
SPO-Join: Efficient Stream Inequality Join
Adeel Aslam

University of Modena and Reggio
Emilia, Italy

adeel.aslam@unimore.it

Kaustubh Beedkar
Indian Institute of Technology Delhi

India
kbeedkar@cse.iitd.ac.in

Giovanni Simonini
University of Modena and Reggio

Emilia, Italy
giovanni.simonini@unimore.it

ABSTRACT
Stream inequality join aims to combine tuples coming from differ-
ent streams based on inequality conditions and is a fundamental
operator in distributed data stream processing. It is known to
be computationally expensive as indexing data structures for
determining matching tuples must be continuously updated.

To significantly alleviate this problem, we propose SPO-Join,
a novel solution that combines a mutable B+-tree for efficient
insertions and an immutable sorted-array-based data structure
for efficient searching. Furthermore, our proposed method is
designed to be efficiently executed with distributed stream pro-
cessing engines. Our experiments on real-world and synthesized
datasets suggest that the proposed SPO-Join exhibits superior
performance compared to state-of-the-art index-based stream
inequality join solutions.

1 INTRODUCTION
Increase in the requirement for real-time data analytics has led
to the massive adoption of distributed stream processing en-
gines (DSPEs)—such as Storm1, Flink2, and Spark Streaming3
—in many domains including energy, traffic, and health. Appli-
cations in such domains, for example, continuous monitoring of
energy consumption, real-time traffic, and health data analysis,
often involve joining data from multiple streams of data sources.
Efficient stream joins, therefore, play an important role.

In the stream join, the goal is to find matching tuples from
different data streams that satisfy a certain join predicate. Stream
joins operations are well known to be computationally expen-
sive, primarily because of the need to maintain continuously
and update a data structure employed to facilitate finding the
matching tuples [25]. To this end, several distributed stream join
models and algorithms have been proposed [6, 12, 18, 35]. In
the aforementioned works on stream joins, the focus has mainly
been on equality stream joins, i.e., where the join predicate in-
volves an equality condition on attributes of matching tuples.
However, several applications require an inequality condition to
hold for joining data streams. Consider the following example in
the context of real-time energy consumption monitoring.

Example 1. Consider CloudPro, a company that runs two data
centers R and S. Both data centers have a similar cooling infrastruc-
ture but R is smaller than S in terms of number of servers and racks.
CloudPro has to routinely reschedule jobs between its two data
centers based on the power consumption from racks (POWER) and
cooling units (COOL). For this, they analyze the real-time power
consumption data every 10 minutes over a 60-minute window where

1https://storm.apache.org/
2https://flink.apache.org/
3https://spark.apache.org/

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-98318-097-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

R’s rack power consumption is less 𝑅.𝑃𝑂𝑊𝐸𝑅 < 𝑆.𝑃𝑂𝑊𝐸𝑅 but
cooling power usage is higher than S 𝑅.𝐶𝑂𝑂𝐿 > 𝑆.𝐶𝑂𝑂𝐿.

Q 1: Real-time data centers power consumption
SELECT R.POW_ID , R.COOL_ID , S.POW_ID , S.COOL_ID

FROM R, S

WHERE R.POWER <S.POWER AND R.COOL >S.COOL

WINDOW AS (SLIDE INTERVAL '10' ON '60')

Unlike a traditional stream join, the above example query
involves joining data streamswith inequality conditions.We refer
to such joins as streaming inequality join or stream inequality join,
which is common in applications. To gain a better understanding
of the inequality join operator, let us consider another example
with band join condition (band join contains inequality operator
that returns all pairs of tuples that are close to each other [17]).

Example 2. A transportation analyst needs to have access to
real-time analysis of areas that have high demand for taxi services.
By identifying clusters of trips in such areas, analysts can gain
insights into traffic patterns, congestion hot spots, and peak travel
times. To achieve this, the analyst has initiated a query to find taxi
trips where the passenger’s pickup locations (longitude (LON) and
latitude (LAT)) are close to each other within a specific interval of
time.

Q 2: Real-time analysis of taxi trips
SELECT tripId , time FROM taxi_trips

WHERE ABS(start_LON1 - start_LON2) < 0.03

AND ABS(start_LAT1 - start_LAT2) < 0.03

WINDOW AS (SLIDE INTERVAL 'D' ON 'W')

State-of-the-art [11, 18, 25, 35] distributed stream join ap-
proaches consist of two distinct levels of processing: the router
and the joiner as depicted by Figure 1. A new tuple from any
stream undergoes initial processing within the router compo-
nent. Here, tasks like segmenting the tuple into distinct fields
of query relation take place. Subsequently, the processed tuples
are forwarded downstream toward the processing elements (𝑃𝐸𝑠)
of joiner component where indexes are employed to hold the
contents of the streaming window for join operators. Each tuple
is indexed or probed against these data structures (In Figure 1,
each circle shows a processing element of DSPS for stream join
components).

Existing stream join techniques differ in their choice of the
data structure used for the indexing, such as B+tree and CSS-
tree [21, 25]. B+tree is a type of self-balancing data structure
that is widely used for indexing data items and retrieving them
efficiently, especially for highly selective queries. However, this
indexing solution is better suited for small-size sliding windows.
If the window size increases, it introduces a high overhead for
index updating and removal from the data structure. A CSS-tree
indexing solution is employed for range queries, which is slightly
better than B+tree because it eliminates several pointers and uses
relative indexing. However, inserting data items requires a lot of

Series ISSN: 2367-2005 145 10.48786/edbt.2025.12

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.12

reconstruction of indexing due to the implicit addresses of child
pointers.

Despite this, many solutions employ these indexing data struc-
tures for inequality queries, which include chain index [18] that
comprises several linked sub-indexes of B+tree for the sliding
window. Sub-indexes are conceptually divided into active and
archive sub-indexes, where a new tuple can only be inserted
into the active sub-indexes. However, it requires searching all
sub-indexes among distributed processing elements of joiner com-
ponent. Similarly, PIM-tree [25] divides the sliding window into
a mutable linked set of B+tree and a search-efficient immutable
CSS tree data structure. A new tuple first explores the CSS tree
to the depth d and then inserts it into the linked B+tree indexing
data structure that is pointed by the node of the CSS tree at depth
d. Similarly, probing both mutable and immutable designs for
query execution is required.

While tree-based indexes are a natural choice for inequal-
ity joins, Khayyat et al. [13] show that their IE-Join approach
based on permutation and offset arrays yield better performance
for fixed data. Yet, the IE-Join approach does not lend itself to
streaming data. For instance, we empirically observed the IE-
Join algorithm performance on a synthesized dataset for query
Q1 with a match rate of 250 million tuples and found that it
consumes 5.3×, 4.65×, and 21.25× less computation time than
the B+tree indexing, CSS tree indexing, and naive nested-loop
join algorithm, respectively. However, for stream processing, the
sliding window is continually updated with the arrival of new
tuples, posing challenges to maintaining a sorted order of slide
data items.

In this paper, we propose a new approach for distributed
stream inequality join based on the two-tier data structure [18,
25]. The 𝑃𝐸𝑠 of the joiner component hold two distinct structures:
an insert efficient mutable B+tree data structure and search effi-
cient immutable structure called permutation and offset-based
join (PO-Join). This whole join strategy is named as stream permu-
tation and offset-based join (SPO-Join) 4. Most of the sliding win-
dow contents are held by the PO-Join structure. To ensure com-
pleteness, each new tuple is evaluated against both in-memory
data structures; however, it is only inserted into the mutable part
of SPO-Join.

This paper is organized as follows: Section 2 discusses pre-
liminaries and related work about stream join. Moreover, it also
discusses the challenges associated with adopting SPO-Join. Sec-
tion 3 provides the overview of the proposed SPO-Join strategy
and a detailed discussion of distributed SPO-Join; Section 4 pro-
vides a discussion on different aspects of efficient distributed
query processing. In Section 5, we describe our experiments.
Section 6 concludes the paper.

2 BACKGROUND
This section provides preliminary details and related work about
stream join. Finally, we discuss the challenges with the SPO-Join.

2.1 Preliminaries
Streaming data. Continuous data comprises a sequence of tuples
𝑇 = {𝑡1, 𝑡2, 𝑡3, . . .} with undefined input data rate. A tuple 𝑡𝑖
consists of a key 𝑘𝑖 ∈ {1, 𝑛} as a data item and its payload as
{𝑣𝑖 ∈ V}; where V is a real value that represents any possible
value within a specified domain V ∈ R. The tuple is represented
as 𝑡𝑖 =< 𝑘𝑖 , 𝑣𝑖 >.
4https://github.com/AdeelAslamUnimore/StreamIEJoin/tree/master

Router

R

S >>

>>

Joiner

Ir
1

Ir
2

Ir
3

Ir
n

Is
1

Is
2

Is
m

Is
3

index

pr
ob
e

R

S

Figure 1: Distributed stream join for two distinct streams

Sliding window. The bounded set of streaming tuples is
termed as sliding window𝑊𝐿 = {𝑡𝑖 , 𝑡𝑖+1, 𝑡𝑖+2, . . . , 𝑡𝑖+𝐿}; where 𝐿
is the total items in the sliding window. It can be classified into
two primary categories: count-based𝑊𝑐 or time-based𝑊𝑡 tuple
boundaries. On the arrival of a new tuple 𝑡𝑖 , the obsolete tuples
are discarded from the predefined size of the window known as
slide interval𝑊𝑠 .

Stream inequality join. Let us assume two data streams 𝑅 =

{𝑟1, 𝑟2, 𝑟3, . . .} and stream 𝑆 = {𝑠1, 𝑠2, 𝑠3, . . .}; a stream inequality
join can be defined as any inequality predicate ⊲⊳𝜃 ; 𝜃 ∈ {<, >, ≤
, ≥,≠} between a bounded set of tuples either from stream 𝑅 and
𝑆 (𝑅 ⊲⊳𝜃 𝑆). A tuple 𝑟𝑖 from stream 𝑅 compared with tuples from
stream 𝑆 using an inequality predicate. Additionally, it is inserted
into its corresponding sliding window for future evaluations of
new tuples from stream 𝑆 (resp., 𝑠 𝑗 ∈ 𝑆).

Indexing and search with B+ tree. Indexing data structures
are employed to efficiently hold the sliding window contents
for inequality join. The most common indexing data structure
is B+ tree [25]. It is a self-balancing data structure where data is
stored in the leaf nodes of the tree; however, internal nodes act
as indexes for search.

IE-Join. The IE-Join [13] data structure is designed for ef-
ficient inequality join of batch processing that comprises two
phases: initialization and probing. The first step involves sorting
the collected data, followed by constructing the permutation and
offset array. Finally, a bit array is employed for query predicate
evaluation. A permutation array is the position of tuple identifier
of field b 𝑟𝑖𝑏 ∈ 𝑅 in the sorted array of field a 𝑟𝑖𝑎 ∈ 𝑅. Similarly,
an offset array is the relative position of tuple 𝑟𝑖 ∈ 𝑅 in the sorted
array of the other relation 𝑠 𝑗 ∈ 𝑆 depending on the predicate
operator.

2.2 Distributed Stream Processing System
DSPS uses a cluster of nodes for parallel processing of input data.
It uses a client-server architecture where a new application in
the form of a 𝐷𝐴𝐺 is submitted to the server node [28].

Processing elements. DAG of streaming applications com-
prises many vertices 𝑣 . Each vertex contains multiple processing
elements (𝑃𝐸𝑠). These 𝑃𝐸𝑠 carry out the actual operation on
streaming data, such as joining, filtering, aggregation, etc.

Stream partitioning. Stream data partitioning strategy is
employed to downstream the tuples from vertex 𝑣𝑖 to 𝑣 𝑗 of DSPS
application, using partitioning strategy. The common methods
of partitioning include hash partitioning, broadcasting a data
unit to all downstream tasks, round-robin data partitioning, and
direct mapping of the tuple from 𝑃𝐸𝑖 of vertex 𝑣𝑖 to 𝑃𝐸 𝑗 of vertex
𝑣 𝑗 [28].

Stream inequality join by DSPS. Indexing data structures
are employed to hold the items of the sliding window by dis-
tributed 𝑃𝐸𝑠 of joiner component [20]. A new tuple {𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆},
probes these data structures through distributed 𝑃𝐸𝑠 [20]. Ad-
ditionally, complex queries such as Q1 that involve more than

146

one predicate require multiple vertices for evaluation. The 𝑃𝐸𝑠
produce partial results that need further transformation for com-
pleteness.

2.3 Related Work
Real-time data processing requires retaining intermediate results
in-memory rather than using I/O operations [1, 3–5, 9, 16, 22, 24,
31].

Sliding window-based stream join. Verwiebe et al. [30] pro-
vide a comprehensive review of different windowing strategies,
however, many studies considered only the sliding window for
stream join operation [7, 8, 14, 18, 19, 23, 25, 27, 34]. In hand-
shake join [27], both streaming data flow in the opposite direc-
tion, where the predicate evaluation is only carried out during
stream flow. Low latency handshake [23] (LLHJ) is an alternative
solution for handshake join. Instead of queuing the tuple, LLHJ
just expedites the windowing tuples to the next core to evaluate
the predicate. Moreover, only one core or node is dedicated to
holding a new incoming streaming tuple. Split join [19] is an
extension of LLHJ, here the joining core or distributed node is
divided into two parts such as the storage core or processing core.
Similarly, chain index [18] and PIM tree [25] exploit the linked
balanced tree data structure to produce query results specifically
for non-equality-based streaming queries. Moreover, they use a
coarse-grained tuple removal strategy from the sliding window.
Our strategy uses two data structures, including mutable and
read-efficient immutable components, to speed up the tuple eval-
uation process. Additionally, our proposed solution for stream
inequality joins goes beyond the singular predicate.

Stream join in distributed stream processing system.
Many studies target distributed stream join processing [5, 11,
12, 18, 26, 29, 32, 33, 35]. BiStream [18] is particularly designed to
support window-based join, data aggregation, history based join.
However, for non-equi join it employs chain indexes that raise
issues of high insertion cost with larger chain length, AJoin [12]
is a two-layered architecture with optimization and stream pro-
cessing layers. The optimization layer periodically optimizes the
execution plan, whereas the processing layer performs the stream
join incrementally. FastJoin [35] handles load imbalance in DSPS
with skewed input data. Our approach employs the round-robin
strategy to distribute data to PO-Join instances to ensure load
balancing

2.4 Challenges
We introduce a technique that combines both mutable (B+tree)
and immutable data structures (IE-Join) to perform inequality
stream join for DSPS efficiently. However, we need to address non-
trivial challenges that are associated with the tuple processing
by the index tree data structure, merging from mutable index
structure to immutable IE-Join, and distributed tuple processing
by PO-Join instances

Index tree tuples processing. To process queries like Q1
and Q2, a naïve approach involves creating a hash table for the
result set of both predicates. Then, a logical operation is required
between these result sets. However, computing the hashed value
for the result set tuples is expensive for these highly selective
queries regarding memory and time. To address this issue, effi-
cient mechanisms are required for predicate computation.

Merging frommutable to immutable design.The IE-Join [13]
approach is a highly efficient method for batch inequality joins.
However, it relies on sorted data items for permutation and offset

B+tree (w
M
) PO-Join (w

IM
)

W
R

W
s

A B

C D

S s
js

j

R r
i

r
i

r
ir

i

s
j

s
j

Figure 2: Proposed window-based SPO-Join

array computation. Real-time sorting of streaming tuples is a
challenging task. To tackle this challenge, we adopt a two-tier
design comprising a mutable index tree and an immutable IE-Join
data structure. The leaf nodes of index trees are utilized to sort
streaming tuples. Additionally, the computation of permutation
and offset arrays exhibit a quadratic time complexity, posing sig-
nificant challenges for the real-time construction of the IE-Join
data structure. Moreover, determining the appropriate merging
threshold (𝛿) for transitioning between mutable to immutable
data structures is a hard task. Although we use the slide interval
as our merging threshold, this approach incurs extra overhead
in computing the permutation array and partitioning it down-
stream to the immutable component, particularly for larger slide
intervals of the window. In this case, an efficient mechanism for
merging is required.

Challenges with distributed processing. In the mutable
part of the SPO-Join, distributed components perform individual
predicate operations. The partial results from these operations
are then partitioned downstream to the distributed 𝑃𝐸𝑠 of the
logical operator. However, dealing with high insertion rates or
different sizes of upstream indexing data structures can lead to
correctness issues. To ensure correctness, an efficient data prove-
nance strategy verifies the correct tuples from upstream predicate
operators. This effective provenance is also required during the
merge operation of mutable to immutable data structures.

For larger sliding window intervals, we divide the slide inter-
val according to the number of downstream PO-Join 𝑃𝐸𝑠 . This
means that the contents of the sliding interval are held by several
distributed PO-Join 𝑃𝐸𝑠 . Consequently, it requires an efficient dis-
tributed state management approach for sliding window updates
and removing the expired slide intervals.

3 PERMUTATION AND OFFSET-BASED
DISTRIBUTED STREAM INEQUALITY JOIN

This section provides a detailed description of the proposed dis-
tributed stream inequality join (SPO-Join).

3.1 Solution Overview
The high-level overview of the proposed stream inequality join
solution can be seen in Figure 2. Consider two streams, 𝑅 and
𝑆 , each building their sliding windows𝑊𝑅 and𝑊𝑆 , respectively.
Each window is divided into two components: 1) an insert ef-
ficient mutable component (𝑊𝑀) with streaming contents 𝐴 for
𝑊𝑅 and 𝐶 for𝑊𝑆 , and 2) a search efficient immutable compo-
nent (𝑊𝐼𝑀) with streaming contents 𝐵 for𝑊𝑅 and 𝐷 for𝑊𝑆 . The
stream join between both streams is represented as 𝑅 Z𝜃 𝑆 . This
can also be further decomposed as (𝐴 ∪ 𝐵) Z𝜃 (𝐶 ∪ 𝐷). In the
proposed SPO-Join, a new tuple 𝑟𝑖 or 𝑠 𝑗 from either stream must
evaluate both components of the opposite stream for complete
predicate evaluation.

147

Let us consider a use-case of tuple 𝑟𝑖 , which belongs to the
stream 𝑅. This tuple is inserted and indexed into 𝑊𝑀 of 𝑊𝑅 .
Moreover, this tuple is broadcast to both components (mutable
and immutable) of𝑊𝑆 for predicate evaluation (𝑟𝑖 Z𝜃 𝐶)∪(𝑟𝑖 Z𝜃
𝐷) (resp.,𝑠 𝑗). The merge operation is initiated in𝑊𝑀 of𝑊𝑅 or
𝑊𝑆 at the threshold (𝛿), which depends on the time or count of
tuples from the sliding window. Normally, for a smaller slide
interval of window𝑊𝑠 , we use the slide interval as a merging
threshold (𝛿). However, we subdivide the slide interval into sub-
intervals for a larger sliding interval to avoid merging overhead,
as detailed in Section 4. (We use the term𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 to refer
to the sliding interval or sub-interval that is used for merging).
In the merge operation, all tuples that are indexed in the data
structure of𝑊𝑀 are merged into the linked set of search-efficient
PO-Join structures, which is the immutable component𝑊𝐼𝑀 . This
operation frees up space for new tuples in𝑊𝑀 and reduces the
indexing cost for new tuples in𝑊𝑀 . As analogous to the chain
index [18], a coarse-grained tuple removal strategy is applied to
the𝑊𝐼𝑀 component of the sliding window, where the obsolete
index from the linked set of PO-Join structure is removed for
tuple removal threshold.

To process stream inequality join in a distributed and parallel
manner, we use the system model illustrated in Figure 3. For
complex queries like Q1, which involve two opposite streams 𝑅
and 𝑆 and their intersection, we divide the execution into three
components: mutable (B+tree and offset computation), permu-
tation computation, and immutable (PO-join) structure. For the
mutable design, we have three operators that perform operations
in a pipeline-parallelism manner. Two parallel operators evaluate
individual predicates and then transform their partial results to
the logical operator using hash partitioning. This operator con-
tains multiple parallel processing elements on several distributed
nodes that can simultaneously perform logical operations on up-
stream data. Similarly, operator PO-Join evaluates the𝑊𝐼𝑀 tuples.
It contains multiple processing elements, each of which holds
the linked list of the PO-Join data structure. The step-by-step
SPO-Join procedure is explained by the Algorithm 1.

Algorithm 1: Distributed stream inequality join (SPO-
Join)
Input: Tuple 𝑟 ∈ 𝑅 (resp., 𝑠 ∈ 𝑆), Window lengths (𝑊𝐿) and slide interval

(𝑊𝑠), Processing elements (𝑃𝐸𝑠)
Output: Stream join result for each input tuple (𝑟 or 𝑅)

1 Broadcast 𝑟 from router to𝑊𝑀 (𝑃𝐸1 and 𝑃𝐸2) and𝑊𝐼𝑀 (𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛) of
joiner (resp., 𝑠 ∈ 𝑆) as depicted by Figure 3;

2 Perform inequality join between 𝑟 and index structures of stream 𝑆 in𝑊𝑀

(explained by Figure 4), as well as with𝑊𝐼𝑀 of PO-Join structures
(detailed by Algorithm 4 and Figure 5) (resp., 𝑠 ∈ 𝑆);

3 Insert 𝑟 into the index structure of stream 𝑅 in𝑊𝑀 as depicted by
Figure 3 (resp., 𝑠 ∈ 𝑆). ;

4 Update the𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 counter. ;
5 if𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 > 𝛿 then
6 Compute offset array𝑂𝑟,𝑠 in 𝑃𝐸𝑠 of𝑊𝑀 (Algorithm 3);
7 Partition𝑂𝑟,𝑠 to downstream PEs of𝑊𝐼𝑀 (𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛) in a

round-robin fashion;
8 Compute permutation array (𝑃) from index structures of𝑊𝑀 to the

dedicated 𝑃𝐸𝑠 (Algorithm 2);
9 Downstream permutation array (𝑃) to 𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 of𝑊𝐼𝑀 round

robinly;
10 Insert𝑂𝑟,𝑠 and 𝑃 into the linked list of PO-Join 𝑃𝐸;
11 Update the state of𝑊𝐼𝑀 among 𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 ; // Check slide

interval 𝑊𝑠 of window threshold 𝑊𝐿

12 Re-initialize the𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

R

S

R.POWER R.COOL

S.POWER S.COOL

Router

R∩S
1 2 n

1 2 m

Mutable (WM) Merging

<id, O
r,s

>

<id, O
r,s

>

Immutable (WIM)

PO-Join

SPO-Join

1

2

3

n

I I

I I

O
r,s

1 3 m=

O
r,s

1 4 m=

R, S

Joiner

H
()

H()

PE= 1, 2,--- n

O
r,s

O
r,s

P

P

Permutation
po

1
po

2
po

n

po
1

po
2

po
n

po
1

po
2

po
n

po
1

po
2

po
n

rr

ss

rrss

r

r

s

s

r
s

s
r

s r

r s

r

r

PE
1

PE
2

id, P
r

id, P
s

δ

δ

Figure 3: SPO-Join model (Q 1)

3.2 Mutable Component
A new tuple from streams 𝑅 or 𝑆 are indexed into the mutable
components. These tuples are also probed against the underlying
index structures based on predicate as shown by Figure 3.Mutable
components contain the subset of the sliding window𝑊𝐿 tuples.

Tuple insertion. We utilize our first use case Q1 and Figure 3
to understand the insertion process. A new tuple is inserted
into the router part of the stream join model. Let us consider
a tuple from stream 𝑅, 𝑟 = {𝑖𝑑, [𝑅.𝑃𝑂𝑊𝐸𝑅, 𝑅.𝐶𝑂𝑂𝐿]}. Initially,
the router split and partition this tuple to both 𝑃𝐸𝑠 of mutable
components for predicate evaluation. Additionally, it assigns a
time unit to each tuple based on its arrival order in the router
component [18]. This approach helps to reduce conflict between
tuples whose event timestamps are identical, especially for the
time-based sliding windows. The tuple from stream 𝑅 with 𝑟 =

{𝑖𝑑, 𝑅.𝑃𝑂𝑊𝐸𝑅} is partitioned to 𝑃𝐸1 and 𝑟 = {𝑖𝑑, 𝑅.𝐶𝑂𝑂𝐿} to
𝑃𝐸2. Furthermore, this tuple is indexed into 𝐼𝑟 and probed against
𝐼𝑠 in 𝑃𝐸1 (resp., 𝑃𝐸2).

Tuple evaluation. Akin to insertion, searching is also done on
the indexing data structures. Let us continue the use-case Q 1with
Figure 4. For tuple 𝑟𝑖 < 𝑖𝑑 : 202, 𝑅.𝑃𝑂𝑊𝐸𝑅 : 3000 >, the identi-
fied leaf node (N) of index structure 𝐼𝑠 contain S.POWER=3300 as
shown by Figure 4 with 1 . However, the result set includes all
tuples in the leaf nodes where 𝑟𝑖 < 𝑆.𝑃𝑂𝑊𝐸𝑅. Instead of a hash
table, we introduce a bit array with the same length of mutable
data structure as depicted by Figure 4 with 2 . The identifiers
of the mutable window tuples act as index positions for the bit
array. In this case, all bit positions of the bit array are set to true
where the new tuple 𝑟𝑖 satisfies the predicate condition. After
predicate evaluation, this bit array is partitioned towards the
logical operator 𝑃𝐸 using hash partitioning (𝐻1 (id: 202)). Sim-
ilarly, for 𝑟𝑖 : (id:202, 𝑅.𝐶𝑂𝑂𝐿:500), the predicate evaluates 𝑟𝑖>
𝑆.𝐶𝑂𝑂𝐿 and creates a bit array. This bit array is forwarded to
logical operator 𝑃𝐸 using hash partitioning and performs a log-
ical operation as depicted by Figure 3 with 3 . This approach
may introduce processing guarantee issues. However, we mit-
igate these concerns by employing hash partitioning from the
predicate operator 𝑃𝐸𝑠 to the logical operator 𝑃𝐸𝑠 , along with
a small hash table in the 𝑃𝐸𝑠 of the logical operator. This hash
table stores the partial results of upstream 𝑃𝐸𝑠 , ensuring correct-
ness for the bitset logical operator as elaborated in Section 4.3.
Once both bit arrays arrive at the 𝑃𝐸 of the logical operator, an
AND operation is initiated between the bit arrays to obtain the
complete query result.

Time complexity. The cost of inserting a tuple 𝑡𝑖 into the
indexing data structure is𝑂 (log𝑛). For range searches, the cost is
𝑂 (log𝑛+𝑚), wherem is the cost of traversing from the identified
node N to all nodes that meet the specified predicate condition.
A single bit flip in the bit array is 𝑂 (1) but with m bits in the

148

array it can reach 𝑂 (𝑚) in the worst case. Additionally, 𝑂 (𝑚) is
the computation cost of logical operation on bit arrays.

Memory cost analysis. Let IM be the cost of memory con-
sumption by all indexing data structures for mutable components.
Then, I𝑀 can be represented by the following Equation 1:

IM =

𝑛∑︁
𝑗=1

𝒾𝑀 + 𝒸 (1)

In Equation 1, 𝑛 shows the number of indexing structures for
the fields. Here 𝒾𝑀 is the memory cost of a single field, while
𝒸 denotes the price of buffering for logical operations and data
provenance. The cost of 𝒸 is much smaller than the cost of 𝒾𝑀
(𝒸 << 𝒾𝑀).

3.3 Merging to Immutable Component
In the SPO-Join, we merge the mutable window (𝑊𝑀) into an im-
mutable data structure, which depends on the merging threshold
(𝛿) as depicted by Figure 3 with conditional box. Initially, we use
the slide interval𝑊𝑠 as 𝛿 , either on a count-based or time-based
stream sliding window (𝛿 =𝑊𝑠). However, this method incurs
additional merging cost for slide intervals of larger size. To ad-
dress this challenge, we propose subdividing the slide interval
into sub-intervals, where each sub-interval acts as 𝛿 based on
the number of downstream processing instances of the PO-Join
component (𝛿 =𝑊𝑠/|𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 |). This mitigates overhead as-
sociated with larger slide interval merging, however, introduces
state synchronization overhead, as detailed in Section 4.2.

The leaf nodes of the B+tree indexing structure in mutable
components contain sorted data items. These nodes also include
the explicit addresses of the predecessor and successor nodes,
making it less expensive to scan sorted data items to compute
permutation and offset array for the PO-Join structure.

The offset array is computed on 𝑃𝐸𝑠 of mutable component
and then partitioned to the PO-Join operator 𝑃𝐸 with an identifier
and an offset value (<id, O𝑟,𝑠>) as shown by Figure 3. However,
the permutation array is computed between the intermediate
𝑃𝐸𝑠 among mutable and immutable components of SPO-Join as
depicted by Figure 3. Initially, the permutation array is computed
between fields (𝑅.𝑃𝑂𝑊𝐸𝑅, 𝑅.𝐶𝑂𝑂𝐿) of the same streaming data
such as 𝑅 (resp., 𝑆) and then forwarded toward PO-Join operator
𝑃𝐸 with an identifier and a permutation value <id,P𝑟> (resp.,
<id,P𝑠>).

Permutation computation. It involves generating an array
that indicates the position of tuples with different fields of the
same stream w.r.t the tuple identifier. For instance, in query Q1
and Figure 5, consider the tuple from stream 𝑅 with field 𝑅.𝐶𝑂𝑂𝐿
and identifier 𝑟2 (the first tuple in a sorted order). The position

Algorithm 2: Permutation computation of stream 𝑅

Input: Sorted 𝑅𝑎 [𝑇𝑢𝑝𝑙𝑒𝑠], Sorted 𝑅𝑏 [𝑇𝑢𝑝𝑙𝑒𝑠]
Output: Permutation-Array (P)[]

1 counter← 1
2 tmp[]← 0 ; // Initialize an empty array

3 for ID𝑖 ∈ 𝑅𝑎 do
4 tmp[ID𝑖] ← counter ; // ID is an identifier of the tuple

which is assigned by the router component of SPO-Join

5 counter← counter + 1
6 for ID𝑗 ∈ 𝑅𝑏 do
7 P[j]← tmp[ID𝑗] ; // ID remains the same among fields of

tuple

8 tmp[]← 0

id:202, [POWER: 3000, COOL: 500])r
i =(

0 1 0 1 00∩

500

1000 1560 3300 4000
[s

10
, s

15
] [s

30
] [s

21
, s

100
] [s

201
]

100
[s

100,
 s

21
]

500 800 1000
[s

30
] [s

10
, s

15
] [s

201
]

s
201

s
100

s
30

s
21

s
15

s
10

B
R B

S

r
i
, [s

21
, s

100
]

3000

I

s
10

s
15

s
21

s
30

s
100

s
201

0 0 1 0 1 1

I s

s

S.POWER

S.COOL

1

2
3

Leaf nodes: I s

sLeaf nodes: I

Figure 4: Mutable-part stream join (Example Q 1)

of 𝑟2 in the sorted array of field 𝑅.𝑃𝑂𝑊𝐸𝑅 is 4. This array aids in
reducing the cost associated with intersection operations [13].

The process of computing permutation array is outlined in
Algorithm 2. The algorithm takes a sorted array of tuples from
both fields a and b for the identical streaming data R as input
and produces an output that provides the position of field 𝑏 in
the field 𝑎 (𝑎 and 𝑏 are field data as 𝑅.𝑃𝑂𝑊𝐸𝑅 and 𝑅.𝐶𝑂𝑂𝐿 in
Q1). Initially, the algorithm initializes a temporary counter on
line 1 and a temporary array that holds the identifiers of tuples
on line 2. From line 3 to line 5, the algorithm iterates through all
tuples of field 𝑎 and fills the temporary array with an incremental
counter. During this process, the field identifier of 𝑎 is considered
an index location in the temporary array. The algorithm then
iterates through the opposite field items 𝑏, on line 6. Finally,
the permutation array is filled with the temporary array where
field 𝑏 identifier acts as index position for the temporary array
as depicted by line 7 and then partitioned toward the PO-Join
operator 𝑃𝐸.

Offset computation. Offset computation requires identifying
the relative location of tuples from a sorted array of different
fields of opposite streams (𝑅 and 𝑆) depending on the predicate.
For example in Q1 and Figure 5 the predicate exists between
𝑅.𝐶𝑂𝑂𝐿 and 𝑆.𝐶𝑂𝑂𝐿, the relative location of the first sorted
tuple from 𝑅.𝐶𝑂𝑂𝐿 say 𝑟2 = [1600] in 𝑆.𝐶𝑂𝑂𝐿 should be 2. This
array helps to identify the location of the opposite streaming
tuple that satisfies the predicate condition in a constant time,
further speeding up the bit array scanning operation [13].

Algorithm 3 outlines the process for computing offset, where
the input is the indexing data structures for the opposite stream 𝐼𝑅
and 𝐼𝑆 of 𝑅.𝐶𝑂𝑂𝐿 and 𝑆.𝐶𝑂𝑂𝐿 (resp., 𝑅.𝑃𝑂𝑊𝐸𝑅 and 𝑆.𝑃𝑂𝑊𝐸𝑅),
and the output is the relative location of data items of 𝐼𝑅 in 𝐼𝑆 .

Algorithm 3: Offset computation between opposite
fields of predicate relations
Input: Index-tree(𝐼𝑅), Index-tree(𝐼𝑆)
Output: Offset-array [𝑟𝑖 , 𝑠𝑖] (𝑂𝑖)

1 Offset-index← 0
2 for 𝑘𝑟 ∈ 𝐼𝑅 do
3 if Offset-index==0 then
4 Offset-index← 𝐼𝑆 .search(𝑘𝑟)
5 Offset-array [𝑘𝑟 ,Offset-index]
6 continue;

7 else
8 for 𝑘𝑠 [Offset-index] ∈ 𝐼𝑆 to 𝑘𝑠 .𝐿𝑒𝑛𝑔𝑡ℎ do
9 if 𝑘𝑠 ≥ 𝑘𝑟 then
10 Offset-index← 𝑘𝑠 .𝑝𝑜𝑠 ; // offset index is

updated with new position

11 Offset-array [𝑘𝑟 ,Offset-index]
12 break;

13 else
14 Offset-array [𝑘𝑟 , 𝑘𝑠 .𝐿𝑒𝑛𝑔𝑡ℎ + 1]

149

To begin with, the offset index position is initialized to 0 in line 1.
Starting from line 2, all keys of 𝐼𝑅 are iterated linearly. If the offset
index position is 0, the algorithm begins searching for the key
𝑘𝑟 in the opposite index data structure 𝐼𝑆 from the start, updates
the index position with the newly identified position of 𝑘𝑟 in 𝐼𝑆
in line 4, and sets the offset location of 𝑘𝑟 to the updated relative
index position in line 5. The outer loop then continues to the next
key in 𝐼𝑅 . Similarly, if the offset index position is greater than 0,
the algorithm scans the keys of 𝐼𝑆 from the newly offset position
to the end, as depicted by lines 8 to 12. If the key 𝑘𝑠 ∈ 𝐼𝑆 is greater
than or equal to the key 𝑘𝑟 ∈ 𝐼𝑅 , then the offset index position is
updated with the position of 𝑘𝑠 in 𝐼𝑆 as explained by line 11. If
𝑘𝑟 does not find any resemblance, then the offset position for 𝑘𝑟
is set to the number of keys plus one, as highlighted in line 14 of
Algorithm 3.

3.4 Immutable part Tuple Evaluation
Algorithm 4 explains the probing phase in the immutable part
(PO-Join) of the proposed stream inequality join. The input to
the algorithm is a new tuple 𝑡𝑖 , the total linked PO-Join data
structure, and the number of cores available in the computing
node.

In line 1, we initialize the number of threads equal to the num-
ber of cores available in the node. However, another choice can
be to initialize these threads with the size of the linked list. This
process could increase the overhead of more context switching
between threads when the available cores are limited specifically
for commodity hardware. Lines 3 to 14 describe the process of
the PO-Join data structure. However, we use a lock to ensure that
multiple threads will not get the same linked list index. In line 5,
we check the size of the linked list and ensure that all linked list
elements are assigned to threads. Each thread computes the join
on a new tuple 𝑡𝑖 with a selected linked list index of PO-Join, as
depicted by line 11. Similarly, line 12 indicates the updating of
the sliding window counter.

Tuple evaluation with PO-join. Figure 5 depicts the pro-
cess of stream inequality join by the immutable component of
SPO-Join. Figure 5 with 1 represents the required offset and
permutation arrays from the index trees.

In a stream join, the tuple can come from both stream 𝑅 or
stream 𝑆 . Therefore, we have provided descriptions for both tu-
ples against Q1 along with an example. 1) Initialize an empty bit
array (𝐵𝑆) for stream 𝑆 upon receiving a new tuple <𝑟𝑖 , 𝑅.𝑃𝑂𝑊𝐸𝑅 :
1400;𝑅.𝐶𝑂𝑂𝐿 : 3000> from stream 𝑅. 2) To find the relative loca-
tion of a tuple in an offset array, perform a binary search on the
offset array 𝑂2 for the field R.COOL: 3000. When performing the
binary search, the position 3, which corresponds to 3500, is found.
Since this value is greater than the cooling value of 3000, use
position 2 of offset array 𝑂2 such as position found minus one.
3) Set bit positions of 𝐵𝑆 to 1 for the permutation array 𝑃2[1] to
𝑃2 [𝑂2 [2]]. In this example, locations 𝑃2 [1]=1 and 𝑃2 [2]=3; now
bit positions 1 and 3 should be 1 of 𝐵𝑆 . 4) Perform a binary search
for the field 𝑅.𝑃𝑂𝑊𝐸𝑅 tuple in the offset array 𝑂1. 5) Start scan-
ning the 𝐵𝑆 from 𝑂1 [𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1] to the end of offset array 𝑂1.
For example, if we perform a binary search for 𝑅.𝑃𝑂𝑊𝐸𝑅=1400
and it returns 1800, we should consider position 3 as the starting
point (1800 is already greater than 1400) and scan the bit array
from 𝑂1 [3] to the end of 𝐵𝑆 . All identifiers of the identified 1’s
in the 𝐵𝑆 are result set. In this case, the result set for 𝑟𝑖 tuple
is 𝑠2 as shown by Figure 5 with 2 . To efficiently evaluate the
new tuple from stream 𝑆 say <𝑠𝑖 , 𝑃𝑂𝑊𝐸𝑅 : 2700;𝐶𝑂𝑂𝐿 : 2100>,

1 0 1 0 0

s
1

s
5

s
2

s
4

s
3

B
S
=

R: POWER: 1400; COOL: 3000

COOL:3000; O
2
[3]= 3500

B
S
=P

2
[1] to P

2
[O

2
[3-1]]

POWER:1400; O
1
[3]=1800

O
1
[3] to B

s
[length]

1 0 1 0 0

s
1

s
5

s
2

s
4

s
3

1

B
S
=

[r
i
, s

2
]

(r
i
) (s

j
)

S: POWER: 2700; COOL: 2100

COOL:2100; O
2
[2]= 2100

B
R
=P

1
[O

2
[2+1]] to P

1
[length]

1 1 0 0

r
3

r
4

r
1

r
2

B
R
=

POWER: 2700; O
1
[length+1]

O
1
[length] to B

R
[0]

1 1 0 0

r
3

r
4

r
1

r
2

B
R
=

r
3

r
4

,s
j
,

2 2 3 5

1200 1260 1800 2200

2 2 4 5
1600 2100 3500 4000

P
1

P
2

4 3 2 1

1 3 4 2 5

O
1
=

O
2
=

=

=

R S

r
3

r
4

r
1

r
2

r
2

r
1

r
4

r
3

s
1

s
5

s
2

s
3

s
4

s
1

s
2

s
4

s
3

s
5

2 3

1200 1260 1800 2200

1600 2100 3500 4000

500 1600 1800 2100 3000

1100 2200 3000 3600 4000

R.POWER S.POWER

R.COOL S.COOL

I sI s

[]

rI I r

Figure 5: Two-way join (Example: Q1)

we perform a binary search on the existing 𝑂2 for 𝑆.𝐶𝑂𝑂𝐿 and
set 1 in the bit set 𝐵𝑅 from 𝑃1 [𝑂2 [𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛]] to the end of 𝑃1.
Moreover, we also identify the position of 𝑆.𝑃𝑂𝑊𝐸𝑅 in 𝑂1 and
start scanning the bit array from the identified 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of 𝑂1 to
the start of 𝐵𝑅 . All identified 1’s locations of the bit array are the
result set as shown by Figure 5 with 3 . Updating the bit arrays
and scanning the tuples can be changed based on the predicate
value as explained in [13] .

Tuple evaluation during merge operation. When a merg-
ing interval (𝛿) is received in the mutable part of the sliding
window as shown by Algorithm 1 line 5, a flag tuple is sent to
the chosen downstream 𝑃𝐸 of the PO-Join operator to initiate
the merge operation. Once the downstream 𝑃𝐸 receives the flag
tuple, an empty queue is dedicated to start inserting incoming
tuples from the source. After the merge operation completes and
builds the respective PO-Join structure in that 𝑃𝐸, the tuples from
the queue start probing the newly merged PO-Join structure until
the queue becomes empty.

Tuple removal. Akin to the chained index [18], tuples are
removed in coarse granular way for both small and large slide
intervals from𝑊𝐼𝑀 . For smaller slide intervals (𝛿 = 𝑊𝑠), the
expired sub-interval is removed from a single downstream 𝑃𝐸 of
the PO-Join operator. However, for larger slide intervals where
we subdivide the slide interval (𝛿 =𝑊𝑠/|𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 |) contents
to all downstream 𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 . In this case, all 𝑃𝐸𝑠 of the PO-
Join operator hold the expired tuples of the sliding window. The
old indexes of PO-Join linked list on each 𝑃𝐸 that contain the
expired slide interval contents are removed on each expiration.
We provide detailed information on tuples state management in
Section 4.2.

Time complexity. Assigning an index value to the tempo-
rary array requires 𝑂 (𝑛) time. Similarly, it takes 𝑂 (𝑛) time to
obtain the permutation location of the field b (𝑅.𝐶𝑂𝑂𝐿) in the

Algorithm 4: PO-Join: Tuple 𝑡𝑖 evaluation on PE𝑖 of𝑊𝐼𝑀

Input: 𝑡𝑖 ; LinkedList⟨PO-Join1→𝑛 ⟩; |cores |
Output: 𝑡𝑟 ⊲⊳𝜃 𝑆𝐼𝑀 (join result)

1 Initialize-threads← |cores |
2 Current-index← 0
3 while true do
4 lock ; // Ensure multiple threads do not access the same

[PO-Join]

5 if Current-index < LinkedList.size() then
6 PO-Join← LinkedList.get(Current-index)
7 Current-index← Current-index + 1
8 else
9 break ; // All elements have been accessed

10 unlock
11 𝑡𝑖 ⊲⊳𝜃 PO-Join ; // Explained with Figure 5

12 Update the state of𝑊𝐼𝑀 for 𝑃𝐸𝑖

150

field a (𝑅.𝑃𝑂𝑊𝐸𝑅) (resp., 𝑆.𝐶𝑂𝑂𝐿 and 𝑆.𝑃𝑂𝑊𝐸𝑅). Here, n is the
total tuples from stream 𝑅. The total time complexity for the
permutation array of stream 𝑅 is 𝑂 (𝑛 + 𝑛).

The first key from 𝐼𝑅 requires 𝑂 (log𝑚) to find its location in
the leaf node of 𝐼𝑆 that serves as a reference point. All other keys
from 𝐼𝑅 start searching the relative location from that reference
point. Additionally, this reference location is updated for each 𝑟𝑖 .
So, the total complexity can be written as 𝑂 (𝑛 +𝑚). We require
two binary searches on sorted data items for the probing phase.
The time complexity for searching a tuple is 𝑂 (log𝑛). Moreover,
filling the bit array for the permutation location has constant
time 𝑂 (1).

Memory cost analysis. Equation 2 represents the memory
cost of SPO-Join’s immutable component, denoted by I𝐼𝑀 .

IIM =

𝑚∑︁
𝑗=1

𝑥 (𝑃𝒾 +𝑂𝒾) + 𝛽 (2)

In Equation 2, the𝑚 represents the total number of PO-Join
𝑃𝐸𝑠 of the streaming window that exists on distributed 𝑃𝐸𝑠 . The
𝑥 represents the number of predicate relations 𝜃 . 𝑃𝒾 and 𝑂𝒾

represent the cost of permutation and offset array for the opposite
stream of relations. Similarly, 𝛽 represents the cost of a bit array
for an input tuple 𝑟 or 𝑠 that is further used for finding the
matching tuples.

4 DISTRIBUTED JOIN PROCESSING
In this section, we discuss different aspects of efficient distributed
query processing for SPO-Join.

4.1 Data Partitioning
When dealing with the mutable component, the results of the
predicate operators are hash partitioned to the logical opera-
tor 𝑃𝐸𝑠 . Hash partitioning ensures correctness as detailed in
Section 4.3. The offset array is partitioned to the downstream
instances in a round-robin way, however, the permutation array
requires intermediate 𝑃𝐸𝑠 . First, the tuples are downstream from
the mutable operator’s 𝑃𝐸𝑠 to the intermediate dedicated 𝑃𝐸𝑠 of
the permutation array using direct partitioning. From the ded-
icated 𝑃𝐸𝑠 , the data is partitioned using a round-robin scheme
towards PO-Join 𝑃𝐸𝑠 to equally utilize the instances of PO-Join
operators.

4.2 State Management
In SPO-Join, we employ multiple 𝑃𝐸𝑠 for immutable components.
We use three different strategies to manage the state of the sliding
window among these distributed 𝑃𝐸𝑠 , particularly for count-
based (as time-based is straightforward).

Firstly, the selection of downstream 𝑃𝐸𝑠 depends on the ratio
of𝑊𝐿 to𝑊𝑠 on available nodes (a single node may contain more
than one 𝑃𝐸) for smaller-size slide intervals. The permutation
and offset arrays from the mutable component are distributed in
a round-robin style. When a new permutation array is assigned
to the downstream 𝑃𝐸, it signals that the existing sliding interval
𝑊𝑠 on this 𝑃𝐸 has expired and should be removed from its data
structure.

Secondly, for larger sliding intervals, the approach described
above increases the cost of merging. To solve this problem, we
propose dividing the sliding interval𝑊𝑠 with total instances of
downstream processing elements (𝑃𝐸𝑠PO-Join). In this case, when
we send the permutation array to PO-Join 𝑃𝐸, we also send the
size of merging tuples to all other 𝑃𝐸𝑠 . This is depicted in Figure

Distributed cache

PO-Join

P

Partitioner

A) Partitioner B) Distributed cache

W
L
=1000k

W
2

W
s
=200k

δ=W
s
/ |PEs|

50k 250k

w
state

PE
1

100k

w
state

PE
2

w
sync

150k

w
state

PE
3

w
sync

200k

w
state

PE
4

w
sync

1000k

W
1

t
1-50k

t
150k-200k t

n-l
,t

n-2,
..

.,t
n

W
IMt

200k-250k

W
M

t
200k-250k

W
IM t

n-l -
t
n

W
Mt

m
, t

m+1

t
m+1

t
m+1

t
m+1

t
m+1

t
200k-250k

=250k

=200k+50k

=200k+50k

=200k+50k

w
state

+tc

=250k+tc

=250k+tc

=250k+tc

Expired window

Figure 6: State-management for sliding window

6 (A-left). We check the tuple removal condition for new tuples
and remove the first index of the linked PO-Join structure from
PEs.

Thirdly, to simplify the communication between 𝑃𝐸𝑠 , we have
adopted a new strategy that uses a distributed cache as depicted
by Figure 6 (B-right). Instead of sending the sliding count to other
𝑃𝐸𝑠 , the first 𝑃𝐸 continuously sends its window state to the dis-
tributed cache after a regular interval. Similarly, the other 𝑃𝐸𝑠
synchronize their local windows from the cache after a specific
interval of time or count. For every new tuple, the window up-
dating procedure is used to remove the first index of the linked
PO-Join structure from the 𝑃𝐸.

Example Let us consider an example of a sliding windowwith
a window length (𝑊𝐿) of 1000K, a slide interval (𝑊𝑠) of 200K, and
4 downstream 𝑃𝐸𝑠 of the PO-Join operator. The slide interval 𝛿 is
divided into sub-intervals based on the downstream 𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 ,
as shown in Figure 6. Each sub-interval from upstream processing
instances is downstream to PO-Join 𝑃𝐸𝑠 in a round-robin way.
Tuples of𝑊𝑠 exist on all 𝑃𝐸𝑠 of PO-Join. For strategy A), tuples
from 200K to 250K are partitioned to 𝑃𝐸1. However, the count
of these tuples (50K) updates the local window state of all other
processing elements. Figure 6 illustrates this state management
for the slidingwindow. For strategy B), each evaluating tuple 𝑡𝑚+1
also updates the local window state of 𝑃𝐸1 as𝑤𝑠𝑡𝑎𝑡𝑒 = 250 + 𝑡𝑐 .
Here 𝑡𝑐 depicts the local tuple counter for 𝑃𝐸1. This update is
then propagated to the distributed in-memory cache, and all other
processing elements synchronize their local window state from
this cache (DC).

False positives. These schemes may produce a false posi-
tive for some tuples. To better understand this, let us take an
example with the help of Figure 6. Here, we have two sliding
windows𝑊1 and𝑊2, where𝑊2 starts after the slide interval of
𝑊1 (200K) tuples. The new tuples of𝑊2, such as 𝑡𝑚 and 𝑡𝑚+1 are
broadcasted to both𝑊𝑀 and𝑊𝐼𝑀 , where the immutable com-
ponent 𝑃𝐸𝑠 produce join results faster than mutable windows.
However, the local state of the window among PO-Join 𝑃𝐸𝑠 is
updated depending on each merge operation from the mutable
part. So, the result set for 𝑡𝑚 or 𝑡𝑚+1 of𝑊2 may perform join on
expired sub-intervals of𝑊1 that exist on distributed processing
instances due to delay in removing expired tuples, especially for
high input data rate. The distributed cache-based approach is
employed to reduce the rate of these false positives. The first
processing element, 𝑃𝐸1, updates the window state depending

151

on each evaluating tuple, i.e., 𝑡𝑚 or 𝑡𝑚+1, and partitioner informa-
tion. Others 𝑃𝐸𝑠 sync their window state to 𝑃𝐸1, reducing false
positives for new tuples, though it may still introduce expired
tuple results for 𝑡𝑚+1.

4.3 Processing Guarantees
Mutable.We use hash partitioning to ensure that tuples with the
same id are processed by the same processing element from the
pool of 𝑃𝐸𝑠 . However, hash partitioning may sometimes result
in incorrect outputs if different keys are processed by the same
processing element, especially when the logical operator 𝑃𝐸𝑠 is
limited with a high insertion rate of tuples. Let us consider a
new tuple 𝑡𝑖 from stream 𝑅, comprising 𝐼𝑅.𝐶𝑂𝑂𝐿 and 𝐼𝑅.𝑃𝑂𝑊𝐸𝑅

for the query Q1. The result set for 𝐼𝑅.𝐶𝑂𝑂𝐿 is produced more
quickly than for 𝐼𝑅.𝑃𝑂𝑊𝐸𝑅 due to a less dense index structure or
low selectivity. The outputs from both index structures are then
sent downstream to 𝑃𝐸𝑚 of the logical operator using hash parti-
tioning 𝐻 (𝑖) as depicted by Figure 3. As a result, the output from
𝐼𝑅.𝐶𝑂𝑂𝐿 arrives earlier than the output from 𝐼𝑅.𝑃𝑂𝑊𝐸𝑅 , forcing it
to wait (out-of-order arrival at PEs of the logical operator). Mean-
while, another tuple 𝑡𝑖+1 generates the result for 𝐼𝑅.𝐶𝑂𝑂𝐿 and
through hash partitioning, it selects the same downstream 𝑃𝐸𝑚
which overrides the results of 𝑡𝑖 from 𝐼𝑅.𝐶𝑂𝑂𝐿 . Subsequently,
the logical operation is performed between the results of 𝑡𝑖 of
𝑅.𝑃𝑂𝑊𝐸𝑅 and 𝑡𝑖+1 of 𝑅.𝐶𝑂𝑂𝐿 on 𝑃𝐸𝑚 . To overcome this issue,
we use a lightweight hash table. The hash table first checks if the
key is already present in its data structure then logical operation
can be performed among bit arrays for final result accumulation,
finally, the key is removed from the hash table.

Immutable. During the merging of tuples from the mutable
part and computing the permutation and offset array, there may
be data integrity issues, especially for high-input data tuples or
different sliding intervals between streams. To solve this problem,
each batch of the mutable component (permutation or offset
array) is assigned a separate identifier 𝑖𝑑 . In the PO-Join operator,
a smaller hash table is maintained that holds these batches along
with their respective 𝑖𝑑 . For Q1, each record in the hash table is
represented as 𝑖𝑑𝑖 :< 𝑃𝐸1, 𝑃𝐸2,𝑂1,𝑂2 >. The PO-Join structure
is created and inserted into the linked list only from this hash
table. After the insertion of these batches into the linked list, the
𝑖𝑑 , along with all of its payload, is removed from the hash table.

5 EVALUATION METRICS AND RESULTS
In this section, we describe the evaluation metrics, dataset, ex-
perimental setup, and discussion of the results for distributed
stream inequality join algorithms.

5.1 Metrics
We choose these evaluation metrics from the benchmark on
DSPS [11] and other related studies on stream processing [18, 25].

Throughput. It is the number of tuples that join algorithms
process per second, reflecting their data processing capacity.

Latency. For this study, we have chosen to analyze two types
of latency: event time latency and processing latency [11]. Here
the event time latency refers to the time taken for a tuple to
be completely processed, from the moment it enters into the
router component of DSPS until it is processed by our SPO-Join
components. This type of latency also includes any network-
related costs associated with processing the tuple. On the other
hand, processing latency refers to the time taken for a tuple to be

processed from the moment it enters the joiner until it is finally
processed.

Match rate [25]. The sliding window has a dynamic match-
ing rate for every new tuple that satisfies the query predicate
conditions. We synthetically varied the matching rate for each
sliding window and observed the SPO-Join performance.

Scalability. In the context of streaming, scalability can be
defined using two terms: vertical scalability (scale up-increases
the number of processing instances) and horizontal scalability
(scale out-increases the number of machines) [25].

Correctness and completeness. For the mutable part of
SPO-Join, we assess the correctness of tuple processing, wherein
a singular tuple undergoes complete processing by diverse 𝑃𝐸𝑠 .
Similarly, for the immutable part, we evaluate proposed state
management techniques on the false positive with varying inser-
tion rates.

We conduct experiments by varying parameters such as win-
dow length, slide intervals, 𝑃𝐸𝑠 , number of machines, matching
rate, and merging threshold, depending on each join algorithm.

5.2 Datasets and Queries
We used two real-time datasets and one syntactic dataset, along
with three queries for our experiments as summarized in Table 1.
• Real datasets. We use the New York taxi dataset that was
introduced in the DEBSGreat Challenge of 2015 [10]. It consists
of geospatial data for an online taxi service operating within
the city. This data includes information about each taxi trip,
such as the start and end times, the location, and the distance
traveled. It contains 172M tuples. Additionally, we utilize the
BLOND [15] dataset, which contains data on the current and
voltage readings of electric appliances in a building. We used
a subset of the BLOND-250 dataset that consists of 50 days of
readings taken on every hour. However, we use 2B tuples for
our evaluation.
• Synthetic dataset. We use a synthetic dataset with varying
match rates created by the DSPS engine at runtime. The total
size of the synthetic dataset is 32M tuples.

Q 3: Analysis of NYC Taxi Trips: Distance vs. Fare
SELECT trip.ID FROM NYC

WHERE NYC.trip_dist1 > NYC.trip_dist2

AND NYC.trip_fare1 < NYC.trip_fare2

WINDOW AS (SLIDE INTERVAL 'D' ON 'W');

To evaluate the proposed stream inequality join algorithm,
we have conducted experiments using self-join (Q 3), band join
(Q 2), and cross join (two-way join) (Q 1) queries. We employ
the New York taxi dataset (NYC) for self-join and band join.
Additionally, we use the BLOND dataset for cross-join query
Q1. This involved calculating the power for data center racks
and cooling infrastructure using various files of current (I) and
voltage (V) readings, with their product used as power. Moreover,
we opt count-based window for Q1 and Q3 and time-based for

Table 1: Inequality queries type and datasets description

Query Dataset Tuples 𝛿 ranges Join type Bandwidth

Q 3 NYC-taxi [10]
Synthesize

172M
32M 10K-100K Self join

Q 2 NYC-taxi 172M 1min-5min Band join 3𝑥10−2

Q 1 BLOND [15]
Synthesize

2B
32M 20K-300K Cross join

152

60K-600K 70K-700K 80K-800K 90K-900K 100K-1000K
Slide-interval and window length

101

102

103

104

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Figure 7: Throughput for self join Q3

1min-10min 2min-20min 3min-30min 4min-40min 5min-50min
Slide-interval and window length

101

102

103

104

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)
Figure 8: Throughput for band join Q2

100K-1M 200K-2M 300K-3M 400K-4M 500K-5M
Slide-interval and window length

10−1

100

101

102

103

104

Th
ro

ug
hp

ut
 (T

up
le

s/
se

c)

Figure 9: Throughput for cross join Q1

Q2 with bandwidth of 3𝑥10−2. The same queries are adopted for
synthesized data.

5.3 Experimental Setup
We use 10 machines with varying RAM sizes, ranging from 4GB
to 12GB, and disk capacities ranging from 120 GB to 500 GB. All
machines are connected to the same network. We have utilized
Apache Storm 2.4.0 as a benchmark DSPS, implementing all join
algorithms with the same semantics of Apache Storm, such as
Spout and Bolt to maintain system uniformity. We do not employ
other streaming systems, such as Flink and Spark Streaming as
the former lacks built-in support for theta join [2], while the
latter only supports mini-batches. Nimbus is used as a master
service, whereas Supervisor as a workers service. Zookeeper main-
tains coordination among nodes. Nodes are synced through the
local NTP server on Nimbus node. Apache Kafka 3.5.0 and Re-
dis are employed for streaming the data to the DSPS and as an
in-memory database for distributed cache. Moreover, we employ
at least once processing guarantee to ensure complete reliability
against message loss.

5.4 Results and Discussion
In this sub-section, we present experimental results for stream
inequality join algorithms.

Mutable-Immutable join structure. Figure 7 to Figure 10
provide results for distinct mutable and immutable design-based
stream join strategies against real-world datasets. Figure 7 repre-
sents the throughput for Q3 using sliding intervals ranging from
60K to 100K and window sizes from 600K to 1M tuples. The 𝑃𝐸𝑠
for the immutable part also vary from 6 to 10. The y-axis depicts
the mean and standard deviation of tuple processing through-
put. The results indicate that the immutable PO-Join component
outperforms the hash-based and bit-based immutable CSS-join
algorithms by an average of 35x and 16x, 25x and 12x, 43x and
22x, and 57x and 31x, respectively, as the window size increases.
Moreover, for the mutable component, the graph shows that the
bit-based stream join performs 19x better than the hash-based
mutable component for the 60K slide interval. However, when
comparing the lower limit of the standard deviation for the bit-
based join and the upper limit of the hash-based join algorithm,
the proposed bit array-based mutable join is 3.6x times better
than the alternative. Additionally, the mutable part of the SPO-
Join algorithm shows superior performance than the hash-based
intersection join, with a mean of 9x, 12x, 17x, and 44x as the
sliding window size increases from 70K to 100K.

Figure 8 shows the average throughput and standard deviation
for Q2 for an increasing time-based sliding window. The figures
indicate that the immutable part of the proposed SPO-Join has

an average tuple processing throughput that is 1.5x, 1.3x, 1.6x,
1.3x, and 1.5x better than the CSS-based data structure. Similarly,
the bit-based join strategy has achieved 7x, 4.9x, 5x, 5.5x, and
4.9x better throughput for the mutable component than the hash-
based join mutable join strategy. Moreover, the difference in
standard deviation is 1.6x, 3.8x, 4.8x, 2.0x, and 3.02x for immutable
components and 5.3x, 3.9x, 1.02x, 1.09x, and 1.14x for mutable
join strategies.

Figure 9 depicts the throughput of two-way join query Q1
for mutable and immutable data structures. In this case, the 𝑃𝐸𝑠
are fixed to 10 for both immutable data structures. For 100K and
200K slide intervals, the proposed PO-Join has 12x and 19x better
throughput than the alternative immutable structure. However,
the mutable designs depict that bit-based join has 4.6x and 5.2x
superior performance than the hash-based alternative join strat-
egy. Similarly, for a 300K slide interval with 3M tuples of window
length, we divide the slide interval into the available processing
elements to minimize the merging cost. The result indicates that
the proposed PO-Join structure has 2x better performance than
the CSS tree-based join strategy. Moreover, our bit-based mutable
component also performs 2x times better than hash-based join.
Analogous performance improvement is noted for 400K-4M and
500k-5M slide interval and window length where PO-Join has
5.38x and 2.6x superior performance than immutable CSS join
structure. Similarly, bit-based mutable join has 2.6x and 2.23x
time better performance than hash-based join.

Figures 10a to 10b display the commutative frequency distribu-
tion (CDF) of event time latency for Q1. In Figure 10a, we observe
the results for a 100K sliding interval with a 1Mwindow size. The
graph shows that the immutable part of the stream PO-Join takes
37 seconds for the 50th percentile of tuples, while the CSS-tree-
based immutable part takes 49 seconds. The mutable component
spends 109 seconds for bit-based join and 173 seconds for hash-
based join. Similarly, for the 75th percentile, the proposed stream
PO-join takes 62 seconds while the alternative consumes 80 sec-
onds. Moreover, the proposed mutable part exhibits 2x better
performance than the hash-based competing solution. The 95th
percentile for the immutable part of the PO-Join algorithm has
1.5x superior performance than the CSS tree-based immutable
part. Additionally, the mutable part is twofold better than the
alternative. Similarly, Figure 10b depicts analogous performance
improvement for SPO-Join.

Figure 10c shows the CDF plot for 300K and 3M window size.
In this case, we employ two approaches for merging threshold 𝛿
selection: (1) 𝛿1 =𝑊𝑠 , (2) 𝛿2 =𝑊𝑠/|𝑃𝐸𝑠𝑃𝑂− 𝐽 𝑜𝑖𝑛 |. Results depict
that for the 50th percentile; the divided slide interval-based (𝛿2)
PO-Join structure is 70x better than the normal slide interval (𝛿1).
Moreover, for the mutable part, the divided sliding window with

153

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Time(ms) ×105

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(a) Latency 100K-1M

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(ms) ×105

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(b) Latency 200K-2M

C
D

F

Time (ms)

(c) Latency 300K-3M

C
D

F

Time (ms)

(d) Latency 400K-4M

C
D

F

Time (ms)

(e) Latency 500K-5M

Figure 10: Event time latency for Q1 for BLOND [15]

50K 50K 60K 60K 70K 70K 80K 80K 90K 90K 100K100K

Window slide interval (Ws)

1

2

3

4

5

T
im

e
 [

lo
g
(m

s
)]

WL =WS× 10

Chain index

PO-Join (Ours)

(a) Latency: CI and PO-Join for Q3

500k500k500k800k800k800k 1M 1M 1M
Window size (WL)

101

102

103

104

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s
/s

e
c
)

Ws =WL/10
Split join

BCHJ

SPO-Join (Ours)

(b) Throughput: NLJ & SPO for Q3

100K 100K 200K 200K 300K 300K 400K 400K 500K 500K

Window slide interval (WS)

1

2

3

4

5

6

T
im

e
 [

lo
g
(m

s
)]

WL =WS× 10

Chain index

PO-Join (Ours)

(c) Latency: CI and PO-Join for Q1

1M 1M 1M 3M 3M 3M 5M 5M 5M
Window size (WL)

101

102

103

104

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s
/s

e
c
)

Ws =WL/10

Split join

BCHJ

SPO-Join (Our)

(d) Throughput: NLJ & SPO for Q1

Figure 11: Chain index and nested loop strategies comparison with stream SPO-Join

B+tree has 1.5x time better in join computation than the complete
slide interval. For the 75th percentile, the divided slide interval
has 44.6x and 1.7x for immutable and mutable parts superior to
its counterpart (full slide interval). Additionally, Figure 10d and
Figure 10e adopt slide interval division, where the results show
superior behavior of SPO-Join.

Both designs offer two components for the whole stream in-
equality join structure. The majority of tuples from sliding win-
dows are retained by the immutable component of the data struc-
ture. However, a small portion of tuples are held and executed by
the mutable component. A new streaming tuple employs binary
search for PO-Join data structures, which then scans a consecu-
tive memory location of sorted tuples. However, in the CSS tree,
tuples exist on the tree’s leaf nodes, and these tuples are packed
using blocks where distinct nodes are linked together. The scan
on linked nodes is more expensive than searching the consecu-
tive memory locations. Additionally, the intersection procedure
by PO-Join is less expensive as it contains the memory location
of tuples that have a constant cost to fill or scan the bit array.
The CSS-based join structure takes more time to process a tuple
and requires an extra level of data provenance for correctness.

For larger windows, the sliding window interval is divided
into sub-windows and distributed these windows to the down-
stream instances in a round-robin way with an efficient state-
management strategy. This process reduces the merging cost of
tuples from mutable to immutable components. Furthermore, it
enhances the processing capacity of tuples, subsequently reduc-
ing the waiting time of tuples in the queue.

Chained Index structure. Figure 11a and Figure 11c show
the comparison of the event time latency of proposed PO-Join
solution and chain index-based (CI) for Q1 and Q3. Figure 11a
shows that for the 95th percentile of tuple processing, the pro-
posed PO-Join-based design has 7.0x, 4.2x, 3.7x, 5.5x, 11x, and
11.7x superior performance with increasing slide interval and
window size than chain index. Moreover, for 75th percentile; the
PO-Join structure has 14.3x, 3.7x, 3.0x, 6.5x, 13.6x, 19x better than

1M & 10M 2M & 20M 3M & 30M 4M & 40M 5M & 50M

Query tuples and window size (count)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
im

e
(m

s
)

1e4

SPO-Join Insertion

B+Tree Insertion

PIM-Tree Insertion

Figure 12: Insertion cost

2M 4M 6M 8M 10M

Window size

0

200

400

600

800

1000

1200

1400

M
e
m

o
ry

 l
o
a
d
 v

o
lu

m
e
 (

M
B

s
)

SPO-Join

PIM-Tree

Figure 13: Memory cost

15M 62M 140M 249M

Match rate (Mutable)

0

50

100

150

200

250

300

350

400

Tu
p
le

s
 p

e
r

s
e
c
o
n
d

25k

50k

75-15k

100-20k

Figure 14: Match rate for mu-
table window𝑊𝑀

15M 62M 140M(C)140M(M)249M(C)249M(M)

Match rate (Immutable)

0

25

50

75

100

125

150

175

M
a
x
 p

ro
c
e
s
s
in

g
 l
a
te

n
c
y
 (

m
s
) 25k

50k

75-15k-C

75-15k-M

100-20k-C

100-20k-M

Figure 15: Match rate for im-
mutable window𝑊𝐼𝑀

alternative. Similarly, the proposed PO-Join structure has a higher
performance than the chain index for the 50th percentile, the 23x,
9.19x, 3.2x, 3.8x, 7.5x, and 8.7x. Figure 11c depicts the results for a
two-way cross join with increasing sliding interval and window
sizes. Results show that for the 95th percentile of tuple process-
ing, the proposed SPO-Join has 14.1x, 11.9x, 21.5x, 31x (sub-slide
interval), and 51x (sub-slide interval) superior performance than
chain index solution. Similarly, for the 75th percentile, the per-
formance improvement of the SPO-Join structure is 12.2x, 11.4x,
23.9x, 61x (sub-slide interval), and 74x (sub-slide interval) better
than the traditional chain index. Similarly, the 50th percentile of

154

1 3 5 7 9
Processing elements

50

100

150

200

250

300

350

400

M
a
x
 p

ro
c
e
s
s
in

g
 l
a
te

n
c
y
 (

m
s
) Node 1

Node 3

Node 5

Node 7

Node 9

Figure 16: Increasing nodes

1 5 10 15 20
Number of parallel processing elements

0

2000

4000

6000

8000

10000

12000

14000

T
h
ro

u
g
h
p
u
t

[T
u
p
le

s
/s

e
c
]

Mean

Max

Figure 17: Increasing PEs

10 20 30 40
Number of parallel PEs (Mutable)

0.0

0.2

0.4

0.6

0.8

1.0

 C
or

re
ct

ne
ss

5K/sec
2K/sec
200/sec
HT

Figure 18: Correctness for
mutable window𝑊𝑀

25K 50K 75K 100K
Size of sliding intervals

103

104

105

Av
er

ag
e

tu
pl

e
di

ffe
re

nc
e

(lo
g

sc
al

e) RR-5k
DC-5k
RR-7k
DC-7k

Figure 19: Extra tuples in im-
mutable window𝑊𝐼𝑀

data also depicts the better performance of the proposed SPO-Join
structure than the alternative.

In the chain index, new tuples search multiple sub-indexes that
increase the search time and the tuples queuewaiting time on 𝑃𝐸𝑠 .
However, for the PO-Join structure, the sorted data in contiguous
memory and efficient computation of logical operation reduce
the result set scanning time.

Partitioning based stream join. Figure 11b depicts the through-
put results for stream SPO-Join with split join (SJ) and broadcast
hash join (BCHJ) algorithms against Q3. These algorithms are
also known as nested loop join (NLJ). The split join partitions
to the downstream processing instances in a round-robin way,
whereas BCHJ broadcasts a single tuple to all PEs. Moreover, PEs
employ nested loops to evaluate the queries. It depicts that the
proposed join structure has 71x and 32x superior mean through-
put for 50K of slide interval and 500K of window size. Similarly,
for a 70K slide interval; the proposed SPO-Join has 77.6x and
46x better tuple processing throughput. Additionally, with an
increase in slide interval and window size, the performance of
BCHJ and SJ is identical. However, the proposed data structure
has a 90x time better performance than the alternative. Figure 11d
depicts the results of throughput for Q1 with larger slide inter-
val and window size. Results depict that the SPO-Join has 43x
superior performance than the alternative. Moreover, the slide
intervals do not impact too much on these partitioning schemes.

The partitioning-based schemes employ a nested loop strat-
egy where every tuple is required to expedite the whole list
for complete predicate evaluation. Moreover, another operator
is required to perform intersection operations after predicate
evaluations. However, the SPO-Join uses a B+ tree for insertion
and uses an efficient immutable structure that does not require
another level of operator.

Insertion cost. Figure 12 illustrates the difference in inser-
tion cost between SPO-Join, PIM-tree, and B+Tree. For a window
length of 10M with 1M inserting tuples, PIM-tree outperforms
SPO-Join with a 1.3x better insertion cost. However, inserting in
the mutable part of SPO-Join is 1.15x superior to simple B+Tree.
As the window length and inserting tuples increase, the perfor-
mance of PIM becomes worse than SPO-Join. The graph shows

that SPO-Join has 1.5x and 1.7x better insertion performance
than PIM-tree and B+tree for 50M window length and 5M new
tuples insertion, respectively. When a new tuple is inserted into
the mutable part of the window, it reduces the cost of insertion.
Moreover, SPO-Join avoids the overhead of exploring immutable
data structures.

Memory cost analysis. Figure 13 depicts the memory anal-
ysis for joining algorithms for increasing count-based sliding
windows and cross join query. The results depict the data struc-
ture employed by the proposed SPO-Join algorithm consumes an
average of 1.5x less memory than the PIM-based join strategy for
2M and 4M sliding windows, however, for larger size windows
the memory consumption by SPO-Join performs 2.5x better than
the alternative. The SPO-Join only contains indexing data struc-
tures for mutable windows. However, PIM join contains many
indexing data structures for both mutable and immutable parts
of sliding windows.

Match Rate. Figure 14 illustrates the mean and maximum
processing throughput for the mutable part of the SPO-Join al-
gorithm with different match rates for the query Q3 against the
synthesized dataset. It shows that for a 15M match rate and 25K
slide interval, the mean throughput is 167 tuples/seconds, with a
maximum of 245 tuples/seconds. Similarly, for a 62M match rate
and 50K slide interval, the mean throughput is 179 tuples/sec-
ond. When the match rate is higher, such as 140M and 249M,
the average throughput just drops to 115 tuples/second and 114
tuples/second, respectively.

In Figure 15, the maximum processing latency for the im-
mutable component of the proposed data structure is shown with
varying match rates. The graph indicates that for a 15M match
rate and 25K slide interval, the maximum processing latency is
51ms, whereas for a 62M match rate and 50K slide interval, the
maximum processing latency is 121ms. For higher match rates,
the size of the linked list increases, resulting in a maximum pro-
cessing latency of 164ms and 190ms for 140M and 249M match
rates, respectively for scale-out processing. Similarly, processing
the PO-Join with an increasing number of threads (scale-up) re-
sults in a maximum processing latency of 130ms and 176ms for
higher match rates.

Scalability. Figure 16, scalability is measured with an increas-
ing number of nodes for Q3. The maximum processing latency
on the first 𝑃𝐸 for a single node is 325ms, while on the 5𝑡ℎ 𝑃𝐸, it
is 191ms. With three nodes, these latencies are 394ms with one
𝑃𝐸 and 31ms for 5 PEs. However, as the number of processing
nodes increased, the maximum processing latency on 𝑃𝐸𝑠 de-
creased. Finally, for nine nodes, these latencies were 203ms on
the first PE and 21ms for 5𝑡ℎ 𝑃𝐸. Figure 17 shows the results of
throughput with increasing 𝑃𝐸𝑠 . Mean throughput changes from
419 tuples/sec to 6167 tuples/sec with an increase from 1 𝑃𝐸 to
20 𝑃𝐸𝑠 . Moreover, the maximum throughput increased from 668
tuples/sec to 14519 tuples/sec.

The increasing number of machines distributing the input
tuple load to other machines impacts the processing latency
of each tuple. Similarly, increasing the number of 𝑃𝐸𝑠 reduces
the waiting time for tuples in the queue. For a small number
of 𝑃𝐸𝑠 , more slide intervals are added into the immutable data
structure on a single PE where new tuples are required to search
all intervals for processing.

Correctness and false positive. Figure 18 shows the cor-
rectly computed join result for the mutable part of SPO-Join for
Q3 using the synthesized dataset. The results show that for higher

155

insertion rates, such as 5,000 tuples/sec and 10 downstream 𝑃𝐸𝑠

of the logical operator, only 0.3% of tuples are correctly com-
puted in their join results. However, increasing the number of
𝑃𝐸𝑠 increased the accuracy in identifying correct tuples. This
also does not guarantee 100% correctness for the high insertion
rate of tuples as shown for 40 𝑃𝐸𝑠 and 500 tuples/sec, where the
correctness approaches only 8%. However, hash partitioning of
upstream tuples and the use of a small hash table guarantee 100%
correctness.

Figure 19 shows the tuple differences between different 𝑃𝐸𝑠 of
PO-Join operator for both of our proposed window state manage-
ment strategies for high input data rates. For a 25K slide interval
and 5,000 tuples/seconds, the average difference between the
tuples among first 𝑃𝐸 to others is 13x better for distributed cache-
based (DC) tuples state synchronization than for the partitioner-
based round-robin (RR) scheme. This means that a new tuple can
produce join results on the expired tuple of the sliding window
(false positive). Similarly, for 7,000 tuples/sec, this difference is
38x improved than the alternative. Moreover, for 100k slide in-
tervals, this difference is 82x and 94x. The use of a distributed
cache among processing instances can reduce the false positive
rate of tuple processing for a sliding window.

Figure 20 illustrates the impact of merging with varying merg-
ing threshold (𝛿) for Q3. The findings indicate that the SPO-Join
structure takes between 10 and 15 seconds to merge tuples within
slide intervals ranging from 60K to 100K, merging threshold 𝛿 .
This time includes the computation of the permutation array,
network cost, and construction of the PO-Join structure on its
respective processing element (PE). Additionally, Figure 20 also
demonstrates the evaluation of buffered tuples on specific 𝑃𝐸 of
the PO-Join operator. The results indicate that these tuples are
evaluated efficiently and only take between 1 to 2 seconds for 𝛿
from 60K to 100K. The PO-Join operator is specifically designed
to efficiently compute the inequality operator and optimize the
logical operations.

Figure 21 shows tuple processing throughput with varying
sub-windows (mutable𝑊𝑀 and immutable𝑊𝐼𝑀) for a fixed 1M
tuples window length𝑊𝐿 against Q3. For 10-90%, the 100K tuples
belong to the𝑊𝑀 and 900K to𝑊𝐼𝑀 . Results depict that the max-
imum tuple processing throughput for𝑊𝑀 is 4,124 tuples/sec,
however, its average processing throughput is 249 tuples/sec,
similarly, it is 2,800 tuples/sec and 96 tuples/sec for 50-50% sub-
windows. New tuples are always inserted into𝑊𝑀 . Initially, the
size of the mutable window𝑊𝑀 is smaller so the tuple process-
ing throughput is higher. Incoming tuples require less waiting
time for evaluation; however, with an increase in the size of tu-
ples, processing throughput decreases. The immutable window
𝑊𝐼𝑀 holds only the fixed batches of past mutable windows on
distributed 𝑃𝐸𝑠 . The insertion cost for tuples is negligible (only
during merge).

Figure 22 shows the overall throughput of SPO-Join and hash
join (Apache-Storm) using 10 𝑃𝐸𝑠 for Q1 with equality predicate
operators instead of inequality on a uniformly distributed syn-
thetic dataset. The results indicate that the average throughput
of hash join is only 1.14x superior to SPO-Join for a 10K slide in-
terval. However, for larger slide intervals, the overall throughput
for SPO-Join decreases, as depicted that for slide-interval of 50K,
hash join is 6.8x better throughput than SPO-Join. Similarly, Fig-
ure 23 shows their maximum processing latency for equi-join. It
is depicted that hash-based join is 2.7x and 2.02x better than SPO-
Join for a 10K-100K and 50K-500K sliding window. It is observed
that the maximum latency of SPO-Join is slightly improved with

60000 70000 80000 90000 100000
Merging threshold tuples (δ)

0

2000

4000

6000

8000

10000

12000

14000

16000

T
im

e
 (

m
s
)

Merging from WM to WIM

Buffered tuples evaluation

Figure 20: Impact of merging
threshold (𝛿)

10-90% 20-80% 30-70% 40-60% 50-50%

Varying sub window sizes WM and WIM

0

1000

2000

3000

4000

T
h
ro

u
g
h
p
u
t

[T
u
p
le

s
/s

e
c
]

Mean-WM

Max-WM

Mean-WIM

Max-WIM

Figure 21: Varying sizes of
𝑊𝑀 and𝑊𝐼𝑀

10K-100K 20K-200K 30K-300K 40K-400K 50K-500K

Window sizes

0

1000

2000

3000

4000

5000

A
v
e
ra

g
e
 t

h
ro

u
g
h
p
u
t

(T
u
p
le

s
/s

e
c
) SPO-Join

Hash-Join (Storm)

Figure 22: Throughput for
equi join

10K-100K 20K-200K 30K-300K 40K-400K 50K-500K

Window sizes (Ws-WL)

100

101

102

103

104

M
a
x
im

u
m

 p
ro

c
e
s
s
in

g
 l
a
te

n
c
y
 (

m
s
) SPO-Join

Hash-Join (Storm)

Figure 23:Maximumprocess-
ing latency for equi join

increasing sliding windows, which is due to its higher number
of tuples processed by the PO-Join operator of SPO-Join. The
hash join has a negligible searching and insertion overhead O(1),
with the only overhead being the removal of tuples from the slide
interval. For larger slide intervals and window lengths, the tuples
removal threshold arrives late, allowing for more tuples to be
processed.

6 CONCLUSION
We explored how to efficiently index the contents of sliding
windows to support inequality join queries in a streaming envi-
ronment. State-of-the-art index-based solutions can experience
significant overhead when updating indexes for larger sliding
windows. To address this challenge, we propose a novel methodol-
ogy that leverages a sorted array-based solution that outperforms
traditional indexing strategies. We propose a novel approach that
exploits both a mutable and an immutable data structure. New
tuples are inserted into the mutable B+-tree (good for fast in-
sertion), which is merged into an immutable PO-Join structure
(good for fast search) depending on the merging threshold 𝛿 . The
PO-Join structure maintains most tuples in the sliding window,
while only new tuples are added to the mutable part. We also
propose a novel algorithm to build the PO-Join structure in the
streaming scenario efficiently. Finally, we conducted extensive
experiments to evaluate the performance of our proposed so-
lution. Our approach outperforms other index-based solutions,
making it a promising solution for stream inequality join queries.

ACKNOWLEDGEMENT
We gratefully acknowledge the support provided by Rif.PA 2023-
20467/RER and FAR_DIP_2023_DIEF-SIMONINI, under project
numbers CUP E83C23002540002 and CUP E93C23000280005.

We acknowledge the late Prof. Jorge-Arnulfo Quiané-Ruiz for
his invaluable contributions and support to this research. His
passing last year was a great loss, and his legacy continues to
inspire this work.

156

REFERENCES
[1] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Mas-

sively parallel sort-merge joins in main memory multi-core database systems.
Proceeding of the VLDB Endowment 5, 10 (2012), 1064–1075.

[2] Apache Flink Documentation: Joins in SQL Queries. 2024. . https://nightlies.
apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/joins/

[3] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu. 2013. Main-
memory hash joins onmulti-core CPUs: Tuning to the underlying hardware. In
Proceedings of the International Conference on Data Engineering. IEEE, 362–373.

[4] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To partition,
or not to partition, that is the join question in a real system. In Proceedings of
the International Conference on Management of Data. 168–180.

[5] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten
Hoefler. 2017. Distributed join algorithms on thousands of cores. Proceedings
of the VLDB Endowment 10, 5 (2017), 517–528.

[6] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: Efficient management of very large distributed state for stream pro-
cessing engines. In Proceedings of the International Conference on Management
of Data. 2471–2486.

[7] Buğra Gedik, Rajesh R Bordawekar, and Philip S Yu. 2009. CellJoin: A parallel
stream join operator for the cell processor. The VLDB journal 18 (2009), 501–
519.

[8] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and
Philippas Tsigas. 2016. Scalejoin: A deterministic, disjoint-parallel and skew-
resilient stream join. IEEE Transactions on Big Data 7, 2 (2016), 299–312.

[9] Bingsheng He and Qiong Luo. 2006. Cache-oblivious nested-loop joins. In
Proceedings of the International Conference on Information and Knowledge
Management. 718–727.

[10] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 grand challenge. In
Proceedings of the International Conference on Distributed Event-Based Systems,
Frank Eliassen and Roman Vitenberg (Eds.). ACM, 266–268.

[11] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In Proceeding of the International Conference on Data
Engineering. IEEE, 1507–1518.

[12] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: ad-hoc stream
joins at scale. Proceedings of the VLDB Endowment 13, 4 (2019), 435–448.

[13] Zuhair Khayyat,William Lucia,Meghna Singh,MouradOuzzani, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2017. Fast and
scalable inequality joins. The VLDB Journal 26, 1 (2017), 125–150.

[14] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexan-
der L. Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-based
hybrid stream processing for heterogeneous architectures. In Proceedings of
the International Conference on Management of Data. 555–569.

[15] Thomas Kriechbaumer and Hans-Arno Jacobsen. 2018. BLOND, a building-
level office environment dataset of typical electrical appliances. Scientific Data
5, 1 (2018), 1–14.

[16] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In Proceedings of the Inter-
national Conference on Data Engineering. IEEE, 38–49.

[17] Rundong Li, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Near-optimal
distributed band-joins through recursive partitioning. In Proceedings of the
International Conference on Management of Data. 2375–2390.

[18] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. 2015. Scalable dis-
tributed stream join processing. In Proceedings of the International Conference
on Management of Data. 811–825.

[19] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. 2016.
{SplitJoin}: a scalable, low-latency stream join architecture with adjustable
ordering precision. In USENIX Annual Technical Conference. 493–505.

[20] Alper Okcan and Mirek Riedewald. 2011. Processing theta-joins using mapre-
duce. In Proceedings of International Conference on Management of data. 949–
960.

[21] Jun Rao and Kenneth A Ross. 2000. Making B+-trees cache conscious in main
memory. In Proceedings of the International Conference on Management of Data.
475–486.

[22] Maximilian Reif and Thomas Neumann. 2022. A scalable and generic approach
to range joins. Proceedings of the VLDB Endowment 15, 11 (2022), 3018–3030.

[23] Pratanu Roy, Jens Teubner, and Rainer Gemulla. 2014. Low-latency handshake
join. Proceedings of the VLDB Endowment 7, 9 (2014), 709–720.

[24] Ibrahim Sabek and Tim Kraska. 2023. The case for learned in-memory joins.
Proceeding of the VLDB Endowment 16, 7 (2023), 1749–1762.

[25] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2020. Parallel index-based
stream join on a multicore cpu. In Proceedings of the International Conference
on Management of Data. 2523–2537.

[26] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2021. Distributed stream
KNN join. In Proceedings of the International Conference on Management of
Data. 1597–1609.

[27] Jens Teubner and Rene Mueller. 2011. How soccer players would do stream
joins. In Proceedings of the International Conference on Management of Data.
625–636.

[28] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. 2014. Storm@ twitter. In Proceedings of the International Conference
on Management of Data. 147–156.

[29] Tri Minh Tran and Byung Suk Lee. 2010. Distributed stream join query
processing with semijoins. Distributed and Parallel Databases 27, 3 (2010),
211–254.

[30] Juliane Verwiebe, Philipp M. Grulich, Jonas Traub, and Volker Markl. 2023.
Survey of window types for aggregation in stream processing systems. The
VLDB Journal 32, 5 (2023), 985–1011.

[31] Hiroyuki Yamada, Kazuo Goda, and Masaru Kitsuregawa. 2023. Nested loops
revisited again. In Proceedings of the International Conference on Data Engi-
neering. 3708–3717.

[32] Jianye Yang, Wenjie Zhang, Xiang Wang, Ying Zhang, and Xuemin Lin. 2020.
Distributed streaming set similarity join. In Proceedings of the International
Conference on Data Engineering. IEEE, 565–576.

[33] Eleni Zapridou, Ioannis Mytilinis, and Anastasia Ailamaki. 2022. Dalton:
Learned partitioning for distributed data streams. Proceedings of the VLDB
Endowment 16, 3 (2022), 491–504.

[34] Shuhao Zhang, Yancan Mao, Jiong He, Philipp M Grulich, Steffen Zeuch,
Bingsheng He, Richard TB Ma, and Volker Markl. 2021. Parallelizing intra-
window join on multicores: An experimental study. In Proceedings of the
International Conference on Management of Data. 2089–2101.

[35] Shunjie Zhou, Fan Zhang, Hanhua Chen, Hai Jin, and Bing Bing Zhou. 2019.
FastJoin: A Skewness-aware distributed stream join system. In IEEE Interna-
tional Parallel and Distributed Processing Symposium. 1042–1052.

157

