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ABSTRACT
In many real-world scenarios, multiple data providers need to

collaboratively perform analysis of their private data. The chal-

lenges of these applications, especially at the big data scale, are

time and resource efficiency as well as end-to-end privacy with

minimal loss of accuracy. Existing approaches rely primarily on

cryptography, which improves privacy, but at the expense of

query response time. However, current big data analytics frame-

works require fast and accurate responses to large-scale queries,

making cryptography-based solutions less suitable. In this work,

we address the problem of combining Approximate Query Pro-
cessing (AQP) and Differential Privacy (DP) in a private federated

environment answering range queries on horizontally partitioned

multidimensional data. We propose a new approach that con-

siders a data distribution-aware online sampling technique to

accelerate the execution of range queries and ensure end-to-end

data privacy during and after analysis with minimal loss in accu-

racy. Through empirical evaluation, we show that our solution is

able of providing up to 8 times faster processing than the basic

non-secure solution while maintaining accuracy, formal privacy

guarantees and resilience to learning-based attacks.

1 INTRODUCTION
The extensive reliance of individuals on software solutions in

daily and professional life has led to an exponential growth of data

collected by companies, corporations, government organisations,

and even hospitals. These vast mines of data, if carefully and

efficiently analysed, can provide valuable insights that guide

decision-making and business development. In large-scale studies

and research, the analysis must be conducted on several data

sources to obtain meaningful conclusions. An example of such a

case is during a pandemic, where many hospitals jointly conduct

studies to have a global view of the contagion problem.

One of the most commonly used tools to analyse and explore

these huge volumes of data are OLAP tasks, where various ag-

gregation queries (SUM, COUNT, etc.) can be issued to learn ex-

isting patterns and trends within the data. These aggregation

queries may seem simple, but they are very time-consuming in

big databases. The analysis of data from multiple data providers

comes with two main challenges: privacy and resource/time ef-

ficiency. The privacy issue arises from the fact that this data is

personal and sensitive to individuals, and sharing it with other

parties can be very harmful. Many regulations and restrictions

like GDPR are imposed by governments on how to process and

share such sensitive data. In the case of a federated environ-

ment, where a joint study requires the collaboration of many data

providers, data sharing is highly restricted. Each data provider
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must ensure the security and privacy of the data collected from

their users during and after the analysis.

To satisfy the requirement of end-to-end privacy, many solu-

tions have been proposed in the literature, and most of them rely

on cryptography to ensure there is no data leakage during the

exchange and query evaluation. Secure multiparty computation

(SMC) solutions appear to be a prominent solution in federated

environments [7, 8]. Others use oblivious operations [6] or secure

hardware [17, 35, 43] so that, during query evaluation, each data

provider can maintain the confidentiality of their data. Addition-

ally, for securing the final result of any OLAP query, Differential

Privacy (DP) [15] is generally considered the gold standard by

government and private institutions [1, 10, 16, 37]. Due to its

strong formal confidentiality guarantees, DP allows individuals

to deny their participation in the database. These query eval-

uation solutions in a federated environment meet end-to-end

security and privacy requirements. However, what they have

in common is their reliance on encryption. This causes a huge

processing time overhead; and for time-sensitive tasks, utility is

measured by both accuracy and speed. They certainly address

the privacy issue, but they are time and resource consuming.

The issue of reducing query response time has been widely

addressed in the literature, through the need to obtain Approx-

imate Query Processing (AQP). Existing AQP methods can be

classified into two types, online approximation and offline synop-

sis creation. In online approximation, there is Online Aggregation
based solutions [21, 25, 34] that provide fast and reliable approx-

imation of the query continuously, and other solutions based on

applying online sampling to reduce the processed data and obtain
an approximation from a sample [19, 36, 42]. In offline synop-

sis creation, views are generated offline using query workloads

or/and data statistics [2, 3, 12]. In this area of research, the main

focus is on efficiency, but privacy has not been considered.

In our work, we address the challenge of answering OLAP

aggregation range queries in a federated environment, while

preserving end-to-end privacy and improving resource and time

consumption for query processing. Our solution relies heavily on

DP to secure collaboration and end results, and ensure no infor-

mation leaks. To speed up queries, we implement a cluster-based

sampling method using a well-known statistical estimator that

provides accurate estimates for range queries (such as SUM and
COUNT) while processing minimal data portions. While existing

systems ensure either privacy or speedup for query approxima-

tion, to the best of our knowledge, our solution is the first to offer

speedup over plain-text execution with end-to-end privacy in a

federated environment. Our main contributions can be listed as

follows:

(1) Definition of a lightweight collaboration method that de-

termines optimal sampling decisions for data providers to

maximize accuracy without access to their full datasets or

information leakage.

(2) Introduction of data distribution-aware cluster sampling

method with DP guarantees for individual privacy.
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(3) Meticulous integration of DP at every step with minimal

loss of precision.

(4) Extensive experimentation to empirically validate the per-

formance of our approach in terms of accuracy, time effi-

ciency and resilience against learning-based attacks.

Roadmap. The paper is structured as follows: Section 2 re-

views some existing works. Section 3 introduces the notions used

throughout our paper. Section 4 gives a description of the problem

solved by our approach. Section 5 presents our proposed solution

in detail. The extensive evaluation of our approach is given in

Section 6. In Section 7, we discuss the limitations/extensions of

our solution and we conclude in Section 8 by giving some future

works.

2 RELATEDWORKS
Due to the increasing size and distribution of databases, querying

such vast volumes for analytical purposes, quickly and without

revealing sensitive information, has become a challenge. Here,

we describe the state-of-the-art related to our work.

Approximate Query Processing (AQP).As the quality of a query
is based on its accuracy and response time, especially for time-

sensitive tasks like OLAP [38] and Business Intelligence, approxi-

mating the query offers the best way to strike a balance between

these two quality factors.

In the early 1990s, [21] proposed a new interactive method

for query processing that provides a quick initial answer with

a certain error, refining it as processing continues. Other works

followed in this direction [25, 34, 39, 40], each enhancing spe-

cific aspects of the method by including support for group by
or propose parallel and distributed versions. Another research

direction focuses on processing a small subset of the original

data, thereby reducing query run-time. In [31–33, 36], uniform

row-level random sampling is applied online before query pro-

cessing. Although row-level sampling may improve processing

time for complex queries, it can introduce overhead and slow

down queries that require a full table scan [20] (e.g. Bernoulli

sampling). To avoid such overhead, the solutions from [2, 3, 12]

create the samples offline. Cluster sampling, also referred to as

page-sampling [20], is utilized to speed-up aggregation queries

in big databases. Methods in [5, 19, 42] use this sampling in the

context of Hadoop Map-Reduce framework
1
, as it proves to be

fast and I/O efficient compared to row-level sampling.

Federated query answering. Data is often distributed across

multiple locations (e.g. data providers like hospitals and com-

panies) and the collaboration among all parties is necessary to

answer range aggregation queries. But for privacy and security

reasons, each data provider cannot disclose its data to third par-

ties.

Some solutions rely on secure hardware modules (i.e. enclaves),
in which all sensitive code and data are processed. Methods

in [4, 17, 43] focus on aggregation queries in this setting, and

[17, 43] use intel’s SGX for secure processing. These solutions

are generally efficient, but their reliance on trusted hardware

and weakness to side-channel attacks constitute a limitation.

Recently in [35], the notion of Differential Obliviousness was used
to mitigate the risk of side channel attacks.

Other recent works presented Secure Multiparty Computation

(SMC) query processing engines [6–8]. These engines enable

data providers to respond to OLAP queries securely by joining
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data with end-to-end privacy. Differential Privacy (DP) is used to

perturb the final results, thereby mitigating any inference attacks

based on the results. While these solutions incur computational

overhead, [8] introduced online random sampling to improve

secure computing performance by reducing the size of shared

data for query processing. In [11], sampling is performed offline

to create a synopsis to further improve performance. Another

solution [26] focused on reducing the cost of SMC operation thus

obtaining significant improvement in performances. All of these

SMC (or enclaves)-based protocols are encryption-based, which

prevents them from outperforming plain-text query execution.

Even with significant improvements introduces in the past years,

on real world big tables they still expensive for real-time queries

[26].

To highlight the scale of this problem, we performed a simula-

tion
2
using a synthetic Adult dataset [9], horizontally distributed

on 4 data providers as a federated environment. We ran a set of

random range queries, which are the type of queries we focus

on. For the query processing, we considered two solutions using

SMC: (i) sharing the rows and collectively evaluating the query;

and (ii) evaluating the query locally and only sharing the results

and computing the final result.
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Figure 1: Runtime cost of data sharing in SMC.

We measured the time required to share the rows/results in

SMC. The results in Figure 1 show that sharing only local results

incurs an insignificant overhead of 0.04 seconds. On average, this

is less than 440 times the time required for row sharing in SMC.

Additionally, the cost of sharing only results remains constant

and independent of the dataset, whereas the cost of sharing rows

will increase with larger tables.

In our work, we propose a framework to approximate query

processing in a federated environment, enabling accelerated

query execution compared to plain text execution while ensuring

end-to-end DP guarantees.

3 PRELIMINARIES
In this section, we give the notation and explain briefly notions

used throughout the paper.

Datamodel. In a tabular database𝑇 defined over a set of𝑛 dimen-
sions (or attributes) 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛}, each individual is a row
with values on each dimension. We assume that each dimension

𝑑 is associated with a domain |𝑑 | containing discrete and totally

ordered values. The size of the domain is ∥𝑑 ∥. For performance

purposes during online analytics tasks, the table𝑇 is transformed

into a multidimensional data (or a count tensor)𝑇𝑎
of dimensions

𝐷𝑎 ⊂ 𝐷 , which has an attribute Measure storing the number

of aggregated rows of 𝑇 . Figure 2 illustrates how to construct a

2
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count tensor 𝑇𝑎
from table 𝑇 by aggregating dimension Service.

For simplicity, we use term “table” for “tabular data” and “count

tensor”.

Figure 2: Count tensor

Queries. To analyze and extract insights from these tables, the

analyst can issue aggregation queries, helping to explore the data

and gain a general understanding of patterns and trends. In this

work, we consider a range query 𝑄 defined as:

SELECT Aggregation FROM Table WHERE Range, where:

• Aggregation is COUNT(*) or SUM(Measure).
• Range is a set of intervals 𝑟𝑑 = [𝑙𝑑

𝑏
, 𝑢𝑑

𝑏
] on each dimension

𝑑 ∈ 𝐷𝑄
where 𝐷𝑄 ⊆ 𝐷 in Table, such that 𝑙𝑑

𝑏
≤ 𝑣 ≤ 𝑢𝑑

𝑏
for every value 𝑣 ∈ |𝑑 |.

In our work, we focus on COUNT and SUM queries because they

are used in several analytics applications. For instance, in a big

database aggregating per-stock order data for the NASDAQ ex-

change, these queries are typically used to analyze order data

from past days. Additionally, aggregations, such as average, stan-

dard deviation, and variance, can be derived from COUNT and

SUM.

Query Approximation and Sampling. The goal of query ap-

proximation is generally to speed up execution at the expense

of answering the query exactly, while preserving answer ac-

curacy as much as possible. Online sampling is employed for

time-sensitive tasks to reduce the overhead of evaluating queries

on large databases. Note that in this case, the sampling differs
from one query to another. In statistical terms, random sampling

is essentially the process of selecting a subpopulation 𝑆𝑃 from

the total population 𝑃 where a sampling rate 𝑠𝑟 dictates the size

of 𝑆𝑃 . This subpopulation contains sufficiently representative

individuals and properties, capturing various characteristics of

𝑃 such that the analysis conducted on 𝑆𝑃 can be generalized to

𝑃 . All random sampling techniques can be categorized based on

three main features:

• Granularity: sampling elements are individuals or a cluster

of individuals.

• Uniformity: elements are sampled with equal/unequal

probabilities.

• Replacement: sampling elements can be chosen multiple

times or only once.

Nowadays, all modern systems choose to split/store a big table

𝑇 into a set of smaller, manageable entities 𝑇 = {𝐶1,𝐶2, ...,𝐶𝑁 }
where each entity has a maximum size 𝑆 . The entity could be

Table pages3, HDFS file Blocks4, etc.
3
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4
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

In this paper, we call these storage entities Clusters and we

assume that our tables are already stored as a set of clusters.

Given this storage format, sampling on databases can be done at

two levels: Row/Cluster level [20].

In tabular databases with range queries, it is particularly chal-
lenging to find an online sampling algorithm that offers speed-up
while maintaining accuracy.

Data providers. For many real-world use cases, multiple or-

ganizations or institutions, called data providers, publish access

to their databases for joint analysis. Let S be the set of data

providers. In this work, we assume that a large table 𝑇 is hori-
zontally distributed over S such that all data providers share the

same schema (i.e. a set of dimensions) of 𝑇 but each contains

different rows. All data providers use clusters of the same size

to store their local tables. More importantly, for privacy reasons,
data providers collaborate on joint analyzes without revealing their
data.

Differential Privacy (DP).Aprivacymodel that provides formal

guarantees of indistinguishability such that the query results do

not yield much information about the presence or absence of any

particular individual. Consequently, it hides information about

which of the neighbouring tables [15] was used to answer the

query.

Definition 3.1 (Neighbouring Tables [15]). Two tables 𝑇 and 𝑇 ′

are neighbouring if we can obtain one of them by inserting at

most a row into the other.

We use 𝑑 (𝑇,𝑇 ′) to represent the distance between two tables

𝑇 and 𝑇 ′ and we say that two tables are neighbouring if their

distance is 1 or less.

Definition 3.2 ((𝜖, 𝛿)-Differential Privacy [15]). A mechanism

𝑀 satisfies (𝜖, 𝛿)-Differential Privacy (or (𝜖, 𝛿)-DP) if, for any two
neighboring tables 𝑇 , 𝑇 ′ and for any possible output 𝑉 of𝑀 :

Pr [𝑀 (𝑇 ) ∈ 𝑉 ] ≤ 𝑒𝑥𝑝 (𝜖) × Pr
[
𝑀

(
𝑇 ′

)
∈ 𝑉

]
+ 𝛿

where 𝛿 represents the failure probability. We refer to (𝜖, 𝛿) as
the privacy budget.

In practice, 𝑀 is a randomized algorithm, which has many

possible outputs under the same input. It is well known that DP

is used to answer specific queries on databases. Let 𝑓 be a query

on a table𝑇 whose its answer 𝑓 (𝑇 ) returns a number. The global
sensitivity of 𝑓 is the amount by which the output of 𝑓 changes

for all neighboring tables.

Definition 3.3 (Global Sensitivity [15]). For any two neighbor-

ing tables 𝑇 and 𝑇 ′, the global sensitivity of function 𝑓 is:

𝐺𝑆𝑓 = max

𝑇,𝑇 ′ :𝑑 (𝑇,𝑇 ′ )≤1

𝑓 (𝑇 ) − 𝑓 (𝑇 ′)

1

where ∥·∥
1
is the 𝐿1 norm.

For instance, if 𝑓 is a COUNT range query then 𝐺𝑆𝑓 is 1.

The Laplace Mechanism is a randomized mechanism for en-

forcing 𝜖-DP (or (𝜖, 0)-DP referred to as pure DP), which adds

calibrated noise to 𝑓 based on its global sensitivity 𝐺𝑆𝑓 .

Definition 3.4 (Laplace Mechanism [15]). The Laplace Mecha-
nism adds noise to 𝑓 (𝑇 ) as:

𝑆 = 𝑓 (𝑇 ) + Lap
(
𝐺𝑆𝑓

𝜖

)
where 𝐺𝑆𝑓 is the global sensitivity of 𝑓 , and 𝐿𝑎𝑝 (𝛼) denotes
sampling from the Laplace distribution with center 0 and scale 𝛼 .
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Unlike the Laplace Mechanism, which is used to release noisy

numerical values, the Exponential Mechanism can be used for

biased selection of elements from a set based on a scoring function

while preserving (𝜖, 0)-DP [15].

Definition 3.5 (Exponential Mechanism [15]). Given a set of

elements 𝑆𝐸 and a scoring function 𝐿, the Exponential Mechanism
randomly selects 𝑒 ∈ 𝑆𝐸 with the probability of the element 𝑒

being proportional to:

exp

(
𝜖𝐿(𝑒)
2Δ𝐿

)
where Δ𝐿 is the sensitivity of 𝐿.

Local and Smooth Sensitivity. In many applications of DP, the

global sensitivity𝐺𝑆𝑓 cannot be bounded. In this case, there is an

alternative definition of sensitivity called local sensitivity, where
the maximum difference between the query’s results is based on

a fixed database 𝑇 and any database 𝑇 ′ neighbouring to it:

Definition 3.6 (Local Sensitivity [30]). Given a database 𝑇 and

𝑇 ′ as any of its possible neighbouring tables, the local sensitivity
of function 𝑓 is:

𝐿𝑆𝑓 (𝑇 ) = max

𝑇 ′ :𝑑 (𝑇,𝑇 ′ )≤1

𝑓 (𝑇 ) − 𝑓 (𝑇 ′)

1

The local sensitivity 𝐿𝑆𝑓 (𝑇 ) is often much less than the global

sensitivity 𝐺𝑆𝑓 because it is based on a specific instance of the

data𝑇 . This also makes it unsafe to use, as it can leak information

about 𝑇 on which it is based. Nassim et al. [30]. suggest the use
of a smoothing function that finds a safe upper bound for 𝐿𝑆𝑓 (𝑇 )
and can be used to calibrate the randomness (noise) without any

risk. These functions usually require that the local sensitivity be

computed at any arbitrary distance 𝑘 from 𝑇 .

Definition 3.7 (Local Sensitivity at Distance 𝑘 [30]). Given a

table 𝑇 , the local sensitivity of function 𝑓 is:

𝐿𝑆𝑓 (𝑇 )𝑘 = max

𝑇 ′ :𝑑 (𝑇,𝑇 ′ )≤𝑘

𝑓 (𝑇 ) − 𝑓 (𝑇 ′)

1

A safe approximate upper bound 𝑆_𝐿𝑆𝑓 (𝑇 ) of 𝐿𝑆𝑓 (𝑇 ), which
is insensitive to small variations of data, can be obtained by the

smooth sensitivity framework [30].

Definition 3.8 (Smooth Sensitivity Framework [30]).

𝑆_𝐿𝑆𝑓 (𝑇 ) =𝑚𝑎𝑥𝑘=0,1,...𝑛{𝑒𝑥𝑝 (−𝛽𝑘)𝐿𝑆𝑓 (𝑇 )𝑘 }
where 𝛽 = 𝜖

2𝑙𝑜𝑔 (2/𝛿 ) .

After a number of 𝑛 iterations, this upper bound can be used

to calibrate noise for the Laplace mechanism to ensure (𝜖, 𝛿)-DP.
DP Properties. Combining several DP mechanisms is possible,

and the privacy accounting is managed using the sequential and

the parallel composition properties of DP. Let 𝑀1, . . . , 𝑀𝑛 be

mechanisms satisfying (𝜖1, 𝛿1), . . . , (𝜖𝑛, 𝛿𝑛) -DP.

Theorem 3.9 (Seqential Composition [15]). Applying se-

quentially𝑀1, . . . , 𝑀𝑛 satisfies
(∑𝑛

𝑗=1 𝜖 𝑗 ,
∑𝑛

𝑗=1 𝛿 𝑗

)
-DP.

Theorem 3.10 (Parallel Composition [15]). A mechanism
that applies𝑀1, . . . , 𝑀𝑛 on disjoint parts of the data satisfies:(
𝑚𝑎𝑥𝑖∈[𝑛] (𝜖𝑖 ),𝑚𝑎𝑥𝑖∈[𝑛] (𝛿𝑖 )

)
-DP

The post-processing property states that it is safe to execute

any function on the output of a DP mechanism.

Theorem 3.11 (Post-Processing [15]). For any (𝜖, 𝛿)-DPmech-
anism𝑀 and any function 𝑓 , 𝑓 (𝑀) satisfies (𝜖, 𝛿)-DP.

In the context of online query answering, each query con-

sumes (𝜖, 𝛿) to secure the results. To manage/ the information

released to the analyst, a total budget (𝜉,𝜓 ) is given which will

be consumed by 𝑁 queries such that 𝜉 = 𝑁𝜖 and 𝜓 = 𝑁𝛿 . The

analyst can continue sending queries until their total budget is

consumed.

Secure Multiparty Computation (SMC). it refers to crypto-

graphic protocols that enable a set of independent parties to

collaboratively evaluate a query without revealing their private

inputs to each other. It also allows them to avoid trusting a third

party with the union of their data for query evaluation. How-

ever, this safety assurance comes at the cost of resources and

processing time. Using SMC is several times slower than insecure

alternatives.

4 PROBLEM STATEMENT
Given a federated system in which 𝑛 data providers pool their

private data for analysis querying. Consider a private table 𝑇

(as in Figure 2) which is horizontally partitioned among data

providers as tables 𝑇1, . . ., 𝑇𝑛 . Each data provider wants to keep

the individual tuples of their local table confidential and only the

schema of 𝑇 is public. Suppose an end user sends the following

range query 𝑄 :

SELECT COUNT(*) FROM Table WHERE 20 <= Age <= 40
where 𝑄 is performed on the union of tables stored at the

data providers, ∪𝑛
𝑖=1

𝑇𝑖 . However, even though 𝑄 may seem very

simple at first glance, the big data associated with 𝑇𝑖 makes 𝑄

very complex and time-consuming.

To solve the problem of slow query response time, we can

resort to Approximate Query Processing (AQP) to find a trade-off

between accuracy and speed of results via approximation. One

very straightforward technique of AQP is to perform random
sampling, given a sampling rate 𝑠𝑟 , to obtain a set of tuples from𝑇 .

For example, an end user can request an answer for𝑄 based only

on 𝑠𝑟 = 20% of the entire 𝑇 . Even for a single table 𝑇 , to obtain

a good approximation of 𝑄 , the sampled tuples must contain

meaningful data in the ranges of 𝑄 . Random sampling can be

done at the row or cluster level. Although cluster-level sampling

is faster than row-level sampling, both have linear performance

with respect to sampling rate. The larger the sample, the more

accurate and slower the result, and vice versa.

Consider 𝑇 is stored as a set of clusters. To get an accurate

estimate of 𝑄 when processing a few parts of the data, we use a

statistical estimator [27]. To do this, we need to consider the dis-

tribution of rows between all clusters. It should be noted that the

assumption of a uniform distribution of rows among all clusters

is rarely valid in real databases. Indeed, the rows generally follow

a skewed distribution. In contrast, unequal probability cluster

sampling is more effective at providing better estimates, where

the probability of a cluster being sampled is based on the data

distribution for 𝑄 .

Assume that each partition 𝑇𝑖 is stored using clusters. How to

apply the unequal probability cluster sampling in our federated

context? Note that each cluster within each data provider should

have a specific probability 𝑝 of being sampled to estimate 𝑄 ,

taking into account all other clusters (even those from other data

providers). As a result, capturing the inter/intra data distribution

will bias the sampling toward clusters or data providers that hold

most of the data related to 𝑄 . We refer to this sampling as global

sampling.
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The other solution is local sampling, where each data provider

computes the sampling probabilities for its clusters (without

considering other data providers). In this sampling, the sample

size is distributed uniformly on data providers, so it does not

require a collaboration between data providers. This lack of global

data distribution awareness makes this solution less appealing

than global sampling.

To apply global data distribution-aware sampling and approx-

imation, data providers must provide appropriate information

about their data to quickly and accurately estimate 𝑄 . The op-

timal solution to capture the data distribution in this context is

achieved if data providers have access to each other’s data and

sampling probabilities are computed collectively. This collabora-

tion will lead to an overhead in processing time. The challenge

is then to define the summarized and small pieces of informa-

tion that data providers can share and be sufficient to capture

the data distribution while producing negligible overhead. Once

this global data distribution is captured, each data provider can

locally sample clusters, estimate the query, and send its result.

All results from data providers will be added together and the

final result will be returned to the end user.

Another dimension of our problem concerns privacy and data

protection. In the federated context, the end-to-end privacy prop-

erty must be guaranteed. This essentially ensures that data is

protected (i) during and after query execution, (ii) for intermedi-

ate results during collaboration, and (iii) for the final response.

DP is a widely accepted privacy model, typically applied to query

results to prevent any inference about the presence or absence

of individuals. As for the intermediate results produced during

collaboration between data providers, they must also be pro-

tected, with each data provider seeking to prevent any leakage

of information on its table. Even if the exchange is limited to

summarized (aggregated) information, there will be no privacy

guarantee. Thus, DP can also be used to publish intermediate

results between data providers.

An alternative solution to DP is the use of SMC to implement

collaboration between data providers. This solution has two ma-

jor drawbacks: if data providers use the summary information for

sampling in SMC, query approximation (which includes running

the query on each cluster) must also be done in SMC because the

sampling is based on sensitive information and its results may

disclose information to other data providers. Second, SMC relies

heavily on cryptography, which will significantly reduce the util-

ity of the query in terms of processing time, thereby diluting the

purpose of approximations.

In this work, we aim to provide fast and accurate responses to

range queries in a federated setup while preserving end-to-end

privacy. The challenges we address are: defining a lightweight

sampling algorithm considering data distribution for query ap-

proximation in a federated environment and carefully applying

DP to ensure end-to-end privacy with minimal loss of query

accuracy.

5 OUR SOLUTION
In this section, we present in detail our solution. Due to limited

space, all proofs of theorems are given in our long version [23].

5.1 Overview
In our work, we combine DP with lightweight SMC to protect

intermediate results when collaborating between data providers.

This allows us to obtain significantly better performance in terms

of speed-up and achieve end-to-end privacy, while maintain-

ing high utility answers for online range queries. To achieve

these goals, we propose an efficient and lightweight collaboration

method, allowing data providers to decide how many samples to

extract from each, guided by the summary information shared

during this collaboration. To integrate knowledge of the data

distribution into our sampling and approximation steps, we use

the probability proportional to size (pps) method [27]. Here, the

probability 𝑝 of including (or sampling) a cluster𝐶 is determined

by the proportion 𝑅 of rows in 𝐶 falling within the ranges of the

query 𝑄 . Computing 𝑅 is expensive and requires similar over-

head as running the query. To minimize the processing time of𝑄 ,

we will approximate each 𝑅 of any cluster 𝐶 using lightweight

metadata associated with 𝐶 .

Figure 3: Protocol and Architecture

Our solution has two main phases: offline data preprocessing

and online query answering. In the offline data preprocessing

phase, each data provider constructs global and individual meta-

data for its clusters. This metadata makes query approximation

easier without imposing a significant overhead in terms of pro-

cessing time. All data providers agree on the same maximum

cluster size 𝑆 (more details are given in Section 7) before initiat-

ing the system. The size 𝑆 may not reflect the actual size of their

clusters, but it would be used to calculate the 𝑅 of each cluster.

The offline phase and metadata creation are detailed in Section

5.2, and Figure 3.(b) shows the general architecture of our system

where each data provider is equipped with metadata.

Once preprocessing is complete for all data providers, the sys-

tem goes online. In the online query response phase, the end

user interacts with an aggregator by sending their query 𝑄 and

desired sampling rate 𝑠𝑟 and receives a secure response in re-

turn. The aggregator manages the rest of the exchanges with the

data providers. The query lifecycle (see Figure 3.(a)) as well as

the collaboration (exchange of summary data) are described as

follows:

(1) First, the aggregator sends the query𝑄 to the data providers.

Each data provider performs two tasks: i) identify the set

of clusters 𝐶𝑄
covering 𝑄 such that 𝑁𝑄 = |𝐶𝑄 |, ii) com-

pute the proportion 𝑅 of rows for each 𝐶 ∈ 𝐶𝑄
. The data

provider uses previously stored metadata to avoid over-

head when performing these two tasks.

(2) Each data provider securely (using DP) sends to the ag-

gregator the summarized data needed for collaboration:

the number of clusters 𝑁𝑄
and average of proportions

𝐴𝑣𝑔(𝑅) where 𝑅 = {𝑅1, ..., 𝑅𝑁𝑄 }.
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(3) The aggregator computes and sends the best allocation

(sample size 𝑠) for each data provider while respecting the

total sample size given by 𝑠𝑟 .

(4) Each data provider tests the condition 𝑁𝑄 < 𝑁𝑚𝑖𝑛
in

order to compute 𝑄 “regularly” without approximation.

The𝑁𝑚𝑖𝑛
is a threshold set by each data provider to trigger

the approximation only if the query is significantly large

(more details about 𝑁𝑚𝑖𝑛
are given in Section 5.2).

(5) If the previous condition does not hold, each data provider

randomly and securely with DP samples𝐶
𝑄

𝑆
, where𝐶

𝑄

𝑆
⊂

𝐶𝑄
.

(6) After sampling, each data provider estimates 𝑄 over 𝐶
𝑄

𝑆
locally and then securely sends the result to the aggregator

with DP guarantees.

(7) Alternatively, data providers may use SMC to share their

local estimations and “sensitivities”. Then, the aggregator
obliviously sums the estimations and applies DP using

the maximum sensitivity before safely releasing the final

result.

In Section 5.2, we will focus on the approximation via cluster

sampling and the metadata created offline. Afterward, Section 5.3

will be dedicated to the second phase of our solution. In Section

5.3.1, we will describe the allocation step and how it preserves

the same semantics as the naive (sharing all data) method of

collaboration by keeping the sampling data distribution aware

without an overhead. In Section 5.3.2, we will present the privacy-

preserving sampling used by each data provider locally to create

𝐶
𝑄

𝑆
. In Section 5.3.3, we detail how to obtain a calibrated DP

noise for the final result obtained by using a statistical estimator.

Finally in Section 5.4, we explain how the privacy budget for

each query is managed and consumed.

5.2 Query Approximation and sampling
As previously mentioned in Section 5.1, our unequal probability

sampling is based on the proportion 𝑅 of rows in cluster 𝐶 that

corresponds to 𝑄 . Computing the exact 𝑅 for each cluster is as

costly as evaluating the query itself, rendering the approximation

useless. Inspired by [42], we will only approximate 𝑅 to avoid an

overhead in response time. Given a query 𝑄 = {∀𝑑 ∈ 𝐷𝑄
| 𝑟𝑑 =

[𝑙𝑑
𝑏
, 𝑢𝑑

𝑏
]} where each dimension is defined by a range. We assume

that the dimensions are not correlated (independent). We will

compute the sub-proportions 𝑅𝑑 on each dimension as follows:

𝑅𝑑 = 𝑅𝑑≥ (𝑙𝑑
𝑏
) − 𝑅𝑑≥ (𝑢𝑑

𝑏
)

where 𝑅𝑑≥ (𝑥) = |𝑟𝑜𝑤𝑠
𝑑 ≥ 𝑥 |
𝑆

and 𝑆 is the cluster size.

The proportion 𝑅𝑑 is computed based on the proportions 𝑅𝑑≥ (𝑙𝑑
𝑏
)

and 𝑅𝑑≥ (𝑢𝑑
𝑏
) of records whose dimension 𝑑 values are ≥ 𝑙𝑑

𝑏
and

≥ 𝑢𝑑
𝑏
, respectively. Based on the assumption of independence

between dimensions, 𝑅 can be obtained as follows:

𝑅 =

𝑑∈𝐷𝑄∏
𝑅𝑑 and 𝑝 𝑗 =

𝑅 𝑗∑𝑁𝑄

𝑖=0 𝑅𝑖

(1)

where 𝑁𝑄
is the number of clusters covering 𝑄 . The approx-

imated 𝑅 can then be used to obtain the sampling probabilities

𝑝 𝑗 for the 𝑗𝑡ℎ cluster as shown in Equation 1. Even this approxi-

mation requires a lot of calculations, which may cause similar

overhead as the exact 𝑅. To bypass this limitation, we associate

each cluster with a set of metadata that accelerates these compu-

tations for any given query (see Algorithm 1).

Algorithm 1 Cluster metadata

Require: 𝑇 = {𝐶1,𝐶2, ...,𝐶𝑁 }: Set of clusters
1: Clusters_metas← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑒𝑡𝑎()
2: for each 𝐶 ∈ 𝑇 do
3: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑚𝑒𝑡𝑎 ← []
4: datas_meta← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑎𝑡𝑎𝑠_𝑚𝑒𝑡𝑎_(𝐶)
5: for each 𝑑 ∈ 𝐷 do
6: for each 𝑣 ∈ |𝑑 |𝐶 do
7: 𝑅𝑑≥ (𝑣) ← 𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠_𝑔𝑟𝑒𝑎𝑡𝑒𝑟_(𝐶,𝑑, 𝑣)
8: datas_metas.𝑎𝑑𝑑 (𝑑, 𝑣, 𝑅𝑑≥ (𝑣))
9: end for
10: 𝑣𝑑

𝑚𝑖𝑛
, 𝑣𝑑𝑚𝑎𝑥 ←𝑚𝑖𝑛_𝑚𝑎𝑥 ( |𝑑 |𝐶 )

11: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑚𝑒𝑡𝑎.𝑎𝑑𝑑 (𝑣𝑑
𝑚𝑖𝑛

, 𝑣𝑑𝑚𝑎𝑥 )
12: end for
13: Clusters_metas.𝑎𝑑𝑑 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑚𝑒𝑡𝑎)
14: 𝑠𝑎𝑣𝑒 (datas_metas)
15: end for
16: 𝑠𝑎𝑣𝑒 (Clusters_metas)

In Algorithm 1, for each cluster 𝐶 and for each distinct value

𝑣 of dimension 𝑑 ∈ 𝐷 in 𝐶 ∈ 𝑇 (Lines 5-6), 𝑅𝑑≥ (𝑣) is stored in

the dedicated meta file for the cluster where the entry is in the

form {𝑑, 𝑣, 𝑅𝑑≥ (𝑣)} (Line 8). These metadata will be used by each

data provider to quickly access precomputed proportions that

correspond to the range of a given 𝑄 , thus significantly reducing

the overhead in the online phase. To further improve the perfor-

mances, Algorithm 1 stores additional global metadata about the

clusters Clusters_metas, enabling the system to easily identify

the clusters 𝐶𝑄
that correspond to 𝑄 before even computing the

proportions. In a dedicated global file Clusters metas, for each
dimension 𝑑 ∈ 𝐷 in cluster 𝐶 , Algorithm 1 (Lines 11-13) stores

𝑣𝑑
min

(𝑣𝑑
max

), the minimum (maximum) value of 𝑑 in 𝐶 . Based on

these metadata in Clusters metas, the system is able to focus

only on a small subset of the database 𝐶𝑄
that actually contains

rows matching𝑄 instead of𝑇 , thus reducing the processing time

of 𝑄 . The set 𝐶𝑄
is defined as follows:

𝐶𝑄 = {∀𝐶 ∈ 𝑇 | ∀𝑑 ∈ 𝐷𝑄
, [𝑣𝑑

𝑚𝑖𝑛
, 𝑣𝑑𝑚𝑎𝑥 ] ∩ 𝑟𝑑 ≠ ∅}

where 𝑟𝑑 is the interval of 𝑄 in dimension d.

(2)

Since we are able to identify the clusters 𝐶𝑄
concerned by 𝑄 ,

it only makes sense to approximate 𝑄 only when 𝑁𝑄
is bigger

than a certain threshold 𝑁𝑚𝑖𝑛
. This threshold can be set indepen-

dently by each data provider based on the size of the clusters, the

processing time required for a single cluster, and the hardware

and software infrastructures. The cost of saving these metadata

is very negligible compared to the actual table and clusters. We

used the same data structure like [42] which is very efficient. In

Section 6, we show the space needed for each database.

Once the sampling is applied according to the probability

computed using Equation 1, the Hansen-Hurwitz estimator [27]

is used to obtain the final estimation of𝑄 . The estimation is done

as follows:

𝐸 (𝑄,𝐶𝑄

𝑆
) = 1

𝑁𝑆

∑𝑁𝑆

𝑖=1

𝑄 (𝐶𝑖 )
𝑝𝑖

(3)

where 𝑝𝑖 is the sampling probability of the 𝑖𝑡ℎ cluster and 𝑄 (𝐶𝑖 )
is the query execution result on the 𝑖𝑡ℎ cluster

5.3 Federated protocol
In this section, we will review all the steps of online query ap-

proximation and how we were able to carefully integrate DP into

each step.
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5.3.1 Allocation phase. In this step, the data providers S need
to jointly decide the number of clusters to be sampled from each

one of them based on the distribution (𝑅’s) of data related to 𝑄 .

So upon receiving the query, each data provider identifies 𝐶𝑄

and computes the 𝑅 for each 𝐶 ∈ 𝐶𝑄
using the metadata stored

locally. Then each one sends to the aggregator its𝑁𝑄
and𝐴𝑣𝑔(𝑅),

where 𝑅 is the set of 𝑅’s of the clusters in 𝐶𝑄
. 𝑁𝑄

indicates the

number of clusters within that data provider that overlap with

𝑄 , while 𝐴𝑣𝑔(𝑅) shows the average proportion of rows within

those clusters that corresponds to 𝑄 . Based on this information,

we obtain an aggregated (summary) view of the data distribution

of records corresponding to 𝑄 in each data provider. Using these

insights, the aggregator finds the best sample size 𝑠𝑖 for the 𝑖𝑡ℎ

data provider using an optimization problem given in Equation 4

that aims to assign a bigger allocation to the data provider with

the most data related to 𝑄 .

maximize
∑ |S |
𝑖=0

Avg(𝑅)𝑖 × 𝑠𝑖

where
∑ |S |
𝑖=0

𝑠𝑖 = 𝑠𝑟 ×∑ |S |
𝑖=0

𝑁
𝑄

𝑖
and 𝑠𝑟 ∈]0, 1[ is the sampling rate

and 𝑠𝑖 ∈]1, 𝑁𝑄

𝑖
[

(4)

In Equation 4, the data provider that holds the most data re-

lated to 𝑄 (has the bigger Avg(𝑅)𝑖 ) gets more allocation, thus

sampling more clusters to approximate𝑄 locally. This reflects the

same behaviour as the original collaboration method (described

in Section 4): sampling probabilities are computed globally and

the clusters of the data provider with the bigger 𝑅′𝑠 are more

likely to be sampled than others (higher probabilities, Equation

3). So with our collaboration method, we are able to reproduce

similar results and behaviour. It is important to highlight that

comparing the Avg(𝑅) from each data provider is only possible

because we imposed they use the same 𝑆 in order to compute the

proportions during the metadata creation phase.

To solve the problem in Equation 4, each data provider shares

the 𝑁𝑄
and Avg(𝑅). Both are sensitive pieces of information that

may reveal insights about the individuals within the database.

Even if the optimisation in Equation 4 is done over encrypted data,

the released allocation 𝑠𝑖 might give a data provider insights about

the other data providers. To secure the release of this information,

each data provider uses Laplace mechanism to ensure formal

guarantees of privacy. Given a privacy budget 𝜖𝑂 , each data

provider perturbs these two values as follows:

Ãvg(𝑅) = Avg(𝑅) + Lap
(
2Δ

Avg(𝑅 )
𝜖𝑂

)
𝑁𝑄 = 𝑁𝑄 + Lap

(
2

𝜖𝑂

) (5)

where the sensitivity of 𝑁𝑄
to the absence/presence of an

individual is 1, and the sensitivity of Avg(𝑅), is Δ
Avg(𝑅 .

Theorem 5.1 (Sensitivity of estimator Δ
Avg(𝑅) ). For any

two neighbouring databases 𝑇 , 𝑇 ′ the sensitivity of Avg(𝑅) is de-
fined as:

Δ
𝐴𝑣𝑔 (𝑅) =𝑚𝑎𝑥 ( Δ𝑅

𝑁𝑚𝑖𝑛
,

1

𝑁𝑚𝑖𝑛 + 1
) where Δ𝑅 = 1 − (1 − 1

𝑆
) |𝐷 |

With this perturbation, the collaboration between data providers

for deciding the allocation does not reveal any sensitive informa-

tion. So the optimization problem is formulated as follows:

maximize
∑ |S |
𝑖=0

Ãvg(𝑅𝑖 ) × 𝑠𝑖
where

∑ |S |
𝑖=0

𝑠𝑖 = 𝑠𝑟 ×∑ |S |
𝑖=0

𝑁
𝑄

𝑖
and 𝑠𝑟 ∈]0, 1[ is the sampling rate

and 𝑠𝑖 ∈]1, 𝑁𝑄

𝑖
[

(6)

The test of 𝑁𝑄 < 𝑁𝑚𝑖𝑛
comes after the allocation (collabora-

tion) phase in order to encourage all data providers to participate.

Otherwise, if a data provider does not participate because locally

approximating 𝑄 is not possible, this may reveal information

about the size of its data to other data providers.

5.3.2 Sampling phase. After the allocation phase, each data

provider receives an allocation 𝑠: the number of clusters to pro-

cess for the𝑄 ’s approximation. Using the 𝑅 computed locally, the

data provider computes the sampling probabilities for 𝐶𝑄
and

then performs unequal probability sampling to randomly select 𝑠

clusters. Since the sampling probabilities are computed based on

the rows (individuals) in the database, the result of the sampling

(choices) may leak information about the presence/absence of

any individual. To guarantee DP, our system uses the Exponential

Mechanism (EM) to select the 𝑠 clusters𝐶
𝑄

𝑆
⊂ 𝐶𝑄

(see Algorithm

2) while consuming 𝜖𝑆 privacy budget.

Algorithm 2 𝐸𝑀_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Require: 𝐶𝑄
: set of clusters, 𝑅: set of corresponding 𝑅′𝑠 to 𝐶𝑄

,

𝑠: sample size, 𝜖𝑆 : total budget

1: 𝑃 ← get_sampling_probabilities(𝑅) ⊲ Equation 1

2: 𝑃𝐸𝑀 ← []
3: 𝜖𝑠 ← 𝜖𝑆/𝑠
4: for 𝑖 ∈ [1, 𝑁𝑄 ] do
5: 𝑃𝐸𝑀 [𝑖] ← exp

(
𝜖𝑠𝑃 [𝑖 ]
2Δ𝑝

)
6: end for
7: 𝐶

𝑄

𝑆
← random_choice(𝐶𝑄 , 𝑃𝐸𝑀 , 𝑠)

8: Return 𝐶
𝑄

𝑆
, 𝑃

The score of the 𝑖𝑡ℎ cluster 𝐶𝑖 ∈ 𝐶𝑄
is its own sampling

probability 𝑝𝑖 (Algorithm 2, Line 1), which means the scoring

function 𝐿 of EM is defined by the computation in Equation

1. So to calibrate the noise (randomness) of EM, we must find

the sensitivity of this function 𝐿 to the absence/presence of any

individual in the database.

Consider two neighbouring databases 𝑇 and 𝑇 ′, where 𝑇 ′ is
obtained by adding any random record (which represents an

individual) to 𝑇 at any possible cluster. Given a range query 𝑄 ,

in order to measure Δ𝑝𝑖 (sensitivity of 𝑝𝑖 , which is the same as

𝐿) we assume the worst case scenario for𝑇 and𝑇 ′: all clusters of
𝐶𝑄 (𝐶𝑄 ⊂ 𝑇 ) each have a record that corresponds to 𝑄 . In this

case, their probabilities are the same: 𝑝 = 1

𝑁𝑄 . In 𝑇 ′, one record

is added to another cluster𝐶′ outside of𝐶𝑄
that matches𝑄 . Thus

𝐶′𝑄 = 𝐶𝑄 ∪ {𝐶′}, 𝑁 ′𝑄 = 𝑁𝑄 + 1, and for 𝑄 all the clusters have

the same sampling probability: 𝑝′ = 1

𝑁𝑄+1 . So the Δ𝑝 can be

computed as follows:

Δ𝑝 ≤
��� 1

𝑁𝑄 − 1

𝑁𝑄+1

��� = 1

𝑁𝑄 (𝑁𝑄+1) (7)

We notice that Δ𝑝 is dependent on the query 𝑄 . To find the

global maximum value for Δ𝑝 , we replace 𝑁𝑄
by its minimum

possible value 𝑁𝑚𝑖𝑛
.
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Theorem 5.2 (Sensitivity of sampling probability). For
any two neighbouring databases 𝑇 and 𝑇 ′, the sensitivity of the
sampling probability 𝑝𝐶 of any cluster 𝐶 is bounded by :

Δ𝑝 = max

𝑇,𝑇 ′

𝑝𝐶 (𝑇 ) − 𝑝𝐶 (𝑇 ′)
1
=

1

𝑁𝑚𝑖𝑛 × (𝑁𝑚𝑖𝑛 + 1)

In Algorithm 2, this sensitivity Δ𝑝 is used for sampling using

𝐸𝑀 (Line 5). To manage the total budget 𝜖𝑆 allocated for 𝐸𝑀 in

order to safely make 𝑠 selections (Line 7), we set 𝜖𝑠 = 𝜖𝑆

𝑠 the

budget of each random selection (Line 3).

5.3.3 Approximation phase. To obtain the final result from

𝐶
𝑄

𝑆
, each data provider uses the estimator 𝐸 defined in Equa-

tion 3. In order to release the final results securely and have

DP guarantees, a well-calibrated noise will be added to the final

answer using Laplace Mechanism. To apply Laplace Mechanism,

we need to find the sensitivity Δ𝐸 of the estimator. Let us define

E(𝐶,𝑄, 𝑝) = 𝑄 (𝐶 )
𝑝 . We can rewrite 𝐸 as follows :

𝐸 (𝑄,𝐶𝑄

𝑆
) = 1

𝑠

∑𝑠
𝑖=1 E(𝑄,𝐶𝑖 , 𝑝𝑖 )

where 𝑠 is the size of 𝐶
𝑄

𝑆

(8)

Which implies that :

Δ𝐸 =
1

𝑠

𝑠∑︁
𝑖=1

ΔE (9)

Wewill focus on findingΔE to deduceΔ𝐸 . Given thatE(𝐶,𝑄, 𝑝)
is a fraction of two real values, it gives a hint that its sensitivity

might be unbounded similarly to 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 operator [28]. Upon

further analysis (see [23]), we find that ΔE is unbounded, which
implies Δ𝐸 is also unbounded.

Theorem 5.3 (Sensitivity of estimator E). For any two
neighbouring databases 𝑇 , 𝑇 ′ the sensitivity of the estimator E
for any cluster 𝐶 and query 𝑄 is unbounded:

ΔE = max

𝑇,𝑇 ′

E(𝑄,𝐶) − E(𝑄,𝐶′)
1
≥ 𝑁 × 𝑆𝐷

2

− 1

5.3.

Given that a global sensitivity does not exist, we resort to the

Local Sensitivity (LS) which is measured based on the database

instance 𝑇 . For any database 𝑇 ′ neighbouring to 𝑇 obtained by

adding 1 row (one individual) that matches the query 𝑄 , we can

distinguish four scenarios for a cluster 𝐶 ∈ 𝐶𝑄
(we focus on one

cluster 𝐶 because we are looking for ΔE) that might affect E:

• Scenario 1: Cluster 𝐶 did not receive the new row, but

another cluster did.

• Scenario 2: Cluster 𝐶 did receive the new row.

• Scenario 3: Cluster 𝐶 did not receive the new row but

another cluster has been added to 𝐶𝑄
, such that 𝑁 ′𝑄 =

𝑁𝑄 + 1.
• Scenario 4: Cluster did receive the new individual, but

only add +1 to the𝑀𝑒𝑎𝑠𝑢𝑟𝑒 attribute of existing aggregate

row.

Our aim is to find the upper bound of 𝐿𝑆E, thus we must

consider the distance that provides the largest sensitivity. An

analysis of each of these scenarios (see [23]) showed that under

a certain condition, either scenario 1 or scenario 4 will yield

the biggest distance. For a given cluster 𝐶 , we can choose the

dominant scenario (which will yield the biggest 𝐿𝑆E) between

scenarios 1 and 4 without needing to compute any of them.

Theorem 5.4 (Dominant distance LS). The neighbouring
scenario 1 will give bigger distance than scenario 4 iff:

𝑄 (𝐶) >
∑𝑅∈𝑅 𝑅

Δ𝑅

Since the 𝐿𝑆E is computed based on 𝑇 , it cannot be used di-

rectly to inject noise because the scale of the noise may reveal

sensitive information about 𝑇 [28]. To avoid such information

leakage, we will use the smooth sensitivity framework [30] for

finding a safer upper bound 𝑆_𝐿𝑆E for the local sensitivity 𝐿𝑆E.

So we redefine our 𝐿𝑆E in terms of a distance 𝑘 between 𝑇 and

𝑇 ′:

• Scenario 1: 𝐿𝑆𝑘
E
= 𝑘 × 𝑄 (𝐶 )×Δ𝑅

𝑅

• Scenario 4: 𝐿𝑆𝑘
E
= 𝑘 × 1

𝑝

The safe smooth upper 𝑆_𝐿𝑆E is defined as follows:

𝑆_𝐿𝑆E =𝑚𝑎𝑥𝑘=0,1,...𝑛{𝑒−𝛽𝑘 × 𝐿𝑆𝑘E} (10)

where 𝛽 = 𝜖𝐸

2 ln(2/𝛿 ) and (𝜖
𝐸 , 𝛿) is the privacy budget allocated

for releasing the final result.

Algorithm 3 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑄

Require: 𝑄 : 𝑞𝑢𝑒𝑟𝑦,𝐶
𝑄

𝑆
: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, (𝜖𝐸 , 𝛿) : 𝑏𝑢𝑑𝑔𝑒𝑡, 𝑆𝑀𝐶 : 𝑏𝑜𝑜𝑙

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← approximate_Q(𝑄,𝐶𝑄

𝑆
) ⊲ Equation 3

2: 𝑆_𝐿𝑆 ← []
3: for 𝑖 ∈ [1, 𝑁𝑄

𝑆
] do

4: 𝑆_𝐿𝑆 [𝑖] ← 𝑠𝑚𝑜𝑜𝑡ℎ_𝐿𝑆 (𝑄,𝐶𝑄

𝑆
[𝑖], 𝜖𝐸 , 𝛿) ⊲ Equation 10

5: end for
6: 𝐿𝑆_𝑠𝑚𝑜𝑜𝑡ℎ ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑆_𝐿𝑆) ⊲ Equation 9

7: if SMC then
8: 𝑠𝑒𝑛𝑑_𝑠𝑒𝑐𝑢𝑟𝑒 (𝑟𝑒𝑠𝑢𝑙𝑡, 𝐿𝑆_𝑠𝑚𝑜𝑜𝑡ℎ)
9: else
10: 𝑑𝑝_𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝐿𝑎𝑝 ( 2×𝐿𝑆_𝑠𝑚𝑜𝑜𝑡ℎ

𝜖𝐸
)

11: 𝑠𝑒𝑛𝑑 (𝑑𝑝_𝑟𝑒𝑠𝑢𝑙𝑡)
12: end if

Based on the definitions we gave for 𝐿𝑆𝑘
E
, the computational

overhead to compute the smooth sensitivity for each cluster 𝐶 ∈
𝐶
𝑄

𝑆
is very negligible because: i) All the 𝑅’s and 𝑝’s are computed

before this step, and will be reused for each iteration over 𝑘 ; ii)

the maximum value of 𝑘 (steps) is also bounded by 𝑘 = 1

1−𝑒𝛽 + 1,
which guarantees that the process will terminate; iii) Theorem

5.4 allows to determine which scenario is dominant for any given
cluster, thus only computing one 𝑆_𝐿𝑆E.

Algorithm 3 describes the process of estimating 𝑄 over the

subset of cluster 𝐶
𝑄

𝑆
. It starts by estimating 𝑄 according to Equa-

tion 3 (Line 1). Then it proceeds to compute the smooth sensitivity
(Lines 2-6), where the function 𝑠𝑚𝑜𝑜𝑡ℎ_𝐿𝑆 is responsible for com-

puting the smooth sensitivity 𝑆_𝐿𝑆E for each cluster 𝐶 ∈ 𝐶𝑄

𝑆
as

described in Equation 10. Depending on the chosen setup by the

data providers, either they compute and send a DP result to the

aggregator (Lines 10–11) that returns ultimately the sum to the

user. The second option is that data providers share their estima-

tions and computed sensitivities (Line 8) with the aggregator that

obliviously computes the sum of estimations and the maximum

sensitivity to perturb the final result with Laplace Mechanism.
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5.4 Privacy accounting
In the online query answering settings under DP, the end user

is limited by a total privacy budget of (𝜉,𝜓 ). For each query 𝑄 ,

a budget (𝜖, 𝛿) is consumed in order to publish the answer and

the end user can interact with system as long as the total budget

(𝜉,𝜓 ) is not consumed. In this section, we will track the privacy

budget 𝜖 consumption for each query.

In our proposed protocol the data providers do not share their

data, and𝑄 is processed (data access and publishing) in parallel by

each data provider.We can just track the consumption on one data

provider, and based on the parallel composition property of DP

we can deduce the budget consumption for 𝑄 on the full system.

A data provider starts by publishing the 𝑁𝑄
and Avg(𝑅) using

Laplace mechanism for the allocation phase, while consuming a

total budget of 𝜖𝑂 . Based on the post-processing property of DP,

obtaining the sample size 𝑠 is DP. Afterwards, each data provider

uses Exponential Mechanism to sample a subset 𝐶
𝑄

𝑆
⊂ 𝐶𝑄

while

consuming a budget of 𝜖𝑆 . To publish an estimation of 𝑄 , each

data provider uses Laplace mechanism once more, and consumes

a budget of 𝜖𝐸 . The final step does not in fact guarantee pure

DP, since the smooth sensitivity has a 𝛿 failure probability. Based
on the sequential composition property of DP, the total budget is:

(𝜖 = 𝜖𝑂 + 𝜖𝑆 + 𝜖𝐸 , 𝛿). Given the parallel composition property, the
budget consumption for 𝑄 is (𝜖, 𝛿).

In case the data providers use SMC to inject a single noise,

and based on parallel composition property, we deduce that data
providers consumed 𝜖𝑂 +𝜖𝑆 for the local computation. Then they

collectively consumed (once) 𝜖𝐸 for publishing the result. By the

sequential composition property of DP, the budget consumption

for 𝑄 is (𝜖 = 𝜖𝑂 + 𝜖𝑆 + 𝜖𝐸 , 𝛿).
Based on these results, a set of hyperparameters can be set

in our system (for example, by database admin) that regulates

the 𝜖 budget distribution at each step of the query processing.

Let ℎ𝑝1, ℎ𝑝2 and ℎ𝑝3 be this set of hyperparameters (where each

ℎ𝑝𝑖 ∈]0, 1[ and ℎ𝑝1 + ℎ𝑝2 + ℎ𝑝3 = 1) such that: 𝜖𝑂 = 𝜖ℎ𝑝1,

𝜖𝑆 = 𝜖ℎ𝑝2 and 𝜖
𝐸 = 𝜖ℎ𝑝3.

6 EVALUATION
6.1 Setup
Datasets. We used two big datasets: (i) Adult [9] contains de-
mographic and income information for individuals with 15 di-

mensions and 48 × 103 records, synthetically scaled up 4 × 106
records. (ii) Amazon Review [29] is about reviews from Ama-

zon clients across different product categories, with only three

“range queriable” dimensions and 231 × 106 records (∼ 120 Gb).

We synthetically added three randomly populated dimensions

and random records to reach 4 × 231 × 106 records.
A count tensor with column Measure is created from each

dataset, aggregating six dimensions of Adult and one dimension

of Amazon Review.
Queries and Workloads. We generated random ranges for

the queries and ran only those that lead to the approximation

(𝑁𝑚𝑖𝑛 < 𝑁𝑄
) on all data providers. A workload (𝑚,𝑛) is a set of

𝑚 distinct queries with ranges over 𝑛 dimensions.

Metrics. An online query is useful if it has a low error rate

and low processing time. To measure the query error, we used

Relative error = |answer−estimation |
answer

. For performance in terms of

response time, we used: Speed-UP= time of normal computation

time of estimate computation
.

Configuration. In our experiments, we assumed that there

are one aggregator and four data providers and that each data

provider has its own database. DatasetsAdult andAmazon Review
are horizontally partitioned equally across data providers.

Source code. Based on PostgreSQL
5
, our solution

6
coded in

Python uses the libraries: (i) OrTools
7
as solver; (ii) Pyro5

8
as

communication medium; and, (iii) MPyC
9
as SMC environment.

Our implementation is a proof-of-concept in which the clusters

of the original table are other smaller tables.

Hyperparameters. In our experiments, the total privacy budget

(𝜖, 𝛿) for each query is set with 𝛿 = 10
−3

and 𝜖 = 1 (unless other

values are indicated for 𝜖). The budget 𝜖 is shared between each

step of our solution as follows: 𝜖𝑂 = 0.1 × 𝜖 , 𝜖𝑆 = 0.1 × 𝜖 and

𝜖𝐸 = 0.8 × 𝜖 . To get clusters of the same size, we set the cluster

size 𝑆 to 1% and 0.5% of the total size 𝑇𝑎
of each data provider

for Adult and Amazon Review, respectively.
Metadata space allocation. The metadata for Amazon Review
dataset was about 11 MB (56 KB/cluster). As for Adult dataset, it
occupied 6.4 MB (64 KB/cluster).

Hardware10. For each of the data providers and the aggregator,

we allocated a dedicated server with the following configuration:

2 X Intel Xeon E5−2630 v3 8 cores/CPU x86_64, RAM 128GB and

1.2 TB HDD, and a network with 1 Gbps + 4 x 10 Gbps (SR-IOV).

6.2 Dimension-based analysis
In these experiments, we evaluated the impact of the number of

dimensions in queries on accuracy. To this end, we generated

random workloads (𝑚,𝑛) with𝑚 = 100 distinct queries (SUM and
COUNT) and dimension 𝑛 ∈ [2, 7] for Adult and 𝑛 ∈ [2, 5] for
Amazon Review. For the sampling rate, we set it to 5% and 20%

for Amazon Review and Adult datasets, respectively.
The results presented in Figure 4 show that our solution

achieves very high accuracy for COUNT and SUM queries. The

relative error is less than 2.5% (resp. 11%) on average for COUNT
queries on Amazon Review (resp. Adult). As for SUM queries, the

error is less than 5% (resp. 17%) on Amazon Review (resp. Adult).
This performance difference is due to the size difference between

the databases. In big tables, query results are larger (contain

more data), therefore less affected by Laplace Mechanism noise.

Interestingly, the results also indicate that queries become more

accurate as the number of dimensions decreases. Specifically,

with workloads having only 2 dimensions on both datasets, we

reached an error close to 0%. This observed behavior corresponds

to our expectations. Because in Equation 1, we approximate 𝑅 of

each cluster and the accuracy of this approximation improves as

the number of dimensions decreases, bringing the approximation

closer to the exact 𝑅. Thus, we have more accurate sampling

probabilities which affect the estimation of the final result. For

the speedup, the results in Figure 7 show that the higher the num-

ber of dimensions, the less speedup is gained. From the results

in Figure 7, the speedup drops from approximately 8𝑥 to 6𝑥 as

the number of dimensions increases from 2 to 5 on Amazon Re-
view dataset. This drop is attributed to the sampling probabilities

approximation phase, where our algorithm looks up the prepro-

cessed metadata. The higher the number of dimensions, the more

metadata it needs to look up. However, this effect becomes neg-

ligible on larger databases. Because even in these results, the

speedup remains very significant.

5
https://developers.google.com/optimization

6
https://github.com/AlaEddineLaouir/Federated-Range-Queries.git

7
https://developers.google.com/optimization

8
https://pyro5.readthedocs.io/en/latest/index.html

9
https://mpyc.readthedocs.io/en/latest/mpyc.html

10
Grid5000: Grisou cluster https://www.grid5000.fr/w/Nancy:Hardware
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Figure 4: Dimension-based analysis

6.3 Sampling rate-based analysis
In this analysis, we examined the effect of sampling rate on query

quality. For each database, we generated two random workloads

for COUNT and SUM queries of 𝑚 = 100 and 𝑛 = 4. We varied

the sampling rate between 5% and 20% for each experiment and

measured the quality obtained in terms of accuracy and speed-up.

From the results in Figure 5, we observe that a higher sampling

rate provides slightly better accuracy: reaching a relative error

of less than 1% with a 20% sampling rate for COUNT queries on

Amazon Review dataset.

Regarding the speed-up, we note that our solution reaches up

to a 7𝑥 compared to a normal execution (without approximation)

onAmazon Review (with 4 dimensional queries). Additionally, the

speed-up gains in Amazon Review are 4𝑥 more significant than

those in Adult. This result indicates that our solution provides

more speed for larger datasets. Also based on the results in Figure

5, the tradeoff between speed-up and accuracy is noticeable. We

observe that the larger the sampling, the less the speed-up is

gained. On the other hand, accuracy improves with higher sam-

pling rates. We can say that, based on the results shown in this

experiment, accuracy gains with higher sampling are very costly

in terms of speed-up. But it is up to the users (data analysts) to

define the sampling rate according to their needs.

6.4 Privacy budget-based analysis
In these experiments, we analyzed the effect of the privacy budget

𝜖 on query quality. We generated two random workloads of

𝑚 = 100 and𝑛 = 4 for COUNT and SUM queries and set the sampling

rate to 5% and 10% forAmazon Review andAdult, respectively. We

varied 𝜖 between 0.1 and 1.3 and captured the performance on

each workload. From the results in Figure 6, we can immediately

observe the typical trend of any DP mechanism (larger 𝜖 leads to

better accuracy).

Interestingly, SUM queries are able to provide better utility

(lower relative error) than COUNT queries. This happens because

SUM queries yieldmore substantial results (larger query responses)

than COUNT queries, making them less affected by noise added

to the response. A similar observation applies when comparing

results between the two databases, with workloads on Amazon
Review preserving more accuracy than those on Adult. This is

5 10 15 20
Sampling rate %

0

5

10

15

20

Re
lat

ive
 er

ror
 %

sum queries relative error

mean relative error

5 10 15 20
Sampling rate %

1.0

1.2

1.4

1.6

1.8

Sp
ee

d u
p X

 tim
es

sum queries speed up
mean speed up

5 10 15 20
Sampling rate %

0

2

4

6

8

10

12

Re
lat

ive
 er

ror
 %

count queries relative error
mean relative error

5 10 15 20
Sampling rate %

1.0

1.2

1.4

1.6

1.8

Sp
ee

d u
p X

 tim
es

count queries speed up
mean speed up

Results on dataset adult_synth

5 10 15 20
Sampling rate %

0

1

2

3

4

5

6

7

8

Re
lat

ive
 er

ror
 %

sum queries relative error
mean relative error

5 10 15 20
Sampling rate %

3

4

5

6

7

Sp
ee

d u
p X

 tim
es

sum queries speed up
mean speed up

5 10 15 20
Sampling rate %

0

1

2

3

4

5

Re
lat

ive
 er

ror
 %

count queries relative error
mean relative error

5 10 15 20
Sampling rate %

3

4

5

6

7

Sp
ee

d u
p X

 tim
es

count queries speed up
mean speed up

Results on dataset amazon

Figure 5: Sampling rate-based analysis

attributed to the fact that the Amazon Review dataset is much

larger than Adult, causing queries to be less affected by the added
noise. Based on this observation, we can predict that as the data-

base size increases, the accuracy of our solution will improve

by using smaller values for 𝜖 . Regarding speed-up, the results in

Figure 7 show that 𝜖 levels have no effect.

6.5 SMC vs DP in terms of sharing results
To examine the performance of our SMC-based solution to share

final results, we conducted experiments using an Adult dataset
split across four data providers. We generated five random two-

dimensional COUNT queries. Each query was repeated five times

(with and without SMC) and we measured the speed-up and the

the range of noise added using the Laplace mechanism at each

iteration.

The results in Figure 8 show, for each query, the range of noise

sampled using the Laplace mechanism for both solutions at each

iteration and speed-up. We notice in Figure 8 that using SMC to

share only the sensitivity and the local result does not produce

significant overhead, which corresponds to the simulation results

in Figure 1. Concerning the injected noise, which affects the

precision of the query result, the use of SMC allows a more
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Figure 6: Epsilon-based analysis
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Figure 7: Impact of dimension and 𝜖 on speed-up

Q1 Q2 Q3 Q4 Q5
Queries

10000

5000

0

5000

10000

15000

No
ise

 sa
m

pl
ed

 fr
om

 L
ap

la
ce

Noise using SMC
Noise using only DP

1.40

1.45

1.50

1.55

1.60

1.65

Sp
ee

d 
Up

speed_up_smc
speed_up_dp

Figure 8: SMC effect on speed-up and accuracy

restricted range of perturbation. Meanwhile, if each data provider

perturbs its local data without SMC, there could be two cases:

(i) the noises from the data providers cancel each other out, or

(ii) the noise accumulates. In the first case, the sum of noises

is close to zero because some are positive and others negative,

which will help improve accuracy. In the second case, which

represents the worst case where most of the noise is positive

or negative, the accuracy of the results will be greatly affected.

Based on the experiment results, a user/data provider can choose

the appropriate query execution process (with or without SMC)

based on their needs, preferring accuracy over speed-up or vice

versa.

6.6 Resilience to Learning-Based Attacks
DP prevents membership attacks revealing the presence/absence

of an individual in the database. In [13], the author introduced

a simple attack that allows the disclosure of an individual’s sen-

sitive 𝑆𝐴 attribute based on anonymized data. This attack relies

on training a Naive Bayes Classifier (NBC) using the results of

COUNT queries from a noisy database, and this classifier will be

used to predict the value of 𝑆𝐴 based on a given set of 𝑄𝐼 (quasi-

identifiers) attribute values of an individual. In our data model,

𝑆𝐴 corresponds to one of the dimensions 𝑑𝑆𝐴 ∈ 𝐷 , and 𝑄𝐼 is

the subset 𝐷𝑄𝐼 ⊆ 𝐷 \ {𝑑𝑆𝐴}. Given 𝑉𝑄𝐼 = {𝑣1, ..., 𝑣 |𝐷𝑄𝐼 | } for
𝐷𝑄𝐼 , a NBC attaches a probability to each possible value 𝑦 of 𝑑𝑆𝐴
(𝑦 ∈ |𝑑𝑆𝐴 |). The predicted value 𝑦 is the one with the highest

probability according to Bayes Theorem [13]:

𝑦 = argmax

𝑦∈ |𝑑𝑆𝐴 |
𝑃 (𝑦)

|𝐷𝑄𝐼 |∏
𝑖=1

𝑃 (𝑣𝑖 |𝑦)/𝑃 (𝑣𝑖 )

To make these predictions, the classifier goes through a training

phase during which it learns the conditional probabilities using

the queries COUNT(*) (or SUM(Measure)) issued by the attacker

to the database. The learned probabilities are saved and later used

to make predictions. The number of queries 𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 needed is:

𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 = 1 + ||𝑑𝑆𝐴 | | + | |𝑑𝑆𝐴 | | ×
∑︁

𝑑𝑄𝐼 ∈𝐷𝑄𝐼

∥𝑑𝑄𝐼 ∥

which is used to compute the size of the database, 𝑃 (𝑦) and
𝑃 (𝑣 |𝑦)/𝑃 (𝑣) for all values and dimensions. For instance, consider

a table T with 10000 rows and |𝑑𝑆𝐴 | = [20, . . . , 60] is the dimen-

sion for Age attribute. To compute 𝑃 (𝐴𝑔𝑒 = 25), we use the

following COUNT query:

SELECT COUNT(*) FROM T WHERE 25 <= Age <= 25 )/ 10000.
This huge number of queries can be easily issued to a pub-

lished database using a DP algorithm with a fixed privacy budget

(e.g. PrivBayes[41]), and from which the attacker can infer some

knowledge [13, 18].

However, the database is not published in our system. As we

showed in Section 5.4 the attacker has a limited budget (𝜉 >

0,𝜓 > 0), from which each issued query consumes a privacy

budget (𝜖 > 0, 𝛿 > 0) based on a sequential composition 3.9. Since

𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 can be very large, 𝜖 must be very small 𝜖 = 𝜉/𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠
and 𝛿 = 𝜓/𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 , thus losing the utility of query answers. An
alternative to sequential composition is Advanced composition
[22, 27], which allows the queries to have a greater budget 𝜖

without exceeding 𝜉 . With the advanced composition, the budget

of each query is: 𝜖 = 𝜉/
(
2 ×

√︃
2 × 𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 × 𝑙𝑜𝑔( 1

𝛿
)
)
and 𝛿 =

𝜓/𝑛𝑄𝑢𝑒𝑠𝑟𝑖𝑒𝑠 . We notice that 𝜉/
(
2 ×

√︃
2 × 𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 × 𝑙𝑜𝑔( 1

𝛿
)
)
>

𝜉/𝑛𝑄𝑢𝑒𝑟𝑖𝑒𝑠 , which means queries have better utility.
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To evaluate the resilience of our system against this learning-

based attack, we tested both sequential compositions and the

two allowed queries COUNT and SUM. We also considered parallel
composition which allows multiple attackers to create a coalition,

where each of them executes only one query (to maximize utility)

and combines it with those of other attackers to train the classifier.

The ingredients of our experiments are as follows:

Setup:We used Adult dataset with four data providers. We se-

lected 3 dimensions of our table to be 𝐷𝑄𝐼 and 1 dimension to be

𝑑𝑆𝐴 where | |𝑑𝑆𝐴 | | =100 (i.e. the number of classes for NBC). We

also set𝜓 = 10
−6

and we varied 𝜉 between 1 and 100 since there

is no standard value [24, 27].

Evaluation: To assess the quality of the learning attack, we mea-

sured the accuracy of the NBC in predicting the value of 𝑆𝐴 for

each row in the original table𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
number of correct predictions

total number of predictions
.

𝜉 = 1 𝜉 = 20 𝜉 = 50 𝜉 = 100

Sequential / COUNT < 1% < 1% < 1% < 1%

Sequential / SUM < 1% < 1% < 1% < 1%

Advanced / COUNT < 1% < 1% < 1% < 1%

Advanced / SUM < 1% < 1% < 1% < 1%

Coalition / COUNT < 1% < 1% < 1% < 1%

Coalition / SUM < 1% < 1% < 1% < 1%

Table 1: Inference accuracy based on 𝜉

The results in Table 1 show that in all scenarios the accuracy

is < 1%. Since the 𝑆𝐴 we used had 100 possible values, this means

that the trained classifier is given similar accuracy as randomly

assigning a value for 𝑆𝐴 in each row. Three reasons can be put

forward to explain the failure of the learning-based attack: i)

our system is interactive (the database is not released) and the

budget is limited, thus it is difficult to have good accuracy for

large numbers of queries by a single attacker; ii) query answers

in our system are approximated with random sampling, which

will introduce some error; iii) the smooth sensitivity has a consid-

erable scale, and in the case of queries that collects small values,

the accuracy can be lost even for large values of 𝜖 .

Similar results were obtained when fixing the 𝜉 = 100 and

changing the number of dimensions in 𝐷𝑄𝐼 from 1, 3, 5 to 8. This

shows the resilience of our system in different settings.

7 DISCUSSION
To approximate the sampling probabilities (see Section 5.2), we

assumed that the dimensions are independent and that there

is no correlation between them. However, this assumption is

not valid in some cases. For example, if an individual’s 𝐴𝑔𝑒 is

less than 25, this implies with a high probability that he/she is

still studying (𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ). Likewise, if 𝐴𝑔𝑒 > 65, the

attribute 𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑟𝑒𝑡𝑖𝑟𝑒𝑑 . When it comes to range queries,

capturing and managing these dependencies is non-trivial; so we

will leave it for future work.

In our solution, we focused on protecting the intermediate

(summary information) and final result from inference attacks

with the use ofDifferential Privacy. However, we have not directly
addressed the risks associated with side-channel attacks. It is easy

to see that thanks to the collaboration method that we propose,

we manage to avoid certain risks mentioned in [35], such as:

memory access models and communication volumes since all data-

based computations are performed locally at each data provider

and the communication cost is constant and independent of the

query. But we have postponed further consideration of this aspect

of the problem to dedicated work.

Our solution serves as the first building block towards a more

comprehensive solution that handles more complex queries, such

as GROUP-BY queries. Integrating such clauses in the SQL query

is not so trivial, and adding noise to the final result will not be

enough to guarantee privacy [14]. Other aggregations, such as

average, standard deviation, and variance, can be derived from

SUM and COUNT using the sequential composition of DP. How-

ever, to handle other aggregations (such as Min, Max and Mode),

different estimators are required.

Finally, during our evaluation, we built a proof of concept of

our solution on PostgreSQL. It would be interesting to incorporate
it directly into any DBMS, which would further improve our

results.

8 CONCLUSION
In our study, we introduced a lightweight collaborative approach

for online range query approximation in a federated environ-

ment. Our experimental results demonstrated the performance

improvements our solution is capable of delivering, with process-

ing times improved by up to 8x compared to plain-text execution,

while ensuring end-to-end privacy with minimal loss of accu-

racy. Our solution uses cluster sampling and query estimation

techniques that take into account data distribution to preserve

query utility in terms of speed and accuracy. This work lays a

solid foundation for future work to handle more complex queries

while maintaining the same level of performance.
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