs
streamline consensus by separating data propagation from fi-
nality mechanisms.

The protocol operates in synchronized rounds, where each
DAG vertex in a round consists of two components:
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Figure 2: Overview of a DAG-based protocol on Tusk gen-
erated by 4 replicas. Each vertice contains both data and
a certificate. Each data refers to 2𝑓 + 1 certificates from
the previous round. Each certificate is generated from its
corresponding data, which has received signatures from
2𝑓 + 1 replicas. The leader vertice for round 𝑟 , the solid
vertice used to commit the data in its causal history, will
be determined before processing round 𝑟 + 2.

• Data Payload: Contains transactions and references to at
least 2𝑓 + 1 certificates from the prior round.

• Certificate: A quorum of 2𝑓 + 1 cryptographic signatures
attesting to the validity of the vertex and its dependencies.

During each round, replicas broadcast their proposed vertices
to the network. A vertex becomes certified once 2𝑓 +1 signatures
are collected, enabling it to serve as a dependency for new vertices
in subsequent rounds. This iterative process ensures liveness
while preserving the DAG’s causal ordering.

Vertex finalization occurs at fixed intervals, typically every
two rounds in Tusk [26] or three rounds in DAG-Rider [50]. A
designated leader (selected via round-robin scheduling [74] or
distributed randomness [16]) proposes a vertex for commitment.
A leader vertex in round 𝑟 is eligible to be committed during
round 𝑟 +2 (as in Tusk): 1) The replica must have received at least
2𝑓 + 1 vertices from round 𝑟 + 1, and 2) The leader vertex must
be referenced by a minimum of 𝑓 + 1 vertices in round 𝑟 + 1.

DAG-based protocols provide the following properties:
• Validity: if an honest replica 𝑅 has a vertice 𝐵 in its local

view of the DAG, then 𝑅 also has all the causal history of
𝐵.

• Consistency: if an honest replica 𝑅 obtains a vertice 𝐵𝑟 in
round 𝑟 from replica 𝑃 , then, eventually, all other honest
replicas will have 𝐵𝑟 .

• Completeness: if two honest replicas have a vertice 𝐵𝑟 in
round 𝑟 , the causal histories of 𝐵𝑟 are identical.

3 Thunderbolt Overview
Thunderbolt advances smart contract execution efficiency through
an innovative sharding architecture augmented by a dynamic
shard reconfiguration mechanism. This mechanism counters po-
tential censorship attacks, such as post-execution transaction
suppression or biased transaction selection, ensuring network
integrity.

Unlike conventional sharding systems that partition replicas
into isolated groups governed by separate consensus protocols,
Thunderbolt employs a single unified consensus protocol jointly
maintained by all replicas. Each replica operates as a shard pro-
poser, processing transactions specific to its assigned shard. To
coordinate cross-shard transaction ordering and execution, Thun-
derbolt leverages a DAG-based consensus protocol, enabling
global agreement on transaction validity while preserving shard-
level parallelism via the predetermined leaders underlying the
consensus.
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Figure 3: The dataflow of Single-shard TX𝑠.

Thunderbolt employs both 𝐸𝑂𝑉 model and 𝑂𝐸 model to ad-
dress Single-shard TX𝑠 and Cross-shard TX𝑠 .

• Single-shard TX𝑠 (𝐸𝑂𝑉 Model): Transactions confined to
a single shard are processed non-deterministically by a
Concurrent Executor (𝐶𝐸) within the corresponding shard
proposer. After the local preplay, results undergo a con-
sensus across all shards to ensure state consistency.

• Cross-shard TX𝑠 (𝑂𝐸 Model): Cross-shard TX𝑠 employ an
optimistic concurrency control protocol with determin-
istic finalization. Atomic commitment is achieved post-
consensus, allowing tentative execution optimistically while
guaranteeing rollback-free confirmation.

Figure 3 demonstrates an example where two shard proposers
propose two single-shard transactions. Further details on Single-
shard TX𝑠 and Cross-shard TX𝑠 are provided in Section 4 and
5.

Thunderbolt also allows the migration of each shard to another
replica to avoid a censorship attack, such as dropping transac-
tions.

3.1 System, Threat and Data Model
In this section, we describe the system, threat and the data model.
We leave the discussion of the Single-shard TX𝑠 , the Cross-shard
TX𝑠 , and the shard reconfiguration in in Section 4, 5, and 6.

SystemModel. Thunderbolt is composed of 𝑛 replicas, each of
which serves a dual purpose: functioning as a shard and a replica.
As a shard, a node maintains a distinct set or partition of data.
In its role as a replica, it preserves a copy of the transaction log.
Thus, each replica may also be designated as a shard proposer.
Furthermore, clients direct transactions to the appropriate shards,
and every replica engages in the consensus process to establish
a cohesive order for these transactions.

In summary, a node in Thunderbolt assumes three essential
roles: 1). It operates as a shard proposer, managing Single-shard
TX𝑠 within each shard in an independent manner. 2). It acts as
a replica that contributes to the consensus process. 3). It serves
as a leader that commits Cross-shard TX𝑠 in a total order in
accordance with the consensus protocol. For clarity in the accom-
panying illustrations, the terms "replicas" and "shard proposers"
may be used interchangeably. We will utilize the term "shard
proposers" when delineating shard procedures and will revert to
"replicas" in discussions regarding the consensus protocols.

Threat model. We consider a set of 𝑛 replicas (or shards),
where at most 𝑓 of these replicas can be faulty and 𝑛 = 3𝑓 +1. The
𝑓 faulty replicas may exhibit any arbitrary behavior, including
Byzantine failures, while the remaining replicas are assumed to
be honest and will adhere to the protocol’s specifications at all
times. Additionally, we assume that clients are not trustworthy
and would not expect to send transactions to all of the shards
associated with their transactions. The network is expected to be
eventually synchronous [29], meaning that messages sent from
a replica will eventually arrive within a global stabilization time
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(𝐺𝑆𝑇 ), which remains unknown to the replicas. Communications
between replicas use authenticated point-to-point channels, with
messages signed by the sender using a public-private key pair
for authentication.

Data model. The data model assumes that each transaction
includes a contract code with functions to access data belonging
to the sender in the shard. The contract involves two types of
operations: <𝑅𝑒𝑎𝑑, 𝐾> and <𝑊𝑟𝑖𝑡𝑒, 𝐾,𝑉>. Here, 𝐾 represents the
key required for access and𝑉 is the value that needs to be written
to the key 𝐾 . The contract code is Turing-complete and users
could not obtain any information without execution. We also
assume that the functions of the contract are idempotent.

Our system is designed with the understanding that data must
be partitioned and that each key is assigned a shard ID (𝑆𝐼𝐷) be-
fore it can be utilized. These 𝑆𝐼𝐷𝑠 are predefined and recognized
across all shards. They fulfill a dual function: they guide trans-
actions to the appropriate shard proposer and support parallel
processing among multiple shards, thereby enhancing overall
system efficiency (Section 5). The actual method for partitioning
is orthogonal to our work and any existing techniques can be
utilized [20–22, 64, 104].

4 Single Shard Transactions
Thunderbolt processes Single-shard TX𝑠 through three core com-
ponents: preplay, execution scheduling, and validation. During
each round, a shard proposer initiates the workflow by preplay-
ing a batch of Single-shard TX𝑠 . This generates a block contain-
ing critical preplay outcomes, which the proposer propagates to
other shards via a DAG-based consensus protocol. During con-
sensus, these blocks undergo parallel validation across shards.
Once a replica commits a block, it applies the preplay results to
its storage.

Preplay. In Thunderbolt, shard proposers play a pivotal role
by preplaying transactions to determine their outcomes before
block creation. A concurrent executor (𝐶𝐸) is employed to pre-
process batches of transactions efficiently, producing detailed
outputs for each transaction. These outputs include: the read-
/write sets accessed during execution, the corresponding exe-
cution results, and a scheduled execution order (as depicted in
Figure 3).

The scheduled order establishes a deterministic serialized se-
quence, ensuring transaction results remain consistent when
executed in the prescribed order. The read/write sets reveal the
specific data accessed by each transaction. Crucially, these sets
cannot be predetermined and are derived exclusively via the
preplay process.

Execution Scheduling. Thunderbolt integrates with any DAG-
based dissemination layer that employs a consensus protocol to
establish a total block order across replicas. In each round 𝑟 , a
shard proposer 𝑅 proposes a 𝐶𝐸-generated block to the DAG,
creating a new vertex in the graph. This vertex links to all prior
vertices, including those proposed by 𝑅 in round 𝑟 − 1. For clar-
ity, "vertices" in the DAG are hereafter referred to as "blocks" in
the following sections, implying they have been certified by the
protocol.

Validation. When a replica receives data for round 𝑟 via the
DAG (Section 2), Thunderbolt initiates a rigorous validation pro-
cess to verify the integrity of preplay results within the blocks.
Validators construct a local dependency graph using the read-
/write sets to enable parallel transaction validation rather than
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Figure 4: An example illustrates the commitment of each
leader in the process of converting Single-shard TX𝑠 to
Cross-shard TX𝑠 on Tusk. In this DAG, 𝑆𝑖 denotes a Single-
shard TX, while 𝐶𝑖 ({𝑋 }) represents a Cross-shard TX asso-
ciated with shards {𝑋 }. The leaders in the odd rounds are
selected using round-robin selection. The blocks commit-
ted by the same leader have borders of the same color. 𝑆𝑖
will be converted to 𝐶𝑖 if there is any conflict blocks (𝑆10)
or could not receive the leader block in time (𝑆24).

sequential checks, optimizing system throughput. Notably, blocks
from round 𝑟 − 1 are validated before those from round 𝑟 for the
same shard proposer.

During re-execution, validators confirm that the computed
read sets match the values recorded in the block. A valid depen-
dency graph guarantees consistent read-set results and ensures
the final state of each key aligns with the block’s declared val-
ues. If discrepancies in read-set values are detected, the block
is flagged as invalid and discarded. Until blocks are committed,
replicas retain preplay results in local storage, either to process
Cross-shard TX𝑠 (Section 5) or until DAG reconfiguration occurs
(Section 6).

5 Cross-shard transactions
Cross-shard TX𝑠 involve multiple shards and require consensus
to establish a total execution order. This total order ensures that
all Cross-shard TX𝑠 are executed consistently across the involved
shards. However, each shard proposer preplays Single-shard TX𝑠
independently and replicates the results; in contrast, the total
order for the Cross-shard TX𝑠 must be determined first before
they can be executed (for instance, preplay optimization cannot
be employed for Cross-shard TX𝑠). Therefore, Thunderbolt must
coordinate the sequencing between the Cross-shard TX𝑠 and the
Single-shard TX𝑠 to guarantee consistent execution outcomes
across all replicas. Prior approaches often rely on coordinators to
establish inter-shard order [8, 24, 27, 46, 47, 52, 70, 105], but these
introduce communication overhead that degrades performance.

5.1 Rules for Proposals
To address issues, Thunderbolt leverages the DAG’s predeter-
mined leaders to enforces a consistent partial order between
single-shard and cross-shard transactions via the following rules:

G1) If a leader 𝐿 commits both a Single-shard TX and a Cross-
shard TX, the Single-shard TX must be committed first.

G2) If leader 𝐿𝑖 commits Cross-shard TX 𝑋 in round 𝑖 , any
Single-shard TX 𝑌 committed by leader 𝐿𝑗 in round 𝑗
(where 𝑗 > 𝑖) cannot execute until 𝑋 is finalized.

It is worth knowing that Leaders are predetermined per round
using deterministic methods (e.g., round-robin or global random
coins). To enforce these rules, Thunderbolt applies the following
proposal rules:

P1) Cross-shard TX𝑠 are submitted directly to the DAG, by-
passing the 𝐶𝐸.

P2) Leaders committing a batch of transactions must finalize
all Single-shard TX𝑠 before Cross-shard TX𝑠 .
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Figure 5: An example of proposing skipping blocks to
restart the preplay of the Single-shard TX𝑠. The Single-
shard TX𝑠 (𝑆17,𝑆21, and 𝑆22), which would be converted to
Cross-shard TX𝑠 after round 5 in Figure 4, can replay their
executions before delivering to the DAG.

P3) If a shard proposer 𝑆𝐿 proposes a Single-shard TX 𝑋 in
round 𝑟 , and the current round’s leader 𝐿 differs from 𝑆𝐿,
𝑆𝐿 must:
• Wait for 𝐿’s proposal before preplaying 𝑋 .
• Convert 𝑋 to a Cross-shard TX if any uncommitted

Cross-shard TX 𝑌 in 𝐿’s history conflicts with 𝑋 .
• Otherwise, preplay 𝑋 and submit the results.

P4) If a shard proposer 𝑆𝐿 proposes a Single-shard TX 𝑋 in
round 𝑟 , and a prior leader’s uncommitted Cross-shard
TX 𝑌 (in round q < 𝑟 ) conflicts with 𝑋 , 𝑆𝐿 converts 𝑋 to a
Cross-shard TX.

P5) If leader 𝐿 in round 𝑟 commits a Cross-shard TX 𝑋 related
to shard A but lacks A’s proposal in round 𝑟 − 1, 𝐿 defers
committing A and A’s subsequent proposals.

P6) If a shard proposer 𝑆𝐿 proposes a Single-shard TX 𝑋 in
round 𝑟 but the leader 𝐿’s proposal is delayed beyond a
timeout, 𝑆𝐿 converts 𝑋 to a Cross-shard TX.

These rules enable Thunderbolt to process Cross-shard TX𝑠 with-
out blocking shards while maximizing parallelism for single-
shard transaction preplay.

Example 1. Figure 4 illustrates Thunderbolt’s handling of single-
shard and cross-shard transactions on Tusk: Single-shard TX𝑠 will
be executed before Cross-shard TX𝑠 under the same leader (Rule
P2). 𝑆10 is converted to Cross-shard TX 𝐶1 due to its dependency
on 𝑆9’s leader history (Rule P3). 𝑆13 and 𝑆14 become 𝐶4 and 𝐶5,
respectively, because 𝐶1 remains uncommitted until round 5 (Rule
P4). Leader 𝑆18 in round 5 skips𝐶2 and subsequent transactions due
to missing 𝑆11 (Rule P5). In round 7, 𝑆24 converts 𝑆4 to Cross-shard
TX 𝐶9 after failing to receive leader 𝑆23’s proposal (Rule P6).

5.2 Parallel Execution
When processing Cross-shard TX𝑠 , Thunderbolt preserves all
sharding metadata for each transaction. Rather than sequential
execution, Thunderbolt employs deterministic concurrency con-
trol mechanisms, such as QueCC [69], to construct dependency
graphs using cross-shard metadata (SID). This enables parallel
execution while maintaining consistency across shards.

5.3 Message Failures
In practical deployments, network unreliability may delay mes-
sage delivery. To mitigate this:

• If a leader 𝐿 cannot include all Single-shard TX𝑠 linked
to a Cross-shard TX𝑠 due to network delays (e.g., missing
shard proposals), 𝐿 bypasses the affected Cross-shard TX
and subsequent transactions from the same shard (𝐶2 in
Figure 4 on Rule P5). This prevents violations of global or-
dering G2 by excluding incomplete transaction sets. These
transactions are later finalized by subsequent leaders.

• If a shard proposer fails to receive the leader’s proposal
within a round’s timeout window, it cannot preplay its
Single-shard TX (Rule P6). The proposer instead promotes
the transaction to a Cross-shard TX and submits it directly
to the DAG (such as 𝑆24 in Figure 4).

5.4 Preplay Recovering
Under Rule P3, a shard proposer 𝑆𝐿 must convert a Single-shard
TX to a Cross-shard TX if it detects conflicting uncommitted
Cross-shard TX𝑠 in prior leader histories. While this ensures
safety, it forfeits the performance benefits of preplay, such as the
blocks in shard 3 after round 3 in Figure 4.

To recover preplay, 𝑆𝐿 must verify that all conflicting Cross-
shard TX𝑠 have been finalized by preceding leaders. Since a leader
𝐶𝐿𝑟 in round 𝑟 is finalized within two subsequent rounds (Sec-
tion 2), 𝑆𝐿 can safely preplay new single-shard transactions once:
1) It receives 2𝑓 + 1 certificates in round r + 1, and 2)𝐶𝐿𝑟 is refer-
enced by at least 𝑓 + 1 blocks in round 𝑟 + 1. If 𝑆𝐿 identifies any
conflicting Cross-shard TX𝑠 while proposing Single-shard TX𝑠 ,
𝑆𝐿 submits skip blocks to the DAG until prior leaders are finalized.
For instance, 𝑆10, 𝑆13, and 𝑆14 in Figure 5 are converted to skip
blocks. Consequently, subsequent transactions, like 𝑆17 and 𝑆22,
are reverted to the 𝐸𝑂𝑉 model, restoring preplay capabilities.

6 Shards Reconfiguration
In Byzantine environments, compromised replicas may enable
attackers to launch censorship attacks, threatening the integrity
of transactions within their assigned shards.

Thunderbolt employs a round-robin selection mechanism [80]
to rotate shard proposers if a leader fails to propose transactions
for 𝐾 rounds or at fixed intervals of 𝐾 ′ rounds (where 𝐾 ′

> 𝐾 ).
This rotation serves dual purposes:
• Preventing transaction duplication (DDOS [28, 60]): Pro-

posers perform local deduplication to block malicious
clients from flooding the system with redundant trans-
actions, a known challenge in DAG-based protocols [12,
15, 85].

• Mitigating censorship: Regular rotation limits the window
for a compromised proposer to disrupt operations.

Unlike traditional consensus protocols that depend on notifica-
tion messages to alter primary replicas, Thunderbolt introduces
an innovative mechanism that uses the underlying DAG protocols
to facilitate the seamless transition to a new DAG and reconfigure
shard proposers. We leverage a round-robin approach to select a
new proposer that if the current proposer of shard X is replica
𝑅𝑖 , the subsequent proposer of shard X will be 𝑅 (𝑖 𝑚𝑜𝑑 𝑛)+1.

However, the transmission of blocks to a new proposer may
experience delays or omissions due to network issues or the
actions of a malicious proposer. If the new proposer for round 𝑟
is unable to receive the proposal committed in round 𝑟 − 1 from
the previous proposer, the new proposer will stop operations
until the block arrives to ensure safety.

To address this challenge, Thunderbolt introduces Shift blocks
to reach agreements among shards when a shard reconfiguration
should be initiated and switch to a new DAG to process further
transactions.

A replica 𝑅 in a shard broadcasts a Shift block in round 𝑟 under
the following conditions:

(1) 𝑅 receives no block from a shard proposer after round
𝑟 − 𝐾 .

(2) 𝑅 has proposed blocks for at least 𝐾 ′ rounds.
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Figure 7: The architecture of the 𝐶𝐸 consists of a set of
executors that execute transactions. The concurrency con-
troller utilizes a dependency graph to determine the order
of transactions and their execution results.

(3) 𝑅 received 𝑓 +1 Shift blocks from distinct replicas at round
𝑟 − 1.

(4) 𝑅 does not broadcast the Shift block before.

Example 2. In Figure 6 where 𝐾 = 2 and 𝐾 ′
= 6, shards 2 and

3 broadcast Shift blocks in round 4 after failing to receive blocks
from shard 1 in rounds 2–3. Despite receiving a block in round 4,
shard 4 broadcasts a Shift block in round 5 upon receiving two Shift
blocks from peers, prioritizing liveness assurance.

Non-blocking Reconfiguration. Since at 2𝑓 + 1 honest repli-
cas will commit the same block during the same round (Section 2),
we designate the round of the first commit block that includes
2𝑓 +1 Shift blocks as the ending round for the current DAG. Then,
each replica will begin a new DAG from the same ending
round to ensure the system’s safety. For instance, shard 2
will propose block 15 at round 5 after proposing a Shift block at
round 4. Finally, block 19 from shard 3 at round 6 is selected as
the leader during the consensus process. Subsequently, shard 3
commits all historical blocks from block 19, including the Shift
blocks from other shards. At this point, all shards will transition
to the new DAG (DAG 2) and start executing transactions within
the new shard. Moreover, each replica will propose a Shift block
every𝐾 ′

= 6 blocks in the new DAG (DAG 2) to facilitate a transi-
tion to the next DAG. This measure is intended to protect against
censorship attacks, which may involve dropping transactions,
failing to propose blocks, or prioritizing certain transactions
over others. Additionally, the non-blocking mechanism provides
protection against malicious proposers as the reconfiguration
process requires a minimum of 2𝑓 + 1 Shift blocks to be effective.

Uncommitted Transactions. Due to the two-round leader
commitment latency, transactions uncommitted in the ending
round of a DAG are discarded and must be resubmitted. Only
transactions from the last two rounds or those excluded by the
leader are affected. Clients will automatically retransmit transac-
tions lost due to the reconfiguration.

Censorship Attacks. Malicious replicas may attempt censor-
ship via message drops, transaction rescheduling, DDoS attacks,
or proposal halting [28, 60]. As each replica governs an entire
shard in Thunderbolt, such attacks can paralyze specific shards.

Time Transactions Operations Dependencies Execution
Order

0 Initial DB 𝐷 = 3 {} {}
1 𝑇1 :(W, 𝐷 , 3) 𝑇1 writes 𝐷 = 3 {𝑇1} {}

2 𝑇2 :(R, 𝐷 , 3) 𝑇2 reads 𝐷 on𝑇1 :
(𝐷 = 3) {𝑇1 → 𝑇2} {}

3 𝑇3 :(R, 𝐷 , 3) 𝑇3 reads 𝐷 on𝑇1 :
(𝐷 = 3) { 𝑇1 → 𝑇2

𝑇1 → 𝑇3
} {}

4 𝑇3 : Commit Wait for𝑇1 { 𝑇1 → 𝑇2
𝑇1 → 𝑇3

} {}

5 𝑇1 :(W, 𝐷 , 5) 𝑇1 writes 𝐷 = 5.
Abort𝑇2,𝑇3 {𝑇1} {}

6 𝑇3 :(R, 𝐷 , 5)
(Re-execute)

𝑇3 reads 𝐷 on𝑇1 :
(𝐷 = 5) {𝑇1 → 𝑇3} {}

7 𝑇1 : Commit Commit𝑇1 {𝑇1 → 𝑇3} {𝑇1}
8 𝑇3 : Commit Commit𝑇3 {𝑇1 → 𝑇3} {𝑇1,𝑇3}

9 𝑇2 : (W, 𝐷 , 3) Invalid
and re-execute

10 𝑇2 :(R, 𝐷 , 5)
(Re-execute)

𝑇2 reads 𝐷 on𝑇1 :
(𝐷 = 5) {𝑇2} {𝑇1,𝑇3}

11 𝑇2 : (W, 𝐷 , 2) 𝑇2 writes 𝐷 = 2 { 𝑇1 → 𝑇2
𝑇1 → 𝑇3

} {𝑇1,𝑇3}

12 𝑇2 : Commit Commit𝑇2 { 𝑇1 → 𝑇2
𝑇1 → 𝑇3

} {𝑇1,𝑇3,𝑇2}

Table 1: An example of generating the dependency while
executing the transactions {𝑇1,𝑇2,𝑇3} that access the data
𝐷 and determining the execution order.

The reconfiguration mechanism counters this by periodically
reassigning shards to new replicas, limiting the impact window
of compromised replicas.

7 Concurrent Executor
The concurrent executor (𝐶𝐸) is a critical component enabling
Thunderbolt to process Single-shard TX𝑠 concurrently during
the preplay phase. As a nondeterministic concurrency control
executor, 𝐶𝐸 generates a serialized execution order, read/write
sets, and execution results for transaction batches. These out-
puts allow any replica to independently verify correctness, even
though the 𝐶𝐸-derived order may differ from the transactions’
arrival sequence.

The architecture of𝐶𝐸 is illustrated in Figure 7, where a set of
executors executes the transactions, and a concurrency controller
(𝐶𝐶) determines the execution results among the transactions.

Transactions progress through a two-phase data flow: an ex-
ecution phase (operations processing) and a finalization phase
(commit/abort decisions). Table 1 exemplifies this workflow using
transactions {𝑇1,𝑇2,𝑇3}.
7.1 Execution Phase
During the execution phase, the executors access the data within
𝐶𝐶 directly and 𝐶𝐶 maintains a dependency graph to keep track
of the relationship between transactions and all the results are
stored in the graph directly to avoid accessing the disk IO. The
critical characteristic of 𝐶𝐶 is that 𝐶𝐶 only maintains the graph
based on the current operations among the transactions with-
out requiring any read/write set knowledge. Furthermore, 𝐶𝐶
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mechanism is nondeterministic, which means it can arrange
transactions in any order based on their current states. The order
of two transactions will not be established until a dependency
is created. For instance, in the case of two conflicting transac-
tions, denoted as 𝑇1 and 𝑇2, which both only write the same key,
either transaction may be ordered first. Both execution orders,
[𝑇1,𝑇2] and [𝑇2,𝑇1], are considered valid. A dependency is es-
tablished based on the commit times of these transactions. If 𝑇1
commits before 𝑇2, the execution order [𝑇1,𝑇2] indicates that 𝑇1
is prioritized over 𝑇2. Additionally, a third transaction, 𝑇3, can
influence this dependency. A dependency is formed if𝑇3 reads the
value following𝑇2’s write before𝑇1 and𝑇2 commit, resulting in a
unique execution order of [𝑇1,𝑇2,𝑇3]. As a result, a dependency
indicator will be generated for the two conflicting transactions
once a read-write conflict arises or when both transactions have
been committed.

While receiving an operation from a transaction 𝑇 sent by
the executors identified accessing the key 𝐾 , denoted as 𝑂𝑘 , 𝐶𝐶
checks the relationships among the transactions. If 𝑇 conflicts
with other transactions or has been aborted by other transactions,
the operation 𝑂𝑘 will not be considered valid. For instance, 𝑇2 at
time 9 in Table 1 is an example of an invalid operation, as it was
aborted by𝑇1 at time 5 due to its outdated read in𝐷 . Transaction𝑇
will be aborted in such cases and require reexecution. Otherwise,
if the operation 𝑂𝑘 is valid, it will be added to the dependency
graph (section 8.1) and obtain the operation result, such as the
value 𝑉 that 𝑂𝑘 intends to read. We can obtain the operation
results from other transactions directly based on the dependency
graph to allow reading uncommitted data, such as 𝑇2 reads 𝐷 on
𝑇1 at time 2.

7.2 Finalization Phase
During the finalization phase, the executor informs 𝐶𝐶 that the
executor has completed all the operations. Then 𝐶𝐶 will update
the results to the storage asynchronously once all its dependen-
cies have been committed and assign the execution order to the
transactions. If𝐶𝐶 has terminated the transaction due to conflicts
with other transactions, 𝐶𝐶 aborts the transaction and notifies
the executor to restart the execution.

8 Dependency Graph in CC
This section explains the dependency graph 𝐺 , which is central
to the 𝐶𝐶 component. It plays a crucial role in maintaining the
causal relationships between transactions during the preplay
process in 𝐶𝐸. The 𝐶𝐶 component ensures that the sequential
order of execution defined by 𝐺 is valid.

8.1 Dependency Graph Construction
A Dependency Graph is a graph 𝐺 (𝑉 , 𝐸) that plays a crucial role
in tracking the causal relationship between transactions in 𝐶𝐶 .
Each node 𝑣 ∈ 𝑉 represents a specific transaction. Additionally,
each edge 𝑒 (𝑢, 𝑣, 𝑘) ∈ 𝐸 indicates a connection between two
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Figure 9: An example of incorporating operations into the
dependency graph and adjusting the graph to ensure cor-
rectness. a) 𝑇4 writes A=3. b) 𝑇4 reads A. c) 𝑇4 reads key 𝐴
on its existing node and retrieves the value from 𝑇3.

transactions 𝑢 and 𝑣 on a key 𝐾 . This relationship is represented
as 𝑢 → 𝑘𝑣 . For example, in Figure 8, transaction 𝑇5 generates an
edge 𝑒 (𝑇3,𝑇5, 𝐷) from 𝑇3 because 𝑇5 acquires the value 3 of key
𝐷 from 𝑇3. Without loss of generality, we have assigned a root
node denoted 𝑅 and added edges 𝑒 (𝑅,𝑢, 𝑘) ∈ 𝐸 for each 𝑢 ∈ 𝑉
that accesses the key 𝐾 but does not have any incoming edge on
key 𝐾 , such as 𝑇7 and 𝑇8 in Figure 8.

If the graph 𝐺 is acyclic, a sequential order can be established
by generating a topological order. It is crucial that every transac-
tion must obtain the same causal order in any topological order
from 𝐺 to ensure consistency. Therefore, 𝐺 is considered a valid
graph only if any sequential order generated from the topolog-
ical order is a valid serialization order and produces the same
results. By following any correct order, all transactions will yield
the same execution results. However, because of the nondeter-
ministic characteristic, the results may not be the same as those
executed in their arrival order. Each node 𝑢 maintains all records
of the operations triggered by a transaction 𝑢, including the re-
sulting values. The sequence of the linking nodes establishes the
order of commitment between the two transactions.

Since a transaction is an atomic commitment, we combine the
internal operations to simplify the in-node states. However, to
trace the conflicts between two nodes, we must retain the first
operation if it is a read and the last operation if it is a write, to
ensure that the causal relationship is not lost. Thus, we remain
at most two operations in the nodes: the first read and the last
write.

To help illustrate the algorithm, we define the types of each
node depending on the operations it contains on a key:

• A node 𝑣 ∈ 𝑉 is a read node 𝑅𝑘𝑣 if the first operation on
key 𝐾 is a read.

• A node 𝑣 ∈ 𝑉 is a write node 𝑊 𝑘
𝑣 if 𝑣 contains write

operations on key 𝐾 .
• The root node 𝑅 is a write node.

8.2 Generating New Nodes
This section presents the process of adding operations from a
new transaction to the dependency graph 𝐺 .
𝐶𝐶 creates a new node whenever an operation 𝑂𝑘 is received

from a new transaction 𝑇 . If 𝑂𝑘 is a write operation, 𝑇 needs to
establish a connection to each casual relation. To avoid pointing
to the root and assuming that the earlier transaction will commit
first, the non-write nodes 𝑣 on key 𝐾 , which only contains reads,
without any outgoing edges (not dependent by other nodes) are
selected, and edges 𝑒 (𝑣,𝑢, 𝑘) are added, pointing to 𝑢 (Figure 9
(a)).

On the other hand, when a read operation is performed, 𝐶𝐶
selects the latest write node 𝑢 to obtain the latest value or selects
the root to read the data value from storage if no write nodes
exist. If the write node 𝑢 is selected, we need to make all other
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𝑣 contain a path to 𝑢 to guarantee the correctness
for the read after write between 𝑢 and 𝑣 . Finally, the operation
and its result <Type, Key, Result> will be written into the node
𝑢. An example of adding a new read operation on 𝐴 from 𝑇4 is
depicted in Figure 9 (b). 𝑇4 selects 𝑇3 to read to obtain 𝐴 = 3 and
adds an edge from𝑇3 and a record <R,𝐴, 3> is logged down in the
node. Then 𝑇3 will add two edges from 𝑇1 and 𝑇2, respectively.

8.3 Operations on Existing Nodes
When receiving an operation 𝑂𝑘 for the key 𝐾 from an existing
transaction 𝑇 in 𝐺 , 𝐶𝐶 will select the corresponding node 𝑢 to
attach the record. If 𝑂𝑘 is a read operation, the result will be
directly retrieved if 𝑢 contains the record for key 𝐾 . Otherwise,
it will proceed with the new node operation as specified in Sec-
tion 8.2 to choose a previous one to access the value. Figure 9 (c)
illustrates an instance where 𝑇4 reads key 𝐴 as its second opera-
tion and retrieves the value from 𝑇3. If 𝑂𝑘 is a write operation,
the operation will be appended to the node.

8.4 Conflict Detection
Appending the records to an existing node may lead to transac-
tion conflicts. For instance, a transaction updates the value again
but it has been read by another transaction or a dependency cycle
is created due to the dependency on another key since we always
find the latest write to retrieve the value. Figure 10 (a) depicts
a scenario in which 𝑇1 attempts to retrieve the value of 𝐵 from
𝑇3, which has established a dependency from 𝑇1 due to key 𝐴,
which results in the creation of a dependency cycle. In this case,
𝐶𝐶 will try to read the value from its ancestor, like 𝐵 reads the
value from the 𝑅𝑜𝑜𝑡 Figure 10 (a). If there is still any conflict with
other transactions, 𝐶𝐶 will trigger the abort process.

Once conflicts are detected, 𝐶𝐶 triggers an abort process as
follows:

(1) If 𝑢 only contains read operations, abort 𝑇 itself.
(2) If 𝑢 contains write operations, cascading abort from 𝑇 .
In Figure 10 (b), we need to abort 𝑇2 and 𝑇3 since 𝑇1 contains

a write operation. However, in Figure 10 (a), we only need to
remove 𝑇1 and keep 𝑇3 alive.

9 Thunderbolt Correctness Analysis
In this section, we conduct an analysis of the safety and liveness
properties of Thunderbolt. Safety is defined as if two conflicting
transactions, 𝑇1 and 𝑇2, are executed within an honest replica in
a specific order 𝑂 (for instance, 𝑇1 < 𝑇2), it is expected that all
other honest replicas will also execute𝑇1 and𝑇2 in the same order
𝑂 . Liveness, on the other hand, is characterized by the assurance
that client requests will consistently receive a response.

Proof of Safety. We prove the safety of Thunderbolt. We will
first analyze the safety within the same DAG.

Theorem 1. In the case of two conflicting transactions, 𝑇1 and
𝑇2, which may occur as either Single-shard TX𝑠 within the same

shard or as Cross-shard TX𝑠 , if 𝑇1 is executed prior to 𝑇2 in an
honest replica, any other honest replica will also execute 𝑇1 before
𝑇2.

Proof. The DAG protocol ensures that the sequence of two
blocks proposed by the same proposer aligns with their commit
order. Consequently, the order of two Single-shard TX𝑠 proposed
by the same proposer will be preserved. Furthermore, the order
of Cross-shard TX𝑠 is established by the consensus, resulting
in a consistent global order. This leads to uniform execution of
transactions 𝑇1 and 𝑇2 across all honest replicas, irrespective of
whether the transactions are Single-shard TX𝑠 or Cross-shard
TX𝑠 . □

Theorem 2. In the scenario where two conflicting transactions
occur,where 𝑇1 is a Single-shard TX and 𝑇2 as a Cross-shard TX, if
an honest replica executing𝑇1 prior to𝑇2, any other honest replicas
will execute 𝑇1 before 𝑇2 as well.

Proof. Consider a contradiction scenario in which replica
𝑅1 executes 𝑇1 prior to 𝑇2, while replica 𝑅2 executes 𝑇2 before
𝑇1. We also suppose leader 𝑋 commits 𝑇1 and leader 𝑌 commits
𝑇2. Then it can be shown that 𝑅1 is the proposer of 𝑇1 and 𝑇1 is
not converted into a cross-shard transaction. Since 𝑅2 executes
𝑇2 ahead of 𝑇1, the round of leader 𝑌 must be less or equal to
the round of leader 𝑋 (𝑌 ≤ 𝑋 ). However, if the round 𝑟 to 𝑇1
occurs before 𝑌 (𝑟 < 𝑌 ), then 𝑇2 cannot be committed (Rule
P5). Conversely, if 𝑟 ≥ 𝑌 , then according to Rule P4, 𝑇1 should
be converted into a Cross-shard TX if 𝑇2 remains uncommitted.
Thus, it is impossible for 𝑅1 to execute 𝑇1 before 𝑇2 while 𝑅2
executes 𝑇2 before 𝑇1. □

Theorem 3. When two conflicting transactions, 𝑇1 and 𝑇2, are
executed by honest replicas in the order of 𝑇1 < 𝑇2 across two
different DAGs, it is ensured that all other honest replicas will
execute 𝑇1 and 𝑇2 in the same order within a single DAG.

Proof. Section 6 illustrates that all honest replicas will tran-
sition to the new DAG starting from the same ending round.
Refer to the consistency and completeness property of the DAG
(Section 2), all honest replicas will execute transactions 𝑇1 and
𝑇2 within the same DAG. □

Consequently, we can draw the conclusion that: If two transac-
tions are isolated, they can be executed in any order. Otherwise,
all the honest replicas will execute them in the same order. Thus,
Thunderbolt holds its safety guarantees.

Proof of Liveness. In an environment where all replicas op-
erate effectively, they will propose blocks within the same DAG.
Each block suggested by the respective shard proposers will ul-
timately be committed. When a malicious replica is identified,
the honest replicas will respond by proposing a Shift block. If
fewer than 2𝑓 + 1 Shift blocks are proposed, the DAG will remain
unchanged, and all replicas will continue functioning within the
current DAG while proposing new blocks. Conversely, if there
are 2𝑓 + 1 Shift blocks, all honest replicas will transition to the
new DAG within the same round, as detailed in Section 2. After
a minimum of 2𝑓 + 1 honest replicas successfully relocate to
the new DAG, they will be empowered to propose new blocks.
Provided that all replicas maintain proper behavior, they will
consistently propose blocks within the same DAG, ensuring that
each shard proposer’s proposed blocks are duly committed.
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10 Correctness of serializability on 𝐶𝐶
In this section, we will present the proofs that establish the cor-
rectness of 𝐶𝐶 . We will start by defining key concepts related
to serializability, followed by a detailed analysis of our findings
regarding correctness.

We consider a set of transactions 𝑇 = {𝑇𝑖 } (where 1 ≤ 𝑖 ≤ 𝑛)
alongside a predefined commit order𝐶𝑂 .𝐶𝐶 generates a sequen-
tial order denoted as 𝑆𝑂 = [𝑇1,𝑇2, . . . ,𝑇𝑛], producing an outcome
represented as 𝑂𝑈𝑇 = [𝑂𝑈𝑇1,𝑂𝑈𝑇2, . . . ,𝑂𝑈𝑇𝑛] that each trans-
action reads and writes some values on some keys. Let 𝑆𝐸 denote
one of the possible sequential orders of 𝑆𝑂 , with 𝑂𝑈𝑇 ′ reflect-
ing its corresponding outcomes. 𝐶𝐶 is deemed serializable if the
condition 𝑂𝑈𝑇 = 𝑂𝑈𝑇 ′ holds true.

Definition 4 (Read-Complete). If 𝑇𝑖 reads a value updated by
𝑇𝑗 in 𝑆𝑂 , 𝑇𝑖 will also read the value updated by 𝑇𝑗 in 𝑆𝐸. If trans-
action𝑇𝑖 reads a value updated by a transaction𝑇𝑗 in 𝑆𝑂 , then𝑇𝑖
will also read the value updated by 𝑇𝑗 in 𝑆𝐸.

Definition 5 (Write-Complete). If transactions 𝑇𝑖 and 𝑇𝑗 both
write new values to key 𝐾 , but 𝑇𝑖 commits before 𝑇𝑗 , which
generates an order 𝑇𝑖 < 𝑇𝑗 in 𝑆𝑂 , then 𝑇𝑖 will also write the
values to 𝐾 before Tj when in 𝑆𝐸.

Theorem 6. 𝐶𝐶 is considered both Read-Complete and Write-
Complete when the dependency graph 𝐺 is always valid.

Proof. Firstly, if𝐺 is valid, we know that when a read node𝑅𝑘𝑣
(representing a node u that reads on key K) retrieves a value from
a write node𝑊 𝑘

𝑢 on key 𝐾 , all the write nodes that are updating
values on 𝐾 either have a direct path to 𝑢 or a path from 𝑣 . This
guarantees the correctness of read-after-write operations. Con-
sequently, if transaction 𝑇𝑖 reads values updated by transaction
𝑇𝑗 on key 𝐾 , where 𝑇𝑗 always exists (with the root being a write
node), it follows that no other transactions updating values on 𝐾
will be located between 𝑇𝑖 and 𝑇𝑗 . Therefore, for any execution
order 𝑆𝑂 generated by 𝐺 , where 𝑇𝑖 reads the value updated by
𝑇𝑗 , it can be inferred that 𝑇𝑗 will also read the same value from
𝑇𝑖 in 𝑆𝐸. This demonstrates that 𝐶𝐶 is Read-Complete. Secondly,
since 𝑆𝑂 is an execution order in 𝐶𝐶 , if 𝑇𝑖 commits before 𝑇𝑗 ,
then 𝑇𝑖 will precede 𝑇𝑗 in 𝑆𝑂 . Consequently, 𝑇𝑗 will update the
values after 𝑇𝑖 in 𝑆𝐸 as well. Therefore, we can conclude that 𝐶𝐶
is Write-Complete. □

Theorem 7. 𝐶𝐶 is serializable if𝐶𝐶 is both Read-Complete and
Write-Complete.

Proof. Since 𝐶𝐶 is Read-Complete, every transaction 𝑇𝑖 that
reads the values of certain keys will retrieve the same values
regardless of the order generated by 𝐺 . Additionally, since 𝐶𝐶 is
Write-Complete, every transaction 𝑇𝑖 that updates the values of
certain keys will maintain a consistent order among all the orders
generated by𝐺 . Therefore, the transactions will yield the same
outcomes in any generated orders 𝑆𝑂 and 𝑆𝐸 (𝑂𝑈𝑇 = 𝑂𝑈𝑇 ′). □

11 Concurrency Executor Evaluation
This section evaluates Thunderbolt by assessing its performance
on the 𝐶𝐸 and the Thunderbolt protocol. We implement all
the baseline comparisons using Apache ResilientDB (Incubat-
ing) [1, 40]. Apache ResilientDB is an open-source incubating
blockchain project that supports various consensus protocols. It
provides a fair comparison of each protocol by offering a high-
performance framework. Researchers can focus solely on their

protocols without considering system structures such as the net-
work and thread models.

We will begin by comparing 𝐶𝐸 with two baseline protocols:
𝑂𝐶𝐶 [53] and 2PL-No-Wait [82]. Additionally, we will analyze
the performance of Thunderbolt, which is built on Tusk [26], and
we will also use Tusk as a baseline for our comparisons. For our
input workload, we will utilize SmallBank [2, 6], a benchmarking
suite that simulates common asset transfer transactions. This
suite is also used to evaluate variant block systems [36, 55, 57,
67, 75, 90, 107].

11.1 Baseline Protocols
We implement OCC [53] and 2PL-No-Wait [102, 103] to compare
the performance against our concurrent executor. We set up our
experiments on AWS c5.9xlarge consisting of 36 vCPU, 72GB
of DDR3 memory. We use LevelDB as the storage to save the
balance of each account.

OCC. Each executor is responsible for locally executing trans-
actions. When an operation within a transaction𝑇 requires read-
ing the value of a key 𝐾 that the executor has not previously
accessed during the execution, the executor will retrieve the value
from the storage. Each value also contains a version to indicate
the time the value was obtained. Any write operation will update
the values locally. Upon completion of 𝑇 , all the updated values
will be forwarded to a central verifier. The verifier will cross-
check the value versions by comparing them with the current
versions in the storage. If there is a mismatch, the commit will
be rejected, necessitating the re-execution of 𝑇 .

2PL-No-Wait. Each executor performs transactions by di-
rectly accessing the storage through a central controller. When
an operation within a transaction 𝑇 requires the read or update
of a key 𝐾 , the controller will lock 𝐾 to prevent conflicts. If an
operation seeks to access 𝐾 but discovers that another executor
has locked it, the executor will release all locks and re-execute 𝑇 .
Upon the completion of 𝑇 , all the results will be transmitted to
storage, and all locks will be released.

11.2 Experiment Setup With Smallbank
SmallBank [2] is a transactional system that comprises six distinct
transaction types, five of which are designed to update account
balances, while the remaining transaction is a read-only query
that retrieves both checking and saving the account details of
a user. Our focus is on two types of transactions: SendPayment
and GetBalance, which are used to transfer funds between two
accounts and retrieve account balances, respectively. Our objec-
tive is to evaluate the performance under varying read-write
balance workloads. During a SendPayment transaction, the ac-
count balances are updated by reading the current balance and
then writing the new values back. We created 10,000 accounts
and conducted each experiment 50 times to obtain the average
outputs.

We evaluated the impact of parallel execution. We measured
the performance by uniformly selecting GetBalance with a prob-
ability of 𝑃𝑟 while SendPayment with 1− 𝑃𝑟 . We follow a Zipfian
distribution to select accounts as transaction parameters and set
the Zipfian parameter 𝜃 . The value of 𝜃 determines the level of
account contention, with higher values leading to higher con-
tention. We focus only on data workloads with high contention
by setting 𝜃 = 0.85.
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a) The read-write balanced workflow (𝑃𝑟 = 0.5).
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b) The update only workload (𝑃𝑟 = 0).

Figure 11: Evaluation of 𝐶𝐸 on different numbers of executors.

11.3 Impact from Concurrent Executor
We first evaluate the impact of increasing the number of executors
to execute the transactions, then measure the aborts produced
by each protocol. We ran two batch sizes 𝑏300 and 𝑏500 for
each protocol: Thunderbolt-b300, Thunderbolt-b500, OCC-b300,
OCC-b500, 2PL-No-Wait-b300, and 2PL-No-Wait-b500. We set
𝑃𝑟 = 0.5 to measure a read-write balanced workflow and 𝑃𝑟 = 0
on an update-only workflow.

Number of Executors. In the read-write balanced workflow,
the results depicted in Figure 11 (a) show that 2PL-No-Wait
protocols with different batch sizes all experience a performance
drop when increasing the number of executors beyond 8. How-
ever, Thunderbolt and OCC protocols with all the batch sizes
obtain their highest throughputs on 12 executors and maintain
stable throughput. Thunderbolt-b500 obtained 43𝐾 TPS while
OCC-b500 achieved 35𝐾 TPS.

In the update-only workflow, the results shown in Figure 11 (b)
indicate that OCC and 2PL-No-Wait stopped increasing earlier
in 4 executors (both around 22𝐾 TPS) while Thunderbolt provides
a peek throughput (28𝐾 TPS) in 12 executors.

These experiments demonstrate that all the protocols do not
obtain significant benefits for a large number of executors in
a high-competition workflow. However, Thunderbolt can still
achieve more parallelism with more executors.

Evaluation of Abort Rates. As we increased the number of
executors, we also measured the average number of re-executions
for the transactions. The results in Figure 11 indicate that when
the number of executors goes beyond 8, all 2PL-No-Wait pro-
tocols experience a significant increase in the rate of abortions,
leading to a drop in throughput from 24𝑘 to 18𝑘 in the read-
write balanced workflow. While OCC protocols provide a lower
rate within the read-write balanced workflow. However, Thun-
derbolt achieves the lowest abortions, with Thunderbolt-b500
reducing 50% of the abortions from OCC-b500 and 90% from
2PL-No-Wait-b500 in all the experiments.

Evaluation of 𝜃 . We will now provide an evaluation with
various 𝜃 values, using a read-write balance workload of 𝑃𝑟 =
0.5. In particular, we examine high contention workloads where
0.75 ≤ 𝜃 ≤ 0.9, as this range represents the primary focus of our
study. The results illustrated in Figure 12 (a and b) demonstrate
that at 𝜃 = 0.75, both OCC and Thunderbolt show comparable
performance. However, as 𝜃 increases to 0.9, OCC experiences a
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Figure 12: Throughput and average latency within varying
𝜃 settings with 𝑃𝑟 = 0.5 (a and b) and varying 𝑃𝑟 settings
with 𝜃 = 0.85 (c and d).

significant decline in performance, while Thunderbolt continues
to achieve higher throughput levels. In contrast, the 2PL-No-
Wait approaches steady throughput, attributable to its locking
strategy.

Evaluation of 𝑃𝑟 . In this evaluation, we will look at how dif-
ferent values of 𝑃𝑟 affect the read and write ratio in the workload,
with 𝜃 = 0.85. The results in Figure 12(c and d) show that when
𝑃𝑟 = 1 (all read), all protocols behave similarly. However, the
OCC protocol performs slightly better because it allows non-
blocking local executions. When conflicts happen, the 2PL-No-
Wait shows a sharp decline in performance. In contrast, both
Thunderbolt and OCC also perform worse when we decrease 𝑃𝑟 ,
which leads to more conflicts. On the other hand, as we increase
the value of 𝑃𝑟 , Thunderbolt achieves better throughput and
lower latency than OCC, even when all operations are write-only.
All protocols show similar latency at 𝑃𝑟 = 1, but as 𝑃𝑟 increases,
the latency for 2PL-No-Wait rises, while Thunderbolt continues
to perform better than OCC.

12 System Evaluation
We conducted evaluations to determine the impact of Thunder-
bolt built on Tusk. In our evaluation, we compared the perfor-
mance of Thunderbolt with Tusk, which executes transactions
in order after reaching a total order after DAG protocols. We
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Figure 13: Throughput and average latencywithin different
replicas within 𝑃𝑟 = 0.5 in LAN and WAN.

evaluated the impact of different components of the protocol by
comparing the results between three systems:

• Thunderbolt: Leverage 𝐶𝐸 + parallel verification.
• Thunderbolt-OCC: Combine 𝑂𝐶𝐶 + parallel verification.
• Tusk: Utilize the 𝑂𝐸 model.

As the serialized verification will execute the transactions in order
to verify the results, we will expect that any DAG-based protocols
with serialized verification will provide the same behavior with
Tusk. We also leveraged SmallBank as the input workload.

Each replica was configured with 𝐶𝐸 comprising 16 executors
to process transaction batches of 500, alongside 16 validators to
verify blocks post-consensus. We scaled the system from 8 to
64 replicas. By default, 𝐾 ′ was set to a sufficiently large value
to disable shard rotation. In the final phase of our evaluation,
we examined the impact of varying 𝐾 ′ values, which govern the
frequency of shard reconfiguration (Section 12).

SmallBank. Throughout the system evaluation, we focus on
the SmallBank workload with a read-write balanced scenario
(𝑃𝑟 = 0.5), where half of the transactions are read-only.

In the smallbank workload, Transaction addresses were se-
lected from a pool of 1000 users with a skew parameter 𝜃 = 0.85
to simulate a high-contention workload.

The LAN results, as shown in Figure 13, demonstrate that
Thunderbolt significantly outperformed Tusk’s sequential execu-
tion model, achieving a 50𝑥 speedup. Specifically, Thunderbolt
reached 500𝐾 TPS with 64 replicas, compared to Tusk’s 11𝐾 TPS.
This improvement highlights the benefits of executing transac-
tions in parallel.

We also compared Thunderbolt with Thunderbolt-OCC, which
replaces the 𝐶𝐸 with 𝑂𝐶𝐶 . While Thunderbolt-OCC matched
Thunderbolt’s throughput at 8 replicas, it lagged behind at scale,
achieving only 400𝐾 TPS with 64 replicas. Furthermore, Thunder-
bolt maintained a low transaction latency of 5 seconds, whereas
Tusk’s latency soared to 100 seconds under the same conditions.

The WAN results demonstrate similar behavior but with higher
latency. The latency gap between Thunderbolt and Tusk become
smaller because the WAN latency begins to dominate cost, be-
coming bottleneck.

Cross-shard Transactions. Next, we evaluated the impact
of Cross-shard TX𝑠 using 16 replicas. We randomly assigned a
percentage 𝑃% (0 < 𝑃 ≤ 100) of transactions to be processed
by two shards. Additionally, we assessed the benefits of parallel
execution by comparing Thunderbolt-OCC.
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Figure 14: Throughput and average latencywithin different
ratios of cross-shard transactions within 16 replicas.
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Figure 15: Throughput and average latencywithin different
reconfiguration periods within 8 replicas.

As shown in Figure 14, the performance of both Thunderbolt
and Thunderbolt-OCC declined as the percentage 𝑃 increased.
In scenarios with only single-shard transactions (𝑃 = 0), both
systems achieved 100𝐾 TPS. However, when 𝑃 increased to 8%,
Thunderbolt-OCC’s throughput dropped to 16𝐾 TPS, while Thun-
derbolt maintained a significantly higher throughput of 64𝐾
TPS. Thunderbolt-OCC’s performance aligned closely with Tusk,
achieving approximately 10𝐾 TPS. In contrast, Thunderbolt de-
livered 19𝐾 TPS even when all transactions were cross-shard,
demonstrating the advantages of its parallel execution model and
non-deterministic ordering on 𝐶𝐸.

Latency metrics further highlighted Thunderbolt’s superiority.
Under high-contention workloads, Thunderbolt achieved a trans-
action latency of 24𝑠 seconds, while Thunderbolt-OCC’s latency
was nearly double at 50 seconds.

Reconfiguration Periods. Now, we analyze the performance
using different reconfiguration periods 𝐾 ′ to transition the shard
proposers into a new DAG on 8 replicas. Figure 15 demonstrates
that Thunderbolt exhibited lower performance with smaller 𝐾 ′

values (80𝐾 TPS with 𝐾 ′
= 10), attributed to the costly transi-

tion between DAGs. Conversely, when 𝐾 ′ was increased to over
1000, Thunderbolt demonstrated significantly improved stability,
achieving a throughput of 180𝐾 TPS. Additionally, the average la-
tency decreased from 1.9𝑠 to 1.7𝑠 as 𝐾 ′ increased from 10 to 5000.
Figure 16 also shows the average run time of committing pro-
posals per 100 rounds, that is 1

100
∑(𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝑖 ) −𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝑖−1) )

where𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝑖 ) is the time of committing round 𝑖 . We set 𝐾 ′ as
300 and it was demonstrated that Thunderbolt will not get stuck
during the reconfiguration. The runtime of each round is around
0.07𝑠 to 0.1𝑠 .

Failures. Finally, we evaluated the impact of replica failures
within 16 replicas. We forced 𝑓 replicas (𝑓 = 1 or 𝑓 = 2) to
stop working during the experiments. We randomly designated a
percentage 𝑃% (0 < 𝑃 ≤ 100) of the transactions to be processed
by two shards.

Figure 17 reveals that Thunderbolt still can provide higher
throughputs when some shards stop working. When one replica
failed to propose transactions, Thunderbolt
1 (𝑓 = 1) obtained 78𝐾 TPS working on all Single-shard TX𝑠
(𝑃 = 0) and 17𝐾 TPS on all Cross-shard TX𝑠 while when two
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the shard per 300 rounds.
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Figure 17: Throughput and average latencywithin different
ratios of cross-shard transactions within 16 replicas when
𝑓 (𝑓 = 1 or 𝑓 = 2) replicas failed.

replicas failed to propose transactions, Thunderbolt
2 (𝑓 = 2) obtained 66𝐾 TPS on all Single-shard TX𝑠 and 15𝐾
TPS on all Cross-shard TX𝑠 . However, the results show that
the latency remains stable even if some replicas fail to process,
benefiting from the leader rotation of the DAG protocols.

13 Related work
Sharding on DAG-based protocol. Several studies [4, 27, 41,

44, 52, 72, 93, 105] have underscored the necessity of implement-
ing sharding to enhance scalability within blockchain systems.
Directed Acyclic Graph (DAG)-based blockchains [11, 12, 14,
25, 26, 26, 50, 50, 51, 56, 58, 73, 81, 84, 85, 85, 86, 96, 97, 101]
present a promising alternative for improving concurrent trans-
action processing through the utilization of the DAG data struc-
ture. However, it is noteworthy that only a limited number of
approaches offer effective sharding strategies for DAG proto-
cols [8, 24, 27, 47, 70] These strategies often depend on account-
based mechanisms to achieve eventual atomicity, employing in-
centive mechanisms through either the two-phase commit (2PC)
protocol or additional coordinating entities.

Execute-Order-Validate. Hyperledger Fabric [10] introduces
the Execute-Order-Validate (EOV) framework, which demon-
strates high performance primarily in low-contention workloads.
To enhance this framework, various techniques have been de-
veloped [35, 36, 75, 77, 91, 92], including methods for reordering
transactions within a block and improving execution processes.
In contrast, Thunderbolt addresses scalability by distributing
transactions across multiple shards, thereby enabling each shard
proposer to execute transactions in parallel.

Concurrent Execution. Deterministic approaches [31, 69, 99]
have been proposed to improve the efficiency of transaction ex-
ecution by creating a dependency graph. This graph allows for
concurrent execution while minimizing conflicts between trans-
actions. Furthermore, segmenting transactions [23, 71, 78, 79]
has been introduced as an effective method for reducing these
conflicts. CHIRON [66] and BlockSTM [34] offer nondeterminis-
tic execution by extracting dependencies from smart contracts or
by determining the execution order based on transaction arrival
times. Conversely, Thunderbolt adopts a different methodology

that it does not depend on arrival times or read/write set informa-
tion for transaction processing. Instead, it dynamically assigns
execution orders to effectively minimize transaction conflicts.

Concurrent Consensus. A robust and scalable blockchain
framework is crucial for the implementation of real-world ap-
plications [9, 37, 39, 76]. For example, the PoE [38] model uti-
lizes speculative execution protocols, and protocols, including
RCC [40], FlexiTrust [42], and SpotLess [49], incorporate multi-
ple leaders to enhance parallel processing capabilities. However,
these protocols currently do not support reconfiguration.

14 Conclusions
We introduce Thunderbolt, an innovative sharding system de-
signed to enhance smart contract execution by integrating the
Order-Execute and Execute-Order-Validate models to efficiently
handle both single-shard transactions (Single-shard TX𝑠) and
cross-shard transactions (Cross-shard TX𝑠). We have developed
a concurrent executor that significantly improves the perfor-
mance of Single-shard TX𝑠 without requiring prior knowledge of
read/write sets. Additionally, Thunderbolt effectively distributes
transactions across multiple shards and utilizes Directed Acyclic
Graph (DAG)-based protocols to maintain consistency between
single-shard and cross-shard transactions. A key feature of Thun-
derbolt is its ability to utilize the inherent properties of the DAG
to facilitate a non-blocking transition to a new DAG structure.
This allows for the rotation of proposers for each shard, help-
ing to prevent malicious activity from any single proposer. Our
performance evaluations show that Thunderbolt achieves an im-
pressive speedup of up to 50× compared to the native execution
provided by Tusk.

Artifact Availability:
The source code, data, and/or other artifacts have been made
available at https://github.com/apache/incubator-resilientdb/tr
ee/Thunderbolt.
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